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The performance of serial turbo codes does not
concentrate

Federica Garin, Giacomo Como, and Fabio Fagnani

Abstract—Minimum distances and maximum likelihood error  possible interleavers. The main result in [5] is an uppemidou
probabilities of serial turbo codes with uniform interleaver are to the average error probability which decays to zero as a
analyzed. It is shown that, for a fraction of interleavers approad- negative power of the interleaver length. The exponent ofisu

ing one as the block-length grows large, the minimum distance | d I f dt inerl .
of serial turbo codes grows as a positive power of their block- power law decay, usually referred 1o as rieaver gain

length, while their error probability decreases exponentially fast Was shown to depend only on tfieee distanceof the outer

in some positive power of their block-length, on sufficiently good encoder, which turns out to be the main design parameter of
memoryless channels. Such a typical code behavior contrastsserial turbo codes. The effect of the inner constituent éeco
the performance of the average serial turbo code, whose error was analyzed by considering the limit performance in thé hig

probability is dominated by an asymptotically negligible fraction - . . . .
of poorly performing interleavers, and decays only as a negative signal-to-noise ratio (SNR) regime. The fundamental desig

power of the block-length. The analysis proposed in this paper Parameter characterizing the performance in this regime is
relies on precise bounds of the minimum distance of the typical the effective free distancef the inner encoder, defined as the
serial turbo code, whose scaling law is shown to depend both smallest weight of codewords obtained when the input word
on the free distance of its outer constituent encoder, which of the inner encoder has weight two. These ideas have been

determines the exponent of its sublinear growth in the block- . v f lized first in [24 dth . i
length, and on the effective free distance of its inner constitugn "'90rOUSly formalized firstin [24] and then, in a more getera

encoder. The latter is defined as the smallest weight of codewords S€tting, in [22], where also a lower bound is proved diffgrin
obtained when the input word of the inner encoder has weight from the upper bound only by a multiplicative constant, thus

two, and appears as a linear scaling factor for the minimum showing that the bound is tight for treverage serial turbo
distance of the typical serial turbo code. Hence, despite the lack code

of concentration of the maximum likelihood error probability In fact. th d Ivsis has b th in tool
around its expected value, the main design parameters suggested n tact, the average code analysis has been the main 0o

by the average-code analysis turn out to characterize also the Us€d in the literature to study the performance of turbo and
performance of the typical serial turbo code. By showing for turbo-like codes in the ‘waterfall’ SNR region, see e.g.][14
the first time that the typical serial turbo code’s minimum [10], [34], [1], [27], [23] for a (non-exhaustive) list of exn-
distance scales linearly in the effective free distance of the inner ples of papers on the average error probability of serididur

constituent encoder, the presented results generalize, and imgve . . . .
upon, the probabilistic bounds of Kahale and Urbanke, as well as like ensembles, including recent work. The effectivendsbe®

the deterministic upper bound of Bazzi, Mahdian, and Spielman, design based on the average performance might lead one to
where only the dependence on the outer encoder’s free distancebelieve that there is a concentration phenomenon, i.epslm

was proved. all codes perform closely to the average one. In this paper, w
Index Terms—Turbo codes, serially concatenated codes, mini- Shall prove that this is not the case, as the typical serralbtu
mum distance, error probability, typical code analysis. code performs much better than the average one. Neverheles

as explained in the sequel, the typical serial turbo codysisa
|. INTRODUCTION shows the relevance of the same design parameters higdight

Serially concatenated convolutional codes with random i:tﬁ’ the average code analysis, namely, the free distance of

terleaver, briefly serial turbo codes, were introduced i [5t e outer encoder and the effective free distance of therinne

. : . ; . der.
together with an analytical explanation of the simulatiofi c° . . .
regults The authors gased thgir analysis on the so-called® Notable exception to the aforementioned literature based
uniform interleaver a conceptual tool first introduced in [6]On the a_vetra;%e tut:bo C]?de a_naIySIt?] IS prgwg_?? zy :nt;fuearly
in order to explain the performance of Berrou et al.’s patallmanuscrlp [26], whose facus is on the probability dis

turbo codes [8]. In a nutshell, the idea consists in fixing th%]c the minimum distance of parallel and serial tlu.rbo code
sembles, rather than on the ML error probability of the

outer and the inner constituent encoders, and in studyiaeg e wrb de. A related line of r rch has f d
maximum likelihood (ML) error probability averaged ovef aldverage urbo code. clate € Of research nas locuse
on deterministic bounds on the minimum distance, initiated

An earlier version of this work has been presented at theattiriational by Breiling [9] for parallel turbo codes, and developed in

SympoTium on Turbo Codes and Related Topics held in Munichn@&®y, the serial case in [4], [32]. A side research effort has also
on April 3—7, 2006. . . . ..
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constituent encoder, and the scaling is up to some unspkcifigpical turbo code decreases exponentially fast in a pasiti
constants which depend both on the inner and on the oupswer of the block-length.
encoders, but not on the block-length. This result implieg,t  The analysis performed in this paper involves, on the one
for almost all choices of the interleaver, serial turbo ddiand, precise bounds on the cumulative distribution famcti
have ML error probability decreasing to zero exponentially (CDF) of the serial turbo code’s minimum distance, whose
a positive power of the block-length, thus showing that, dy#oofs heavily rely on the combinatorial ideas developed in
to the presence of an asymptotically vanishing fractionaaf b [26]. On the other hand, our proof of the deterministic upper
codes, the average-code analysis provides too consenatibound makes use of some of the techniques devised in [4]. For
prediction of the behavior of thgpical serial turbo code all the probabilistic bounds, we shall present completelf s

In fact, an analogous phenomenon has long been knowwontained proofs. Our choice is in the interest of readabili
to occur for other code ensembles, and this has motivateoth since the manuscript [26] has not been published ydt, an
a considerable research effort in the analysis of the distarbecause our results do not follow from the statements in [26]
spectra of such ensembles. Early results for random andrlinbut rather involve some suitable modification of the argutsien
code ensembles at low rates, as well as low-density paritirerein. Moreover, we shall consider a family of constituen
check (LDPC) code ensembles appear already in Gallageziscoders which is more general than the one defined in [26],
thesis [19, Ch. 3], while more recent rigorous results awehere only systematic recursive convolutional encodersitef
reported, e.g., in [3] and [28, Ch. 6] for binary random antl/2 were used.
linear code ensembles, [29] and [28, Ch. 11] for binary LDPC The remainder of the paper is organized as follows. In Sec-
code ensembles, [7], [12], and [13] for code ensembles ov&m 2 we introduce in a formal way the serially concatenated
groups for non-binary input channels. For a related streazndes. Section 3 gathers some fundamental bounds on the
of literature based on the application of non-rigorous buteight-enumerating coefficients of convolutional codescivh
powerful techniques of statistical physics to the analydis will be used throughout the paper. Section 4 contains all the
LDPC codes, see, e.g., [30], [18], [31], [35] and [28, Ch..21jnain results on minimum distances of serial codes. Finily,
It is worth mentioning that, in contrast to the ML errorSection 5 we prove our main results on the typical behavior
probability, other parameters of these code ensembleb,agic of minimum distance and ML error probability and a number
the weight-enumerating coefficients, may concentrate ineso of related results. The most technical proofs are deferoed t
cases, see, e.g., [3] for random and linear code ensemldes Appendix | while Appendix Il contains some extensions.
[33] for regular LDPC code ensembles. Before proceeding, we establish the following notational

However, despite the lack of concentration of the seriabnvention, to be used throughout the paper. When deal-
turbo code ensemble’s performance, the results in [26] shavg with quantities depending on many parameters, such as
that the scaling law of the typical serial turbo code’s miaim w,d, N,n ..., we shall implicitly assume that all the param-
distance is characterized by the outer encoder’s freertista eters are depending alV, but we shall avoid cumbersome
d¢, which is the same main design parameter suggested gtationwy,dy .. .. Hence, a statement such as fdsgrows
the average code analysis [5], [24], [22]. On the other hanldrge, if d = o(N) andw < d, then f(w,d, N) = o(N®)’
no design parameter of the inner encoder emerges from theans that ifd = dy, w = wy satisfy wy < dy and
analysis proposed by [26], [4]. dn/N vanishes, asV grows large, thenf(wy,dy, N)/N®

The main contribution of the present paper consists @onverges td). When we sayw is constant’ we mean it does
showing that the scaling law of the performance of the tyipicaot depend onV. We shall also writef(N) = w (g(IV)) to
serial turbo code does depend also on the inner constitusrgang(N) = o(f(N)).
encoder’s effective free distance, to be denoteddpy We
shall prove (see Theorem 1) that, with high probability, the Il. PROBLEM SETTING
minimum distance of serial turbo codes scales like In this section we establish some notation on convolutional

g N2 encoders, and introduce the serial turbo code ensemblee Sin
e ’ we do not want to put a priori limitations on the rate of

up to some constants which depend on the outer enco@enstituent encoders and/or their structure (e.g., syaem
only. This result generalizes and improves upon the aforeacoders), we shall consider below general convolutional
mentioned probabilistic bounds of [26, Thm. 2]. We shagncoders.
also prove (see Theorem 2) a deterministic upper bound on
the minimum distance of serial turbo codes, which showfs Convolutional encoders
an analogous dependance on the inner and outer encoderls this section, we recall a few definitions and properties
parameters. This result generalizes and improves upon sasheconvolutional encoders that are essential for this paper
of the bounds of [4], with the main improvement consistingVe refer the reader to [16] and [25] for classical results on
in highlighting the dependance of the bound on the inneonvolutional encoders, and to [17], [15], [22] for morealkst
encoder’'s parameters. Also, it improves asymptotically am those properties which are useful in the study of turke-li
the best known deterministic bound for minimum distancgoncatenations.
of serial turbo codes, presented in [32]. Finally, by means Denote byZ . the set of non-negative integers, and consider
of code-expurgation techniques, these results will allestas a map
show (see Theorem 3) that the ML error probability of the ¢ : (Z5)2+ — (Z5)+
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Fig. 2. A serially concatenated encoding scheme.

Given u € (Z5)%+, we define thesupport of u as
supp(u) = {t € Z : wu(t) # 0}. The block-termination
of a convolutional encodep after N trellis steps is defined
as follows. Fix N € Z,, consider an input word: with
u(t) = 0 for all ¢ > N, and letz be the associated state
Fig. 1. Section of the trellis associated to a convoluticeratoder. At time sequence. Notice that the state sgquanaed th? output word
t > 0, the state isz(t) € Z4. Then, in response to an inpu(t) € Z5, an Y = ¢(u) may not be supported in the same interval. Indeed,
outputy(t) = Hxz(t) + Wu(t) € Z3 is produced, and the state is updatedt can happen that(N) # 0 andy(N) # 0. However, thanks
asz(t +1) = Fa(t) + Gu(t) € Zj. to the controllability of the minimal realization (see, & [36]
or [17]) there exists an integer € [0, ] (called constraint
é?ngth and not depending on the particulamor on N), and

i.e., ¢ maps an input word which is an infinite sequence ; L :
vectoré having k bits each into an output word which is art input words; coinciding with on [0, NV —1] and supported

infinite sequence of vectors havingbits each. We say that |~nside~[0,N +v — 1] such that the associated_ state sequence
the map¢ is a convolutional encodeif it admits a linear r hasiy .y :_O and thus also the corresponding output word
finite state-space realization. This means that the reistip is supported if0, N + v —1]. Moreover,_ the pole placem.ent
between the input and the output words (codewords) can tﬁ?orem (see, €.g., .[36].) ensures that~|t Is always possible
described by a linear dynamical system with finite memorg. Ipose tr}[ette;mlgztmg mpuﬁts(l\;), o '{#(Z]Yf V__ 1);) be
More precisely, there exist a state spa€e= Z, and matrices inear state-reedback, 1.e., to have the ar(y) Tx x.(t)

F, G, H, W of suitable dimensions and with binary entriesf,Or alit=N,...,N+v—1,forasuitablek € Z, Whlc.h
such thaty = ¢(u) if and only if there exists a (unique) statedeDends only on the encoder not onw nor on N In this
sequencer ¢ (Z)%+ such thatz(0) = 0 and, for allt, paper, we shall assume that, given a convolutional encoder

a matrix K has been chosen allowing one to construct the
z(t+1) = Fa(t) +Gu(t), y(t) = Ha(t)+Wu(t). (1) terminating inputs. Then, the block termination @fafter N
trellis steps is defined as the map

We shall say that is the state sequence associated with
The state realization is usually pictorially representscha on : ZEN — zr V)

labeled graph, called trellis. To construct the trellis;, éach

t € Z,, draw2* points, corresponding to elements of the statd

spaceX; then draw an edge from stateat timet to statez’ (uT(0),u"(1),...,uT (N —1))T

at timet -+ 1, with input labela € Z% and output labeb € Zj

if and only if 2’ = Fx + Ga andb = Hx + Wa (see Figure

1). (" (0),y" (1), sy (N = 1), 9" (N), .y (N v —1)T
The minimal realization (i.e., the one having the smalleghch that

1) of a given convolutional code is unique (up to a change - .

of basis for the state space), and has the observability arff1(0), u(), - u(N=1),a(N), ..., @s(N+v=1),0,...)

controllability properties which are essential for defmithe = (y(()),y(l), oy (N=1),y(N),...,y(N+v—1),0,.. ) ,

terminated encoders (see below) and for proving Lemma 1.%%

hich associates to an input word

the output word

erea(N),...,a(N+v—1) is the above-described terminat-

input obtained as a linear state-feedback. Such a choice
of the terminating input immediately implies that; is aZs-
linear block encoder.

this paper we shall always assume that we are using a mini
realization, in a fixed choice of coordinates for the stagcep
and we shall refer to it as the trellis of the encoder.

A convolutional encoder is said to berecursiveif, for
every input wordu with Hamming vvg_gh% wi(u) = 1, the g gerially concatenated convolutional encoders with @nd
corresponding codeword(u) has infinite Hamming weight. ;< jeaver
The encoder is said to beon-catastrophidf every codeword .
¢(u) having finite Hamming weight comes from an input word We start from two convolutional encoders
u which also has finite Hamming weight. Thieee distance 00 (ZE)2+ — (ZH)™+, @' (Z5)P+ — (Zh)P+.
and theeffective free distancef ¢ are defined, respectively, Let »

as ° and ! be their corresponding constraint lengths and

let N be a positive integer such thadividesr(N + v°). Let
de := min{wy(é(u)) : u#0}, (2) My be such that

de == min{wn(¢(u)) : wu(u) =2}. 3) sMy =r(N +1°),
IThroughout this paper, vectors are column vectors. SNotice that the size of the support is the number of non-zemove in

2Throughout this paper, Hamming weight is to be intended biewi.e., the sequence. Hence, supp(u)| = w (u) whenk = 1, while the equality
the number of ones in the word, and not the number of non-zerongec need not hold true in general fér> 1.



TABLE |
THE RELEVANT PARAMETERS OF THE CONSTITUENT ENCODERS OF THE
SERIAL SCHEME INFIGURE 2

dy free distance of°, see (2)
dy, effective free distance af', see (3)
5t defined in Sect. Il

n° n' | defined in Lemma 1
v°, 1 | constraint lengths of° and ¢!, see Sect. II-A
ue memory (size of minimal state space) ®f, see Sect. II-A

Fig. 3. An error event with active windo¢;, ¢2].

Ky :=I1(My+v') = I(Z(N +v°) + V. is a random variable itself. Similarly, assuming transioiss
over a binary-input output-symmetric memoryless channel
with ML decoding, the word error probability of the serial
turbo code is a random variable, to be denoted by

Consider the block terminations ¢f and¢' after N and My
trellis steps, respectively
& ZEN — ZpN )| W ZsMY o N
¢N 2 2 ¢N 2 2 P(€|HN) )
Finally let 7y be a permutation of lengthA/ and denote
by the same symbaty : Z;;MN — Z;MN the corresponding While the focus of most of the literature (see, e.qg.,[5], J28s

linear isomorphism. The serially concatenated encodesiden been on the error probability of treverage serial turbo code
ered in this paper is the Composition ]E[P(6|HN)], in this paper we shall be concerned with the

. o . kN K minimum distance and error probability of thpical seri_al
PnoOTNOPY 1 Ly — Ly turbo code namely with the high-probability behavior dfi®

depicted in Figure 2. We shall refer ¢& as theouter encoder and the distribution of”(e|llx ), as N goes to infinity.

to ¢! as theinner encoderand torry as theinterleaver Table |

summarizes the parametersgfande' that will be used along I1l. W EIGHT-ENUMERATING COEFFICIENTS OF THE
this paper. _ _ CONSTITUENT ENCODERS

Throughout this paper we shall make the following assump-__ ) ] ) )
tions on the constituent encoders: This sections deals with the input-output weight-

_ 2 .z, .. enumerating coefficients of the constituent encoders.
Assumption 1. The outer encodes® : (Z3)™* — (Z3)™ IS e define the error events and the weight-enumerating
non-catastrophic, and its free distandg is even and satisfies cefficients, we recall some properties of convolutional
dg > 2. encoders related with the weight of codewords, and we
Assumption 2. The inner encodep! : (Z3)%+ — (ZL)%+ is  State the pounds on the W(_eight-gnumerating coefficient_s of
non-catastrophic and recursive, has scalar input (ie= 1) OUter and inner encoder, which will be used in the_ following
and is proper rational (i.e., the matrig of its minimal state Sections. The proofs of such bounds, many of which rely on

_ _ ppendix I-A.

Among such assumptions, the ones which are truly needeggnsider a convolutional encodere (Z5)%+ — (Z5)%+.
?n order_ to obtain the claimed a_symptotic behavio_r of minye say that an input word € (Z5)%+ is anerror eventf there
imum dlsta.m.ce and error probability are the follpwmg: NOMaxist ¢, < t, such thatu has supportupp(u) C [t1, ] and
catastrophicity of both encoderg; > 2 and recursiveness of g;ch, that the corresponding state sequenbas support equal
¢'. The other assumptions have been introduced for simpliciy he discrete intervatupp(z) = [t + 1, £5]. Notice that this
they allow one to avoid cumbersome notation and def|n|t|or]§mp|ies thatu(t,) # 0 and that the corresponding codeword
to have simpler proofs, and to easily underline underliree th, _ é(u) has supporsupp(y) C [t1,t2]. The length of the
role of d, (the effective free distance) as the main desighyyor event is defined as — ¢, + 1 and the discrete interval
parameter for the inner encoder. In Appendix Il we shall ;s called theactive window See Figure 3 for a pictorial
briefly comment on which results can be obtained in ﬂ}%presentation.
most g_eneral case, With a particular focus on the_ case of od very finitely supported input sequenesuch that(u) has
dg, while we refer the interested reader to the first authorgs, finite support, can be obtained as the summation of a finit
Ph.D. thesis [21] for further detail. _ number of error events with non overlapping active windows.

In the rest of this paper, we shall investigate the perfoneanThe following useful result was proved in [15, Lemma 20].
of the above-described serially concatenated coding sebem
assuming that the interleavély is a random element uni- Lemma 1. Given a non-catastrophic convolutional encoder,
formly distributed on the group of permutations dffy there exists a constamtsuch that any of its error events with
symbols. This is the classical ‘uniform interleaver’ endéen output Hamming weighty has length not greater thamw.
of [6], [5]. Since the interleaverl  is random, the minimum

. Let v be the constraint length @f and consider the block
distance

' ' termination of lengthN, ¢y : ZEN — ZiN ™) An error
dum = min{wg (¢l o mn 0 9% (u)) 1 u # 0)} event forgy is any input word(u”(0), ..., v (N —1)) such



that under the assumption that is proper rational, such an output
word is made ofa consecutive disjoint copies af and thus
it has Hamming weighttwy () > wg (7). In particular, this

is an error event fop (whered is the usual linear terminating Meéans thatvi(y) = d.. The case when the inner encoder

extension ofu). Such an error event is said to lEgular if its has noq-scalar input or is not proper rational is discuseed i

active window[t1, t5] lies inside[0, N — 1] (the termination APPendix Il. , .

@ is 0). Otherwise, the error event is calléerminating It is ~ Recursiveness o' ensures that any error event for

clear that any input word fopy can be written as the sumbhas input weigh® or larger. When considering,;, however,

of a finite number of regular error events plus, possibly, &€ has to be slightly more careful: regular error event® hav

terminating one, all having disjoint active windows. indegd vyeight at Ieaﬁ_, while this is not pecessarily trug for a
Considers® : (Z&)2+ — (23)%+ andg' - Z?* — (Z})%+ to terminating event which could have weight, the remaining

be the outer and inner encoder of the turbo encoder descrifégght being in the extended paitand not counted in the

in the previous section (notice that we are considesing1). Weight of u.

We shall denote by° and' the constants defined in Lemma 1 The bounds we shall give rely on the input-weight lim-
for ¢° and¢' respectively. itation of error events imposed by recursiveness. Notice in
For the outer encoder, we define the weight-enumeratiRgrticular that, for every evem, the input words contributing
coefficient A5 to be the number of input words af%, 0 By, <4,,/» Will exclusively be composed of regular error

whose corresponding codewords have weightFor it, we €vents each having input weight equalto
need only the following simple upper bound, which holds true For the weight-enumerating coefficients@, we have the
for all non-catastrophic terminated convolutional encedand two bounds stated below. The following lemma is proved in
is mainly a restatement of [26, Lemma 3]. Its proof is prodideAppendix I-A2. While its part (b) follows from minor changes
in Appendix 1-Al. to the arguments in [26, Lemma 1], its part (a) is a key novel
) . _contribution, since it explicitly captures the dependeotthe
Lemma 2. If ¢° is non-catastrophic, then the followingjeading term on the inner encoder’s effective free distafice
inequalities hold true. In fact, part (a) of the following lemma will turn out to be

(w(0), u(1), -+ ,u(N = 1),@(N),- - ,i(N +v —1),0,...)

(@) If [d/d?] < N/2, then a fundamental ingredient in the next section, when showing
N the linear scaling off™ in d.. In contrast, the bound of [26,
AN < glkn4n+1)d+ (Ld/doj) ; Lemma 1] depends on a term, therein denote®y), which
f

can be traced back to equaé./ni, and cannot be chosen
(b) If m¢ denotes the number of different error events fdnversely proportional tq/dz: therefore, [26, Lemma 1] does
¢° starting at¢; = 0 and producing output weight?, not allow one to prove the linear scaling &f'" on d..

then Lemma 3. Let Assumption 2 be satisfied. Then, the following

inequalities hold true.
As for the inner encoder, we shall need a weight-(a) If w is even, then
enumerating coefficient which considers both input and wutp

ALY <mgN .
f

weight. DefineA;;”. , to be the number of input words @y R L 20 | d iz
with input weightw and output weight not greater thah wsdw/2 = gyw TN g ’
Another weight-enumerating coefficient which will play ayke ,
role is R, defined as the number of input words@f, () If d < My /(27'), then
with input weightw and output weight not greater thah N
.. i, d Ccv ) y .

consisting of exactly: regular error events. AN < R <awse T Nww N 2av? - ifweven,

Because of the assumption of recursiveness, the inner en-" w.<d = v Nlw/2] glw/2] if w odd,

coder’s outputp'(u) has infinite Hamming weight whenever
the input wordu has weightl. In contrast, it is well known where( is a constant only depending on the inner convolu-
that there exists an input word of Hamming weighwhich tional encoder.
produces a codeword with finite weight (see e.g. [22, Preposi _ ) )
tion 3.6] for a proof). Having assumed thaithas scalar input  1he following result is essentially a restatement of [26,
(s = 1), the codewords corresponding to weighinput words Lemma 2], with the dependence ap made explicit, and is
have the following useful property. Let' be the smallest Proved in Appendix I-A3.
possible relative distance between the positions of the NQiyyma 4. Let Assumption 2 be satisfied.ufis even and
zero entries of a weight-input word u such that¢!(u) has
finite Hamming weight. Let: be the weight-2 input word with diw di My

. " X LS _ . —“— <d< .
a one in positiord and a one in position', and lety := ¢'(u) 9 — = 9§
be the corresponding output word. Then, it is easy to see ﬂ}%t
: . ) . . S . en
if u is a weight2 input word, then¢'(u) has finite weight , /2
. - " . . qw/2 d|”
if and only if the positions of the two non-zero entries«of Rl7N<d 5 > 7Mﬁ/2 {J .
are at a distance multiple @f, sayad' for a > 1. Moreover, w,Sdw/ w




IV. MINIMUM DISTANCE OF THE TYPICAL SERIAL TURBO  and Seyen is defined similarly toSoqq, considering terms with
CODE even w > d¢. Then, in order to obtain bounds on the

In this section, we state and prove our main results on tiight-enumerating coefficients, we use the upper bounds
minimum distance of the typical serial turbo code. Our ressufff®m Lemmas 2 and 3, as well as the simple bound
will indicate that, if d? is even, then the minimum distance My My
din scales agl, N° with high probability, where ( ) Z

w ) T oww
5.:1_3 € (0,1) We obtain that, for some suitable positive constants
ds ’ Ky, Ks, K3, K, (depending on the constituent convolutional

First, we shall provide precise upper and lower bound@coders only)
of the CDF of d%y™. These bounds, stated in Theorem 1, g.<et (€L k dy . -
improve upon some of those in [26]. Then, we shall prove ap < &N 2 + N/ Y
a deterministic upper bound afi'®. Such a bound, stated
in Theorem 2, generalizes and improves upon some of the Sodd < Z K;Nw/dgy[wmdm/z]
results of [4]. As explained in the Introduction, the most -

novel contribution of both Theorems 1 and 2 with respect di<usnd
to the existing literature consists in highlighting theeraf d\/? N
the effective free distance of the inner encodgr,as a linear = (N) Z Ky Nlw/di]=w/2quw/2
scaling parameter fady™. d2<w<n'd
We start by observing that a standard application of the NI g’dd
union bound g|v§s the useful bound (see [26, Lemma 6]) < (N> S (Ratn)", ®)
min A My - o,N 4i,N emd
P(dy™ < d) < w%)( . > AN A VASEN. e Ry o Ko /T
. (4) wpr|lw/df ]| —% ;% d wpr|lw/df ]| —% ;%
The limitation w < 5'd is due to the remark that any Seven< Y. KyNL/aE gl + oy KN
terminating or regular error event e, with output weightd d?;gvﬁeg‘d
has input weightw bounded from above byn'd (and here oo
we are considering = 1). < (1 + ) Z (Ksén)" 9)
Now, using the bounds on the weight-enumerating coef- w=d2+2

ficients established in the previous section, we obtain the
following result on minimum distances, which is a refinemerY ere K :=
of [26, Thm. 2.a].

v/ di max{ K3, K4}. It follows from (5) that

~ 1 1
Kyén < 3 Ksén < 3 (10)
Proposition 1. Let Assumptions 1 and 2 be satisfied. Assume .
that d = o(N?), as N grows large. Then, there exisi§ > 0 d 1 4041 d\z 1
such that Ky < EC’ 2K, N (N) < 60 (11)
% d 1
min — d 2 d7+2 .2
P(dy" <d)<C (N Bdg> , (1 + N) 2Ky < 60’ (12)
d? for sufficiently large/N. From (7) and (11), it follows that

for all N > Ny, whereC := 2mg (2¢//T)
d

. e (1 a (1 1
Proof: Define ¢y := (N—7d/di)'/?, and observe that S <&y (20+K1N) <&y <2C+ 60> - (13)

the assumptionl = o(N?) implies that _ L o _
Equation (10) implies that the series in right-hand sides of

&v =o(1), = —o(éw), (5) poth (8) and (9) are convergent, and don_nnated by twice th_ew
N first term. From this remark, together with (11) and (12), it
as N grows large. Now consider (4), and split the summaticiollows that

therein in three parts: aN: B+ 1 e
. Soad< [ =] 2(K < =0\, 14
P(d%m S d) § Sd;’ + Sodd+ Sevena (6) odd = <N> ( 2§N> -6 N ( )
d o ]_ o
where 1 Seven< (1+ )2 (Ksén) ™2 < e . (15)
Sy = (MN) Ao 4iN N 6
g o de e, <d> ) .
! df f o= The claim follows by combining (6), (13), (14), and (158
. Z My _1AO,NA1,N It is possible to obtain also a lower bound for the CDF
odd -= . \w W Tw,sd? of the minimum distance, showing that, asymptotically ia th
f<w<n'd

o odd block-length, the upper bound in Proposition 1 is tight.sThi



lower bound, stated below as Proposition 2 is a novel ré¢silt. Then, using the inclusion-exclusion principle we obtain
proof combines techniques similar to those of [26, Thm. 2.b]
with the inclusion-exclusion principle [2, p. 124].

First of all, we fix an error eveni” for the outer convolu- e give a lower bound for the first summation using Lemma 5,

tional encoder®, having active window0, 7' — 1] for some | o114 4, and (26). Also, recall thaf| = |N/(dg1°)]. We
T, and with an output* = ¢°(u*) such thatwy(c*) = dg.

PR <d) > P (Uje, Bj(d) =T —T2. (A7)

Note that2 < T' < dgn°. ConsiderN > T'. For a nonnegative get .
integer j, definec; as the codeword obtained by shiftirg I — |J|Ri’N (MN)
for j trellis steps, so that the active window|[jsT + j — 1]; ! di <ddg /2 qe
clearly, if[j2—j1| > T', thenc;, andcj, have non-overlapping N | 9ds/2 e | d |92
supports. > Ld"OJ My, ¢/ LllJ
Now consider the terminated encod, and, with a slight fZO e e
abuse of notation, let; denote its codewords corresponding > 2KEy (18)

to the above-constructed codewordsqdf Define the set of
indicesJ := {dgn°j, j € Z4}n{0,1,...,N —1—dgn°}, so .
that if j; and j, both belong toJ, andj; # j», then clearly LdJ < d (1 dg) - d <1 2 )

with the last inequality following from the fact that

lje—j1| > d¢n® > T. Forj € J andd € Z., define the event di | = di d)=d \" &
Ex(d) == {wnu(¢y(In(c}))) < d} thanks to the assumptieh> 1dgd., and from the inequalities
N{¢ (In(c})) hasdy/2 regular events. N N
. . . MN S 271N7 \‘ J 2 a0 o)
Clearly, for anyj, £7(d) implies dy™ < d, so that dgne 2dgne

P(d3 < d) > P(Ujes B} (d)). which hold tr'ue for sufficiently largeVv. _

Now, we find an upper bound for the second summation

The following lemma provides an expression ﬁB(E;f(d)) in (17) using Lemma 5, Lemma 3, and (26), as follows

and shows that, asymptotically, the evehts(d) are ‘almost’ My 2

pairwise independent. Its proof, deferred to Appendix I-B1 I < |J] (dg) RN My <T

closely parallels the arguments of part of the proof of [26, 2 = \ 2 (MALrio—d?) dp, <ddg /2 qe =

Thm. 2.a]. The main difference with respect to [26, Thm. 2.a] f

is in the definition of the evenk’; (d), which in our case has where

the additional restriction thap'y (ITx(c})) hasdg/2 regular - 1(N 2 (ﬂ(/i{fgv) - d 1%
=3 (i (26 My -

events. Our definition does not significantly modify the groo  I's:

. . . dO'I’]O MN—d?) dl
of this result, but turns out to be a key point in order to show f dg e
the role ofd., in Proposition 2. Notice that
Lemma 5. Let Assumptions 1 and 2 be satisfied. Then, for all Mx\ (My —d2\ !
h#j2 €, My =rN(1+0(1)), <d§,)< " f) =1+o0(1),
M\t
P(E; (d)) = ( dcf)\/) R;ggd,d?/w (16) @SNV grows large, so that
f . (462)d§.’ 2d°
(1\(/1[(1)\,) Iy < W(1+0(1)) Nf
P(E], (d) N Ej,(d)) < =g PES, (d))P(EG, (d)) - , .
( de ‘) Sinced = o(N?) by assumption, one has thé; = o(1), so

We shall obtain our lower bound by considering the prokghat

ability of the union eventJ; E7(d) and using the inclusion-
exclusion principle. for sufficiently large N. Together with (17) and (18), the
rﬁ%regoing implies the claim. |

Iy SF2SK§§7

Proposition 2. Let Assumptions 1 and 2 be satisfied. Assu

that d > 1dpdi, andd = o(N?), as N grows large. Then, We may combine Propositions 1 and 2, in the following.

there exists\V, > 0 such that, for allN > Ny, . g
0= =0 Theorem 1. Let Assumptions 1 and 2 be satisfied. Then, for

a3 /2 " . _
P(dmin < i) > K (N5d> 7 every positive sequencgy} such thatlimy ,.eny = 0,

di there exists a finiteVy > 0 such that
where K = L(1 —2/dg)%/2 ] (r/2e% dgre). Coen/? <P (4™ < diNPey) < Ce/?
Proof: Let us definety := (Nfﬁd/dic)l/{ and for all N > Ny, whereCy and C? are positive constants
1 depending on the outer encoder only.
Tii= Z]P(Ej (d)), T2:=3 ‘ ZJP(Eﬁ (d) N Ej, (d)) - Theorem 1 provides some fundamental insight into the ef-
J€ J1,J2€

1 fect of the constituent convolutional encoders on the mimm



distance of the typical serial turbo code. On the one hand,lit fact, we can always construct a non-zero outer codeword
shows that the minimum distance of the typical serial turbaf weight at most-(:.°+1), as follows. Take a non-zero input
code grows as a positive power of the block-length. In facif time zero, and then drive the state back to zero by applying
it implies that the probability that the minimum distanég’™ the termination procedure: the corresponding codeword is
grows any slower tharV? vanishes asV grows large. The supported in[0,2°] C [0,1°] and thus has weight at most
exponent of this power law growtl¥, depends only on the freer(u° + 1).

distance of the outer encodep, in an increasing way. Thisis The result we obtain in Theorem 2 is also asymptotically
in line with the results of [26]. On the other hand, it showatth tighter than the currently best known bound for serial turbo
the minimum distance of the typical turbo code scales ligearcodes, presented in [32], which, &5 grows large, grows as

in the effective free distance of the inner encodgr, While fast asC N1~/

the effect ofd’, on the average error probability of serial turbo

codes has been studied in [5], [22], up to our knowledge n&¥. ERROR PROBABILITY OF THE TYPICAL SERIAL TURBO

results have previously appeared in the literature rejadin CODE
to the minimum distance. Such a scaling effectipon dy™ | this section, we discuss implications of the previous re-
is particularly relevant for moderate block-lengths. sults to the analysis of the error probability of the typisatial

The result stated below proviiges a deterministic UPPgfrho code. For the sake of concreteness—even if the results
bound on the minimum distana&;™, showing an analogous can pe easily generalized to binary-input output-symmetri

dependence on the parametefsand d. memoryless channels—we shall assume the channel to be

Theorem 2. Let Assumptions 1 and 2 be satisfied. Then, f§t€ binary-input additive white Gaussian noise channekmwh

all w € {0,1} is transmitted, the output of the channel is
N > 22/ 8qone (1) | (-1)“L + Q, whereL € (0,4+00) and {2 is an independent

o . Gaussian random variabfe ~ N(0, 02). The signal-to-noise
and for every realizationry of the interleaverlly, the (atio is

minimum distance satisfies p:=L*/(20%).

A < 6rdp(8d21°)* % (6')%d, NPlog N. (19)  As already mentioned, the focus of most of the previous

It is worth comparing the upper bound (19) with the higrIllterature on the analysis and design of serial turbo co@ess h

probability scalingN?d! implied by Theorem 1. On the Oneik:;eignk:gwt:t?st]arr[g;]ptrs:?blI|ty of the average code, for which
hand, the dependence a¥ of the right-hand side of (19) ’

involves an additional factolog N. On the other hand, the ~ Cy N~ L —D/2] < R(P(e|lly)) < CoN L =D/2]
right-hand side of (19) shows a linear dependencedpn
though multiplied by a factofé')?, which depends itself on
the inner encoder, and is therefore relateddtoitself. It is

for some constant§);, C, whose dependence afj, in the
high SNR regime can be made explicit.

. S . However, the error probability of the average serial turbo
important to highlight the fact that, in contrast to Theorgém 8?de turns out to be much larger than that of the typical

Th 2 holds f hoi f the interl . ) .
eorem olds for every choice of the interleaver, and r]serlal turbo code. Indeed, the former is dominated by an

only with high probability with respect to its random chaice X - . :
In fact, it may be conjectured that such greater strengthef tasymptotlcally negligible fraction of poorly performingaes.

statement could be the main reason for the additional faCt(!)Il:l the sequel, we shall use so-called_ _expurgatlon _tec_halque
in the upper bound (19) in order to show that the error probability of the typicaliaer

_NB-¢
Theorem 2, whose proof is deferred to Appendix I_th,urbo code decays faster tharp(—N""), for all ¢ > 0.

. [N —
may be thought of as a generalization of [4, Thm. 2]. Ther%,aé}’/\’n\{f de;r;e,sforlf¥eljw Zf L an_lc_jhe >0, t?ethe\ientEN T
only the case when the outer encoder is a repetition co - } - It follows from Theorem a

was considered, while we extend it to general serial turbo P(EY) > 1— CyN—ed/2, (20)

codes. Moreover, our modification of [4, Thm. 2] unveils the ) . )
fundamental role played by the inner encoder’s paramegersThe following proposition gives an upper bound on the averag
andsi. word error probability of the serial turbo ensemble, condi-

Indeed, [4] considers serial turbo codes as well, in an evifined on the eventy,.
more general setting with growing memory, but the resufroposition 3. Let Assumptions 1 and 2 be satisfied. Then,
they obtain ([4, Thm. 3]), when specialized to the constanhere exists some finii®, > 0 such that, if the signal-to-noise
memory case, gives a bound which is asymptotically weakeitio p satisfiesp > po, then, for alle € (0, ) there exist
than Theorem 2. In fact, [4, Thm. 3] gives some finite constantd’, > 0 and C' > 0 such that

dgr < N2 E[P(e|Tly) |E5 ] < C exp(—2N?~*)

for some positive constardi, and whereu® is the dimension for all N > Nj.
of the state space of the outer encoder. It is easy to show that

d2 < (4 + 1) and thus that Proof: The main tool for this proof is the classical

union-Bhattacharyya bound, introduced for the averager err
B<1l—(r(u°+2)"". probability in serial ensembles in [5]. Here we use a modified



version of it, where we consider the ensemble expurgaten fré¢dence, asv < n'h, we can find a constard, > 1 such that
the codes with low minimum distance

N/(2n) n'n Ao NAI 1\2 N/(2n')
Ky o' AoNAlN > > R <y (Coy)"
[ ( ‘HN)|EN Z Z v _wh h, h=NB-c w=dg h=NB8-¢

) i d (21) For the remaining terms, haviﬂg/(2ni) < h < Ky, we use

wherery = exp(—p). the following trivial upper bounds on the weight-enumargti

To prove this bound, first notice that coefficients u K
ASN < ( N) and AN < < N)
E[yP(e|Il W < wh < ,
B{P(ely) B3] =~ e, | w h
N from which we have
wherex denotes the indicator function of the evdi,. The Kn mh o go.N 4is J\;L Kn Ky
nion-Bhattacharyya bound (see e.g. [5] or [24]) gives LWtk < h )
uni yya bound ( g. [5] or [24]) giv > - Z_n(h>
h=N/(2n}) w=dg \ w h=N/(2n')
P(e[lly) < ZASE""“HN h Now notice that, under the assumptiofy(2n') < h < Ky,
one has N
serialIT . Ky eKpn h
where by A;*"™®"'~ we denote the number of codewords with L) S\ < Cj3

weight i of the serial code obtained from the given ensemble

when the interleavell y is sampled. Then (21) is obtained ador some positive constanC; which depends only on
follows r,l,v°, v, nl. Finally, putting all terms together, we have

proved that there exists some constéht> 1 such that

< serial Il h KN 0o
E[P(B‘HN) X] = ]E[hz::l Ah X7 ] E[P(e‘HN)lE]E\f} < Z (04,7)h < Z (C4’Y)h )
Kn h=N6-¢ h=NF-¢
< Z E[ASralIN ]y h Assummg thaty < 1/C4, the series is convergent, and equal
h=NB-< 0 (Csy)N" 7 /(1 — Cyy). As we don't aim at optimizing
Kn M constants, we can further assume that 1/(Cye?), so that
= Z Z A% NA;UA,’L< N) AP the claim easily follows withC' = Cy /(1 — e~2). u
=NB~—c w=d?

It is worth pointing out that the constaat in Proposition 3

where the last equality is obtained by applymg the expoessﬂs independent from the signal to noise ratioprovided that
[24, Eq. (7.1)]. The limitationsl? < w < 7ih come from this is large enough.

the fact that, by definition ofi? and by Lemma 1, if these From Proposition 3 and Theorem 2, we can obtain the
inequalities are not satisfied the(tﬁ;NAl N _ . following result, characterizing the asymptotic decayeraf

w,h the error probability of the typical serial turbo code.
By Theorem 1,P(E%,) approached, as N grows large.

So, for somec > 0, P(E5,) > ¢, for large enoughV. Now Theorem 3. Let Assumptions 1 and 2 be satisfied. Then, there

we need bounds for the weight-enumerating coefficientsef tBXists some finitg, > 0 such that, if the signal-to-noise ratio

constituent encoders. p satisfiesp > pg, then for alle € (0, 5) there exist some
We start by considering the terms with< N/(2n'). For finite No >0 and C" > 0 such that

h ren r, having < nid < N/2, w n [ - —ed?

tLeem(r)r:Jf;eZ teo fﬁggea boindg‘}oﬂo Jg dFor the/ mne?j gr?co;grpv)\:ep(eXp(_Nﬂﬁ) < P(ellly) < exp(~N" E)> 21-CN—*47

use the simple bound’” < A1 <;, and then, thanks to thefor all N > No.

inequalityd < N/(2n') < KN/(Qn ), we can apply Lemma 3.

, Proof: B lying Markov’s i li h
Hence, we can find a positiv@; such that roof: By applying Markov's inequality to the random

variable P(e|Ily) conditioned on the everff§,, one gets

/(2n)) ik AONAIN N/(21) 7'k w _ w 1
wh 5-% , P(P(e[lly) > aF | P(e|IT ‘E ‘E <=, Ya>0.
Z Z (Mx) = Z ch ()() " ( (et [ i N} N) “ (22)
h=NB—¢ w= do w h=NB—¢c w= dO .
Now, consider the event
Then, observe that the functigiiz) := (a/z)* has maximum e B
value g(a/e) = e*/¢, so that Fy = {P(e[lly) Z exp(=N""5)}.

From Proposition 3 and inequality (22) withw =

w/2 h/(2e
(h/w)"/? < ). Cy ' exp(NP~¢), one gets that
Moreover,w < &N for someé > 1, so E[P(e|lly)| EX]
] =~ - 4, I[D Fs EE < H EE
PP (FyIEY) < P(ellly) > Cooxp(—NF—2) | EN
(w/N)E~H < 3R < Cgexp(—NfB ‘).
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Let us denote the complement of the evéiit by E%. Then, In the results that we have presented, we have considered
it follows from (20) that the assumptions that the constituent convolutional errsode
are non-catastrophic, that the outer encoder’s free distan

€ — € € €
P(FR) = PFERNEY) +PFYNER) is even and greater than 2, and that the inner encoder is
< 1-P(EY) +P(FYIEY) P(EY) recursive, proper rational and with scalar input. As diseds
< O\N—*%/2 1 Cyexp(—NP~*) (23) in Appendix Il, only some of these assumptions are indeed
N essential in order to obtain the claimed asymptotic scating
< CON—=%/2, the typical minimum distance and ML error probability (non-
where the last inequality holds with' := C; + C,, for catastrophicity of both encoders, outer encoder’s fremulce
sufficiently largeN. greater than 2, inner encoder’s recursiveness), while tiher o
On the other hand, using the inequality assumptions were introduced for simplicity.
P(e[lly) > p™¥", (24) APPENDIX|

wherep = erfc(,/p)/2 is the bit error probability of uncoded PROOFS

transmission (see e.g. [15] for a proof), and using Theorem 2 In the present appendix, we provide the proofs of some of

one gets that the statements of Sections Ill and IV. Throughout, we shall
. make repeated use of the following well-known combinatoria
P(e|TIy) > exp(—N7ToM) (25) bounds. For positive integers < n, one has
for every realization of the random interleavég,. Then, the n" (") < (en)™ (26)
claim is an immediate consequence of (23) and (25). H m™ ~ \m/) — mm’
We conclude this section by observing that both Theorems 1 (”) << e, (27)
and 3 only imply weak probabilistic convergence resultsgei m

the CDFs ofd™ and P(e|Ily) decrease slowly itV. Indeed, For realsw > t > 0, one has
one may prove [11] that, while converging in distribution to . wt w
8, both the growth rate of the minimum distance, i.e., t'(w—8)"" = (w/2)* forallt €[0,w],  (28)
Xy := (log N)"'log d%in, while, fort¢ > 1, 1 t

€
and the decay rate of the error probability, i.e., (t— 1)1 < e (29)

Y := (log N) " log(—log(P(e|lly))), Throughout this section, whenever we find it useful, we

will write input and output words of the terminated encoders

(finite strings of bits) as polynomials in the indeterminde

with binary coefficients, where the powers Bf will simply

be place-holders, indicating the position where the bitunc

VI. CONCLUSION This is a very common notation for convolutional encoders,

In this paper we have studied the behavior of the minimumihere the powers ab denote the number of trellis steps and

distance and ML error probability of serial turbo codes witthe coefficients are vectors of a suitable number of bits, but

uniform interleaver. We have shown that the minimum distantiere we will rather use it for the terminated encoders, and

of the typical serial turbo code grows as a positive powehef t powers of D will count the number of bits, not of vector

block-length, whose exponent is an increasing functiorhef tlabels (this distinction is important for the outer codeg®m

free distance of the outer encoder, and scales linearlytwith the proof of Theorem 2, while for the input words of the

effective free distance of the inner constituent encodechS inner encoder the assumption = 1 implies a one-to-one

a scaling law has been proven by means of a detailed stumyrespondence between bits and trellis steps).

of the minimum distance’s CDF, and of a deterministic upper

bound. As a consequence, we have characterized the degayProofs of the results presented in Section IlI

rate of the ML error probability of the typical turbo code, Our proof techniques are based on ideas from [26]. We

which turns out to be exponential in some positive POWer ok ace here the proofs in all detail, both since [26] has not

the b}ock-length. . . appeared yet, and in order to be able to underline the role of
This contrasts the asymptotic behavior of the ML erroji

probability of the average serial turbo code, which is knovyne'l) Proof of Lemma 2:This is essentially a restatement of
to decay only as a negat|v_e power of th_e block-length. Iresp|f26’ Lemma 3]. We start by introducing some notation:
of such lack of concentration of the typical code perfornganc o, N 0, N .

) o Let Ry and7)"" denote, respectively, the number of
around the average code performance, our results confirm the . t ds 1062 havi tout weiaht! and ist
centrality of the two main design parameters for serialdurh oot WOrGs Ogly having output weight an consist-

y gn p : ing exclusively of regular error events, or containing a
codes suggested by the average-code analysis, namelethe fr terminating error event. We thus have '
distance of the outer encoder, and the effective free distan 9 '
of the inner encoder. AN = RN 419N

densely cover the intervdty, 5] with probability one, where
a=1-2/[dg/2].
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. Let RON .4,y be the number of input words tg3; . let R, (respectively,7;;"Y ) denote the number of
conS|st|ng ‘ofn. regular error events whose output weights  input words for¢ly having input weightw and output

aredi,...,d,, respectively. Similarly, IetFO be weight not larger thani, and consisting exclusively of
the number of input words t®<, conS|st|ng ofn -1 regular error events (resp., containing a terminatingrerro
regular error events having output weights, in order, event);
di,...,d,—1, and a final terminating one of weight,. o let Rij_\gd,n (respectively,T;fidyn) denote the number
Assume thatl; + - -- + d,, = d. Then, one has that of input words for ¢}y, having input weightw, output
N weight not larger thand, and consisting ofn regular
o, N kdn® P ;
R a4y <2 ! (n) eveglts (respn — 1 regular error events plus a terminating
one);
Indeed, we are consideringerror events, with lengths at most « Fix two vectors of integersw = (wi,...,w,) and
din°, ..., d,n° respectively, so that the sum of their lengths b = (by,...,b,) with w; > 0 andb; € [0, N — 1]. Let

is bounded bydn°. Thus, the humber of distinct choices for R;’]\; <dun (respecuvely,T;U]\{, <dn) denote the number
the bits in the input word inside the active windows of such  of We|ghtﬂ, input words tog', such that: the output has

error events are at mOQf“d”_O- The only remaining freedom weight not larger thani, and contains: regular error
is in the choice of the starting points of the error eventsl an  events (respn— 1 regular error events plus a terminating
the number of possibilities is clearly bounded (JS/) one); for all1 < j < n the j-the error event starts in
Hence, one has positionb; and has input weighi;.
. La/d ] N In order to prove statement (a), we notice that, for any input
Ry™ = Z Z Ry an word with w/2 error events and input weight, recursiveness
n=1 of ¢' forces input we|ghr2 for each error event. So the input
>, d d 0>1
Ny N (30) words contributing toR <d,w/2 Can be written as
< okdn®
< 20 () w
"= N u=Y D"(1+D"")
< 2<1+kn°>d< ) =
- Ld/dg]

) ) . o with b, > b;_, +6'a;_, (So that the error events have disjoint
where we are using assumption thdydg | < N/2. Similarly, 4.tive windows). We also have the restriction (¢!(u)) < d,

< ohdn’ ( N )d o but we can obtain an upper bound on the number of such words
dn) - — TI

ToN

(di,... by imposing a weaker condition.

Notice that

because thei-th event, being terminating and having length w2

at mostdn°®, starts in a position betweeN — dn° and N — 1 ; w2 ; Say
on the trellis. Therefore, de Z a S )L WH <¢ (1 +D ))
[d/dg] = wg (¢1 ( w/2 Db‘(l + Déiat)))
o, N  _ o,N t=1 .
AR D DD DR A » . o
n=1  dy..dn: The restrictionwy (¢'(u)) < d thus implies
>, di=d,di>1
- i: (d) deno< N )dno (31) d > a<d, (32)
> s n ’—d/d?] 1 1<t<w/2
< 2(1+kn°+n°)d< N > and there are (Ld/f J) choices for positive integers
Ld/dz ) ai,...,a, o satisfying (32). Finally, there are at mo@ﬁ”
Summing up (30) and (31) we get statement (a) of Lemmthmces for the starting positions,..., b,/ of the error

The tighter bound of statement (b) of Lemma 2 is easi§vents. Summing up, and using (26), We obtain
obtained from the observation that input words with output ; w/2

ld/di]\ [ My % w2 | d
weight d? necessanly consist of just one error event startmg <2 € B I M : .
in the mterval[ —1]. [ | 2 2 w d

2) Proof of Lemma 3:0Our arguments parallel those of [26,Thls yields statement (a) of Lemma 3.

Lemma 1]. The main novelty consists in proving separate [N order to prove statement (b) of Lemma 3, we start by
bounds for the leading term (statement (a)), and the othes o§onsidering the case when is even. We first show that

(statement (b)). While the proof of part (b) is essentiallg th N dn

same as the one of [26, Lemma 1], with different handling of R <in < (w -~ n) : (33)
some of the constants involved, the proof of part (a) is novel

and fundamental in showing the correct scaling/in Notice indeed thaﬂ%"]\; <d,n 1S smaller than the number of

Similarly to what we have done before, we need to introdudenary words of Iengthin with exactlyw — n ones, because
several auxiliary weight-enumerating coefficients for it is possible to exhibit an injective map between the words
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we want to count and such words. Given an input word (&b that

length My) producingn error events having input weights w/2 ;
wi, ..., wy, fixed starting points;, ..., b,, and total output Tl N . < Z Z Z ( dn >
weight < d, map it into a word of lengthin' in the following n=1 we(wr, e wn): be(br,bn): N
way: remove all the zeros outside the active windows of the ij:w 0=<by < <bp <My
error events, and furthermore remove the bit corresponiging w22V <r, wn 2L b 2 My —dn
the starting point of each error event (which is surely a one) ey My L dn
The word obtained in such a way has surely lengthin’, = Z (n _ 1)( 1>d ( _ n)
then add dummy zeros at the end to get a word of ledgth )
the number of ones i& — n. This map is injective since the (202 gy Y M Hdn')yv=
starting points of the error events are fixed and known. This Z 1)(n=1) (w n)(w—n)
proves (33). "= 1w )
Now, consider the decomposition < w1 dn Z M” d77 )“’ "
- 2 MN n:l (w—n)
Riean = Z Z Ry <dn _ 2w dp “’/QM ('
ST O < T 2 iy 2 M)
) - 2w 1\4]1\‘;/2(d77 )11)/2
where, once again, the constraimt > 2 comes from the < (w/2)“’5 My | )
recursiveness ad'. Using (33), we obtain the bound dn'
where the third inequality above follows from (26) and (27),
w/2-1 w/2-1 . the forth one from (29), and the fifth one from (28). Now,
Z Rw Lam < Z (w —n- 1) (MN> ( dr ) statement (b) of Lemma 3 follows from the fact that
= n—1 n w—n w/2—1
< w/i_l pw—n—1 (eMpn)™ (edn)w=" A:L],ng = Rl <dws2 T Z Rw <dn T T;,},A;m (34)
T L n®  (w—n)wn
n=1 The case of oddv requires slightly more care. We start
2w w21 with the analysis Oﬂ%i,llid,w/zy Input words contributing to
w/g Z My (i'd)" this term are made Qf//_2 — 1 events with input weigh? and
one event with input weight
e w( 1)w/2 d“’ M]\z[ lwoj2]-1
(w/2)w G -1 wu=Y D"(1+D")+ D14 D"+ D).
t=1
where the second inequality follows from (26) and (27), andlll the error events have disjoint support, which implies
the third one from (28). the weaker condition thab; < -+ < b, 2—1 andb #
Finally, we have to consider weight-enumerating coeffb, ..., b, 2)—1. The overall output weight is< d, and
cients of typeT". For them, we have this |mpI|es the weaker condition’, >>1*/*/"1 4, < 4 and
a < a' < n'd. There are:
T = Y T, . 772d choices for suchu, a’;
1<n<¥ .
= > > > T can- o ( Ld/d.] ) choices foray, ..., apy/a)-1;
1<n<%  w=(wi,...,wn): b=(b1,...,bn): LW/QJ -1
,UJZQZ\,;”Q;%”E OSZ;;\Eb_"EiV[N e N0 more than |w/2] wzé choices  for
bi,...,blw/2j—1,b, where the factor|[w/2] comes
Everything is similar to the regular case, except for the from the choice of the position where to put the error
additional conditionb, > My — dn'. This comes from the event of weight 3 in between the other events.
remark that the terminating event has clearly output weigBymmarizing,
smaller thand, hence of length smaller thas,'. Being a N u gy la/d ]
terminating event, it cannot start befatéy — dn'. Moreover, R, <y 1,2 < |%] (Lw/’\éJ) (" )(prf_l)
the recursiveness imposes > 2 for the regular events, while . w rrlw/2] 2| d %]-1
for the terminating event onlw,, > 1 is required. < (nh)2 we* My "= d LTJ
With the same proof as for the bound (33) ﬂjﬁ, <dm T de? | 2] L] (2] -1) L%]-1
we have also T 226 2 w

IN

i W) w*20)" )\ 1ugay | 4|
TiN <[ 16 wv d, '
w,b,<d,n = w—n ’ (35)
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where the second inequality follows from (26), and the lasb that the output has weight

inequality follows from (28) and (29).

The remaining regular terms are bounded exactly as in the
Thus, the total output weight can be bounded from above as

case whenw is even

Lw/2] - 1R _ ()] A1 3]
Z w,<d,n = (w/2)w My

dnt
We now pass to studying the terrii ™ ;. Differently from
the even case, we shall consider the main téﬁﬁ’

<d,[w/2]
separately. Input words contributing 16 <d,[w)2] consist of
|w/2] regular error events, each WI'[h input weight and
one terminating event with input weight with overall output

weight < d. We represent such input words as
[w/2] _
u = Z Dbt(1+D6at)+D]wN71
t=1

(36)

and we observe that the following conditions hold

0<by <+ - <bwye < My,

Ay ap<d.
t

1 <n'd,

Thus, we get

N My ld/d.]
T <dfuwy2] : é%{%?d ]EUL/Z/;JB;JW%. 37)

The remaining terms are bounded as in the even case,
[w/2]

2

Tl N 2w MHU/QJ (dnl) [w/2]
w,<d,n — ’LU/2) '

T (38)
dnt

WH(¢i(1 + D(si(ht—ht—l))) < d; (ht — ht—l)'

w/2

dy Y (hy -

t=1

hi—1) = déhw/2 <d.

Observe that, for every choice of the tweo/2-tuples
(i1,72,. ., 0ws2) @Nd (hy, ha, ..., hy /o), ONE oObtains distinct
input words. It follows that

Ry (M 5 Ld/déj) (Ld/déJ) |

w,<d,w/2 = w/2 w/2

< Mnv gndw is even.

(39)

; d
Recall that, by assumptiorly < i

— 201

Hence,

ES i’ - _MN, w_ o d
2 di d1 2 2 dl

The final bound follows by applying (39) and (26). ]

B. Proofs of the results presented in Section IV

Throughout this subsection, we will use the woids c;
and the set of indiced defined in Section IV.

1) Proof of Lemma 5:This proof closely follows part of
the proof of [26, Thm. 2.b].

The first statement is immediate, let us prove the second

one. Let
dy
¢ = Z Dim .
m=1
Given a multi-index

T = (Tl,...,Td;?) S [MN]d(f),

By bounding the addends of the right-hand side of (34) as |n

(35), (36), (37), and (38), one finds that the leading terres aihere[Mn] := {0, ..
in fact the ones on the right-hand side of (35) and of (37), and

., My — 1}, define the event

E, :={IIxy(D'"")=D™ Vm =1,...,d%}.

statement (b) follows. This completes the proof of Lemma 3.

3) Proof of Lemma 4:We shall use ideas similar to thos@(E*

Clearly,
d)NE;(d

ZP VP(E;(d)|E;(d)NE-),

of [26, Lemma 2]. We conS|der a subclass of input words

contributing to the termr: Y
be written as

D

1<t<w/2

w,<d,w/2’
(l)itJrht—15i +Dit+ht6i>

with
0 <y <idg <o <l <MN—5‘Ld/dJ
ld/d] .

It is evident that they have input weight and consist ofv/2

0=ho<hy <hs <- <hw/2

disjoint error events. The only property which remains to be
verified is whether they produce output weight not exceedi

d. In fact, thet-th error event has input word

Dit+6iht71 (1 + D5i(ht*ht71))

exactly those which can

@SS than or equal td, out of the ( e

where the summation index runs over all[My]% .
Then, notice that

P(E;,(d)|E}, (d) N Er) = P(E},(d)|E-).  (40)
Also notice that
. My —do\ "
P(E},(d)|Er) <Rd’£V<ddo/2< Ndo f) (41)
f

Indeed, after having fixed the positions where I, maps
the d¢ ones ofc} , we need to find how many choices for
the positions of the ones ef, will produce an output weight

M=) ways to choose
positions amongy/y — d¢. The number of such favorable

ch0|ces is bounded by the number of favorable choices that

we would have if we could choose among afly positions,
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including the unavailable positions already assigneg toi.e., of length at mos{ My /b]; b is a parameter depending v

Rfii\;d 42 /2> Which proves (41). that will be properly chosen later in this proof.
Eqgs. (40) and (41), together with (16), give Define a hypergrapll = (V, E) in the following way. Take

o —1 a dg-partite vertex set” being the union oflf disjoint copies
P(E},(d)|E; (d)NE;) < P(E;,(d)) (MN> (MN - df) ~ of W={I,...,I}. The set of hyperedges has cardinality

dy dy |U| and isd¢-regular in the sense thd C W, i.e., every
Therefore, hyperedge contains exactly one vertex from each ofdhe
. N copies of W. Any hyperedge inE corresponds to an index
P(Ej,(d) N B}, (d)) 1 j € U, and is defined as = (I},,,...,I;,.) € W% where,
* * My —dg My denoting as above K
S Z ]P)(EJ& (d) n E"')P(Ejz (d)) de de )’ 9
= f f

where the summation index runs over the sefMy]%.
Finally, observe that

dy
* tm
¢ = g D
m=1

with {¢,,},, and increasing sequence, the indgy is such
Z P(E}, (d) N Er) = P(E} (d)) - thatmy (D) € I, .
relMy] % Define the degree of a vertex in the hypergraph as the

From this, the claim immediately follows. - [;L:?rgzrh(;flgg%eur::dges that contain that vertex. The follgwin

2) Proof of Theorem 2:The key idea, introduced in [4], emma 6 ([4], Lemma 3) Given ak-partite, k-regular hy-
consists in turning the problem of finding codewords of Smal"ergraph(v E,) with b vertices in each part i’znb““/ﬂ < |E|
weight into the problem of finding a generalized cycle on aEﬁen there éxists a non-empty subSet £ with 15| < l;log b,
hypergraph. We describe here the construction of the Seitasuch that in the induced subhypergralf ,S) every;ertex h:’:IS
hypergraph, adapting the construction from [4] to our Bgiti ven degree (possibly zero) -
and then we state the lemma on hypergraphs given in [5], 9 P y '
which completes the proof. The aim is to show that, for
any interleaver, it is possible to find a suitable subset ef trt1h
codewordsc;, say {c; : j € S}, with cardinality growing R i
at most as logarithmically withV, and such that the outer 7]\ 1 N |\ %
codeworde := ). 5 ¢; produces a codeworgl= Pyomn(c) - <4(51)df> - (4(51)(1? {d‘f’ﬁ"D .
of the serial code having weighty (y) non-zero and smaller

We shall show here that this lemma implies Theorem 2. In
e above construction of the hypergrafih we choose

than K N” log N, for some constanis . This ensures thdt is an integer satisfying
Let Zs: beo the ring of integers modulé'. Define a map /2 ]|
o :J — L by associating with an index € J a vector 4b%/" < ()% < |U|=|£],

i),...,0q2(7)) in the following way: if ]
(01(9) 94; (7)) g way so that we can apply Lemma 6 and find the sulsset

dg By construction of the hypergraph, there is a bijection
¢;=> D",  ay(D'")=D™, between hyperedges and indiceslinc J; let S ¢ U be
m=1 the indices corresponding to the hyperedges'irso that any
with {t,,}» an increasing sequence, then,(j) = 7, hyperedges € S corresponds to some woig, j € S. Let

mod §'. By the pigeonhg)le principle, clearly there existg := Zjeg ¢ € Zé””, and observe that is clearly a non-
U C J with [U] > |J|/(6")% such thato(j,) = o (j2) for all  zero codeword of the outer code. Henge= ¢ (tx(c)) is
J1,72 € U. a non-zero codeword of the serial turbo code.

This means that, for everny, = 1,...,d¢, all them-th ones By construction,x (c) is composed of S|d?/2 pairs of
in words cj, with j € U, are permuted byry to positions ones. Each pair has both ones lying in a same intefivahd
whose relative distance is a multiple 6f. Thus, applying at a distance multiple of'. Hence,
¢' to any pair of such ones gives an output weight which is ‘ 1S|de . TM
proportional to the distance between the two ones. The goal wi (¢ (7 (c))) < Tf dy, [bNW .
is to find a non-empty subset of indicés C U, such that
its cardinality|S| is even and grows at most logarithmicallyFinally use the bound of5| which is the key contribution of
with N, and such that for alin = 1,...,dg, the ones being Lemma 6:|S| < d? logb.
the m-th one of wordsc; with j € S form pairs in such a  Our choice of gives
way that after the permutation the distance within ones ef th ., 9
same pair grows at most @”. This will allow to construct log(b) < log(N*/%) = 7o log(IV)
an outer codeword: = } . sc; which gives a codeword g f
y = ¢y o (c) of the serial scheme, whose weight grows &&" o o
most as a C(()n)stant time¥? log N. [ My /b] < 6r(8dgn®)*/ % (8')2 N1 —2/4%

In order to find the setS, consider the sefMy] = \hich concludes the proof. -
{0,..., My — 1} and divide it inb intervals1y, ..., I, each
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APPENDIXII components of the entry vector, so that we need to define
GENERALIZATIONS s parametersy'(j) and corresponding weight# (j), one for

Parts of Assumptions 1 and 2 were stated for the sake %Ch comf)oneryt :'bII’ e S mforeover, \rlwve neﬁd to takedlnto .
simplicity, and are in fact not essential for the validity tbk account also possible pairs of ones where the second one Is

results presented. In this appendix, we shortly discuss h t in the same component as the first one (which turn out to

such assumptions can be weakened, pointing out the role t egn qsymatc;tigallydni%sligible role). For more detaits;
played in the proofs and stating the results that can bersddai ], Sections 4.5.2 and 4.5.3.

in greater generality, while we refer the interested reader R€MoVving the assumptions that has scalar inputs( =
[21] for more details and proofs. 1) and is proper rational{ is invertible) does not change

ny of the asymptotic results wheN grows large: except
r the value of the constants and their dependencé: pall
the statements of this paper remain true under Assumptions 1

The following formulation is the one truly needed in ordeft
to obtain the claimed asymptotic behavior of the minimu
distance and the error probability:

and 4.
Assumption 3. The outer encodep® : (Z5)*+ — (Z4)*+ is  Removing the assumption tha is even requires some
non-catastrophic, and its free distandg satisfiesd; > 3. more effort, because of the key role that was played by

words where an outer codeword with weigljt (or multiples

of it) was producing inner codewords composed of error

events each with input weight two. In the remainder of this
Non-catastrophicity of both constituent encoders andrrecigection, we consider the case of odg, and for simplicity

siveness of the inner encoder are needed in order to engureth focus again on the simpler case where the inner encoder

properties of the weight-enumerating coefficients (Lem@assatisfies Assumption 2, while we replace Assumption 1 with

and 3), and to give the limitations on the input weightghe following:

(due to Lemma 1 and to the absence of input-weight-1 inner ) )

codewords) in the summations in the proofs of Propositions”£SUmption 5. The outer encodes® : (Z’g)Z+ — (Zg)zf IS

and 3. non-catastrophic, and its free distandg is odd and satisfies

The assumptiod? > 3 is needed in order to ensure titat> df > 3.
0, and'is essentiql_in order to have 'rr.]inimum distance growingwe will state and prove the main results (the asymptotic
with high probability as some positive power of. Indeed, typical behavior ofd™ and P(e|Ily), while we will refer

whendy = 2 (and thusf = 0), Theorem 2 still holds true, the reader to [21] for details on some results we will only
and states that, for any choice of the interleavers sequenggickly mention.

the minimum distance grows at most logarithmically with Notice that, under Assumptions 5 and 2, Lemmas 2 and 3

Moreover, a slight modification of the proof of Proposition 2,514 true without any modification. However, Proposition 1
(see [21, Sect. 4.5.1]) allows one to prove that, WhgR- 2, pheeds to be modified, because the dominant term in the

Assumption 4. The inner encodet' : (Z3)2+ — (Z4)%+ is
non-catastrophic and recursive.

P(dBin < di) > ¢ summation_s is r_10t the same, due to the ce_ilings and fl_oors
- - of the fractions in the exponents. The following Propositio
for some positive constamt which implies that holds true, where for simplicity we do not look at the exjlici
. dependence of the constants @nand on other parameters

P (P(€|HN) > pdC) >c, of the inner encoder such as the output weight of terminated

error events with input weight or of regular error events with

wherep = erfc(,/p)/2 is the bit error probability of uncoded input weight3.

transmission.

The assumptions that the inner encogéhas scalar input Proposition 4. Let Assumptions 5 and 2 be satisfied. Assume
(s = 1) and is proper rationalK is invertible) have been thatd = o(N”) as N grows large. Then, there exisfé, > 0
considered in order to simplify the analysis of the codeworé@nd C;,C> > 0, depending on the constituent convolutional
of ¢\, made of error events with input weight 2 (proofs ofncoders only, such that, for aN > N,

Lemma 3 and Theprem 2), and to have clean expression_s of the Y ) )
con_stants dependmg _QQ. Indeed, under s_u<_:h ass_umpnons,P(dr]%m <d)<C () (N_ﬁd)df/z L0, (N_ﬁd)df _

an input word with weight two produces a finite-weight output N

word if an only if the two ones are separateddsy — 1 zeros,
and the output weight iad., because the word is made of
shifted copies of the same error event, with non-overlagppi
support. Whenp' is not proper rational, the above-mentione
error events have overlapping support, so that the weight
smaller thanad': this allows one to prove bounds on the 2

one side, while for the other side it is necessary to intreduc K=1- €©_1

another parameter of the inner encoder, for which the opposi f

inequality holds true. Whew' has non-scalar inputs(> 1), (notice thats < ), if d = o(N*) the dominant term is the
we have to look separately at pairs of ones being in differefitst one, while otherwise it is the second one.

Before giving the proof, we underline the fact that, differ-
r(?ntly from Proposition 1, we have two terms in this upper

ound, and either one can be the dominant one, depending on
ggw fastd grows with V: defining
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Proof: From (4), we use Lemmas 2 and 3 to find boundshere
. . I . ~ 1 2
on the weight-enumerating coefficients of the constituent e =1l — e =1— ——
coders, and we get [d}/2] df +1
. However, as suggested in [26], it is still possible to prdvat t
- < o N# is the actual growth rate of3i®, using a second-order
P(d™in < ) < CwNLw/dfj—Fw/Q]d[w/Q—\ 42 )
(@ <d) <}, (42) method, as shown below.

> 3.

—]°
w=dg

for someC' > 0 depending on the constituent convolutionaThe%rem 4. Let Assumptions 5 and 2_be sa_t|'sf|ed.d|f:
encoders only. For evedf, the asymptotically dominant termw(N ) as N grows large, then there exist positive constants
in the summation was the one with= d?. Here, for oddds, C1, C2, and No, such that

we have different dominant terms: the ones with= d? and
with w = d¢ + 1 dominate ifd = o(N*), and otherwise the
domi.nant term is the one wit = 2dp. To prove .this, We for all N > N,.
consider separately the terms with odd and ewem (42).

For the odd terms, usingw/d?| < w/d¢ and the fact that ~ Proof: Let the outer codewords®, ¢j and the set of
[w/2] = (w+ 1)/2 for odd w, we get indicesJ be the same as in Section IV and in Appendix |-B.

We define events quite similar to ti#€’s involved in the proof

1
o d\? _s 1\v of Proposition 2, but here we consider pairs of codewotds
w pylw/dg ] = [w/2] glw/2] il
Z CrN ' d S<N) Z(CN ’ dz) * More precisely, forj,, j» € J, we define

; Ch NP
PdN" <d)>1—— —Cy—
(N = )— N 2d7

dg<w<n'd w>d?
wodd (43) E;(l,jz (d) = U Ejl,jz (bae)v
For evenw, we need to split once more the summation in (be)eB
two parts. A first summation will contain the terms with where
multiple of d2, for which |w/d?] = w/d?; notice that such a2 a2
terms havew > 2d?. All the other terms will have E; i, (be) = {HN(C;) _ ZDbt ,Tn(cl,) = ZDQ} :
t=1 t=1

w 1
)< —=-—= >df + 1.
Lw/ fJ_dfO d?’ W= dp b:(bl,...,bd?),6:(61,...7€d?),and
Hence,
B:=4(b st.0<b s < bgo o < M,
S gL/ g2 {( e)StOsbi<er<- <bay <es <My,
A S er = by +L0VE, Y0 1y < |d/d] }
_B 1\Y¥ —1/de ( _B ;)w
= ZO(CN 2d2) N Z CN“=d2 ). (44) Now, let x;, j, be the indicator of the event; , (d), and
w2 w2di+l define the random variable
Similarly to the proof of Proposition 1, we can use the 7. o
assumptioni = o(N*?) to conclude that, for sufficiently large - Z  Xivga
N, the series in (43) and (44) are convergent and each one is J1.92€J, 1772

bounded by twice its first term. m Clearly

Similarly to what was done for the even case with PropoP(dn" < d) > IP( U ES
sition 2, a lower bound can be found, which ensures that the J1,d2€J, 1752

upper bound given in Proposition 4 is tight fdr= o(N"); A standard argument, which follows from Chebyshev's
this is useful in order to findv = 1 —2/[dg/2] such that inequality and is known as ‘second-order method’ [2,
the growth rateXy := (log N)~!logd®® and the decay Thm. 4.3.1], gives

rateYy := (log N)~!log(—log(P(e|lly))) densely cover the )
interval [a, 5] with probability one, but we will not discuss P(Z = 0) < E(Z°) |
such issue here.

For evendg, Proposition 1 (or equivalently the upper boundg that

(d)) =1-P(Z=0).

in Theorem 1) was completed by Theorem 2: trIe two results S es A
together imply that the growth rat€y := (log N)~* log d5™ . E(Z2 A
converges in probability t@¢. For oddd?, it( is ind)eed posgible P(dR™ <d) > 2 - [EEZ)])Q =2- h#ha—];m , (49)
to prove a deterministic upper bound, analogous to Theorem 2 ) o

by a slight modification of the construction of the bipartit?here, forj = (j1, j2, js, ja) € g4,

graph from the hypergraph in the proof of Theorem 2 (see the Aj=P(E; . (d)NEL, . (d)

proof of [4, Thm. 2] for repeat-accumulate codes, or see)[21] ! (i Jo

Unfortunately, such a bound is of the form and

(1]

=Y P(E;(d).

d%in S CNﬂ log N j.gled 5’
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The following steps allow one to find bounds ferandA;. where

First, notice thafP(E; ;,(d)) is the same for all pairg # j, A A
so that= = [J|(|J| — 1)P(E7,,(d)). Then, notice that the S2 = Z =2 Sy = . Z =2
union in the definition of£ ; (d) is a disjoint union, so that B1=Js#2=J4 gzl
* _ A A
P(E;;(d) = > P(Ej;(be)). S= Y Ny A
(b.e)eB J2#J1=J3 - J17#J2=]a -
Moreover J3aFJjaFj2 J17#J37#ja
N2 (Mr — 249)1 Remember thatJ| and My grow linearly with N, and that
P(E;; (b e)) = (dp!)"(My — 2d7). d/N” grows unbounded by assumption. On the other hand,

My! without loss of generality one may assume #4V vanishes,
and the sef3 can be conveniently described in the followingsince the deterministic upper bound guarantees diat <
equivalent way (which was already used in the proof af'N”log N for any choice of the interleavers sequence. Then,

Lemma 4): using (46), (47), (48), and the bound (26) for the binomial
‘ ‘ coefficients, it is easy to conclude that, Asgrows large,
B:= {(b, e) S.t. Vt, by =iy + ht_161 and er = 1 + htdl, C C C
. . 1 2 3 — ©
0<idy <ig < <iyspo < My—08d/d], Sislt 5, S<45, S5< W+C4(N6d DK
0=ho <hy <hy < <y < |d/d]}. for some positive constants;, Cs, Cs, Cy. [ |
from which it is clear that Similarly to Section V, we will now show how the above
My —&'d/di )\ (|d/d! | results on the minimum distance imply results on the word
1B] = < d2 ) < dg ) : error probability. We will use here the same notation
Thus we have the following explicit formula: By = {dy™ > NP~} Fy := {P(e[lly) > exp(—N""9)}.
. My =8 d/dL |\ [ |d/d ]\ (d2))?(My —2d2)! A first result is that Proposition 3 holds true also when
IP(E]»J,(d)): d° g My! * Assumption 5 replaces Assumption 1: the only modification

(46) in the proof is that nowP(E%;) converges tol thanks to
Then we considerA;. We use a similar proof as for Proposition 4 instead of Theorem 1.

Lemma 5, i.e., we condition on the everfs, ;, (b, e). The following theorem is the analogous of Theorem 3 for
If j1,72, 73,74 are all distinct, then odd d?.
Aj = Z IP’(EJ* i (d)‘Ejl i (b, e))]P)(Ejl i (b, e)) Theorem 5. Let Assumptions 5 and 2 be satisfied. Then, there
(b,e)eB o ' exists some finitpy > 0 such that, if the signal-to-noise ratio
doNZ (M~ — 4d9)! p satisfiesp > po, then for alle € (0, 8 — k) there exist some
< Z \B\( f(;w( N2do)|f) P(Ej, ;,(b,e)) finite Ny > 0 and C' > 0 such that, for allN > Ny,
N — £):
(be)eB

(My — 4dp)!(My)! 47) IED(eXlO(—NB“) < P(e|ly) gexp(—Nﬁff)) >1— Nk,

[(My — 2d?)1]? Proof: Similarly to the proof of Theorem 3, the upper
bound follows from Proposition 3 and from Proposition 4
so thatA; < P(Ej, ;, (d))2(1 + O(1/N)) asN grows large. . "
When one of the indices is repeated, say= 75, we have (which is the analogous for odd? of Proposition 1)

= P(Ej*l 2J2 (d))IP(E;37.j4 (d))

that ) ] o c -
]P)(FN) = 1_]P)(EN)+IP(EN|FN) < NTZ?"_CQ exp(—Nﬁ ).
e bz:eBP(Ejhﬁ(d”Ejl’jQ(h ) (Ej.sa(bse€) The lower bound is obtained again using (24), but here the
(b,e) Ld/diJ dO'(M 3d0)' role of Theorem 2 is replaced by Theorem 4
< o) | 4 WMN = 34 (b e) e . ) 0 e
<b%:ers < & > Oy —3dp)t T PO (el 2 p) 2 Byt 2 N 210
x d/di]\ d@\(My — 3d3)! i i _ _ cd?
=P(E;, ;,(d) <L /0 J) f(N—Of') (4g) Finally, notice that, foe < (0,8 — k), 1/N =0 (1/N°%) as
di (My —2dp)! N grows large. -

and the same bound holds true whian= jj,.
Finally, it's clear thatA; = P(E;, ;,(d)) for all j € J*
such thatjs = j; andjs = jo . o
The above bounds allow one to prove that the right-handThe authors thank Prof. iRliger Urbanke of EPFL for an

side of (45) tends to one. In fact, we can split the summatiérf‘ltereSting discussion on the topics of this paper. They are
into the following terms grateful to the Associate Editor and to an anonymous Referee

' for many detailed comments on an earlier version of this work
P(dN" <d)>2—-54— 53— 5, which significantly helped in improving its form.
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