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Lossy compression of discrete sources via

Viterbi algorithm
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Abstract

We present a new lossy compressor for discrete-valued esuFor coding a sequenag’, the encoder starts
by assigning a certain cost to each possible reconstrusgguence. It then finds the one that minimizes this cost
and describes it losslessly to the decoder via a universaldss compressor. The cost of each sequence is a linear
combination of its distance from the sequenceand a linear function of it&'" order empirical distribution. The
structure of the cost function allows the encoder to emplay Yiterbi algorithm to recover the minimizer of the
cost. We identify a choice of the coefficients comprising linear function of the empirical distribution used in
the cost function which ensures that the algorithm uniysrsachieves the optimum rate-distortion performance
of any stationary ergodic source in the limit of large provided thatk diverges as(logn). Iterative techniques
for approximating the coefficients, which alleviate the paational burden of finding the optimal coefficients, are

proposed and studied.

|. INTRODUCTION

Consider the problem of universal lossy compression ofcstaty ergodic sources described as follows. Let
X = {X;;V i € Nt} be a stochastic process and ftdenote its alphabet which is assumed discrete and finite
throughout this paper. Consider a family of source coffgs},>;. Each codeC,, in this family consists of an

encoderf, and a decodeg, such that

fn s X" = {0,137, )
and

gn {0, 1} — X", )

where X' denotes the reconstruction alphabet which also is assumbd finite and in most cases is equalXo

{0, 1}* denotes the set of all finite length binary sequences. Thedan¢,, maps each source block™ to a binary
sequence of finite length, and the decoglemaps the coded bits back to the signal spac& as= gn(fn(X™)). Let
L,(f»(X™)) denote the length of the binary sequence assigned to segXénby the encodef,,. The performance

of each code in this family is measured by the expected radettaan expected average distortion it induces. For a
given sourceX and coding schemé,, the expected rat&,,, and expected average distortioh,, of C,, in coding

the procesX are defined as follows:

Ro = Bl L (fu(X")], ©
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and

D, = E[d,(X",X")] 2 E %id(XiaXi)] , (4)
=1

where X" = g, (fo(X™)), andd : X x X — R is a per-letter distortion measure.
For a given process and any rafe > 0, the minimum achievable distortion (cf.l[1] for exact defimm of
achievability) is characterized dsl [2]] [3]] [4]

D(R,X)= lim  min Eld, (X", X™)]. (5)
nﬂoop(X"‘X"):I(X";X")SR

Similarly, for any distortionD > 0, define R(D, X) to denote the minimum required rate for achieving distortio
D, e,

R(D,X)= min 7.
D(r,X)<D

Universal lossy compression codes are usually defined ititérature in one of the following mode5s][5]:
I. Fixed-rate: A family of lossy compression codgs, } is called fixed-rate universal, if for every stationary

ergodic proces¥X, R, < R, Vn > 1, and
limsup D,, = D(R, X).

Il. Fixed-distortion: A family of lossy compression codés, } is called fixed-distortion universal, if for every

stationary ergodic proces§, D, < D, Yn > 1, and
limsup R,, = R(D, X).

[ll. Fixed-slope: A family of lossy compression codgs, } is called fixed-slope universal, if there exists> 0,

such that for every stationary ergodic procéss
limsup[R,, + aD,] = IgliI(l)[R(D, X) + aD].

Existence of universal lossy compression codes for allethemradigms has already been established in the
literature a long time aga [6][[7][8]/ 9]/ [10]/[11]. Theemaining challenging step is to design universal lossy

compression algorithms that are implementable and appeftbm a practical viewpoint.

A. Related prior work

Unlike lossless compression, where there exists a numbaretfknown universal algorithms which are also
attractive from a practical perspective (cf. Lempel-Zig@ithm [12] or arithmetic coding algorithrh [1L3]), in lossy
compression, despite all the progress in recent years, clo &gorithm is yet known. In this section, we briefly
review some of the related literature on universal lossy@ssion with the main emphasis on the progress towards
the design of practically appealing algorithms.

There have been different approaches towards designingnsal lossy compression algorithms. Among them

the one with longest history is that of tuning the well-knowmiversal lossless compression algorithms to work
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for the lossy case as well. For instance, Cheung and Wei [t#inded the move-to-front transform to the case
where the reconstruction is not required to perfectly malkehoriginal sequence. One basic tool used in LZ-type
compression algorithms, is the idea of string-matchingl hence there have been many attempts to find optimal
approximate string-matching. Morita and Kobaya$hi [1%gmsed a lossy version of LZW algorithm, and Steinberg
and Gutman[[16] suggested a fixed-database lossy compresgiarithms based on string-matching. Although the
extensions could all be implemented efficiently, they weaterl proved to be sub-optimal by Yang and Kieffer|[17],
even for memoryless sources. Another related examplegisvtitk by Luczak and Szpankowski which proposes
another suboptimal compression algorithm which again ttsesdeas of approximate pattern matchingl [18]. For
some other related work see [19] [20][21].

Another well-studied approach to lossy compression islisrebded quantizatiori [22] and more generally vector
quantization (c.f.[[23],[124] and the references therei@pdes of this type are usually designed for a given
distributions encountered in a specific application. Famagle, such codes are used in image compression (JPEG)
or video compression (MPEG). Nevertheless, there have h#empts at extending such codes to more general
settings. For instance Kasner, Marcellin, and Hunt propaseversal Trellis coded quantization which is used in
the JPEG2000 standard [25].

There has been a lot of progress in recent years in desigrunginiversal lossy compression algorithms of
discrete memoryless sources. Some examples of the receaktiwdhis area are as follows. Wainwright and
Maneva [26] proposed a lossy compression algorithm basechessage-passing ideas. The effectiveness of the
scheme was shown by simulations. Gupta and Verdd propasatfjarithm based on non-linear sparse-graph codes
[27]. Another algorithm with near linear complexity is s#gted by Gupta, Verd and Weissman [inl [28]. The
algorithm is based on a ‘divide and conquer’ strategy. laksethe source sequence into sub-blocks and codes the
subsequences separately using a random codebook. Fthallgapacity-achieving polar codes proposed by Arikan
[29] for channel coding are shown to be optimal for lossy coespion of binary-symmetric memoryless sources
in [30].

The idea of fixed-slope universal lossy compression wasdirggested by Yang, Zhang and Berger(in [5]. They
proposed a generic fixed-slope universal algorithm whigddeto specific coding algorithms based on different
universal lossless compression algorithms. Although thestucted algorithms are all universal, they involve
computationally demanding minimizations, and hence angractical. In [5], the authors considered lowering the
search complexity by choosing appropriate lossless codéshvallow to replace the required exhaustive search by
a low-complexity sequential search scheme that approeisntiiie solution of the required minimization. However,
these schemes only find an approximation of the optimal isolut

In a recent work[[31], a new implementable algorithm for fbstdpe lossy compression of discrete sources was
proposed. Although the algorithm involves a minimizatiohieth resembles a specific realization of the generic cost
proposed in[[B], it is somewhat different. The reason is thatcost used in_[31] cannot be derived directly from
a lossless compression algorithm. The advantage of the nstfunction is that it lends itself to rather naturally

Gibbs simulated annealing in that the computational efforvlved in each iteration is modest. It was shown that
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using a universal lossless compressor to describe the seaotion sequence found by the annealing process to the
decoder results in a scheme which is universal in the liminahy iterations and large block length. The drawback
of the proposed scheme is that although its computationalptexity per iteration is independent of the block
lengthn and linear in a parameteér, = o(logn), there is no useful bound on the number of iterations reduive
convergence.

In this paper, motivated by the algorithm proposed[inl [31¢ mropose another approach to fixed-slope lossy
compression of discrete sources. We start by making a linpproximation of the cost used in[31]. The cost
assigned to each possible reconstruction sequence coosiatlinear combination of two terms: a linear function
of its empirical distribution plus its distance to (distort from) the source sequence. We show that there exists
proper coefficients such that minimizing the linearizedtdosction results in the same performance as would
minimizing the original cost. The advantage of the modifiedtds that its minimizer can be found simply using

the Viterbi algorithm.

B. Organization of this paper

The organization of the paper is as follows. In Secfidn Ie tount matrix of a sequence and its empirical
conditional entropy is introduced and some of their prdpsrare studied. Sectidnllll reviews the fixed-slope
universal lossy compression algorithm used[in| [31]. SediM describes a new coding scheme for fixed-slope
lossy compression derived by replacing part of the cost usdtle mentioned exhaustive-search algorithm by a
linear function. We prove that using appropriate coeffitseior the linear function, the performance of the two
algorithms remains the same. In Sectich V, a method for apiating these optimal coefficients is presented.
This method, along with the result of the previous sectiomegrise to a fixed-slope universal lossy compression
algorithm that achieves the rate-distortion performamceahy discrete stationary ergodic source. The advantage of
this modified cost is discussed in Section VI where we showttr@minimizer of the new cost can be found using
the Viterbi algorithm. The method introduced for approximg the coefficients is computationally demanding, and
hence is impractical. Therefore, in Section1VIl, we discaskbw-complexity iterative detour for approximating
the coefficients. Sectidn VIl presents some simulatiorssilts and, finally, Section IX concludes the paper with a

discussion of some future directions.

II. CONDITIONAL EMPIRICAL ENTROPY AND ITS PROPERTIES

For anyy" € ", let the|Y| x |Y|¥ matrix m(y™) denote its(k + 1)'* order empirical distributiaﬂ] For
b = (b1,...,bs) € V¥, and3 € ), the element in thes*™™ row and theb'" column of the matrixm, mg p, is

defined as

1 , .
mﬁ,b(y")é5|{1§1Sn:yi_i:b,yi:ﬂ]}|, (6)

IFor any set4, |.A| denotes its size.
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where here and throughout the paper we assume a cyclic dimvavherebyy; = y;+,, for i <0.
Based on the distribution induced b (y™), define thek™ order conditional empirical entropy ef*, Hy(y"),
as

Hi(y") = H(Zk11|2"), ()
where Z*+1 is assumed to be distributed accordingatg i.e.,
P (25 = by, b, B = [b, B]) = man(y"). (®)
For a vectorv = (vy,...,v,)T with non-negative components, we I&t(v) denote the entropy of the random
variable whose probability mass function (pmf) is propmrél tov. Formally,

4
viJog ML if v £ (0,...,0)7
vy = ] & MEOE 700 ©)

0 if v=(0,...,07,

where0log(0) = 0 by convention. With this notation, the conditional empatientropy H(y™) defined in [¥) is

readily seen to be expressible in termsmfy™) as

Hy(y") £ Hm(y") £ H(m ) > mgp, (10)
b ey

wherem. , denotes the column ah indexed byb.

Remark 1: Note thatH(-) has a discrete domain, while the domain{-) is continuous and consists of all

|V| x |V|¥ matrices with positive real entries adding up to one. In otherds,
Hy : Y™ — [0,1], (11)
but
H (0,1 x [0, 117" = [0,1]. (12)

Conditional empirical entropy of sequencéd$,(-), plays key role in our results. Hence, in the following two

subsections, we focus on this function, and study some qirdperties.

A. Concavity
We prove that like the standard entropy function, conddloampirical entropy is also a concave function. By

definition

H(m)= > (Y mgu)H(m. p), (13)

beYk BeY
where?{(-) is defined in[(D). We need to show that for ahy [0, 1], and matricesn®) andm(® with non-negative

components adding up to one,

0H(mM) + 0H(m®) < H(Om® + om®), (14)
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whered = 1 — 6. From the concavity of entropy functioH, it follows that

00> mS L HmY) + 80> mG)H(mE)

BEY BEY
q 91(2 m(i)b) i
= (9(2 m(B{)b) + 9(2 mg,%a)) Z @) e ) H(m»(,t):)
gey By ey O ey mpp) T 0 5ey M5 1))
<O myy) + 00> mEL)H(Om'Y + om ), (15)
BeY BeY

wherefd; £ 1 — 6, £ 4. Summing up both sides df{[L5) over &llc }* yields the desired result.

B. Sationarity condition

Let p(y**') be a given pmf defined opy**!. Under what condition(s) does there exist a a stationargge®
with its (k + 1)'" order distribution equal tp?
Lemma 1: The necessary and sufficient condition fw(y"™!)}, cr1cye1 to represent thek + 1)™ order
marginal distribution of a stationary process is
> pBy") = p. ), vyt e V-, (16)

Bey BeY
Proof:

i. Necessity: The necessity &f{16) is just a direct resuthefstationarity of the process.jfy*+!) is to represent
the (k + 1)*" order marginal distribution of a stationary proc&s= {Y;}, then it should be consistent with
the k** order marginal distribution. Hencé, {16) should hold.

ii. Sufficiency: In order to prove the sufficiency, we assuinat {16) holds, and build a stationary process with
(k + 1)t order marginal distribution equal ta(y**!). Let’ Y = {Y;}; be a Markov chain of ordek whose
transition probabilities are defined as

A p(yk+1)

py*)

P(Yis1 = yrra|Y" = 4%) 2 q(yrsrly®) 17)

where

pW") 2> p(B.y") = pF.B).

BeY BeY
Now, given [I6), it is easy to check thaty**1) is the (k + 1) order stationary distribution of the defined

Markov chain. ThereforeY is a stationary process with the desired marginal distidbut

Throughout the paper, we refer to the condition stated i) &k6thestationarity condition.
Corollary 1. For any|)Y| x |V|¥ matrix m corresponding to thék + 1)t order empirical distribution of some
y" € Y", there exists a stationary process whose marginal disisibeoincides withm.

Proof: From Lemmd1L, we only need to show thiatl(16) holds, i.e.,

> mpn =3 My, (5.0, b EVE, (18)
Bey BEY
which obviously holds because both sides[ofl (18) are equk;{lz‘to(yj:[iC =Db}|/(n— k). [ |
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IIl. EXHAUSTIVE SEARCH ALGORITHM

Consider the following lossy source coding algorithm. @Give> 0, for encoding sequence’ € X", find
" = argmin[H(y") + ad, (", y™)], (19)
ynexn
and describet™ using the Lempel-Ziv coding algorithm. As proved befdrg, [2[1], the described algorithm is a

universal lossy compression algorithm. That is, for anyiatary ergodic sourc&,
1 - N
EELZ(Xn) + ady, (X", X") — min[R(D,X) + aD], a.s., (20)

where X" is generated by the sourdg, and X" denotes the minimizer of {1.9) for the inpiit”. Here/r., denotes
the length of the codeword assignedX@ by the Lempel-Ziv algorithm [12]. Clearly, given the sizetbe search
space, this is not an implementable algorithm. An approachapproximating the solution of (I.9) using Markov
chain Monte Carlo methods has been suggesteld in [31]. Or®epnovith the MCMC-based algorithms is that no
useful bound is yet known on the required number of iteratidoreover, the performance of the algorithm depends
on the cooling process chosen. There exist cooling schedvith guaranteed convergence, but they are very slow,
and usually not used in practice. On the other hand, if we asteff cooling processes, there is a risk of getting
stuck in a local minima and missing the optimum solution. §bal of this paper is to propose a new approach for
approximating the solution of (19). This new approach, assh@w later, suggests a new implementable algorithm
for lossy compression. The main idea here is using linearceqapation of the conditional entropy functiof(m),

at some poinin,, and proving that ifm, is chosen correctly, then while we have reduced the exhauséarch

algorithm to the Viterbi algorithm, we have not changed isfprmance.

IV. LINEARIZED COST FUNCTION

Consider the problems (P1) and (P2) described[by (21) aod rézpectively, where (P1) corresponds to the
optimization required by the exhaustive search lossy cesgion scheme described [n](19), and (P2) involves a
similar optimization problem. The difference between (Bayl (P2) is that the term corresponding to conditional

empirical entropy in (P1), which is a highly non-linear ftioo of m, is replaced by a linear function ef.

(P1) : min [H(m(y")) + ad, (2", y")], (21)

and
P2 . i )\ " adn 9 " 9 22
( ) II;}ln E g ﬂ,bmﬂ,b(y ) (l’ Y ) ( )

where{\s b}sb are a set of real-valued coefficients. In this section we @ierésted in answering the following

guestion:

Is it possible to choose the set of coefficiefitss b} b, 5 € X andb € X*, such that (P1) and (P2) have the
same set of minimizers, or at least the set of minimizers @) (P a subset of the minimizers of (P1)?

The reason we are interested in answering this questioratsftthe answer is affirmative, then instead of solving

(P1) one can solve (P2), which we describe in Sedfidn VI caddree efficiently via the Viterbi algorithm.
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Let S; and S, denote the set of minimizers of (P1) and (P2) respectivebnsitier some:" € S, and let

m’ = m(z"), and let the coefficients used in (P2)

Agb = H(m)

6m[3,b

my
;M
~ log(Z ") (23)
Mgy
Theorem 1. If the coefficients used in (P2) are chosen accordindg b (2&) the minimum values of (P1) and
(P2) will be the same. Moreover,

SgCSl

and contains all the sequences € S with m(w™) = m.

Proof: Since, as proved earlieH (m) is concave inm, for any empirical count matrixn, we have

0
H(m) < H(m*) + Y = H(m)‘ (mg.p — M50 (24)
b OBP m;,
=Hm") + > Asp(mpp—mpy) (25)
B,b
2 H(m). (26)

Adding a constant to the both sides Bf(26), we conclude thaafiyy™ € X",
H(m(y")) + ad,(a",y") < H(m(y")) + ad, (", y"). (27)

Taking the minimum of both sides df (27) yields

min[H (m(y")) + adn (2", y")] < min[H (m(y")) + adn (2", y")] (28)
< H(m(z")) + ad, (2™, 2") (29)
— H(m(z")) + ad, (2", 2") (30)
= min[H (m(y")) + adn (2", y")); (31)

because:” € S;. Therefore,

minH (m(y")) + adn (2", y")] = min[H (m(y")) + adn (2", y")], (32)

i.e., (P1) and (P2) have the same minimum values.
For any sequence™ with m(w™) # m}, by strict concavity ofH (m),

H(m(w")) + ad, (2™, w"™) > H(m(w")) + ad, (2", w"), (33)
> min[Hy(y") + adn (2", y")]. (34)

n

Hence, the empirical count matrices of all the sequenceS$;jn.e., all the minimizers of (P2) for the selected

coefficients, are equal tm}.
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Let w™ € S;. We prove thatw™ € S; as well. As we just provedn(w™) = m(z") = m}. Moreover, since

both 2z andw™ belong toS,,

min[H(m(y") + ad, (2", y")] = H(m(w") + ad, (2", w")

Y

= H(m(z")) + ad, (z", 2"). (35)
Therefored,, (z™, w™) = d, (2™, z™), and consequently,
Hi(w™) + ady, (w™, 2"™) = Hp(2") + ad, (2", 2™),
= n;inn[Hk(y”) + adn(y", z")], (36)

which proves thatw™ € Sy, and concludes the proof. |
Theorenf]l states that if the optimal type’ is known, then the desired coefficients can be computed dicepr
to (23), and solving (P2) instead of (P1) using the computefficients finds a minimizer of (P1). In Sectibnl VI,
we describe how (P2) can be solved efficiently using Vitetpodathm for a given set of coefficients. The problem
of course is that the optimal typ& required for computing the desired coefficients is not knawithe encoder
(since knowledge oin? seems to require solving (P1) which is the problem we areagryo avoid). In Section
[Vl we introduce another optimization problem whose sohui® a good approximation ah?, and hence of the

desired coefficient§\s 1,} when substituting in[{23).

V. COMPUTING THE COEFFICIENTS

As mentioned in the previous section, there exists a set efficeents for which (P1) and (P2) have the same
value. However, computing the desired coefficients reguine knowledge ofn’ which is not available without
solving (P1). In order to alleviate this issue, in this sattive introduce another optimization problem that gives
an asymptotically tight approximation ef}, and therefore a reasonable approximation of the set oficieeits.

For a given sequence® and a given ordek, let M(*) = M%) (z™) be the set of all jointly stationary probability
distributions on( X%, X’“) (in the sense of Lemnid 1) such that their marginal distrimstiwith respect t& coincide

with the k" order empirical distribution induced by defined as follows

’\(k) k\ A& |{1§ZSTL (I’L'fk7---,xi71):a/k}|
[m""](a )_ n ,
1 n
= — Z]]'Iiilzak’ (37)
=t

wherea* € X*. More specifically a distributiop®) in M®*) should satisfy the following two constraints:
1) Stationarity condition: as described in Section]I-B; &my o* ' € X+~ andbF—! € X1,
S o pWE@r )y = > pW(ara™ ! bt (38)

akGX.,ka.)% akEX,bkEPS

2) Consistency: for each’ ¢ X%,

> M (@, bF) = pe, (ab). (39)

bke Xk
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For givenz”, k and/? > k, consider the following optimization problem
min  H (X 11| X*) + aEd(X,, X))
st (X4 XY ~p®
p e MO, (40)
Remark 2: Note that the rate-distortion function of a stationary eliggprocesX has the following representation
[32):
R(D,X) = inf{H(X) : (X,X) jointly stationry and ergodic, and Ed(X,, Xo) < D},
= ligﬁ inf{ H(X41|X"%) : (X, X) jointly stationary and ergodic, and Ed(Xo, Xo) < D},  (41)
WhereH(X) denotes the entropy rate of the stationary ergodic proXesds.,

H(X) 2 lim H(X,1|X™). (42)

n—oo
This representation gives the motivating intuition behihd optimization described ih_(#0). It shows that](40)
is basically performing the search required byl (41).
Using the properties of the se1(“), and the definition of conditional empirical entroply,J(4@ncbe written

more explicitly as

min  H(m) + « Z d(a,b)q(a,b)

aEX bEX
s.t. 0<pP(@a’ ') <1, Vafex’p et
SO by =1, Va'ex b et
a®,bt
Z p(f) (CLE, bl) _ Z p(f) (agagfl, bkbffl)’
azEX,ng.;\; azEX,ngz?

\V/CL571 c Xzil,bgil c )Evlfl’

> P9 b) = pip(a’) Vae X,

blext
q(a’ b) — Z p(l) (aaﬁfl’ bblfl)
al—lext-1pt-1gxe—1
mp.p = > P9 bBR), VB (43)

ateXt ht—kext—k
Note that the optimization if{#3) is done over the joint diisttions p(*) of (X*, X*). Let P* denote the set of
minimizers of [@B), andS* be their(k + 1) order marginalized versions with respectXo Let {\s1,} 5.1, be the
coefficients evaluated at sonme;, € S‘;; using [23). LetX be a stationary ergodic source, aR@X, D) denote its
rate distortion function. Finally, leK™ be the reconstruction sequence obtained by solving (P23l(r&32)) at the

evaluated coefficients.
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Theorem 2: If k = k, = o(logn), £ = ¢, = o(n'/*) andk = o(¢) such thatk,, {,, — oo, asn — oo, then for

any stationary ergodic source
Hp(X™) + ad, (X", X™) "=3° min [R(X,D)+aD], as. (44)

The proof of Theoreri]2 is presented in Appendix A.

Remark 3: TheorenlR2 implies the fixed-slope universality of the schevhéch does the lossless compression
of the reconstruction by first describing its count matringiing a number of bits which is negligible for large n)
and then doing the conditional entropy coding.

Remark 4: Note that all the constraints i (43) are linear, and the atconcave function. Hence, overall, we

have a concave minimization problem (of dimensjai’|X|¢ + | X|F+! + |X||X)).

VI. VITERBI CODER

In this section, we show how, for a given set of coefficiefifs, s}, (P2) can be solved efficiently via the Viterbi

algorithm [33], [34].

Note that the linearized cost used in (P2) can also be wréten

Z [/\37bm/3,b( ™)+ ad, ( = % Z { o + ad(z;, yl)} . (45)
bex* i=1
pex

The advantage of this alternative representation is tisatye will describe, instead of using simulated annealing,
we can find the sequence that exactly minimiZes (45) via theri algorithm, which is a dynamic programming
optimization method for finding the path of minimum weightanTrellis diagram efficiently. Foi =k +1,...,n,

let
54 £ yffk (46)

to be the state at timg and defineS to be the set of al|l.X|*+! possible states. From this definition, the state at

time 4, s;, is determined by the state at time- 1, s;_1, andy;. In other words,s; = g(s;—1,:), for some
g:8Sx X — 8.

This representation leads to a Trellis diagram correspwntdi the evolution of the statgs;}7_, ., in which each
state hag.X'| states leading to it angt| states branching from it. To the edge= (s, s) connecting states’ and

s = bF*1 at stagei, we assign the weighb; (e) defined as
wz(e) = )\bk+1,bk + Oéd(d?i, bk+1). (47)

In this representation, there is a 1-to-1 correspondenteele sequenceg” € X, and sequences of states
{si}} 141, and minimizing [(4b) is equivalent to finding the path of migim weight in the corresponding Trellis

diagram, i.e., the paths;}7_,  , that minimizesZ?:kH wj(e;), wheree; = (s;—1, s;). Solving this minimization
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can readily be done by the Viterbi algorithm which can be dbed as follows. For each state let £(s) be the

|X| states leading to it, and for any> 1, define

Ci(s) = S,félgls)[wi((slv s)) + Ci—1(s)]. (48)

Fori =1ands = b, let Ci(s) := Ay, p+ + adpy (M, 05F1). Using this procedure, each stateat each
time j has a path of length — & — 1 which is the minimum path among all the possible paths beivike states
from time: = k + 1 to ¢ = j such thats; = s. After computing{C;(s)} forall s Sand alli € {k+1,...,n},
at time: = n, let

s* = argmin C), (). (49)
seS

It is not hard to see that the path leadingstois the path of minimum weight among all possible paths.

Note that the computational complexity of this procedurknisar inn but exponential ink because the number
of states increases exponentially with Therefore, given the coefficien{s\y g}, solving (P2) is straightforward
using the Viterbi algorithm. The problem is finding an appnoation of the optimal coefficients. The procedure
outlined in Sectiol 1V for finding the coefficients involvesh&ng a concave minimization problem of dimension
that becomes intractable even for moderate values.cofo bypass this process, an alternative heuristic method
is proposed in the next section. The effectiveness of thisagzh is discussed in the next section through some

simulations.

VIl. APPROXIMATING THE OPTIMAL COEFFICIENTS

As we discussed in SectiénllV, having known the optimal cokffits, solving (P2) which can be done using
the Viterbi algorithm is equivalent to solving (P1) whichshexponential complexity im. However, the problem
is finding such desired coefficients. In Sectioh V, it was jemal that for finding a good approximation of these
coefficients, one method is to solMe{43) and fild. Then an approximation of the coefficienfss ,} can be
made via[(ZB) by evaluating the partial derivativesidfm) at m*. But solving [48) requires solving a concave
minimization problem of dimension which is demanding foeevmoderate values of. Therefore, in this section,
we consider a detour with moderate computational complexit

First, assume that the desired distortion is small, or edently « is large. In that case, the distance between
the original sequence™ and its quantized versioi® should be small. Therefore, their types, i.e., th@ir- 1)
order empirical distributions, are close. Hence, the coefits computed based an(2") provide a reasonable
approximation of the coefficients derived frami*. This implies that if our desired distortion is small, onesgibility
is to compute the type of the input sequence, and evaluatediféicients atm (x").

In the case where the desired distortion is not very smallcareuse an iterative approach as follows. Start with
m(z™). Compute the coefficients frori (23) at(z™). Employ Viterbi algorithm to solve (P2) at the computed
coefficients. Leti”™ denote the output sequence. Compuiéi™), and recalculate the coefficients usifig](23) at

m(z™). Again, use Viterbi algorithm to solve (P2) at the updatedfficients. Iterate.
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For a conditional empirical distribution matrix, define its coefficient matrix ad(m), wherelg 1, is defined
as [23). For two matriced and B of the same dimensions, define the scalar product afnd B as
A®B2Y A ;B;;.
i.j

Now succinctly, the iterative approach can be describedbmafs. Fort = 0, let y™ () = z". Fort =1,2,. ..
A® = Afm(y 1)),

y™® = argmin[A®) © m(z") + ad(z", 2")].
Z7l627l

Stop as soon ag™®) = 3™ (¢t-1),

For a given sequence”, and sloper, assign to each sequengé € X" the energy
EW™) = Hr(y"™) + ad(a™,y"). (50)

As mentioned before, the goal is to find the sequence with mim energy. Theoreml 3 below gives some
justification on how the described approach serves thisqaarplt shows that, through the iterations, the energy
level of the output is decreasing at each step. Moreovetedine number of energy levels is finite, it proves that
the algorithm converges in a finite number of iterations.

Theorem 3: For the described iterative algorithm, at each 1,
(™) < E(y ). (51)

Proof: For the ease of notations, lét = y™(), h = m(2"), and A = A(rn). Similarly, let & = ™41,
m = m(z"), andA = A(rh). From the concavity off (m) in m,

H(m) < H(m) + A ® (m — m), (52)

where A ® B with A and B two matrices of the same dimensions is equa}ia; ;b; ;. On the other hand
i

A GOm = Z 5\571,7?1571)

3,b
> Mg
= Z T?L[ib IOg 7[5 Eif (53)
b mB.b
= H (). (54)
Therefore, combinind (32) an@ (53) yields
H(h) < A ® . (55)
Adding a constant term to the both sides[ofl(56), we get
£(Z") = H(m) + ad(z", ") < A © m + ad(z", i"). (56)
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But, sincez” is assumed to be a minimizer of (P2) for the computed coeffiisje

Ao+ ad(z", i) <

=£(z") (57)
Therefore, combinind (36) anf (57) yields the desired tesel,
E(E™) < E(&™). (58)

[ |

Remark 5: In the described iterative algorithm, for any slapewe assumed that the algorithm startg/at?) =
2™. However, as mentioned earlier, only for large valuespin(z™) provides a reasonable approximation of the
desired typem. Hence, in order to address this issue, we can slightly ipdatl# algorithm as follows. The idea
is that instead of starting at™(®) = z™ for all values ofa, we can gradually decrease the slope to our desired
value, and use the final output of each step as the initialtgoirthe next step. More explicitly, for any givem,
start from some large slopey..x, (corresponding to very low distortion). Run the previowsative algorithm and
find 2" (amax ). Pick some integelN,,, and define

Ao A Qmax — QQ

Na
Again run the iterative algorithm, but this time @at= am.x — Aa. Now, instead of starting fron™ (?) = 2,
initialize y"’(o) = 2" (amax ). Repeat this proces¥,, times. l.e, At thert® step,r = 1,..., N,, run the algorithm
at @ = amax — rAa, and initializey™© = 2" (amax — (r — 1)Aa). At the final stepa = o, and we have a
reasonable quantized version:df for initialization.
To gain further insight or{P2), for the coefficients matri\ = {\s 1} b, define

$(A) = min > Agpmpu(y”) + adn(a",y")
ynexn 5.b

= min [AOm(y")+ ad, (=", y")]. (59)
yrexn
Since¢(A) is the minimum of multiple affine functions df, it is a concave function. To each sequentec xm,
assign a coefficient matriA = [A\z ] as
OH(m)

Agb = ) (60)
P 0man L

Let £, be the set of all such coefficient matrices. Similarly to e@olssible conditional distribution matrix
on X**+1 which satisfies the stationarity condition defined in SediileB] assign a coefficients matrix defined
according to[(60). LeL. be the set of coefficient matrices calculated/at- 1)** orderstationary distributions on

X*1. Note that whileZ, is a discrete set (consisting of no more tHai” elements) L. is continuous.
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For a sequence™, let

" = argminE(y"),
y’VleXA’Vl

and

Note thatA* is the optimal coefficients matrix required for replacind Rvith (P2).

Lemma 2:
A* = argmin ¢(A). (61)
AELy
Proof: As shown before,
F(A) = &@m). (62)

On the other hand, i£" is the minimizer of}_ Az bms b(y™) + ad,(z™,y™) for someA € L4, then, as shown
B,b

in the proof of Theoreril3,
H(m) < A®m. (63)

Therefore, adding/(z", ™) to both sides of[(63) yields

E(@") < o(A). (64)
But, by assumption,

E@m) < E@). (65)
Combining [62), [(64) and_(65) yields the desired result. [ |

Remark 6: Note that

. . n n n
AL g ( Bz;)‘ﬂ,bmﬂ,b(y )+ adp (", y ))

=min [,{glg (th:))‘ﬁ-,bmﬁ,b(y )) + adn(z",y )] : (66)
But H(m(y™)) < > Agpmgn(y™), for any A € L., and the lower bound is achieved /aty™). Therefore,
8,b
in mi A n dn (2", y™) | = min(Hy(y" d(z"™, y™)). 67
[min min ( ,sz 8omap(y") + ady(z",y )) min(Hy(y") + ad(z",y")) (67)

Hence, we can replacg, by £. in (1), and still get the same result. This transform cotsvéne discrete
optimization stated if(81), which can be solved by exhaastearch, to an optimization over a continuous function

of relativley low dimentions.
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Fig. 1. Average performance of the iterative Viterbi-badessy coder applied to an i.i.d3ern(0.5) source. ¢ = 10%, k = 8, a =
(3,2.9,...,0.1), and L = 50)

VIIl. SIMULATION RESULTS

As the first example, consider an i.ildern(p) source withp = 0.5. Fig.[d shows the performance of the iterative
algorithm described in Sectidn VIl slightly modified, as gagted in Remark]l5. The simulations parameters are
as follows:n = 10%, k = 8, anda = (3,2.9,...,0.1). Each point corresponds to the average performance over
L =50 independent source realizations. As mentioned in SeEfi@nthe iterative algorithm continues until there
is no decrease in the cost. Fig. 2 shows the average, minimdnmaximum number of required iterations before
convergence versus. Again, the number of trials aré = 50. It can be observed that the number of iterations in
this case is always belo%0, which, given the size of the search space, 4’g, shows fast convergence.

The next example involves a binary symmetric Markov souB®MS) with transition probabilityy = 0.2. Fig.[3
compares the average performance of the Viterbi encodénstgaper and lower bounds di( D) [35]. The reason
for only comparing the performance of the algorithm agaiminds onR(D) in this case is that the rate-distortion
function of a Markov source is not known, except for a lowtalison region. For low distortions, the Shannon

lower bound is tight[[36]. More explicitly, foD < D, ~ 0.0159,

R(D) = Hy(q) — Hy(D),
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Fig. 2. From top to bottom: average, minimum and maximum remdj iterations before convergence. (i.ilBern(0.5) source,n = 104,
k=8, a=(3,29,...,0.1), and L = 50)

where Hy(e) £ H(e, 1 —¢€). For D > D., R(D) > Hy(q) — Hy(D).

A comparison with the memoryless case (Filg. 1) seems to stigjget the problem is less with how quickly (in
n) we are converging to the exhaustive search performaneseiof [I9) than with how quickly the convergence
in (44) is taking place, which is source dependent and notiatontrol.

Fig.[4 shows the average number of iterations before coemeryversus:. It can be observed that the average
is always belowl5. To give some examples on how the energy is decreasing| FandS-ig.[6 show the energy
decay through iterations far = 1.6 anda = 1 respectively.

Remark 7: Similar to [31], here in the figures we are usify,(2") as the rate, while in fact it is not a true
length function. The reason is that as explained[in [31], by idequality [37], if & = o(log(n)), then for any
e > 0, there exitsN, € IN such that for any: > N, and any sequence- (y1,ya, .. .),

Ly~ Hily")| < e (68)

IX. CONCLUSIONS

In this paper, a new approach to for fixed-slope lossy conspyesof discrete sources is proposed. The core
ingredient is the use of the Viterbi algorithm, which is a dgnic programing algorithm. It enables the encoder to
find the reconstruction sequence with minimum cost. The @eicéirst assigns some weights to different contexts
of length k, i.e, subsequences of length+- 1, that appear within the reconstruction sequence. Thengvkeall

cost assigned to each possible reconstruction sequertoe $sin of the weights of different contexts multiplied by
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Proposed iterative
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Fig. 3. Average performance of the iterative Viterbi-basessy coder applied to a BSMS wiip = 0.2 source. f = 25 x 103, k = 8,
a=3:-0.1:0.1 and L = 50)

their number of appearances in the sequence, plus someanbtisties the distance between the original sequence
and the candidate reconstruction sequence. From this til&finit turns out that the state of the Viterbi algorithm
at timet is the lastk symbols observed plus the current symbol in the sequere€yi.«, ..., y:). Therefore,
the Trellis has overal|.X|F+! different states, corresponding t&’|*+! different possible contexts of length
Hence for coding a sequence of lengththe computational complexity of the Viterbi algorithm InMide of the
order of O(n2*+1). We prove that there exists a set of optimal coefficients fhictv the described algorithm will
achieve the rate-distortion performance for any statiprmgodic process. The problem is finding those weights.
We provide an optimization problem whose solution can beldsdind an asymptotically tight approximation of
the optimal coefficients resulting in an overall scheme Whig universal with respect to the class of stationary
ergodic sources. However, solving this optimization peoblis computationally demanding, and in fact infeasible
in practice for even moderate blocklengths. In order to ceere this problem, we propose an iterative approach
for approximating the optimal coefficients. This approasipartially justified by a guarantee of convergance to at
least a local minimum.

In the described iterative approach, the algorithm startslarge slope (corresponding to a small distortion) and
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Fig. 4. Average number of iterations before convergen@MB withq = 0.2, n =25 x 103, k =8, a = 3 : —0.1: 0.1 and L = 50)

gradually decreases the slope until it hits the desiredevai each slope, the algorithm runs the Viterbi algorithm
iteratively until it converges. An interesting possiblexnstep is to explore whether there exisits a sequence oéslop
converging to the desired value in a small number of stegs ¢¢.0(n)) for which we can guarantee convergence
of the algorithm to the global minimum at the end of the posc&xistance of such sequence of slopes implies a

universal lossy compression algorithm with moderate caatmal complexity.
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Fig. 5. Energy decay through the iterations &or= 1.6. (BSMS with g = 0.2, n = 25 x 10% andk = 8)

APPENDIX A: PROOF OFTHEOREMIZ
Proof: By rearranging the terms, the cost that is to be minimizedPib) (can alternatively be represented as

follows

Hiy(y") + adn (2", y") = Hy(m(y")) + o (i, yi),

S

N
Il
-

= Hiy(m(y")) + « d(i,yi) Z L yi)=(a/b)

aEX bEX

n 1 S
= He(m(y") +o- D >, @01y
=l gex beX

n 1 -
= Hiy(m(y"™)) + « Z d(a, b)ﬁ Z Lo yi)=(a,b)
i=1

S~

@
Il
A

= Hy(m(y") +a > d(a,b)p,) . (a,0)
aEX bEX

= Hﬁfkjl»]l) (Yit1 |Yk) + Eﬁ(m d(X1,Y1). (A-1)

a7 ym]
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Fig. 6. Energy decay through the iterations &or= 1. (BSMS withq = 0.2, n = 25 x 103 andk = 8)

This new representation reveals the close connection keetel) and[{40). Although the costs we are trying
to minimize in the two problems are equal, there is a funddaiatifference between them: (P1) is a discrete
optimization problem, while the optimization space [in](4D)xontinuous.

Let & andP; be the sets of minimizers of (P1), and joint empirical disitions of order, f)ff)n_’yn], induced
by them respectively. Also le$; be the set of marginalized distributions of orde# 1 in P with respect toY".
Finally, let C;; and O:; be the minimum values achieved by (P1) and (43) respectively

In order to make the proof more tractable, we break it dowa g@veral steps as follows.

1) Lety™ € &, andﬁfﬁlyyn] be the induced joint empirical distribution. It is easy teck thatﬁfﬁ)nyyn] satisfies

all the constraints mentioned i {43). The only conditioattmight need some thought is the stationarity

constraint, which also holds because

)

NG ¢ 0y 1 . Coa—1 _ 0—1 -1 _ g0—1
Z p[wn,yn](a7b)—5!{1§2§n-w§4+1—a Yi—pp1 = }
arEX beeX

ST beh e (aca Tt b Y). (A-2)
azEX,ng)?
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Therefore, sinc&* is the minimum of [4B), we have

Cry < Hy(m(y™)) + ol (Xegr Vi)

z™,yn]
= Hi(m(y")) + adn (2", y")
— (A-3)

2) Letp*® ¢ 75:;. Based on this joint probability distribution and', we construct a reconstruction sequence

X" as follows: dividez" into r = [%] consecutive blocks:

¢ 20 (r=1)¢
X 7x€+1,...7x(r 2)l+17 (,’, 1)@-‘1—17

where except for possibly the last block, the other blockeHangth/. The new sequence is constructed as

follows
r—1)¢ on
X X€+17 i X((r 2))€+1’X(r—1)€+17
where fori =1,...,r—1, X(Z 1)e+1 1S @ sample from the conditional distributipn(®) (X | X*¢ = a:(z 1)é+1)

and X7y, ~ p*(é) (XG 1y X1y = Th—1yeg1)-
3) Assume that = {z;}32, is a given individual sequence. For eaghlet p*(*+1) pbe the(k + 1)'" order

marginalized version of the solution ¢f{43) ai{*+1). Moreover, letX™ be the constructed as described in

(k+1)

(X7 be the(k + 1) order empirical distribution induced h§". We now prove

the previous item, ang}

that
s (ko . (k+
lp (k+1) _ pf 1)H — 0, a.s., (A-4)

where the randomization ifi.{A-4) is only in the generation’of.

Remark 8: Sincep*() satisfiesstationarity condition, its (k + 1) order marginalized distribution*(*+1),
is well-defined and can be computed with respect to any of the 1) consecutive positions if, ..., ¢. In
other words fora#t1 € X#+1,
p @) = 3T D gl ke, (A-5)
bt—k—1cxn
foranyj € {0,...,¢£ — k — 1}, and the result does not depend on the choicg. of

In order to show that the difference betwq{@t]l)(ak“) andp*(*+1 (¢*+1) is going to zero almost surely, we

decompOS@[;t]l)( a*t1) into the average of — k terms each of which is converging t6(*+1) (a*+1). Then
using the union bound we get the desired result which is tmeergence ij[;t]l (a*t1) to p*(k+1) (ght1),
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For g+l e Xh+1,

AOk+1) k1 (k1) k+l’
[l (@) = pr D a4

1 n
- ﬁ Z ]]-Xsz:a’“rl _p*(k+1)(ak+l)

=1
1271{2717"71
= |— 1gie— 51 — prktD) (k1
n § Xﬂﬂf_ikzakﬂ“‘ 1=Pp ( )
=0 i=1
Tlfkfl 17"71
-\ LANNS P 81 — pH(ED (gh+1
o - Xuzfyj —gh+1 +01—p ( )a
7=0 =1

+ 8y — p*EFD (gFH1)] (A-6)

whered; accounts for the edge effects between the blocks,darig defined such thal, — ¢; takes care of
the effect of replacing: with ﬁ Thereforep < §; < @ + K_Tl < % + % and|dy — 91| = o(k/?).
Hence,f; — 0 andd, — 0 asn — oo.

The new representation decomposes a sequence of corretatedm variables{]l;(;-ik:akﬂ};‘:Hl, into

¢ — k sub-sequences where each of them is an independent préoeszchieving this some counts that lie
between two blocks are ignored, i.e.,]]qu;k:ak+1 is such that it depends on more than one block of the
form ngfl)lJrl’
k, ¢ — oo because the theorem requires- o(¢). More specifically in[(A-B), for each € {0,...,/—k—1},

we ignore it. The effect of such ignored counts will be no enttrand,. which goes to zero as

{15 _.r41ti—1 IS @ sequence of independent not necessarily identicalyilslited random variables.
il—j—k

For n large enough|dz| < €/2. Therefore, by Hoeffding inequality [38], and the union hdu

P (|pl) (@) = pr D @] > €,
r—1

l—k—1
1 1 €
Z o _ (k1) kit z
([ B [FE sy e |55,

=1

|
~
<. |
i b
o |
-
-
—

<20 —Fk)e /2, (A-7)
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Again by the union bound,

P (It = p = > )

SZP<

ak+lcxXk+1

SOk +1) ket 1y _ (k1) k+1‘ €
e R S e |

< |R[FFI(L — ke zRIATTT (A-8)
Our choices ofk = k,, = o(logn), £ = £,, = o(n'/*), k = o(¢), andk,, £,, — oo, asn — co Now guarantee
that the right hand side of {Al8) is summable arnwhich together with Borel-Cantelli Lemma yields the
desired result of (Ad4).

4) Using similar steps as above we can prove that

O R -
14" = dppn gl = 0, as. (A-9)
Again we first prove thalg*(a, b) — q[(i) Xn](a’ b)| — 0 for eacha € X andb € X. For doing this we again
need to decompose

{]]'mi:a.,f(i:b}?:1
into ¢ sub-sequences each of which is a sequence of independdontmavariables, and then apply Hoeffding
inequality plus the union bound. Finally we apply the uniaubd again in addition to the Borel-Cantelli
Lemma to get our desired result.

5) Combing the results of the last two parts, and the fact Higtm) andE, d(X,Y") are bounded continuous
functions ofm and g respectively, we conclude that
Hip(X™) + ady, (a", X") = H o) (Ve |Y®) + aB.o d(X,1)
[XTL] [mnyxn]
= Hyetorn) (Vi1 |Y?) + @ Eg- d(X1, Y1) + €5
=Ch + en, (A-10)

wheree,, — 0 with probability 1.

6) SinceC: is the minimum of (P1), we have
Cr < He(X") + ady (2™, X™),
— (e (A-11)
On the other hand, as shown M (A-8); < C*. Therefore,
|Cr —Ci =0 (A-12)

asn — o.

7) For a given set of coefficients = {\3 b }3 b computed at somen according to[(2B), define

F) = min Y " Agpmpp(y") + ada(",y") | - (A-13)
ynexn 8.b
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It is easy to check thaf is continuous, and bounded y+ «. Therefore, since\ is in turns a continuous

function of m, and as proved i (Al4),

w(k+1) _ s(k+1)
I Pz Il =0,
we conclude that,
[FA) = F(N)] =0, (A-14)

whereX* and A are the coefficients computed git*+1) andﬁ&t}l)

Let X" be the output of (P2) when the coefficients are computedl(af("). Then, from Theorerm]3,

respectively.

Hp(X™) 4 ad, (2", X™) < H(X™) + ad,, (z, X™)
6t hen (A-15)

Since,e, — 0, this shows that haven computed the coefficientm&f ™), we would get a universal lossy
compressor. But instead, we want to compute the coefficanta*. From [A-13), the difference between

the performances of these two algorithms goes to zero. Tdrerewe finally get our desired result which is

(1]
(2]

(31
(4]
(5]

(6]
(7]

(8]

El

[10]
[11]

[12]

[13]

[14]

[Hk(X”) +ady (X", X")| "= min [R(X, D) +aD)], as. (A-16)
[ |
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