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Abstract—In this paper, we characterize the information-
theoretic capacity scaling of wireless ad hoc networks withn
randomly distributed nodes. By using an exact channel model
from Maxwell's equations, we successfully resolve the coidt in
the literature between the linear capacity scaling byOzgir et
al. and the degrees of freedom limit given as the ratio of the
network diameter and the wavelength A by Franceschetti et al.
In dense networks where the network area is fixed, the capagit
scaling is given as the minimum ofn. and the degrees of freedom
limit A~' to within an arbitrarily small exponent. In extended
networks where the network area is linear in n, the capacity
scaling is given as the minimum ofn. and the degrees of freedom
limit \/nA~! to within an arbitrarily small exponent. Hence, we
recover the linear capacity scaling byOzgiir et al. if A = O(n™ ')
in dense networks and ifA = O(n~'/?) in extended networks.
Otherwise, the capacity scaling is given as the degrees offrdom
limit characterized by Franceschetti et al. For achievabiity, a
modified hierarchical cooperation is proposed based on a logr
bound on the capacity of multiple-input multiple-output channel
between two node clusters using our channel model.

Index Terms—Capacity scaling, channel correlation, coopera-
tive multiple-input multiple-output (MIMO), degrees of fr eedom,
hierarchical cooperation, Maxwell's equations, physicallimit,
wireless ad hoc networks.

I. INTRODUCTION

theory can achiev®(/n). To information theorists, a natural
guestion is what thénformation-theoretic capacity scaling is
without such underlying physical-layer assumptions.

The information-theoretic capacity scaling is highly depe
dent on the channel model. Furthermore, it is important & us
a realistic channel model to get results that are closerdiitye
In wireless networks in line-of-sight (LOS) environments,
where the spatial locations of nodes are fixed with suffityent
large inter-node separation compared to the wavelenggh, th
baseband-equivalent channel response between two riodes

andi is given as
VG . ,27rd
xXp | =)~ di
dir p J b\ k

from Maxwell's equations wherg = /—1, d;;, is the distance
between nodeé andi, A denotes the wavelengtﬁr where
c is the speed of light and, is the carrier frequency, and
G = i;fg by Friis’ formula whereG; is the product of the
transmit and receive antenna gains.

Recently, Ozgiir et al. characterized the information-
theoretic capacity scaling in][4]. Instead of using the éxac
channel model{1) with a distance dependent phase, however,
they assumed that the baseband-equivalent channel respons

1)

IONEERED by Gupta and Kumar iri][1], the capacit)PetWeen two nodes andi is given as
scaling in wireless ad hoc networks has been actively

studied over the last decade. In this research, we consider
uniformly and independently distributed nodes in a unitaare
(dense network) or an area of (extended network), each of

which wanting to communicate to a random destination

the same rate oR(n). The goal is to find out the maximally

achievable scaling of the aggregate throughput) = nR(n)

with n. In their seminal papef[1], Gupta and Kumar showe
that throughput scaling higher th&r,/n) cannot be achieved
if each node treats interference as noise and that the roplti
This gap was closed
in [3], where it was shown that the multihop via percolatio

scheme can achiev®(y/n/ logn)El
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1in this paper, we use the following asymptotic notatidns [B] f(n) =
O(g(n)) if f(n) < kg(n) asn tends to infinity for some constart. (ii)
f(n) = ©(g(n)) if kig(n) < f(n) < kag(n) asn tends to infinity for
some constant&; and k2. (i) f(n) = Q(g(n)) if f(n) > kg(n) asn
tends to infinity for some constat

f

T exp () (2)
ik
where 6;;, is independent and identically distributed (i.i.d.).
Fpr this channel model, the capacity scaling is shown to
Be arbitrarily close to linear in both dense and extended
networks, which means that each source can communicate to
i(tjs destination as if there were no interference. A key com-
ponent to achieve such a scaling is the cooperative multiple
nput multiple-output (MIMO) transmission between two eod
clusters whose sizes are comparable to that of the network.
If the penalty to form such a virtual MIMO is negligible,
the classical MIMO results [5],[6] under the i.i.d. channel
phase assumption make the linear throughput scaling pessib
Such an overhead is indeed shown to be arbitrarily small by
using hierarchical cooperation (HC). In the HC scheme, each
cluster forms a virtual antenna array using MIMO transmis-
sions between small scale clusters inside it. Similarlghea
small scale cluster forms a virtual antenna array by MIMO
transmissions between even smaller clusters inside its Thi
builds up a hierarchy and a plain time division multiple asce
(TDMA) is performed at the bottom hierarchy.

The i.i.d. phase assumption ifi] (2) makes the throughput
analysis easier in_[4], but such an artificial assumption can
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lead to results contradicting the physics. Recently, thedi denotes the circularly symmetric complex Gaussian random

capacity scaling in[]4] turned out to be contradictory teector with zero mean and covariance matrix/6f R and N

the physical limit on degrees of freedom (DoF) whenis denote the set of real numbers and the set of natural numbers,

not sufficiently small. In[[7], Franceschetti et al. showedespectivelyE[-] and(-)* denote the expectation and conjugate

using Maxwell's equations, that DoF in extended networksanspose, respectivelf,),, denotes the module: operation.

is limited by the ratio of the network diameteyn and (z)" denotes the positive part of i.e.,

A. By rescaling the network size, the DoF limit becomes )
(I)+_{x if x>0

0 ifz<0’

A~ in dense networks. This is a fundamental limitation
independent of power attenuation and fading models. Hence,

the linear capacity scaling inl[4] is in fact not attainabte f For two integers: and v such thatu < v, [u : v] denotes the

A= Q') and A = Q(n~1/2?) in dense and extended 2
networks, respectively. The cause of such a conflict is t 8t{u’u+1""’v}' For a se, | 5| denotes the cardinality of

ii.d. channel phase assumption [ [4] that ignores the mabnt e s_e_t. The logarithm functiolog is base 2 unless otherwise
. . specified.

correlation due to the distance dependent channel phase.

Two contradictory results [4][[7] highlight the importanc
of exact channel models based on Maxwell's equations.
Thus, the ultimate goal would be the characterization of There aren uniformly and independently distributed nodes
the information-theoretic capacity scaling of wirelesshat in @ square of unit area (called a dense network) or a square
networks from Maxwell's equations without any artificialof arean (called an extended network). It is assumed that the
assumptions. In this paper, we accomplish this goal by char&ode locations are fixed for the duration of the communicatio
terizing the information-theoretic capacity scaling ofeléss Each node has an average transmit power constraiftt arfd
ad hoc networks using an exact channel model from Maxwelfge network is allocated a total bandwidtharound the carrier
equations in LOS environments. In dense networks, we dgquencyf. > B. The wavelengthh = + is assumed to be
tablish the capacity scaling given asin{n, \~'} to within much smaller than the average separation distance between

an arbitrarily small exponent. Hence, the capacity scaking neighbor nodes given ad(n~'/2) and ©(1) for dense and
linear inn if A\ = O(n~'). Otherwise, the capacity scalingéxtended networks, respectively. Furthermore, we assume a
is given as the DoF limit\~! characterized by Franceschettvery mild lower bound onA such thatA > n~# for an

et al. In extended networks, the capacity scaling is given agditrarily large constants > 1/2. We assume thah is a
min{n, @} to within an arbitrarily small exponent. Hence monotonically non-increasing function of This corresponds

the capacity scaling is linear in if A = O(n"'/2) and is 1O usir_lg higher carrier frequencies to handle more traffie du
given as the DoF limit4® characterized by Franceschetti e the increased number of nodes. Every node is a source and a
al. otherwise. destination simultaneously, and thesource—destination pairs
e determined randomly. Every source wants to communicate
to its destination at the same rate Bfn, \). The aggregate
throughputT'(n, A) of the network is given asR(n, \).

We consider the LOS environment, i.e., no multi-path
dingE From Maxwell’s equations in far-fields, the discrete-
VA denotes the network diameter, the DoF Iim@ is in time baseband-equivalent channel gain between nbdasd
general higher than the throughput scaligig of the multihop i at timem is given as

via percolation theory of[|3]. For achievability, we modify Ja

the HC scheme in[]4] according to an achievable MIMO Hip[m] = —Gexp (—j2—ﬂdik[m]) (3)

rate between two node clusters. We show that the capacity dig[m] A

of the MIMO channel between two node clusters is at leagherej = /—1, d;;[m] is the distance between nodesnd

proportional to the minimum of the number of nodes in the gt timem. andG = 2 G1 by Friis’ formula, whereG; is the
! 167 !

cluster and the product of the ratio of the cluster diameter Aproduct of the transmit and receive antenna gﬁihhnte that

A and the angular spread between clusters. In our modifigdGl is fixed. ¢ vanishes as\ tends to zero. In extended
HC scheme, only a subset of nodes in a cluster perforRsiyorks, however, we assume thatis a constant since
the MIMO transmission such that the number of participatinge can increase; proportional toA—2 without increasing
nodes is proportional to the achievable MIMO rate, wheregse physical size of the antennas beyond a small fraction of

all nodes in the cluster participate in the MIMO transmissioihe inter-node separati&'lln dense networks, it is proper to
in the HC scheme of [4].

The organization of this paper is as follows. In Secfidn II, 20ur analysis can be extended to cases where there is militifpding.

the system model is presented. In Secfich IlI, we present IJtH@Never, we beIiev_e that having a finite number of paths wadt affect
he throughput scaling laws.

main th_eorems on the capacity scalin_g and their implicatio_n 3A channel model with a path-loss exponent larger than twoissiclered
In Sectio 1V, a modified HC scheme is constructed accordiitgAppendixD.

to an achievable MIMO rate between node clusters. We“For each node, we can depl@(A~!) antennas vertically that form an

- . - antenna array of lengtf®®(1), which gives a vertical beamforming gain of
conclude this paper in Sectigd V. ©(A~1). Hence, the product of the transmit and receive beamforrgaigs

The following notations will be used in the pap@\/ (0, K)  can be®(x~2).

Il. SYSTEM MODEL

Since the converse is straightforward from the previo
works in [4], [Z], our main contribution is to show the
achievability. We note that under the far-field assumpti@n,

A is much smaller than the inter-node separatvz{%, where fa



assume that the node size is upper-bounded:y'/? for The first term in the minimum ir{{4) is the DoF limit shown
some constant since the network area is now fixed. Hencen [IZHE The second term in the minimum ial(4) is obtained
G is assumed to b&(n~!) for dense networks because wdrom the fact that the transmission rate from a source to its

can makeG,; proportional tox~2n"1f destination is upper-bounded by the capacity of the single-
The discrete-time baseband-equivalent oulpiiz] at node input multiple-output (SIMO) channel between the sourca an
¢ at timem is given as the remaining nodes in the network (see, e.g., Theorem 3.1
Y;[m] = ZHik[m]Xk[m] + Zi[m] Theoremd 1l anfl]l2 establish the capacity scaling in dense
=1 networks to within an arbitrarily small exponent. To see the

: . : : __effect of A on the capacity scaling, let = n=% for g > 1.
where X [m] is the discrete-time baseband-equivalent mpﬂote that the conditFi)onB y> 1 isgneedednfor theﬁfz;-fiQeId
= 2

at nodek at timem and Z;[m] is the additive Gaussian noiseal roximation to hold. If3 1 the capacity scaling is
CN(0,1) at node: at timem. The channel state information plf’ v cl " ' I ' h pactly ?
(CSl) is available only at the receivers. From now on, we wift' itrarily close to linear. If; < § <1, the capacity scaling

. S : . IS given as the DoF limit.
omit the time index for notational convenience. . . .
Now, we give an achievable aggregate throughput scaling

in extended networks.

Theorem 3: Consider a network ofi nodes on an area,

We first present a lower and an upper bound on the capaditywhich n source—destination pairs are assigned arbitrarily.
scaling for dense networks in Theorelbs 1 Bhd 2, respectivefpr anye > 0, a scheme exists that achieves an aggregate
In Theorem$13 andl 4, we present a lower and an upper bodhrbughput
on the capacity scaling for extended networks, respeyﬂ/el 1—e

Theorem 1: Consider a network ofi nodes on a unit area, T(n,\) > Kzemin {v/nA™",n}
in which n source—destination pairs are a_\ssigned arbitrari%-th high probability, wherek’s, is a positive constant inde-
For anye > 0, a scheme exists that achieves an aggreg%tgndent of both, and \.
throughput

>
<

IIl. M AIN RESULT

The aggregate throughput scaling in TheorBin 3 can be
T(n,\) > Klgmin{/\_l7n}17€ achieved by the modified HC scheme in Secfioh IV.
. _ 3 _ - For random source—destination pairing, the following the-
with high probabilityl where K. is a positive constant orem shows an upper bound on the capacity scaling whose
independent of both and A. exponent is arbitrarily close to that of the lower bound in
The aggregate throughput scaling in TheorEin 1 can WeeoreniB.
achieved by the modified HC scheme constructed in SeC-Theorem 4: Consider a network of, nodes on an area, in
tion[[Vl Note that Theorerfil1 holds even if source—destimatigvhich n source-destination pairs are assigned randomly. The
pairing is arbitrary. aggregate throughput in the network is upper-bounded as

In the following theorem, we show an upper bound on . . s

the throughput scaling. If the source—destination pairs & T(n,A) < Kymin {v/nA™" (log(nA™%))*, nlogn}  (5)
determined accqrdmg o the node Iocat|or_13, then an ag@et‘:i/i‘/‘ith high probability, whereK, is a positive constant inde-
throughput scaling o®(n) would be achievable for any endent of both. and A
by_ letting each of the source-destination pairs be near%lte first term in the mi.nimum in{5) is the DoF limit shown
neighbors. Therefore, for the upper bound on the capaclllt,}/m’ and the second term in the minimum [g (5) is obtained

scaling, we limit our interest to random source—destlmauosim“arly as the derivation of the second term in the minimum

pairing. .
_ ) . in (@).
Theorem 2: Consider a network of. nodes on a unit area, Similarly as in dense networks, l&t= n—° for 8 > 0 to

In which n source-destination pairs are assigned random%e how\ affects the capacity scaling in extended networks.

The aggregate throughput in the network is upper-bounded,\fi\gte that = 0 means that\ is a constant, regardless of

T(n,\) < Kymin {/\*1(10g A% nlog n} 4 Ifg> % the capacity scaling is arbitrarily close limear. If

. ) . . . . 0 < B < 3, the capacity scaling is given as the DoF limit.

with high probability, whereK is a positive constant inde- Remark 1@ The exponent3 signifies the increase of, to
pendent of botm and A. handle more traffic as increases. For example, consider a

. 2 . o o
5In dense networks, we can vertically depléyA—1n—1/2) antennas for network with an area 00.01km Wlt_h "= 100 and f. =
each node that form an antenna array of ler@m—1/2). 300MHz (A = 1m). Then, the DoF limit is an order of 100,

6\We note that a similar result was also independently shov]ihased on and hence, the network is not DoF limited. Now, assume that
the same channel model as|ifi [9] at the same time this papesubasitted. In  the network size grows to an area em? with n = 10000.

this paper, we derive a lower bound on the MIMO transmissietwben two B ] . ]
node clusters without any artificial assumptions, whichhis key ingredient It 5 =0, ie., the carrier frequency remains the same, then

in the achievability, whereas the work in| [8] assumed therfering signals the network becomes DoF limited since the DoF limit is an

from other transmitting nodes in the network to the MIMO samission are

independent. In addition, the effect afon G is considered in this paper, but 8 In [7], the DoF limit in extended networks is studied and isown to

not in [8]. be determined by the ratio of the network diameter and theelgagth. In
7With probability approaching 1 as tends to infinity. dense networks, the DoF limit can be obtained by rescalighétwork size.
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Fig. 1. Cooperative MIMO betwee@’; and Cr with side lengthD and
distanceL > 2D between the centers

order of 1000. Now, ifs = 1, i.e., the carrier frequency is
increased t8GHz (A = 0.1m), then the network is not DoF

limited since the DoF limit is now an order of 10000.

IV. MODIFIED HIERARCHICAL COOPERATION

In this section, Theoreni$ 1 abH 3 are proved by constructiH)g
a modified HC scheme. Let us first consider a cooperative !
MIMO between two node clusters, which is the key to C(H

the construction of the modified HC scheme. Considér

We have the following corollaries for certain classesbf
Corollary 1: If there is no external interference, i.é1] =
0, the capacityC(H) of the cooperative MIMO channel from

Cr to Cg is lower-bounded as

C(H) > K4min{N, M} log (1 + KQ%N)

with high probability asN tends to infinity, wherek; and
K are positive constants independent/of L, N, and \.

Proof: We choosej = ©(1) in Theoren(b, e.g.§ = 3.
|
Corollary 2: If  p; O(sN) and po =
O(s” max{N?,N3M~1}), wheres = Q(1) andv > 1, the
capacityC(H) of the cooperative MIMO channel fror@'y
Cr is lower-bounded as

NGP(l — s

<1 + K

> —2 min{N, M} log
Sl/

1+ =73

S

independently and uniformly distributed nodes in each af twwith high probability asN tends to infinity, whereK; and

horizontally aligned square areas with side lendbthand

distanceL > 2D between the centers, as shown in Fig. 1. Let

Cr and Cg denote the left and right clusters &f nodes in
Fig.[, respectively. ThéV-by-N cooperative MIMO channel
from Cr to Cg is given as

Y=HX+W+2 (6)

whereY is the N-by-1 received vector af’r, H is the N-
by-N channel matrix from[{3),X is the N-by-1 transmitted

K} are positive constants independent®f L, N, and .

Proof: We choose = ©(s~?) in Theoren{b. [ |
Note thatM matches the DoF limit predicted inl[7],_[10]
given as the product of the normalized cluster diam%&md
the angular sprea@ between the clusters.

In the following subsections, Theorefis 1 ddd 3 for dense
and extended networks, respectively, are proved by cazistru
ing a modified HC scheme.

vector fromCr, W is the N-by-1 external interference vectora pense network

with covariance matrix3, and Z is the N-by-1 additive
Gaussian noise vectat\ (0, 1). Let p; = NL—;Ptr(E) and
py 2 Wz)ztr(ﬁ). The following theorem presents a
achievable MIMO rate fronCr to CRH The proof is in
Appendix[A.

Theorem 5: The capacityC(H) of the cooperative MIMO
channel fromCr to Cg is lower-bounded as

6%(p1 + K{N)?

C(H)>N

(p/* + (K} max{N?, N3M~1})1/2)?
CP((1-08)K/N -6
xlog [ 1+ L2 (« )G; Py
1+ T2 P1

for any0 < ¢ < 1 with high probability agV tends to infinity,
where K| and K/, are positive constants independent/of
L, N, and\ and M is given as

))

D? D?
M =max{ 1, N7 <1—|— (log V7

9A more general version of Theordm 5 was shown previously ieofém
1 in [9], where multiple antennas per node were assumédn Theoren b
corresponds to the fourth term in the minimum of (4) in [9], ievh was
obtained based on an approximation and, therefore, diffieghktly from M.
In deriving Theorenil5, however, no approximation is used, therefore, the
result is now exact.

10For the simplicity of presentationC'r and C'r are assumed to be
horizontally aligned. However, the proof of Theor€ih 5 in Apdix[A can
be easily extended to cases whére and C'r are not horizontally aligned,
which will result in the same conclusion as in Theollgm 5.

()

Let us construct the modified HC scheme for dense net-
works consisting of.. hierarchy levels. For an area of,

there are an order ofi’n nodes with high probabili@ For

simplicity, we assume that there are exactly» nodes in our
description of the scheme, but our results hold without sarch
assumption. Consider @ + 1)-tuple (ng, n1, ..., n,) € Ni+1
such thatn, = n andni_1 < n; forall k € [1 : h] and

a h-tuple (mg,myq,...,m,_1) € N* such thatm;, < ny for

all k € [0: h—1]. Fork € [0 : A, let A, £ & and
L;. = v/Ayj. Consider a hierarchical structure of the network
such that the network is divided into square areasAgpf,,
each of those square areas is again divided into smalleresqua
areas ofA4;,_», and so on, i.e., at the-th hierarchy level for

k € [1 : h], each square area of;, is divided into smaller
square areas ofl;_;.

Let Tx(ni,A) for & € [0 : h] denote the achievable
throughput when a cluster of;, nodes operates as a network
having its ownn; source—destination pairs in an arbitrary
manner. The following lemma giveB, (ny;, A) as a function
of kal(nkfl, /\) for k € [1 : h]

Lemma 1: Fix k € [1 : h]. Consider a cluster of; nodes.

If, for any two clusters; andv of nj,,_; nodes inside the cluster
of ny nodes, a rate oy, is achievable with high probability
for the MIMO communication fromm;_; randomly chosen

11See Lemma 4.1 ir_[4] for the proof.
12Since Ty, (ny, A) for k € [1 : h] has a recursive form, it also depends on

M0 ooy Mg— 1, O o5 M1 -



112)/3]1/213)1]2|3 from A, s to A, 4 for sources in clusteru and desti-
415/6[4|5]/6|4|5|6 nationd in clusterv. Since a rate ofR; is assumed to
71819789 7[8]9 be achievable for each MIMO transmissiomy,_1 /Ry
1213|1123 1]2]|3 time slots are needed for each source—destination pair.
4|5(64(5|6|4]5]6 Since we haven; source—destination pairs, a total of
7181978197819 ngmy—1/ Ry time slots are needed for Phase 2. After
10213]1/2/3[1]2]3 Phase 2, each node quantizes the MIMO observations at
4)516l4l5/6l14l5]6 a fixed rate) subblocks per time sI

71slol7Islol 789 o Phase 3: Each cluster operates in parallel according to

the 9-TDMA scheme of[[4] depicted in Figl 2. Des-
Fig. 2. The big square and small squares represent a clustef oodes tination d in cluster v collects the quantized observa-

and the clusters ofi,_; nodes inside it, respectively. In Phases 1 and 3, tions of the MIMO transmission intended for it from
the clusters of1;,_1 nodes operate in parallel according to the following 9-

TDMA scheme: the total time of the phase is divided into 9 TDMlats, Ay '_Emd then decodes the message. Note that each
and, in thei-th TDMA slot for i € [1 : 9], clusters marked withi operate quantized MIMO observation consists @jmy_1/Ry
simultaneously while the other clusters are silent. subblocks. By setting ups_1 subphases for a cluster

similarly as in Phase 1, whene,_; source—destination

) _ pairs are assigned in each of the subphases, a total
nodes in cluster, to my_; randomly chosen nodes in cluster of (9Qmi,1nk71)/(Rka71(nkfl, ) time slots are

v when other nodes in the cluster of nodes are silent, we needed for Phase 3.

have In total,
K NpME—1
T > 1
k(s A) > e Rr e T (e N T 9mk—1nk—1/2Tk—1(nk—la)\) + nkmi—1/ Ry
8) +9Qmy_1ng—1)/(ReTr—1(ng—-1, X))
with high probability, wherek?' is a positive constant inde- ime slots are needed to transpojt messages, i.enxmy—1
pendent of both: and . subblocks. Hence, the constructed scheme yields an aggrega

Proof: We construct a scheme for the clustengfnodes throughput of [(®), which proves Lemraa 1.
when it operates as a network having its owp source— In the above explanation of the scheme, we focused on the

destination pairs in an arbitrary manner. From now on, Bodified operation from the scheme of [4] and the resulting
cluster indicates a cluster of,_; nodes inside the clusterSc@ling law of the throughput. The readers should refer Jo [4
of ny nodes unless otherwise specified. We randomly assif§ti @ more detailed description of the scheme. Howevemgaki
the indices|1 : nx_1] to ny_; nodes in each cluster and leN0Se details into account does not change the throughput

Auy foru e [1: -] andv € [1 : ng_,] denote the set scalri]ng. dified HC sch , g el ol
(0t i) +1]1 27'< my 1} of nodes in clusten. The modified HC scheme is constructed recursively using

The scheme consists of three phases. Let us first expl%‘ﬁnSCheme in the proof of Lemrfih 1 for the original network

the scheme briefly from the perspective of sousda cluster ¢ Ino?es anfd usm% the rtn?r:t'h%pt;”a pﬁ_rcolatlﬁn tlge@yl [?]
u and its destinatior in clusterv. In the first phase, source or clusters ofno nodes at the botlom hierarchy. INow, '€

s in clusteru distributes its message td,, . In the second us show an achievable throughput scaling using the modified

phase.A, s performs MIMO transmission tol, 4. In the last HC_scheme withh hi_grarchy levels. Note that throughput_
phase, destinatiod in cluster v collects quayntized MIMO achieved by the modified HC scheme depends on the choice

observations fromd, 4 and decodes the message. The detail®d (Mo; "16’;}"’13{ ami(_";‘bo’ mr11, - Mp-1). First, we choose
operation in each phase is as follows. mi—1 8SGy for k € [1: h], where

« Phase 1: Each cluster operates in parallel according to G 2 min{nkl, ?kfl }
the 9-TDMA scheme of{[4] illustrated in Fil] 2. Source (ngn)zAlog A~1

s in clusteru distributes its message td. s, i.e., the For the modified HC scheme with the above choice of
message ofs is split into my_, subblocks and each (4,1, ...,m;_,), the following lemma shows that a rate
node in A, receives one subblock. For a cluster, thigf r, = ©(G,/(logn)?) is achievable for the MIMO trans-
can be done by setting up,.—, subphases, where._1  missions in Phase 2 at theth hierarchy level foi € [1 : h).
source—destination pairs in each of the subphases ar@emma 2: In Phase 2 at thé:-th hierarchy level of the
assigned as follows: in subphase [1 : mi—1], {(s, (s+ modified HC scheme foi: € [1 : h], a rate of R, =
Dni_y + 1)|s € [1: np_1]} is the set ofn,_1 source— (G, /(logn)7) is achievable for the MIMO transmissions
destination pairs. Becausg, 1(nx-1,)) is achievable petween clusters of';, nodes.

for a network ofn; 1 nodes;g—1/Tk—1(nk—1,A) time Proof: Fix k € [1 : h]. In Phase 2 at thé-th hierarchy

slots are needed for each subphase. Since thereare |evel, we let each transmitting cluster &f, nodes use a

subphases in each TDMA slot, Phase 1 needs a total of
kaflnkfl/kal(nkfh )\) time slots. 13From Appendix Il in [4], a strategy exists for each node toocetecthe
. . . . observation of a MIMO transmission at a fixed répesuch that the resultant
« Phase 2: We perform successive MIMO transSmisSIOnNS v, | quantized MIMO channel has the same multiplexing gain

for all source—destination pairs, i.e., MIMO transmissioas the original MIMO channel.




MM —1

Inp—1nk—1/Th—1(ng—1, A) + ngmu—1 /Ry + (9Qm3_ ng—1)/(RiTh—1(ng—1,\))
S 1 NpMg—1
- Q(Q + 1)(1 =+ mkfl/Rk) mkflnkfl/kal(nkfl, )\) —+ ng

Tk(nka A) =

9)

F, = 892+ f1;. Then, we have
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Fig. 3. For cluste/, clusters that operate simultaneously withaccording
to the 9-TDMA scheme are represented as shaded. The setdedsbhusters
with dots representsfy (1), and the set of shaded clusters with slash lines LA tp(52
. = S~ 5 o
representgfy (2) P2 Gh (GP/)Q ( )
74 n/ny 2
. . , =——tr| | > HH
randomly generated Gaussian code accordingNq0, P'T), GLG2 _ i
where =t
12 @ LY (e 2
r_ Tk _ Nk < tr H,H'H;H}
P= b= ZEP (10) < G ; (H:H; ;1Y)
2
This satisfies the average power constraintfofper node 1 L\* % 1 ‘ 1/2(13“»13“*13“13“*)
because each node participates in the MIMO transmission for en (31)2 (A

S fraction of time in Phase 2.
Consider the MIMO transmission from clusték of G, where (a) is from the following lemma, which is a direct

nodes to cluste€r of G, nodes inside clustdr of n, nodes consequence of the matrix trace inequality[inl [11].

in Phase 2 at thé-th hierarchy level of the modified HC Lemma 3: If A;’s are positive semidefinite matrices, then

scheme. To prove that the capacity of the MIMO channet(3"; 4;)% < (32, tr'/2(A2))2.

from Cr to Cg is at least linear inGy/(logn)’, we use By applying similar bounding techniques as those for

Corollary[2. By adopting the notations for Corolldry 2, Bt tr(FF*) and tr(FF*FF*) in Appendix[8 to tr(EFi*) and

and L denote the side length @f and Cr and the distance tr(F;F¥ F; ), we can show

between the centers, respectively, andNétbe given as[{7). N )

The MIMO transmission fromCp to Cg is interfered by tr(F5F) = O(|Uv (4)|G)

the set of clusters ofy, nodes that operate simultaneously  tr(EFf F,EF) = O([Uy (i) max{G3, Gt M~1})
87 or less clusters ofi, nodes and the distance between the b\~
D
1 -
( (Og ALk) )
The number of such subgroups can be simply bounded by
as [®), in whichGy, is substltuted forV and the interference 12
tr(X) = O((logn)Gy)
([ (i)|G}.)-by-1 transmitted vector fromyy (7). and

the MIMO transmission byG; nodes in each cluster ofy and
nodes that operates simultaneously with Let ¢/, denote
with V. Then, Uy, can be split into subgroups according to
their distance td’ such that the-th subgrougfy (i) contains With high probability, wherel/ is given as
centers ofV and each cluster imv(i) is greater thgn or M = max {1, ’
equal to (3i)Ly for i = 1,2,..., as illustrated in Fig[d3. ALy
n/ni. Let |Uy ()| denote the number of clusters of nodes Becaus A < i and (L 4]\2/‘1 < M-1 we have
in Uy (i). Then, the MIMO channel fronC'r to Cr is given useidy (3)] < & (Lk) - W v
W is given asW = Z" " H; X;, where H; is the Gj-by- YeWeld
(|Uy ()|G}.) channel matrix froni4y (i) to Cr and X; is the i
Now, let us show that the covariance mafrbof I satisfies L*
the conditions in Corollar{]2 fos = logn andv = 2. Let Gr(GP')?

tr(2?) = O((log n)? max{G3, G M~ '}).



Hence, the conditions in Corollaly 2 are satisfieddet logn Proof of TheoremEIl Fix ¢ > ¢/ > 0. Let h be the smallest
andv = 2. From Corollary(? fors = logn andv = 2, the integer such thak > = and letn be the smallest mteger such
capacityC'(H ) of the MIMO channel fronCr to Cr is lower-  that (7h + 1) log,, 1ogn < Z andlog,,1/2 logn* < &< < Let
bounded as us define functiong(z) andy,(z) for k € [1: h + 1] for

GkGP’ 1 1 xg—% as
C(H) > K. mln{Gk,M} <1+K6 ( 10gn)>

(logn)b 1+ G"GP logn Yo(w) = (1 - 5/) min{—z, 1},
(;) o min{Gj, M} ye(x) = 0k — e — (Th + 1) log,, logn.
=7 (logn)? Fix ke[l:h+ 1] We will show thaty; () is larger than
for some constank’; with high probability, wherea) is from yo(z) for all 2 < —3. Let us first show thag,, (1) > 1- 5
the choice ofP’ in (I0). Furthermore, becaudy = O(A~!) yk( 1) is given as
2 n n
and £- = Q(A(n’;nl)% ), we haveM = Q(m) ye(=1) = 6 + 7 — (Th + 1) log,, logn
Hence, we haveC(H) = Q(G}/(logn)7), which proves G e €
Lemmal2. n FTIRTY
Now, by substitutingG, and K4 (logn)” for m;_, and i 1 _ 6_’
myg_1/ R in @), whereK/ is a positiye constant independent o 3 (%)h*k ko1 4
of bothn and A\, we have the recursive form @f;(ny, A) for .
k € [1: h] for the modified HC scheme given as If 1 <k <3, wehave
Ky kGl 3\ "k 3\ "k 3\NT h 4
Te(nge, \) > —2 11 3 _ 2 i noo2
)2 oG o 00 3(3)  vh1zs(5) 3(3) »5e
where K3 is a positive constant independent of batland A. ¢ h <k<h+1, we get
The following lemma gives an achievable throughput scal-
ing using the modified HC scheme with hierarchy levels 3 3\ "k b1 > h 4
when we choos€ng,ni,...,n,) that maximizes [(11) for 9 Tr=1> 5 o
k € [1 : h]. The proof is at the end of the present section.

Thus, we conclude thaf,(—1) > 1 — %. Now we are ready
Lemma 4: In dense networks, the modified HC scheme withp SNoWyk(z) > yo(z) for all 2 < —3. Note thatd < 7, < 1.

h hierarchy levels achieves Forz < —1,
A Ch ndbCn.xm) Ye(z) = ye(=1) = m(z + 1) > ye(=1) > 1 — € = yo(x).
Tnlm 2) 2 (logn)™+1 (Alog A=1)Tetmxm For—1<z< -3,

with high probability, whereC, is a positive constant inde-

pendent of botm and A yn(@) = yie(=1) = (@ + 1)

> yr(=1) = (z+1)

b(n, A\, h) > —(1—-¢€)
h+1 if log,(AlogA™1) < —A(h) = yo(a).
k if —A(k) <1 logA™1) < —A(k -1
£ ! (k) < log,,(Alog A7) < —A( ) ,  Hence, we prove thatin {y;(z) : 1 <k < h+1} > yo(z)
_ for somek € [2: ] for all z < —1. By letting 2 = log,(AlogA™!), we
1 if —A(1) <log,(AlogA™") equivalently prove that the achievable rate of the modified
and HC scheme withi hierarchy levels in CorollarfZ]3 is lower-
A u2h—u N 3l+h—u _ 9lth—u bounded as
6u = Ty = C/ nék
3l+h—u 4 2h—u(y — 1)’ 31+h—u 4 9h—u(qy — T N> —1r mind—— 1 <k<h+1
v TR ) T A) 2 o i g Ty | S SR
for u € [1 : h+ 1], where A(v) £ % for o \-1 1-¢
G[lh] >Chmln W,n .
The following corollary is obtained straightforwardly fro &
LemmalZ. Now, we have
Corollary 3: In dense networks, the modified HC scheme A1 1—e
with A hierarchy levels achieves Ty(n,\) > C; min {W,n}

’

L an
Tu(n, A) = (logn)7h+1 — { (Aog A\—1)™*

with high probability, whereC is a positive constant inde- (;) o’ min{(/\—l)l—lognuz log n** n}
pendent of both: and \. g X ’
Now we are ready to prove Theordm 1. > Chpmin{\"n} °

1—e



where (a) is becausex™* < A\ < n~'/2. Hence, Theorell By =

is proved. |

B. Extended network

In extended networks, botk/G and the distance between

nodes is increased by a factor ¢fn as compared to those
in dense networks. Hence, for the same transmit power, the
received power at each node remains the same as in dense
networks. By rescaling the space, let us consider an extende
network as an equivalent dense network on a unit area but
with the wavelength reduced tex~'/2. Since the wavelength

is given as\n~'/2 in the equivalent dense network, Theorem

is proved.

Proof of Lemma@ First, consider the case 6{n, A\, h) =
h + 1. SinceA(h) = 1, this impliesAlogA\=! < n~1. In this
case,Gii is nx_1, and hence, the recursive form Bf (ny, \)
in (I1) becomes

K” Ne—-1Nk
Tr(ng, \) > —2 12
k(s A) 2 (logn)™n? | /Th—1(nk—1,A) + n (12)
for all k € [1 : h]. Note thatTy(ng, \) = 9(1ogn) by using

the multihop via percolation theory![3] for the cooperatfon

the clusters ofng noded By choosingn;_1 = n,f“ that
+1

maximizes [(IR) fork € [1 : h] Th(n A) > thw
is obtained. Becaus®, | = h+2 Landr, .1 =0, Lemmal® is

proved for the case df(n,\,h) = h + 1.

Next, consider the case &fn,\,h) = b’ for someh’ €
[1: h]. Let us first assume th&ty, is ny_; for k € [1 : A’ —1]
and is — for k € [ : h]. For the choice of

I
(nkmn)2 Xlo,
no, N, ...

is the same as the range »dftorresponding té(n, A\, h) = k'’
in Lemmal4.

Since Gy, is assumed to be,_; for k € [1: b/ — 1], we
obtain

1/
Ch 1 ;

Th/_l(nh/_l,/\) > W ]:,Hrl (13)
For k € [h' : h], Gy is assumed to be—*~~—— and

nkn)Z)\log)\ 1
hence, the recursive form @f.(n,, \) in (L) is given as

K’//
Tr(ng, A) > (1ogjz)7
Ng—1Mk
X - (14)
n2 . /Th—1(nk—1,\) + n?’/z(()\log A-1)2p)2
h] has

Let us assume thaf(ng,A) for & € [ — 1 :
C nkh’,k

(log m)TEFT (Xlog A=1)2n) P’k

constantsCy, ay k, and By, independent of both and

. 1
A. Then, the recursive formulas, = zgh_’o’jijﬁ) and
hk—1

the form of

for some positive

14In [3], a path-loss exponent larger than two is consideratiaamultihop
via percolation theory is shown to achie@g/n). For the path-loss exponen
equal to two, however, it achleve@(lg/g_L
proportional tolog n.

1= 1 4+2Bn -1
2(2_0%/&71)

are obtained by choosingy_1
as
1-28p1 k1

3
20—y 1) )2(27%’, 1)

Nk—1 = Ny,

((Mog A~ 1)%n

that maX|m|zesEC|]4) fole € [n' : h]. Using the conditions
Qpr pr—1 = h/+1 and By —1 = 0 from (@3), an . and By i
for k € [h' : h| are given as

3lth=h' 4 9ltk=h"(p/ _ 1)
Ok = SRRy 4 2THE=h (B — 1)
gltk—h' _ gl4+k—h
B =

31+k7h/2 + 21+k7h/(h/ _ 1)'

Becausen;, = n, ny for k € [h’ — 1 : h| is given as[(1b).
Now, the range of\ that makes the assumption, i.& is

ng—1 forke[1: ' —1]andis Thet fork € [h': b,
L . (nkn)2)\log)\ 1
valid is given as
(nnp) "2 < XNog A= < (nmyy_1)"Y2 if B € [2: A,
(nn1)~Y2 < Aog A1 if B/ =1.
(16)

By usingny andny, _; from (I3), we can show that the range
of A in (@I8) is the same as the range dfcorresponding
to b(n,\,h) = k' in Lemmal4. Hence, we prove that for

b(n,\,h) = R/, the modified HC scheme withh levels
achieves
Oh no‘h’,h
(n /\) (1Ogn)7h+1 (()\ 1og )\71)271)5}7/,}1
Ch nen’ ,h=Pn’n
~ (logn)™F1 (Xlog A=1)2Pn

S Mh—1 tig"lat maximizes[(11) under this assumptiongince Snt = Qup — By and = 2By 5, Lemmal# is
we will show that the range of where the assumption is validproved for the case df(n, A\, h) €

[1:h)] [ |

V. CONCLUSION

We characterized the information-theoretic capacityisgal
of wireless ad hoc networks from Maxwell’'s equations withou
any artificial assumptions. The capacity scaling is given as
the minimum of the number of nodes and the DoF limit
given as the ratio of the network diameter and the wavelength
Accordingly, a network becomes DoF-limited Xf= Q(n 1)
in dense networks and = Q(n~'/2) in extended networks.
Our results indicate that the linear throughput scalingdi [
that was shown under the i.i.d. channel phase assumption is
indeed achievable to within an arbitrarily small exponerthie
non DoF-limited regime. In the DoF-limited regime, the DoF
limit characterized by Franceschetti et al.[in [7] that gafig
has higher scaling than that of the multihop scheme can be
achieved to within an arbitrarily small exponent by using th
modified HC scheme.

We also considered a channel model with a path-loss
exponenty larger than two. In dense networks, the throughput
scaling using the modified HC scheme faer> 2 remains
the same as when = 2. However, the throughput scaling

t using the modified HC scheme is decreased dor> 2 in
) due to the interference power €Xtended networks due to the power limitation. This suggest

as a further work, an upper bound considering both the



N 3 8 128 g -2 3
nk:nnj:kJrl W (()xlog/\_l)zn) j=k+1\ 2@=ay; ) i=k+1\ 2@=ap,s ;1)

14+k—h'gh—k _ol+h—h' ’
glth—h' L roltk—h'gh—k _gh—h' 4,0y 2 3 2 )(Hh )
=n 3l+h—h! {oh—h" (1 pt) ()\ 10g )\—1) 3l+h—h! {oh—h" (1 pt) (15)

DoF limitation due to the channel correlation and the powémom the Paley-Zygmund inequality![4], [14], arid) is from
limitation due to the power attenuation over the distance. Lemma[3.
Note thatE[x] = p1 andE[x?] = p2. To get a lower bound

APPENDIX A on (I7), we need a lower bound d&jy] and an upper bound
PROOF OFTHEOREM[G] on E[y?]. Let F £ = H. Then, Fy, = ai exp(—j2m4t),
. herea;, = -=. Note that constants,,;, anda exist
The capacityC(H) of the MIMO channel fromCy to Cr  \V ik min max
is Iower—b%un£d< ag r R mdependent oﬁ) and L such thata,i, < air < amax for all
i,k € [1: NJ. First, E[y] is given as
C(H)= max I(X;Y) 1
F@)E[IX[?)<P E[y] = < tr (FF")
(a)
> I(Xa;Y) L i B
® . det(I +%+ PHH") TN e T

=TT (T + 5)
Sincea?,, < |Fix|? < d?,,., we haveE[y] = O(N).

GP min
— 1o I (L + $5ri) Next, E[y?] is upper-bounded as
H (14 G2 Xi)

1
EW?] = < tr (FF*FF*
©) (1+ $Fri) bl =gy 0 )
> lo H G7P N
1+ E[] _ L Z FF,F; F),
N N it k
= 1+C£’5 E[ ) =5 Z FiF Fy F
1 + 5 K, (i7jakal)e\1,1
=NE 1og7L 1 T~
1+ %123 E[x ]] +N Z FikFilelek
1+ G_( )E[ ] (i,4,k,1)ET4
>NPr(k>(1-9)E[x]) Io L2 1 “ ¥
o= (L= oV Bl los = ey CaL NNt Y FuFiEE
(d) (4,5,k,1) €T 2
—NPI‘(I{>(1—5)E[I€]) P
L2 ((1 B 5) [ ] - 5E[X]) = max(2N2 ) + = Z Qijkl
xlog |1+ GP N 4=
1+ E[x] k<
52 E[k)? oo [ 1 SE((1-6)E[] —dE[X]) where Wy £ {(i,5,k,1)|i,j,k,l € [1 : N],i = jork =1},
Tl 1+ LRy Wy £ {(i,g,k, Dlisji b, € [1: N,i # j andk # 1}, and
o (B[] + Blr))? Qi&kl ~ uk 451051 COS (5 (dix — dis = dji + dj)).
SN ote that Qs for all 1 < i < j < N and1l <
(EY2[x 2] + EY2[2))2 k < 1| < N follow an identical distribution, but they
GE((1—-6)E}] - §E[x]) are not necessanly independent of each other. Nevertheles
xlog |1+ 1+ SZE] (17) m Z” ri=1 Qijrr Strongly converges t&[Q1212] as
the foIIowmg “Temma shows, where the expectation is over
forany 0 < § < 1, where X¢ is CN(0, PI), x is cho- uniform node distributions.
sen uniformly among the eigenvalues,i = 1,..., N of Lemma 5: The sample meanmzukkl ;kal
. . . 1<
%(E + PHH*), x is chos;en uniformly among the eigenstrongly converges t&[Q1212]. That is,
valuesy;,i = 1,..., N of %E, and~ is chosen uniformly
. 2 .
among the eigenvalueg,i = 1,..., N of %HH*. (a) is -
from choosing the inpufX as X¢, (b) is because assuming Pr ngnoo N2(N ”; . Qin = BlQuarz] [ =1.
Gaussian interference minimizes the mutual information fo i<jik<l

given noise and interference covariance matrice$ [12]], [LThe proof of the above lemma is given in AppendiX B.
(¢) is because the geometric mean is upper-bounded by thathermore, the following lemma gives an upper bound on
arithmetic mean(d) is becauset[x] = E[x] + E[7], (e) is E[Q1212], which is proved in AppendikIC.



10

Lemma 6: E[nglg] = O(Mil) E[Q1212]2| < 2a18nax
From Lemmas [5 and[16, we haveE[?] = on
1
ﬁ Z Z E[Xlemz]

. Using this, let us get an upper bound

O(max{N? N3M~1}) with high probability asN tends to

infinity. e e
Now, by using the bounds oB[y] and E[y2], Theorenib e
is proved. B for eachK € N as follows.

o« K= M for somew € N: In this case{X,,|1 <
m < K} is U,. For each random variabl&,,, in U,,
w random variables i/, are independent of
Let us first present a theorem on the strong convergence of X,. Thus, we have

the sample mean of a sequence of not necessarily independent

random variables. The proof is in [15]. 7 Z Z

APPENDIXB
PROOF OFLEMMA [§

(X, Xins ]

Theorem 6: Let{X,,}>°_, be a sequence of not necessarily mi<K ma<K
independent complex-valued random variables, each oftwhic 1 w?(w —1)% — (w — 2)%(w — 3)?
follows an identical probability density functiof{z) such that < K_K(zamax) 1
E[X] =0 andE[|X|?] and |X| are bounded. Suppose that g Y 2w —1)2 = (w — 2)%(w — 3)?

Gmax wh(w —1)*
< 0. (18) <l 1
K>1 ‘m<K Gmax (w2 (w —1)2/4)5/4

Then, the strong law of large numbers holds {o¥,, }>°_,, =CVad oo

ie.,

lim — Z X,, =0 almost surely.

K—oo K
m<K

Now, let us prove Lemnid 5 using Theorem 6. koe N, let
U, andV,, denote the collections of random variables given
as

Uw = {Qijri

and

—EQuel1<i<j<w, 1<k<i<w}

Vo 0 if w=1
Y Uy \Uy_1 otherwise

wf <K< ®
w D and f, = Lo0D?

for some positive constart[f

2(w—1)> w? (w+1)?

for somew € N: Let K| =

1 Then, we get

= Y BN X

m1 <K mo<K

_K3 DY B X X,

mi1<K ma<K

cE Y Y

mi1 <Ko ma< Ky

E [ X, Xom,] |

w(w+1)% — (w— 1)} (w — 2)?

w?(w—1)2 3 w ( max)

Note that|U, | = —F—, |Vu| = (w—1)?, and{J,_, Vi = 4
Uy. Let V! fori € [1: (w—1)3] be thei-th random variable w(w + 1)* — (w — 2)2(w — 1)2(w + 1)
in V,, with an arbitrary ordering. We construct a sequence =38a ﬁmx wi(w —1)0
{Xm}= of random variables as follows: fon € N, we let O
X, denote the random variablé,; C= Vi wherem! is < (w2(wj_1")1a74)5/4
the integer satisfying_"", [Vi| +1 <m < Zm v ng 1

Let us show that{X,,}°_, satisfies the conditions in =Cza maxf{5/4
Theoren{b. First, it is easy to show thal| X, |?] and|Xm| i
are bounded, i.eE[| X,,|?] < a8, and|X,,| < 2a? ... Next, < CYad, —— 57

the left-hand side term of the inequality {i8) is written as

> E

‘ 2
K>1 m<K

for some positive constardty.
Let C” £ a8, max{C{,CY}. Now we have

1
—Z 3 0. O B[Xm Xm,]. ZﬁE > X
K>1 m1<K mo<K K>1 m<K
Consider two random variableX,,,, = Qi j k1, — E[Q1212] — (X, X
and X, = Qiviokats — E[Qi212] in {X,n}35_,. If ;;1 W;K m;K 1Xoma]
{ir, g1} iz, j2} = 0 and {k1, 11} N{k2, 2} = 0, X, and , 1
X, are independent of each other, and hefit&;,,,, X,,,.] = <C Z K5/
K>1

0. OtherWise’lE[Xlemz]l = |E[Qi1471/€111Qi24727€212] -
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Fig. 4. Two nodesw andv in Cp and two nodess andt¢ in Cr. 6 and ¢
denote/uvs and Zvsu, respectively.

which is finite. Hence, from Theoreil 6

11

.27

| E[asu SID(T (dsu - dsv))|zua Zvs dsv”

Kil Amax AD

A(zu,2v,dsv) Yuov L
K21 Amax A

Ao A(Zu,20,dsv) SN [P |

if (z4,20) €T
- (zu, 2v) 1

(19)

if (zu,20) €T
for some positive constant®&’;; and K),, where y,, =
|y — y|. These upper bounds are derived at the end of this
appendix.

Using the above upper boundB[Q sty |2y, 20] IS upper-
bounded separately for the cases (@f,,z,) € I'; and
(zu, zv) € Ta. If (24,2,) € T'1, we have

E[Qstuv |Zu7 ZU]

_— —_ = 2
e Jm 2, X 0] =1 < B[ Elasu 008(5 (dew = du) 205 201 dov] 20 0]
2
which concludes the proof of Lemnha 5. [ | + E?[amax| Elasy sin(%(dsu — dsv))|2us 2o, dso]||2us 20)
APPENDIXC < o2 | Eli%hax AD s
PROOF OFLEMMA [Bl B A(zus 2v, dsv) \| YuoL
Consider two uniformly and independently distributed r&de ;4 AL
H : H : = 120max 1
w and v in Cr and two uniformly and independently dis- YuoD

tributed nodes andt in C'r. Consider a cartesian coordinat

system whose origin is at the bottom left corner(of. Let
2y = (Tus Yu)y 20 = (To, Yo), 2s = (Ts,Ys), andz, = (24, Y1)
denote the coordinates of nodeswv, s, andt, respectively.
Let S(X) andS(XY) for random variables{ andY denote
the support of the probability density functigiiz) and the
support of the conditional probability density functigtz|y),
respectively. Letl'; C S(z.,2,) denote the set ofz,, z,)
such that the line through, andz, intersectaCg, and letl';
denoteS(z,, z,) \ I'1. Let 8 & Zuvs and letA(z,, z,, dsy)
denote the length of(6|z., v, ds»,) Where the length of an
interval [a,b] is defined ash — al Let ¢ £ Zvsu and
let ¢1, ¢2, ¢3, and ¢4 denote Lvsu when z, is fixed at
(L,0), (L + D,0),(L+ D,D), and (L, D), respectively. Let
|6m| £ min{|@1], 2], [ds], [¢a]}. See Figlh.

Now we are ready to prove Lemnid B[Q1212] is upper-
bounded as

E[Q1212]
= E[Qstuv]
= E[E[Qstuv|zuu Z’U]]
2 27T
= E[E [asyuasv cos(T(dsu — dsp))|2u, 20)
2
+ E? [asuasv Sin(%(dsu - dsv))lzuv ZU]]
2
< E[E*[amax| Elasy COS(TTF(dsu — dsv))|2us 20, dso) || 2u, 20)
2
+ E?@max] Elauu sin(S7 (dow = duo))l2us 20, duo]ll2: 22]):
Furthermore, | E[a, cos(%”(d — dsw))|2u, 20, dsy]| and
| Elasy sin(ZE (dsy — dsv))|2u, 20, dsy]| are upper-bounded as
| Efatsu c08(5 (dsu = dsv) 2 20, ],

15Here, we follow the convention thatB AC is the counterclockwise angle
from B to C' and |Z/BAC| < .

%or some positive constardt’,. If (zy,z,) € I'2, we have

E[Qstuu |Zu7 Zu]

< Ez[amax| E[asu COS( dsv))|zuazvvdsv]||ZU7zv]

2w
dsu -
)\ (

2
+ B2 [amax| Blase sm(f (Aou — dev))|2us 2o, deo]||2us 20]

< a’r3nax E[| E[asu Cos(zjﬂ—(dsu — dsv))|2us 20, dso]| |20, 20]
+ a3, B[ Elase sin(%”(dw — dyo)) 7 20 a2, 2]
< 200 B dSUA(zf ZU,LZ:)Asm Bl |7 ZU}

A
< Kzzamdxm

for some positive constarﬂ’22

Becausel|Qsiuv | 2us 2o] < a .., E[Qstuv|2u, 0] IS upper-

max’

bounded as
E[Qstuv|2u, 20]
ax Min 4 1, Ko y)\LD} if (2u,20) € I'n,
< a min 1,K22m} if (24, 2,) € Da.
Finally, E[Qstu»] is upper-bounded as follows:

E[Qstuv]
/ E[Qstuv |Zuv Zu]f(zuv zv)dzudzv
Iy

+ / E[Qstuv|zu7 Zu]f(zu7 Zu)dzudzu
s

AL

uvD

Safnax/ min{l Kiy——
Iy Y
A

4 : /
. 1, Kyg——m—
+ amdx /Fz mln{ 22DSln|¢m|

} [ (zus 20)dzydzy

} [ (zu, 2p)dzydz,
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< afnax/ min {LKizi} F (2, 20)dzodzy from Lemmay, wherel,, is such that
S(zuszv)

o Yuv D dout 2 den+2
’ . ;) F Ao, A0l g,
+ Ahax min 1, KQQW f(Zu, ZU)dZudZU d ddsu d ddsu
S(zuszv) m |Qm su su
. . . AL for all dg, € S(dsu|zu, 20, dso)-
< amax/ min {17 K12—D} S Wuv) dYuo In the same way,
S(Yuwv) Yuv )
. A N _
Sl sin o] 12 datd gl
AL KL,D2\" < 2= dd gy, (22)
<agl = |1+ (log—32" A2y, 2v, dso / dd,
S Apax Kéng < + < 0g AL > ) ( ) dsuy

7oA
N ) , ) ) We bound fdfl‘“”? jg'l—mddsu separately for the cases of
for some p25|t|ve constantssy;, [531’ and K. Since (2u, 2v) € Ty and (zy, z,) € T'y. Without loss of generality,
E[Qstun] < apax, Lemma® is proved. assume that, < z.,. First, consider the case ¢f,, z,) € I';.

Now it remains to show the upper boundsinl(19). The UPPRfye that;ﬂﬂ is decreasing iy, € [dsy — dyw, \/d2, — d2,]
bounds in [(IP) are obtained by using the following lemma, . . o 5 5
; ) . and is increasing inly, € [\/d2, — d2,,ds, + duy]. For the
whose proof is at the end of this appendix. sv U

N . case 0of (zy,2,) € T4, dsy — duv € S(dsul|zu, 20, dsy) C
Lemma 7: Let ¢g(z) be a periodic Lebesgue-integrabl B R R
function on R with period p > 0 that satisfiesg(z) = dsy = duv, /45, — di,], and hence, we havg, = dsy = duc-

Therefore, we h
—g(z 4+ p/2) and max,cr |g(x)| = 1. Let h(x) be a non- erefore, we have

negative and Lebesgue-integrable functionfanConsider an douts || dov—duvt3 g9
interval [a,b] and constants; # 0 and co. If a partition /Jsu ddg, dd e = /dsv s ddsy ddsy
I = {xg,21,...,xm} Of [a,b] exists for finitemn such that 6]
a=x9<x <..<aZy=>andh(x)is monotone on each :/ dlo|
interval [z;_1, z;] for ¢ € [1 : m], we have «
b i+2‘§'1‘ |0|
’/ g(c1x + co)h(z)dr| < m/ h(x)dx where 0] is |Zuvs| when dg, = dg, — dy, + 3 for given

Zu, Zv, dsy. We have the following bounds ars |4|:

Gt B P
wherez € R is such that] e h(z)dx > [’ FGT R(z)da Lkl A
forall x € [a,b — ﬁ] iy~

To obtain an upper bound o {20) using Lemitia 7, we firgl. some positive constants?,, and K7,,. The upper bound

show thatS(dsu|zu, zv, dsy) consists of a finite number of g sinceld| < = and the lower bound is obtained as
intervals such that,, f (dsu|2u, 20, dsy) IS Monotone for each. ) ) )
ds’u + duv B dsu

Becausdd| andd,, have a one-to-one relationship, we have

DL < cos|f| < 1— K10 (23)

cos || =
/6| 2dsuduy dou=dsv—duv+3
asuf(dsu|zua Zu, dsv) = asuf(|9||zua Zu, dsv)ddsu 2 1 — d)‘
where B A
do| du, - 1 =1- o sin |w|
ddg, — dsydyysin|]  dg,sin|¢|’ (a) \D
> 1- Kill—L
We can easily show that., 4’ has at most two criti- Yuo

cal points from its derivative with respect ¢ and that Wherew is the angle between the line throughandz, and
S(16]|2u, 20, dsw) can be split into at most four intervalsthe horizontal line crossing, and (a) is becaus€z,, z,) €
such that f(|6||zu, 20, ds,) is a constant for each. Hencel'1- From (23). we have
S(10]|zu, 2, dsy) can be split into at most six intervals such ot 2

dlo| - . . 2 d|f) - , AD
that as. f(|0]|zu, 20, dsv) g5 is monotone for each, implying i 7 ddg, = 10| < K113—L
that S(dsu|zu, 2v,dsy) can also be split into at most six dou s Yuo
intervals such that,, f (dsu|2u, 20, dsy) is monotone for each. for some positive constart? ;. Using this bound in([(21) and
Becauseis, < amax and f(|0||zu, 2o, dsy) < m, we (22), the upper bounds if_(19) for the case(ef, z,) € Ty

have are obtained.
o Now consider the case df.,,z,) € I's. The following
| Elasu cos((dsu = dsv))|2u, 20, dsol| lemma gives a lower bound dm| for the case ofz,, z,) €
dou 2 T'y, whose proof is given at the end of the present appendix.
12amax T2 d|g) ; S i
< - ormax dds, (21) Lemma 8: When (z,,z,) € Ty is given, |¢| is lower-
A2, 20, dsv) /g ddsy bounded by|¢,,|.
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9 2
| E[asu COS(_T( (dsu - dsv))|2u7 Zu, dsv]' = / COS(_ﬂ.(dsu - dsv))asuf(d8u|zu’ Zv, dsv)ddsu (20)
A S(dsu‘zuyzvadsv) )\

From the above lemma, with the path-loss exponent > 2. For o = 4, this channel
dl6)| 1 1 model approximates the channel when there are a direct_ path
Jd 4 sm 0l = oo sin o] and a reflected path_ off the g_ro_und plane between tran_smlt and

su v v m receive antennas with a sufficiently large horizontal dista

and hence, For a > 2 anda # 4, however, the channel modél{27) is
dautd /6] \ not a direct consequence of Maxwell's equations, and hence,
/ —ddgy, < —— the DoF limit characterized in[7] is not valid for this chain
o dd g, 2d gy sin |y | model.
Using this bound in[(21) and_(R2), the upper bound<id (19) Now, let us present throughput scalings using the modified
for the case of z,, z,) € 'y are proved. m HC scheme constructed in Section IV for the channel model

Proof of Lemma [t It can be easily shown that for anyin (7). In dense networks, we can get the same throughput
interval [a;,b;] on which h(z) is monotonically increasing, scaling in Theoreri]1. In extended networks, the throughput

we have scaling using the modified HC scheme is decreased because
by the network becomes power-limited. For the same transmit
‘ / (c1w + co)h(x)dz| < / h(z)dz, (24) power, the received power at each node in extended networks
br— a7 is decreased by a factor af*/2~! as compared to the dense

network. By rescaling the space, an extended network can
be considered as an equivalent dense network on a unit area
but with the average power constraint per node reduced to
a2+ e P/n*/?>~!instead ofP and the wavelength reducedxe /2
/ h(z)dz. (25) instead of\. Note that the average power constrait,®/2—"
per node is less thaR. As the bursty modification of the HC
scheme in[[4], we use the bursty version of the modified HC
scheme, i.e., we use the modified HC scheme with operating
power P for n'~/2 fraction of the time and keep silent for
the remaining fraction of the time. This satisfies the averag
2, +d2, —d?, power constraint per nod8/n*/>~! and yields an aggregate
W' throughput scaling ofi' =2 min {\/nA~*, n}H.

and for any intervalaz, b2] on which h(z) is monotonically
decreasing,

ba
‘/ glcrx + ea)h(x)dz| <
ag az

From [23) and[(25), Lemnid 7 is directly obtained. [

Proof of Lemma [ Assume that(z,,z,) € 'y is given.
Then, S(¢|zy, 2,) is included in eithef{—mx,0) or (0, 7]. ||
is given as follows:

|¢| = arccos

Fix z,. The derivative ofd +d s dus \with respect toys has

the form of a rational ponnomlaM where g2(ys) is PG . ) o of wirel -
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