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Abstract—In this paper, we characterize the information-
theoretic capacity scaling of wireless ad hoc networks withn
randomly distributed nodes. By using an exact channel model
from Maxwell’s equations, we successfully resolve the conflict in
the literature between the linear capacity scaling byÖzgür et
al. and the degrees of freedom limit given as the ratio of the
network diameter and the wavelengthλ by Franceschetti et al.
In dense networks where the network area is fixed, the capacity
scaling is given as the minimum ofn and the degrees of freedom
limit λ

−1 to within an arbitrarily small exponent. In extended
networks where the network area is linear in n, the capacity
scaling is given as the minimum ofn and the degrees of freedom
limit

√

nλ
−1 to within an arbitrarily small exponent. Hence, we

recover the linear capacity scaling byÖzgür et al. if λ = O(n−1)
in dense networks and ifλ = O(n−1/2) in extended networks.
Otherwise, the capacity scaling is given as the degrees of freedom
limit characterized by Franceschetti et al. For achievability, a
modified hierarchical cooperation is proposed based on a lower
bound on the capacity of multiple-input multiple-output channel
between two node clusters using our channel model.

Index Terms—Capacity scaling, channel correlation, coopera-
tive multiple-input multiple-output (MIMO), degrees of fr eedom,
hierarchical cooperation, Maxwell’s equations, physical limit,
wireless ad hoc networks.

I. I NTRODUCTION

PIONEERED by Gupta and Kumar in [1], the capacity
scaling in wireless ad hoc networks has been actively

studied over the last decade. In this research, we considern
uniformly and independently distributed nodes in a unit area
(dense network) or an area ofn (extended network), each of
which wanting to communicate to a random destination at
the same rate ofR(n). The goal is to find out the maximally
achievable scaling of the aggregate throughputT (n) = nR(n)
with n. In their seminal paper [1], Gupta and Kumar showed
that throughput scaling higher thanO(

√
n) cannot be achieved

if each node treats interference as noise and that the multihop
scheme can achieveΘ(

√
n/ logn).1 This gap was closed

in [3], where it was shown that the multihop via percolation
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1In this paper, we use the following asymptotic notations [2]: (i) f(n) =
O(g(n)) if f(n) ≤ kg(n) as n tends to infinity for some constantk. (ii)
f(n) = Θ(g(n)) if k1g(n) ≤ f(n) ≤ k2g(n) as n tends to infinity for
some constantsk1 and k2. (iii) f(n) = Ω(g(n)) if f(n) ≥ kg(n) as n
tends to infinity for some constantk.

theory can achieveΘ(
√
n). To information theorists, a natural

question is what theinformation-theoretic capacity scaling is
without such underlying physical-layer assumptions.

The information-theoretic capacity scaling is highly depen-
dent on the channel model. Furthermore, it is important to use
a realistic channel model to get results that are closer to reality.
In wireless networks in line-of-sight (LOS) environments,
where the spatial locations of nodes are fixed with sufficiently
large inter-node separation compared to the wavelength, the
baseband-equivalent channel response between two nodesk
and i is given as

√
G

dik
exp

(

−j
2π

λ
dik

)

(1)

from Maxwell’s equations wherej =
√
−1, dik is the distance

between nodesk and i, λ denotes the wavelengthcfc where
c is the speed of light andfc is the carrier frequency, and
G = λ2Gl

16π2 by Friis’ formula whereGl is the product of the
transmit and receive antenna gains.

Recently, Özgür et al. characterized the information-
theoretic capacity scaling in [4]. Instead of using the exact
channel model (1) with a distance dependent phase, however,
they assumed that the baseband-equivalent channel response
between two nodesk and i is given as

√
G

dik
exp (jθik) (2)

where θik is independent and identically distributed (i.i.d.).
For this channel model, the capacity scaling is shown to
be arbitrarily close to linear in both dense and extended
networks, which means that each source can communicate to
its destination as if there were no interference. A key com-
ponent to achieve such a scaling is the cooperative multiple-
input multiple-output (MIMO) transmission between two node
clusters whose sizes are comparable to that of the network.
If the penalty to form such a virtual MIMO is negligible,
the classical MIMO results [5], [6] under the i.i.d. channel
phase assumption make the linear throughput scaling possible.
Such an overhead is indeed shown to be arbitrarily small by
using hierarchical cooperation (HC). In the HC scheme, each
cluster forms a virtual antenna array using MIMO transmis-
sions between small scale clusters inside it. Similarly, each
small scale cluster forms a virtual antenna array by MIMO
transmissions between even smaller clusters inside it. This
builds up a hierarchy and a plain time division multiple access
(TDMA) is performed at the bottom hierarchy.

The i.i.d. phase assumption in (2) makes the throughput
analysis easier in [4], but such an artificial assumption can

http://arxiv.org/abs/1002.1337v2
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lead to results contradicting the physics. Recently, the linear
capacity scaling in [4] turned out to be contradictory to
the physical limit on degrees of freedom (DoF) whenλ is
not sufficiently small. In [7], Franceschetti et al. showed,
using Maxwell’s equations, that DoF in extended networks
is limited by the ratio of the network diameter

√
n and

λ. By rescaling the network size, the DoF limit becomes
λ−1 in dense networks. This is a fundamental limitation
independent of power attenuation and fading models. Hence,
the linear capacity scaling in [4] is in fact not attainable for
λ = Ω(n−1) and λ = Ω(n−1/2) in dense and extended
networks, respectively. The cause of such a conflict is the
i.i.d. channel phase assumption in [4] that ignores the channel
correlation due to the distance dependent channel phase.

Two contradictory results [4], [7] highlight the importance
of exact channel models based on Maxwell’s equations.
Thus, the ultimate goal would be the characterization of
the information-theoretic capacity scaling of wireless adhoc
networks from Maxwell’s equations without any artificial
assumptions. In this paper, we accomplish this goal by charac-
terizing the information-theoretic capacity scaling of wireless
ad hoc networks using an exact channel model from Maxwell’s
equations in LOS environments. In dense networks, we es-
tablish the capacity scaling given asmin{n, λ−1} to within
an arbitrarily small exponent. Hence, the capacity scalingis
linear in n if λ = O(n−1). Otherwise, the capacity scaling
is given as the DoF limitλ−1 characterized by Franceschetti
et al. In extended networks, the capacity scaling is given as
min{n,

√
n
λ } to within an arbitrarily small exponent. Hence,

the capacity scaling is linear inn if λ = O(n−1/2) and is
given as the DoF limit

√
n
λ characterized by Franceschetti et

al. otherwise.
Since the converse is straightforward from the previous

works in [4], [7], our main contribution is to show the
achievability. We note that under the far-field assumption,i.e.,

λ is much smaller than the inter-node separation
√

A
n , where

√
A denotes the network diameter, the DoF limit

√
A
λ is in

general higher than the throughput scaling
√
n of the multihop

via percolation theory of [3]. For achievability, we modify
the HC scheme in [4] according to an achievable MIMO
rate between two node clusters. We show that the capacity
of the MIMO channel between two node clusters is at least
proportional to the minimum of the number of nodes in the
cluster and the product of the ratio of the cluster diameter and
λ and the angular spread between clusters. In our modified
HC scheme, only a subset of nodes in a cluster performs
the MIMO transmission such that the number of participating
nodes is proportional to the achievable MIMO rate, whereas
all nodes in the cluster participate in the MIMO transmission
in the HC scheme of [4].

The organization of this paper is as follows. In Section II,
the system model is presented. In Section III, we present the
main theorems on the capacity scaling and their implications.
In Section IV, a modified HC scheme is constructed according
to an achievable MIMO rate between node clusters. We
conclude this paper in Section V.

The following notations will be used in the paper.CN (0,K)

denotes the circularly symmetric complex Gaussian random
vector with zero mean and covariance matrix ofK. R andN
denote the set of real numbers and the set of natural numbers,
respectively.E[·] and(·)∗ denote the expectation and conjugate
transpose, respectively.(·)m denotes the modulo-m operation.
(x)+ denotes the positive part ofx, i.e.,

(x)+ =

{

x if x ≥ 0

0 if x < 0
.

For two integersu andv such thatu ≤ v, [u : v] denotes the
set{u, u+1, . . . , v}. For a setS, |S| denotes the cardinality of
the set. The logarithm functionlog is base 2 unless otherwise
specified.

II. SYSTEM MODEL

There aren uniformly and independently distributed nodes
in a square of unit area (called a dense network) or a square
of arean (called an extended network). It is assumed that the
node locations are fixed for the duration of the communication.
Each node has an average transmit power constraint ofP and
the network is allocated a total bandwidthB around the carrier
frequencyfc ≫ B. The wavelengthλ = c

fc
is assumed to be

much smaller than the average separation distance between
neighbor nodes given asΘ(n−1/2) andΘ(1) for dense and
extended networks, respectively. Furthermore, we assume a
very mild lower bound onλ such thatλ ≥ n−µ for an
arbitrarily large constantµ > 1/2. We assume thatλ is a
monotonically non-increasing function ofn. This corresponds
to using higher carrier frequencies to handle more traffic due
to the increased number of nodes. Every node is a source and a
destination simultaneously, and then source–destination pairs
are determined randomly. Every source wants to communicate
to its destination at the same rate ofR(n, λ). The aggregate
throughputT (n, λ) of the network is given asnR(n, λ).

We consider the LOS environment, i.e., no multi-path
fading.2 From Maxwell’s equations in far-fields, the discrete-
time baseband-equivalent channel gain between nodesk and
i at timem is given as

Hik[m] =

√
G

dik[m]
exp

(

−j
2π

λ
dik[m]

)

(3)

wherej =
√
−1, dik[m] is the distance between nodesk and

i at timem, andG = λ2Gl

16π2 by Friis’ formula, whereGl is the
product of the transmit and receive antenna gains.3 Note that
if Gl is fixed, G vanishes asλ tends to zero. In extended
networks, however, we assume thatG is a constant since
we can increaseGl proportional toλ−2 without increasing
the physical size of the antennas beyond a small fraction of
the inter-node separation.4 In dense networks, it is proper to

2Our analysis can be extended to cases where there is multi-path fading.
However, we believe that having a finite number of paths wouldnot affect
the throughput scaling laws.

3A channel model with a path-loss exponent larger than two is considered
in Appendix D.

4For each node, we can deployΘ(λ−1) antennas vertically that form an
antenna array of lengthΘ(1), which gives a vertical beamforming gain of
Θ(λ−1). Hence, the product of the transmit and receive beamforminggains
can beΘ(λ−2).
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assume that the node size is upper-bounded bykn−1/2 for
some constantk since the network area is now fixed. Hence,
G is assumed to beΘ(n−1) for dense networks because we
can makeGl proportional toλ−2n−1.5

The discrete-time baseband-equivalent outputYi[m] at node
i at timem is given as

Yi[m] =
n
∑

k=1

Hik[m]Xk[m] + Zi[m]

whereXk[m] is the discrete-time baseband-equivalent input
at nodek at timem andZi[m] is the additive Gaussian noise
CN (0, 1) at nodei at timem. The channel state information
(CSI) is available only at the receivers. From now on, we will
omit the time index for notational convenience.

III. M AIN RESULT

We first present a lower and an upper bound on the capacity
scaling for dense networks in Theorems 1 and 2, respectively.
In Theorems 3 and 4, we present a lower and an upper bound
on the capacity scaling for extended networks, respectively.6

Theorem 1: Consider a network ofn nodes on a unit area,
in which n source–destination pairs are assigned arbitrarily.
For any ǫ > 0, a scheme exists that achieves an aggregate
throughput

T (n, λ) ≥ K1ǫmin
{

λ−1, n
}1−ǫ

with high probability,7 where K1ǫ is a positive constant
independent of bothn andλ.
The aggregate throughput scaling in Theorem 1 can be
achieved by the modified HC scheme constructed in Sec-
tion IV. Note that Theorem 1 holds even if source–destination
pairing is arbitrary.

In the following theorem, we show an upper bound on
the throughput scaling. If the source–destination pairs can be
determined according to the node locations, then an aggregate
throughput scaling ofΘ(n) would be achievable for anyλ
by letting each of the source–destination pairs be nearest
neighbors. Therefore, for the upper bound on the capacity
scaling, we limit our interest to random source–destination
pairing.

Theorem 2: Consider a network ofn nodes on a unit area,
in which n source–destination pairs are assigned randomly.
The aggregate throughput in the network is upper-bounded as

T (n, λ) ≤ K2 min
{

λ−1(logλ−2)2, n logn
}

(4)

with high probability, whereK2 is a positive constant inde-
pendent of bothn andλ.

5In dense networks, we can vertically deployΘ(λ−1n−1/2) antennas for
each node that form an antenna array of lengthΘ(n−1/2).

6We note that a similar result was also independently shown in[8] based on
the same channel model as in [9] at the same time this paper wassubmitted. In
this paper, we derive a lower bound on the MIMO transmission between two
node clusters without any artificial assumptions, which is the key ingredient
in the achievability, whereas the work in [8] assumed that interfering signals
from other transmitting nodes in the network to the MIMO transmission are
independent. In addition, the effect ofλ on G is considered in this paper, but
not in [8].

7With probability approaching 1 asn tends to infinity.

The first term in the minimum in (4) is the DoF limit shown
in [7].8 The second term in the minimum in (4) is obtained
from the fact that the transmission rate from a source to its
destination is upper-bounded by the capacity of the single-
input multiple-output (SIMO) channel between the source and
the remaining nodes in the network (see, e.g., Theorem 3.1
in [4]).

Theorems 1 and 2 establish the capacity scaling in dense
networks to within an arbitrarily small exponent. To see the
effect of λ on the capacity scaling, letλ = n−β for β ≥ 1

2 .
Note that the conditionβ ≥ 1

2 is needed for the far-field
approximation to hold. Ifβ ≥ 1, the capacity scaling is
arbitrarily close to linear. If12 ≤ β < 1, the capacity scaling
is given as the DoF limit.

Now, we give an achievable aggregate throughput scaling
in extended networks.

Theorem 3: Consider a network ofn nodes on an arean,
in which n source–destination pairs are assigned arbitrarily.
For any ǫ > 0, a scheme exists that achieves an aggregate
throughput

T (n, λ) ≥ K3ǫmin
{√

nλ−1, n
}1−ǫ

with high probability, whereK3ǫ is a positive constant inde-
pendent of bothn andλ.
The aggregate throughput scaling in Theorem 3 can be
achieved by the modified HC scheme in Section IV.

For random source–destination pairing, the following the-
orem shows an upper bound on the capacity scaling whose
exponent is arbitrarily close to that of the lower bound in
Theorem 3.

Theorem 4: Consider a network ofn nodes on an arean, in
which n source–destination pairs are assigned randomly. The
aggregate throughput in the network is upper-bounded as

T (n, λ) ≤ K4min
{√

nλ−1(log(nλ−2))2, n logn
}

(5)

with high probability, whereK4 is a positive constant inde-
pendent of bothn andλ.
The first term in the minimum in (5) is the DoF limit shown
in [7], and the second term in the minimum in (5) is obtained
similarly as the derivation of the second term in the minimum
in (4).

Similarly as in dense networks, letλ = n−β for β ≥ 0 to
see howλ affects the capacity scaling in extended networks.
Note thatβ = 0 means thatλ is a constant, regardless ofn.
If β ≥ 1

2 , the capacity scaling is arbitrarily close tolinear. If
0 ≤ β < 1

2 , the capacity scaling is given as the DoF limit.
Remark 1: The exponentβ signifies the increase offc to

handle more traffic asn increases. For example, consider a
network with an area of0.01km2 with n = 100 and fc =
300MHz (λ = 1m). Then, the DoF limit is an order of 100,
and hence, the network is not DoF limited. Now, assume that
the network size grows to an area of1km2 with n = 10000.
If β = 0, i.e., the carrier frequency remains the same, then
the network becomes DoF limited since the DoF limit is an

8 In [7], the DoF limit in extended networks is studied and it isshown to
be determined by the ratio of the network diameter and the wavelength. In
dense networks, the DoF limit can be obtained by rescaling the network size.
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Fig. 1. Cooperative MIMO betweenCT andCR with side lengthD and
distanceL ≥ 2D between the centers

order of 1000. Now, ifβ = 1, i.e., the carrier frequency is
increased to3GHz (λ = 0.1m), then the network is not DoF
limited since the DoF limit is now an order of 10000.

IV. M ODIFIED HIERARCHICAL COOPERATION

In this section, Theorems 1 and 3 are proved by constructing
a modified HC scheme. Let us first consider a cooperative
MIMO between two node clusters, which is the key to
the construction of the modified HC scheme. ConsiderN
independently and uniformly distributed nodes in each of two
horizontally aligned square areas with side lengthD and
distanceL ≥ 2D between the centers, as shown in Fig. 1. Let
CT andCR denote the left and right clusters ofN nodes in
Fig. 1, respectively. TheN -by-N cooperative MIMO channel
from CT to CR is given as

Y = HX +W + Z (6)

whereY is theN -by-1 received vector atCR, H is theN -
by-N channel matrix from (3),X is theN -by-1 transmitted
vector fromCT , W is theN -by-1 external interference vector
with covariance matrixΣ, and Z is the N -by-1 additive
Gaussian noise vectorCN (0, I). Let ρ1 , L2

NGP tr(Σ) and
ρ2 , L4

N(GP )2 tr(Σ
2). The following theorem presents an

achievable MIMO rate fromCT to CR.9 10 The proof is in
Appendix A.

Theorem 5: The capacityC(H) of the cooperative MIMO
channel fromCT to CR is lower-bounded as

C(H) ≥ N
δ2(ρ1 +K ′

1N)2

(ρ
1/2
2 + (K ′

2 max{N2, N3M−1})1/2)2

× log

(

1 +
GP
L2 ((1 − δ)K ′

1N − δρ1)

1 + GP
L2 ρ1

)

for any0 ≤ δ ≤ 1 with high probability asN tends to infinity,
whereK ′

1 andK ′
2 are positive constants independent ofD,

L, N , andλ andM is given as

M = max







1,
D2

λL

(

1 +

(

log
D2

λL

)+
)−1







. (7)

9A more general version of Theorem 5 was shown previously in Theorem
1 in [9], where multiple antennas per node were assumed.M in Theorem 5
corresponds to the fourth term in the minimum of (4) in [9], which was
obtained based on an approximation and, therefore, differsslightly from M .
In deriving Theorem 5, however, no approximation is used, and therefore, the
result is now exact.

10For the simplicity of presentation,CT and CR are assumed to be
horizontally aligned. However, the proof of Theorem 5 in Appendix A can
be easily extended to cases whereCT andCR are not horizontally aligned,
which will result in the same conclusion as in Theorem 5.

We have the following corollaries for certain classes ofΣ.
Corollary 1: If there is no external interference, i.e.,W =

0, the capacityC(H) of the cooperative MIMO channel from
CT to CR is lower-bounded as

C(H) ≥ K ′
3min{N,M} log

(

1 +K ′
4

GP

L2
N

)

with high probability asN tends to infinity, whereK ′
3 and

K ′
4 are positive constants independent ofD, L, N , andλ.

Proof: We chooseδ = Θ(1) in Theorem 5, e.g.,δ = 1
2 .

Corollary 2: If ρ1 = O(sN) and ρ2 =
O(sν max{N2, N3M−1}), wheres = Ω(1) and ν ≥ 1, the
capacityC(H) of the cooperative MIMO channel fromCT

to CR is lower-bounded as

C(H) ≥ K ′
5

sν+4
min{N,M} log

(

1 +K ′
6

NGP
L2 (1 − s−1)

1 + NGP
L2 s

)

with high probability asN tends to infinity, whereK ′
5 and

K ′
6 are positive constants independent ofD, L, N , andλ.

Proof: We chooseδ = Θ(s−2) in Theorem 5.
Note thatM matches the DoF limit predicted in [7], [10]

given as the product of the normalized cluster diameterD
λ and

the angular spreadDL between the clusters.
In the following subsections, Theorems 1 and 3 for dense

and extended networks, respectively, are proved by construct-
ing a modified HC scheme.

A. Dense network

Let us construct the modified HC scheme for dense net-
works consisting ofh hierarchy levels. For an area ofA′,
there are an order ofA′n nodes with high probability.11 For
simplicity, we assume that there are exactlyA′n nodes in our
description of the scheme, but our results hold without suchan
assumption. Consider a(h+ 1)-tuple (n0, n1, ..., nh) ∈ N

h+1

such thatnh = n and nk−1 ≤ nk for all k ∈ [1 : h] and
a h-tuple (m0,m1, ...,mh−1) ∈ N

h such thatmk ≤ nk for
all k ∈ [0 : h − 1]. For k ∈ [0 : h], let Ak , nk

n and
Lk =

√
Ak. Consider a hierarchical structure of the network

such that the network is divided into square areas ofAh−1,
each of those square areas is again divided into smaller square
areas ofAh−2, and so on, i.e., at thek-th hierarchy level for
k ∈ [1 : h], each square area ofAk is divided into smaller
square areas ofAk−1.

Let Tk(nk, λ) for k ∈ [0 : h] denote the achievable
throughput when a cluster ofnk nodes operates as a network
having its ownnk source–destination pairs in an arbitrary
manner. The following lemma givesTk(nk, λ) as a function
of Tk−1(nk−1, λ) for k ∈ [1 : h].12

Lemma 1: Fix k ∈ [1 : h]. Consider a cluster ofnk nodes.
If, for any two clustersu andv of nk−1 nodes inside the cluster
of nk nodes, a rate ofRk is achievable with high probability
for the MIMO communication frommk−1 randomly chosen

11See Lemma 4.1 in [4] for the proof.
12SinceTk(nk, λ) for k ∈ [1 : h] has a recursive form, it also depends on

n0, ..., nk−1,m0, ...,mk−1.



5

PSfrag replacements

111

111

111

222

222

222

333

333

333

444

444

444

555

555

555

666

666

666

777

777

777

888

888

888

999

999

999

Fig. 2. The big square and small squares represent a cluster of nk nodes
and the clusters ofnk−1 nodes inside it, respectively. In Phases 1 and 3,
the clusters ofnk−1 nodes operate in parallel according to the following 9-
TDMA scheme: the total time of the phase is divided into 9 TDMAslots,
and, in thei-th TDMA slot for i ∈ [1 : 9], clusters marked withi operate
simultaneously while the other clusters are silent.

nodes in clusteru to mk−1 randomly chosen nodes in cluster
v when other nodes in the cluster ofnk nodes are silent, we
have

Tk(nk, λ) ≥
K ′′

1

1 +mk−1/Rk

nkmk−1

mk−1nk−1/Tk−1(nk−1, λ) + nk

(8)

with high probability, whereK ′′
1 is a positive constant inde-

pendent of bothn andλ.
Proof: We construct a scheme for the cluster ofnk nodes

when it operates as a network having its ownnk source–
destination pairs in an arbitrary manner. From now on, a
cluster indicates a cluster ofnk−1 nodes inside the cluster
of nk nodes unless otherwise specified. We randomly assign
the indices[1 : nk−1] to nk−1 nodes in each cluster and let
Au,v for u ∈ [1 : nk

nk−1
] and v ∈ [1 : nk−1] denote the set

{(v + i)nk−1
+ 1|1 ≤ i ≤ mk−1} of nodes in clusteru.

The scheme consists of three phases. Let us first explain
the scheme briefly from the perspective of sources in cluster
u and its destinationd in clusterv. In the first phase, source
s in clusteru distributes its message toAu,s. In the second
phase,Au,s performs MIMO transmission toAv,d. In the last
phase, destinationd in cluster v collects quantized MIMO
observations fromAv,d and decodes the message. The detailed
operation in each phase is as follows.

• Phase 1: Each cluster operates in parallel according to
the 9-TDMA scheme of [4] illustrated in Fig. 2. Source
s in clusteru distributes its message toAu,s, i.e., the
message ofs is split into mk−1 subblocks and each
node inAu,s receives one subblock. For a cluster, this
can be done by setting upmk−1 subphases, wherenk−1

source–destination pairs in each of the subphases are
assigned as follows: in subphasei ∈ [1 : mk−1], {(s, (s+
i)nk−1

+ 1)|s ∈ [1 : nk−1]} is the set ofnk−1 source–
destination pairs. BecauseTk−1(nk−1, λ) is achievable
for a network ofnk−1 nodes,nk−1/Tk−1(nk−1, λ) time
slots are needed for each subphase. Since there aremk−1

subphases in each TDMA slot, Phase 1 needs a total of
9mk−1nk−1/Tk−1(nk−1, λ) time slots.

• Phase 2: We perform successive MIMO transmissions
for all source–destination pairs, i.e., MIMO transmission

from Au,s to Av,d for sources in clusteru and desti-
nation d in clusterv. Since a rate ofRk is assumed to
be achievable for each MIMO transmission,mk−1/Rk

time slots are needed for each source–destination pair.
Since we havenk source–destination pairs, a total of
nkmk−1/Rk time slots are needed for Phase 2. After
Phase 2, each node quantizes the MIMO observations at
a fixed rateQ subblocks per time slot.13

• Phase 3: Each cluster operates in parallel according to
the 9-TDMA scheme of [4] depicted in Fig. 2. Des-
tination d in cluster v collects the quantized observa-
tions of the MIMO transmission intended for it from
Av,d and then decodes the message. Note that each
quantized MIMO observation consists ofQmk−1/Rk

subblocks. By setting upmk−1 subphases for a cluster
similarly as in Phase 1, wherenk−1 source–destination
pairs are assigned in each of the subphases, a total
of (9Qm2

k−1nk−1)/(RkTk−1(nk−1, λ)) time slots are
needed for Phase 3.

In total,

9mk−1nk−1/Tk−1(nk−1, λ) + nkmk−1/Rk

+(9Qm2
k−1nk−1)/(RkTk−1(nk−1, λ))

time slots are needed to transportnk messages, i.e.,nkmk−1

subblocks. Hence, the constructed scheme yields an aggregate
throughput of (9), which proves Lemma 1.

In the above explanation of the scheme, we focused on the
modified operation from the scheme of [4] and the resulting
scaling law of the throughput. The readers should refer to [4]
for a more detailed description of the scheme. However, taking
those details into account does not change the throughput
scaling.

The modified HC scheme is constructed recursively using
the scheme in the proof of Lemma 1 for the original network
of n nodes and using the multihop via percolation theory [3]
for clusters ofn0 nodes at the bottom hierarchy. Now, let
us show an achievable throughput scaling using the modified
HC scheme withh hierarchy levels. Note that throughput
achieved by the modified HC scheme depends on the choice
of (n0, n1, ..., nh) and (m0,m1, ...,mh−1). First, we choose
mk−1 asGk for k ∈ [1 : h], where

Gk , min

{

nk−1,
nk−1

(nkn)
1
2λ log λ−1

}

.

For the modified HC scheme with the above choice of
(m0,m1, ...,mh−1), the following lemma shows that a rate
of Rk = Θ(Gk/(logn)

7) is achievable for the MIMO trans-
missions in Phase 2 at thek-th hierarchy level fork ∈ [1 : h].

Lemma 2: In Phase 2 at thek-th hierarchy level of the
modified HC scheme fork ∈ [1 : h], a rate ofRk =
Θ(Gk/(logn)

7) is achievable for the MIMO transmissions
between clusters ofGk nodes.

Proof: Fix k ∈ [1 : h]. In Phase 2 at thek-th hierarchy
level, we let each transmitting cluster ofGk nodes use a

13From Appendix II in [4], a strategy exists for each node to encode the
observation of a MIMO transmission at a fixed rateQ such that the resultant
mk−1-by-mk−1 quantized MIMO channel has the same multiplexing gain
as the original MIMO channel.
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Tk(nk, λ) =
nkmk−1

9mk−1nk−1/Tk−1(nk−1, λ) + nkmk−1/Rk + (9Qm2
k−1nk−1)/(RkTk−1(nk−1, λ))

≥ 1

9(Q+ 1)(1 +mk−1/Rk)

nkmk−1

mk−1nk−1/Tk−1(nk−1, λ) + nk
(9)

PSfrag replacements

V

Fig. 3. For clusterV , clusters that operate simultaneously withV according
to the 9-TDMA scheme are represented as shaded. The set of shaded clusters
with dots representsUV (1), and the set of shaded clusters with slash lines
representsUV (2).

randomly generated Gaussian code according toCN (0, P ′I),
where

P ′ =
L2
k

GGk
P =

nk

Gk
P. (10)

This satisfies the average power constraint ofP per node
because each node participates in the MIMO transmission for
Gk

nk
fraction of time in Phase 2.

Consider the MIMO transmission from clusterCT of Gk

nodes to clusterCR of Gk nodes inside clusterV of nk nodes
in Phase 2 at thek-th hierarchy level of the modified HC
scheme. To prove that the capacity of the MIMO channel
from CT to CR is at least linear inGk/(logn)

7, we use
Corollary 2. By adopting the notations for Corollary 2, letD
andL denote the side length ofCT andCR and the distance
between the centers, respectively, and letM be given as (7).
The MIMO transmission fromCT to CR is interfered by
the MIMO transmission byGk nodes in each cluster ofnk

nodes that operates simultaneously withV . Let UV denote
the set of clusters ofnk nodes that operate simultaneously
with V . Then,UV can be split into subgroups according to
their distance toV such that thei-th subgroupUV (i) contains
8i or less clusters ofnk nodes and the distance between the
centers ofV and each cluster inUV (i) is greater than or
equal to (3i)Lk for i = 1, 2, . . ., as illustrated in Fig. 3.
The number of such subgroups can be simply bounded by
n/nk. Let |UV (i)| denote the number of clusters ofnk nodes
in UV (i). Then, the MIMO channel fromCT to CR is given
as (6), in whichGk is substituted forN and the interference
W is given asW =

∑n/nk

i=1 ĤiX̂i, whereĤi is theGk-by-
(|UV (i)|Gk) channel matrix fromUV (i) to CR andX̂i is the
(|UV (i)|Gk)-by-1 transmitted vector fromUV (i).

Now, let us show that the covariance matrixΣ of W satisfies
the conditions in Corollary 2 fors = logn and ν = 2. Let

F̂i =
(3i)Lk√

G
Ĥi. Then, we have

ρ1 =
L2

GkGP ′ tr(Σ)

=
1

Gk

n/nk
∑

i=1

tr

(

L2

G
ĤiĤ

∗
i

)

≤ 1

Gk

n/nk
∑

i=1

1

(3i)2
tr(F̂iF̂

∗
i )

and

ρ2 =
L4

Gk(GP ′)2
tr(Σ2)

=
L4

GkG2
tr











n/nk
∑

i=1

ĤiĤ
∗
i





2






(a)

≤ L4

GkG2





n/nk
∑

i=1

tr1/2(ĤiĤ
∗
i ĤiĤ

∗
i )





2

=
1

Gk

(

L

Lk

)4




n/nk
∑

i=1

1

(3i)2
tr1/2(F̂iF̂

∗
i F̂iF̂

∗
i )





2

where (a) is from the following lemma, which is a direct
consequence of the matrix trace inequality in [11].

Lemma 3: If Ai’s are positive semidefinite matrices, then
tr(
∑

iAi)
2 ≤ (

∑

i tr
1/2(A2

i ))
2.

By applying similar bounding techniques as those for
tr(FF ∗) and tr(FF ∗FF ∗) in Appendix A to tr(F̂iF̂

∗
i ) and

tr(F̂iF̂
∗
i F̂iF̂

∗
i ), we can show

tr(F̂iF̂
∗
i ) = O(|UV (i)|G2

k)

and

tr(F̂iF̂
∗
i F̂iF̂

∗
i ) = O(|UV (i)|2 max{G3

k, G
4
kM̂

−1})

with high probability, whereM̂ is given as

M̂ = max







1,
D2

λLk

(

1 +

(

log
D2

λLk

)+
)−1







.

Because|UV (i)| ≤ 8i and
(

L
Lk

)4

M̂−1 ≤ M−1, we have

L2

GkGP ′ tr(Σ) = O((log n)Gk)

and

L4

Gk(GP ′)2
tr(Σ2) = O((log n)2 max{G2

k, G
3
kM

−1}).
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Hence, the conditions in Corollary 2 are satisfied fors = logn
and ν = 2. From Corollary 2 fors = logn and ν = 2, the
capacityC(H) of the MIMO channel fromCT toCR is lower-
bounded as

C(H) ≥ K ′
5

min{Gk,M}
(logn)6

log

(

1 +K ′
6

GkGP ′

L2 (1− 1
logn )

1 + GkGP ′

L2 log n

)

(a)

≥ K ′
7

min{Gk,M}
(logn)7

for some constantK ′
7 with high probability, where(a) is from

the choice ofP ′ in (10). Furthermore, becauseD
2

λL = O(λ−1)

and D2

λL = Ω(
nk−1

λ(nkn)
1
2
), we haveM = Ω(

nk−1

(nkn)
1
2 λ log λ−1

).

Hence, we haveC(H) = Ω(Gk/(logn)
7), which proves

Lemma 2.
Now, by substitutingGk and K ′′

2 (logn)
7 for mk−1 and

mk−1/Rk in (8), whereK ′′
2 is a positive constant independent

of bothn andλ, we have the recursive form ofTk(nk, λ) for
k ∈ [1 : h] for the modified HC scheme given as

Tk(nk, λ) ≥
K ′′

3

(log n)7
nkGk

nk−1Gk/Tk−1(nk−1, λ) + nk
(11)

whereK ′′
3 is a positive constant independent of bothn andλ.

The following lemma gives an achievable throughput scal-
ing using the modified HC scheme withh hierarchy levels
when we choose(n0, n1, ..., nh) that maximizes (11) for
k ∈ [1 : h]. The proof is at the end of the present section.

Lemma 4: In dense networks, the modified HC scheme with
h hierarchy levels achieves

Th(n, λ) ≥
Ch

(logn)7h+1

nδb(n,λ,h)

(λ log λ−1)τb(n,λ,h)

with high probability, whereCh is a positive constant inde-
pendent of bothn andλ,

b(n, λ, h)

,



















h+ 1 if logn(λ logλ
−1) ≤ −Λ(h)

k if − Λ(k) < logn(λ log λ
−1) ≤ −Λ(k − 1)

for somek ∈ [2 : h]

1 if − Λ(1) < logn(λ logλ
−1)

,

and

δu ,
u2h−u

31+h−u + 2h−u(u − 1)
, τu ,

31+h−u − 21+h−u

31+h−u + 2h−u(u− 1)

for u ∈ [1 : h + 1], whereΛ(v) ,
3h−v(3+v)−2h−v

3h−v(4+v)−21+h−v for
v ∈ [1 : h].
The following corollary is obtained straightforwardly from
Lemma 4.

Corollary 3: In dense networks, the modified HC scheme
with h hierarchy levels achieves

Th(n, λ) ≥
C′

h

(logn)7h+1
min

{

nδk

(λ logλ−1)τk

∣

∣

∣

∣

1 ≤ k ≤ h+ 1

}

with high probability, whereC′
h is a positive constant inde-

pendent of bothn andλ.
Now we are ready to prove Theorem 1.

Proof of Theorem 1: Fix ǫ > ǫ′ > 0. Let h be the smallest
integer such thath > 8

ǫ′ and letn be the smallest integer such
that (7h + 1) logn logn < ǫ′

4 and logn1/2 lognµ < ǫ−ǫ′

1−ǫ′ . Let
us define functionsy0(x) and yk(x) for k ∈ [1 : h + 1] for
x ≤ − 1

2 as

y0(x) = (1− ǫ′)min{−x, 1},
yk(x) = δk − τkx− (7h+ 1) logn logn.

Fix k ∈ [1 : h+ 1]. We will show thatyk(x) is larger than
y0(x) for all x ≤ − 1

2 . Let us first show thatyk(−1) > 1− ǫ′

2 .
yk(−1) is given as

yk(−1) = δk + τk − (7h+ 1) logn logn

> δk + τk −
ǫ′

4

= 1− 1

3
(

3
2

)h−k
+ k − 1

− ǫ′

4
.

If 1 ≤ k < h
2 , we have

3

(

3

2

)h−k

+ k − 1 ≥ 3

(

3

2

)h−k

> 3

(

3

2

)
h
2

>
h

2
>

4

ǫ′
.

If h
2 ≤ k ≤ h+ 1, we get

3

(

3

2

)h−k

+ k − 1 > k ≥ h

2
>

4

ǫ′
.

Thus, we conclude thatyk(−1) > 1− ǫ′

2 . Now we are ready
to showyk(x) > y0(x) for all x ≤ − 1

2 . Note that0 ≤ τk < 1.
For x < −1,

yk(x) = yk(−1)− τk(x+ 1) ≥ yk(−1) > 1− ǫ′ = y0(x).

For −1 ≤ x ≤ − 1
2 ,

yk(x) = yk(−1)− τk(x+ 1)

≥ yk(−1)− (x+ 1)

> −(1− ǫ′)x

= y0(x).

Hence, we prove thatmin {yk(x) : 1 ≤ k ≤ h+ 1} > y0(x)
for all x ≤ − 1

2 . By letting x = logn(λ log λ
−1), we

equivalently prove that the achievable rate of the modified
HC scheme withh hierarchy levels in Corollary 3 is lower-
bounded as

Th(n, λ) ≥
C′

h

(logn)7h+1
min

{

nδk

(λ logλ−1)
τk

∣

∣

∣

∣

1 ≤ k ≤ h+ 1

}

> C′
h min

{

λ−1

logλ−1
, n

}1−ǫ′

.

Now, we have

Th(n, λ) > C′
h min

{

λ−1

logλ−1
, n

}1−ǫ′

= C′
h min

{

(λ−1)1−logλ−1 log λ−1

, n
}1−ǫ′

(a)
> C′

h min
{

(λ−1)1−log
n1/2 lognµ

, n
}1−ǫ′

> C′
h min

{

λ−1, n
}1−ǫ
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where(a) is becausen−µ < λ < n−1/2. Hence, Theorem 1
is proved.

B. Extended network

In extended networks, both
√
G and the distance between

nodes is increased by a factor of
√
n as compared to those

in dense networks. Hence, for the same transmit power, the
received power at each node remains the same as in dense
networks. By rescaling the space, let us consider an extended
network as an equivalent dense network on a unit area but
with the wavelength reduced toλn−1/2. Since the wavelength
is given asλn−1/2 in the equivalent dense network, Theorem
3 is proved.

Proof of Lemma 4: First, consider the case ofb(n, λ, h) =
h+ 1. SinceΛ(h) = 1, this impliesλ logλ−1 ≤ n−1. In this
case,Gk is nk−1, and hence, the recursive form ofTk(nk, λ)
in (11) becomes

Tk(nk, λ) ≥
K ′′

3

(log n)7
nk−1nk

n2
k−1/Tk−1(nk−1, λ) + nk

(12)

for all k ∈ [1 : h]. Note thatT0(n0, λ) = Θ(
√
n0

logn ) by using
the multihop via percolation theory [3] for the cooperationfor

the clusters ofn0 nodes.14 By choosingnk−1 = n
k+1
k+2

k that
maximizes (12) fork ∈ [1 : h], Th(n, λ) ≥ Ch

(logn)7h+1n
h+1
h+2

is obtained. Becauseδh+1 = h+1
h+2 andτh+1 = 0, Lemma 4 is

proved for the case ofb(n, λ, h) = h+ 1.
Next, consider the case ofb(n, λ, h) = h′ for someh′ ∈

[1 : h]. Let us first assume thatGk is nk−1 for k ∈ [1 : h′−1]
and is nk−1

(nkn)
1
2 λ log λ−1

for k ∈ [h′ : h]. For the choice of

n0, n1, ..., nh−1 that maximizes (11) under this assumption,
we will show that the range ofλ where the assumption is valid
is the same as the range ofλ corresponding tob(n, λ, h) = h′

in Lemma 4.
SinceGk is assumed to benk−1 for k ∈ [1 : h′ − 1], we

obtain

Th′−1(nh′−1, λ) ≥
Ch′−1

(log n)7(h′−1)+1
n

h′

h′+1

k . (13)

For k ∈ [h′ : h], Gk is assumed to be nk−1

(nkn)
1
2 λ log λ−1

, and

hence, the recursive form ofTk(nk, λ) in (11) is given as

Tk(nk, λ) ≥
K ′′

3

(log n)7

× nk−1nk

n2
k−1/Tk−1(nk−1, λ) + n

3/2
k ((λ log λ−1)2n)

1
2

. (14)

Let us assume thatTk(nk, λ) for k ∈ [h′ − 1 : h] has

the form of Ck

(logn)7k+1

n
α
h′,k

k

((λ log λ−1)2n)βh′,k
for some positive

constantsCk, αh′,k, and βh′,k independent of bothn and
λ. Then, the recursive formulasαh′,k =

αh′,k−1+1

2(2−αh′,k−1)
and

14In [3], a path-loss exponent larger than two is considered and a multihop
via percolation theory is shown to achieveΘ(

√
n). For the path-loss exponent

equal to two, however, it achievesΘ(
√

n
log n

) due to the interference power
proportional tologn.

βh′,k =
1−αh′,k−1+2βh′,k−1

2(2−αh′,k−1)
are obtained by choosingnk−1

as

nk−1 = n
3

2(2−α
h′,k−1

)

k ((λ log λ−1)2n)

1−2β
h′,k−1

2(2−α
h′ ,k−1

)

that maximizes (14) fork ∈ [h′ : h]. Using the conditions
αh′,h′−1 = h′

h′+1 andβh′,h′−1 = 0 from (13),αh′,k andβh′,k

for k ∈ [h′ : h] are given as

αh′,k =
31+k−h′

+ 21+k−h′

(h′ − 1)

31+k−h′2 + 21+k−h′(h′ − 1)
,

βh′,k =
31+k−h′ − 21+k−h′

31+k−h′2 + 21+k−h′(h′ − 1)
.

Becausenh = n, nk for k ∈ [h′ − 1 : h] is given as (15).
Now, the range ofλ that makes the assumption, i.e.,Gk is

nk−1 for k ∈ [1 : h′−1] and is nk−1

(nkn)
1
2 λ log λ−1

for k ∈ [h′ : h],

valid is given as
{

(nnh′)−1/2 < λ log λ−1 ≤ (nnh′−1)
−1/2 if h′ ∈ [2 : h],

(nn1)
−1/2 < λ log λ−1 if h′ = 1.

(16)

By usingnh′ andnh′−1 from (15), we can show that the range
of λ in (16) is the same as the range ofλ corresponding
to b(n, λ, h) = h′ in Lemma 4. Hence, we prove that for
b(n, λ, h) = h′, the modified HC scheme withh levels
achieves

Th(n, λ) ≥
Ch

(log n)7h+1

nαh′,h

((λ log λ−1)2n)βh′,h

=
Ch

(log n)7h+1

nαh′,h−βh′,h

(λ log λ−1)2βh′,h
.

Since δh′ = αh′,h − βh′,h and τh′ = 2βh′,h, Lemma 4 is
proved for the case ofb(n, λ, h) ∈ [1 : h].

V. CONCLUSION

We characterized the information-theoretic capacity scaling
of wireless ad hoc networks from Maxwell’s equations without
any artificial assumptions. The capacity scaling is given as
the minimum of the number of nodes and the DoF limit
given as the ratio of the network diameter and the wavelength.
Accordingly, a network becomes DoF-limited ifλ = Ω(n−1)
in dense networks andλ = Ω(n−1/2) in extended networks.
Our results indicate that the linear throughput scaling in [4]
that was shown under the i.i.d. channel phase assumption is
indeed achievable to within an arbitrarily small exponent in the
non DoF-limited regime. In the DoF-limited regime, the DoF
limit characterized by Franceschetti et al. in [7] that generally
has higher scaling than that of the multihop scheme can be
achieved to within an arbitrarily small exponent by using the
modified HC scheme.

We also considered a channel model with a path-loss
exponentα larger than two. In dense networks, the throughput
scaling using the modified HC scheme forα > 2 remains
the same as whenα = 2. However, the throughput scaling
using the modified HC scheme is decreased forα > 2 in
extended networks due to the power limitation. This suggests,
as a further work, an upper bound considering both the
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nk = n

∏h
j=k+1

(

3
2(2−α

h′,j−1
)

)

(

(

λ logλ−1
)2

n
)

∑h
j=k+1

(

1−2β
h′,j−1

2(2−α
h′ ,j−1

)

)

∏j−1
i=k+1

(

3
2(2−α

h′ ,i−1
)

)

= n
31+h−h′

+h′21+k−h′
3h−k−2h−h′

(1+h′)

31+h−h′
+2h−h′

(−1+h′)
(

λ log λ−1
)

(

21+k−h′
3h−k−21+h−h′

)

(1+h′)

31+h−h′
+2h−h′

(−1+h′) (15)

DoF limitation due to the channel correlation and the power
limitation due to the power attenuation over the distance.

APPENDIX A
PROOF OFTHEOREM 5

The capacityC(H) of the MIMO channel fromCT to CR

is lower-bounded as

C(H) = max
f(x):E[|Xi|2]≤P

I(X ;Y )

(a)

≥ I(XG;Y )

(b)

≥ log
det(I +Σ+ PHH∗)

det(I +Σ)

= log

∏N
i=1(1 +

GP
L2 κi)

∏N
i=1(1 +

GP
L2 χi)

(c)

≥ log

N
∏

i=1

(1 + GP
L2 κi)

1 + GP
L2 E[χ]

=

N
∑

i=1

log
1 + GP

L2 κi

1 + GP
L2 E[χ]

= N E

[

log
1 + GP

L2 κ

1 + GP
L2 E[χ]

]

≥ N Pr (κ > (1− δ) E[κ]) log
1 + GP

L2 (1− δ) E[κ]

1 + GP
L2 E[χ]

(d)
= N Pr (κ > (1− δ) E[κ])

× log

(

1 +
GP
L2 ((1− δ) E[γ]− δ E[χ])

1 + GP
L2 E[χ]

)

(e)

≥ N
δ2 E[κ]2

E[κ2]
log

(

1 +
GP
L2 ((1 − δ) E[γ]− δE[χ])

1 + GP
L2 E[χ]

)

(f)

≥ N
δ2(E[χ] + E[γ])2

(E1/2[χ2] + E1/2[γ2])2

× log

(

1 +
GP
L2 ((1− δ) E[γ]− δ E[χ])

1 + GP
L2 E[χ]

)

(17)

for any 0 ≤ δ ≤ 1, whereXG is CN (0, P I), κ is cho-
sen uniformly among the eigenvaluesκi, i = 1, . . . , N of
L2

GP (Σ + PHH∗), χ is chosen uniformly among the eigen-
valuesχi, i = 1, . . . , N of L2

GP Σ, andγ is chosen uniformly
among the eigenvaluesγi, i = 1, . . . , N of L2

G HH∗. (a) is
from choosing the inputX asXG, (b) is because assuming
Gaussian interference minimizes the mutual information for
given noise and interference covariance matrices [12], [13],
(c) is because the geometric mean is upper-bounded by the
arithmetic mean,(d) is becauseE[κ] = E[χ] + E[γ], (e) is

from the Paley-Zygmund inequality [4], [14], and(f) is from
Lemma 3.

Note thatE[χ] = ρ1 andE[χ2] = ρ2. To get a lower bound
on (17), we need a lower bound onE[γ] and an upper bound
on E[γ2]. Let F , L√

G
H . Then,Fik = aik exp(−j2π dik

λ ),

where aik = L
dik

. Note that constantsamin and amax exist
independent ofD andL such thatamin ≤ aik ≤ amax for all
i, k ∈ [1 : N ]. First,E[γ] is given as

E[γ] =
1

N
tr (FF ∗)

=
1

N

N
∑

i,k=1

|Fik|2.

Sincea2min ≤ |Fik|2 ≤ a2max, we haveE[γ] = Θ(N).
Next, E[γ2] is upper-bounded as

E[γ2] =
1

N
tr (FF ∗FF ∗)

=
1

N

N
∑

i,j,k,l=1

FikF
∗
ilFjlF

∗
jk

=
1

N

∑

(i,j,k,l)∈Ψ1

FikF
∗
ilFjlF

∗
jk

+
1

N

∑

(i,j,k,l)∈Ψ2

FikF
∗
ilFjlF

∗
jk

≤ a4max(2N
2 −N) +

1

N

∑

(i,j,k,l)∈Ψ2

FikF
∗
ilFjlF

∗
jk

= a4max(2N
2 −N) +

4

N

N
∑

i,j,k,l=1
i<j,k<l

Qijkl

whereΨ1 , {(i, j, k, l)|i, j, k, l ∈ [1 : N ], i = j or k = l},
Ψ2 , {(i, j, k, l)|i, j, k, l ∈ [1 : N ], i 6= j andk 6= l}, and
Qijkl , aikailajkajl cos

(

2π
λ (dik − dil − djk + djl)

)

.
Note that Qijkl ’s for all 1 ≤ i < j ≤ N and 1 ≤

k < l ≤ N follow an identical distribution, but they
are not necessarily independent of each other. Nevertheless,

4
N2(N−1)2

∑N
i,j,k,l=1
i<j,k<l

Qijkl strongly converges toE[Q1212] as
the following lemma shows, where the expectation is over
uniform node distributions.

Lemma 5: The sample mean 4
N2(N−1)2

∑N
i,j,k,l=1
i<j,k<l

Qijkl

strongly converges toE[Q1212]. That is,

Pr






lim

N→∞

4

N2(N − 1)2

N
∑

i,j,k,l=1
i<j,k<l

Qijkl = E[Q1212]






= 1.

The proof of the above lemma is given in Appendix B.
Furthermore, the following lemma gives an upper bound on
E[Q1212], which is proved in Appendix C.
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Lemma 6: E[Q1212] = O(M−1).
From Lemmas 5 and 6, we haveE[γ2] =
O(max{N2, N3M−1}) with high probability asN tends to
infinity.

Now, by using the bounds onE[γ] andE[γ2], Theorem 5
is proved.

APPENDIX B
PROOF OFLEMMA 5

Let us first present a theorem on the strong convergence of
the sample mean of a sequence of not necessarily independent
random variables. The proof is in [15].

Theorem 6: Let {Xm}∞m=1 be a sequence of not necessarily
independent complex-valued random variables, each of which
follows an identical probability density functionf(x) such that
E[X ] = 0 andE[|X |2] and |X | are bounded. Suppose that

∑

K≥1

1

K3
E





∣

∣

∣

∣

∑

m≤K

Xm

∣

∣

∣

∣

2


 < ∞. (18)

Then, the strong law of large numbers holds for{Xm}∞m=1,
i.e.,

lim
K→∞

1

K

∑

m≤K

Xm = 0 almost surely.

Now, let us prove Lemma 5 using Theorem 6. Forw ∈ N, let
Uw andVw denote the collections of random variables given
as

Uw = {Qijkl − E[Q1212]|1 ≤ i < j ≤ w, 1 ≤ k < l ≤ w}

and

Vw =

{

∅ if w = 1

Uw \ Uw−1 otherwise
.

Note that|Uw| = w2(w−1)2

4 , |Vw| = (w− 1)3, and
⋃w

i=1 Vi =
Uw. Let V i

w for i ∈ [1 : (w− 1)3] be thei-th random variable
in Vw with an arbitrary ordering. We construct a sequence
{Xm}∞m=1 of random variables as follows: form ∈ N, we let

Xm denote the random variableV
m−∑m′

i=1 |Vi|
m′+1 , wherem′ is

the integer satisfying
∑m′

i=1 |Vi|+ 1 ≤ m ≤∑m′+1
i=1 |Vi|.

Let us show that{Xm}∞m=1 satisfies the conditions in
Theorem 6. First, it is easy to show thatE[|Xm|2] and |Xm|
are bounded, i.e.,E[|Xm|2] ≤ a8max and|Xm| ≤ 2a4max. Next,
the left-hand side term of the inequality in(18) is written as

∑

K≥1

1

K3
E





∣

∣

∣

∣

∑

m≤K

Xm

∣

∣

∣

∣

2




=
∑

K≥1

1

K3

∑

m1≤K

∑

m2≤K

E [Xm1Xm2 ] .

Consider two random variablesXm1 = Qi1j1k1l1 − E[Q1212]
and Xm2 = Qi2j2k2l2 − E[Q1212] in {Xm}∞m=1. If
{i1, j1}

⋂{i2, j2} = ∅ and {k1, l1}
⋂{k2, l2} = ∅, Xm1 and

Xm2 are independent of each other, and hence,E[Xm1Xm2 ] =
0. Otherwise, |E[Xm1Xm2 ]| = |E[Qi1j1k1l1Qi2j2k2l2 ] −

E[Q1212]
2| ≤ 2a8max. Using this, let us get an upper bound

on
1

K3

∑

m1≤K

∑

m2≤K

E [Xm1Xm2 ]

for eachK ∈ N as follows.

• K = w2(w−1)2

4 for somew ∈ N: In this case,{Xm|1 ≤
m ≤ K} is Uw. For each random variableXm1 in Uw,
(w−2)2(w−3)2

4 random variables inUw are independent of
Xm1 . Thus, we have

1

K3

∑

m1≤K

∑

m2≤K

E [Xm1Xm2 ]

≤ 1

K3
K(2a8max)

w2(w − 1)2 − (w − 2)2(w − 3)2

4

= 8a8max

w2(w − 1)2 − (w − 2)2(w − 3)2

w4(w − 1)4

≤ C′′
1 a

8
max

1

(w2(w − 1)2/4)5/4

= C′′
1 a

8
max

1

K5/4

for some positive constantC′′
1 .

• w2(w−1)2

4 < K < w2(w+1)2

4 for somew ∈ N: Let K̂1 =
w2(w−1)2

4 andK̂2 = w2(w+1)2

4 . Then, we get

1

K3

∑

m1≤K

∑

m2≤K

E [Xm1Xm2 ]

≤ 1

K3

∑

m1≤K

∑

m2≤K

|E [Xm1Xm2 ] |

≤ 1

K̂3
1

∑

m1≤K̂2

∑

m2≤K̂2

|E [Xm1Xm2 ] |

≤ 1

K̂3
1

K̂2(2a
8
max)

w2(w + 1)2 − (w − 1)2(w − 2)2

4

= 8a8max

w2(w + 1)4 − (w − 2)2(w − 1)2(w + 1)2

w4(w − 1)6

≤ C′′
2 a

8
max

(w2(w + 1)2/4)5/4

= C′′
2 a

8
max

1

K̂
5/4
2

< C′′
2 a

8
max

1

K5/4

for some positive constantC′′
2 .

Let C′′ , a8maxmax{C′′
1 , C

′′
2 }. Now we have

∑

K≥1

1

K3
E





∣

∣

∣

∣

∑

m≤K

Xm

∣

∣

∣

∣

2




=
∑

K≥1

1

K3

∑

m1≤K

∑

m2≤K

E [Xm1Xm2 ]

≤ C′′
∑

K≥1

1

K5/4
,
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Fig. 4. Two nodesu andv in CT and two nodess and t in CR. θ andφ
denote∠uvs and∠vsu, respectively.

which is finite. Hence, from Theorem 6

Pr



 lim
K→∞

1

K

∑

m≤K

Xm = 0



 = 1,

which concludes the proof of Lemma 5.

APPENDIX C
PROOF OFLEMMA 6

Consider two uniformly and independently distributed nodes
u and v in CT and two uniformly and independently dis-
tributed nodess andt in CR. Consider a cartesian coordinate
system whose origin is at the bottom left corner ofCT . Let
zu = (xu, yu), zv = (xv, yv), zs = (xs, ys), andzt = (xt, yt)
denote the coordinates of nodesu, v, s, and t, respectively.
Let S(X) andS(X |Y ) for random variablesX andY denote
the support of the probability density functionf(x) and the
support of the conditional probability density functionf(x|y),
respectively. LetΓ1 ⊂ S(zu, zv) denote the set of(zu, zv)
such that the line throughzu andzv intersectsCR, and letΓ2

denoteS(zu, zv) \ Γ1. Let θ , ∠uvs and let∆(zu, zv, dsv)
denote the length ofS(θ|zu, zv, dsv) where the length of an
interval [a, b] is defined asb − a.15 Let φ , ∠vsu and
let φ1, φ2, φ3, and φ4 denote∠vsu when zs is fixed at
(L, 0), (L +D, 0), (L +D,D), and (L,D), respectively. Let
|φm| , min{|φ1|, |φ2|, |φ3|, |φ4|}. See Fig. 4.

Now we are ready to prove Lemma 6.E[Q1212] is upper-
bounded as

E[Q1212]

= E[Qstuv]

= E[E[Qstuv|zu, zv]]

= E[E2[asuasv cos(
2π

λ
(dsu − dsv))|zu, zv]

+ E2[asuasv sin(
2π

λ
(dsu − dsv))|zu, zv]]

≤ E[E2[amax|E[asu cos(
2π

λ
(dsu − dsv))|zu, zv, dsv]||zu, zv]

+ E2[amax|E[asu sin(
2π

λ
(dsu − dsv))|zu, zv, dsv]||zu, zv]].

Furthermore, |E[asu cos(2πλ (dsu − dsv))|zu, zv, dsv]| and
|E[asu sin(2πλ (dsu − dsv))|zu, zv, dsv]| are upper-bounded as

|E[asu cos(
2π

λ
(dsu − dsv))|zu, zv, dsv]|,

15Here, we follow the convention that∠BAC is the counterclockwise angle
from B to C and |∠BAC| ≤ π.

|E[asu sin(
2π

λ
(dsu − dsv))|zu, zv, dsv]|

≤







K′
11amax

∆(zu,zv,dsv)

√

λD
yuvL

if (zu, zv) ∈ Γ1

K′
21amaxλ

dsv∆(zu,zv,dsv) sin |φm| if (zu, zv) ∈ Γ2

(19)

for some positive constantsK ′
11 and K ′

21, where yuv ,

|yu − yv|. These upper bounds are derived at the end of this
appendix.

Using the above upper bounds,E[Qstuv|zu, zv] is upper-
bounded separately for the cases of(zu, zv) ∈ Γ1 and
(zu, zv) ∈ Γ2. If (zu, zv) ∈ Γ1, we have

E[Qstuv|zu, zv]

≤ E2[amax|E[asu cos(
2π

λ
(dsu − dsv))|zu, zv, dsv]||zu, zv]

+ E2[amax|E[asu sin(
2π

λ
(dsu − dsv))|zu, zv, dsv]||zu, zv]

≤ 2E2

[

K ′
11a

2
max

∆(zu, zv, dsv)

√

λD

yuvL

∣

∣

∣

∣

zu, zv

]

≤ K ′
12a

4
max

λL

yuvD

for some positive constantK ′
12. If (zu, zv) ∈ Γ2, we have

E[Qstuv|zu, zv]

≤ E2[amax|E[asu cos(
2π

λ
(dsu − dsv))|zu, zv, dsv]||zu, zv]

+ E2[amax|E[asu sin(
2π

λ
(dsu − dsv))|zu, zv, dsv]||zu, zv]

≤ a3max E[|E[asu cos(
2π

λ
(dsu − dsv))|zu, zv, dsv]||zu, zv]

+ a3max E[|E[asu sin(
2π

λ
(dsu − dsv))|zu, zv, dsv]||zu, zv]

≤ 2a3max E

[

K ′
21amaxλ

dsv∆(zu, zv, dsv) sin |φm|

∣

∣

∣

∣

zu, zv

]

≤ K ′
22a

4
max

λ

D sin |φm|
for some positive constantK ′

22.
BecauseE[Qstuv|zu, zv] ≤ a4max, E[Qstuv|zu, zv] is upper-

bounded as

E[Qstuv|zu, zv]

≤







a4max min
{

1,K ′
12

λL
yuvD

}

if (zu, zv) ∈ Γ1,

a4max min
{

1,K ′
22

λ
D sin |φm|

}

if (zu, zv) ∈ Γ2.

Finally, E[Qstuv] is upper-bounded as follows:

E[Qstuv]

=

∫

Γ1

E[Qstuv|zu, zv]f(zu, zv)dzudzv

+

∫

Γ2

E[Qstuv|zu, zv]f(zu, zv)dzudzv

≤ a4max

∫

Γ1

min

{

1,K ′
12

λL

yuvD

}

f(zu, zv)dzudzv

+ a4max

∫

Γ2

min

{

1,K ′
22

λ

D sin |φm|

}

f(zu, zv)dzudzv
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≤ a4max

∫

S(zu,zv)

min

{

1,K ′
12

λL

yuvD

}

f(zu, zv)dzudzv

+ a4max

∫

S(zu,zv)

min

{

1,K ′
22

λ

D sin |φm|

}

f(zu, zv)dzudzv

≤ a4max

∫

S(yuv)

min

{

1,K ′
12

λL

yuvD

}

f(yuv)dyuv

+K ′
23a

4
max

∫

S(|φ1|)
min

{

1,K ′
22

λ

D sin |φ1|

}

f(|φ1|)d|φ1|

≤ a4max

λL

K ′
31D

2

(

1 +

(

log
K ′

32D
2

λL

)+
)

for some positive constantsK ′
23, K ′

31, and K ′
32. Since

E[Qstuv] ≤ a4max, Lemma 6 is proved.
Now it remains to show the upper bounds in (19). The upper

bounds in (19) are obtained by using the following lemma,
whose proof is at the end of this appendix.

Lemma 7: Let g(x) be a periodic Lebesgue-integrable
function on R with period p > 0 that satisfiesg(x) =
−g(x + p/2) and maxx∈R |g(x)| = 1. Let h(x) be a non-
negative and Lebesgue-integrable function onR. Consider an
interval [a, b] and constantsc1 6= 0 and c2. If a partition
Π = {x0, x1, ..., xm} of [a, b] exists for finitem such that
a = x0 < x1 < ... < xm = b andh(x) is monotone on each
interval [xi−1, xi] for i ∈ [1 : m], we have

∣

∣

∣

∣

∫ b

a

g(c1x+ c2)h(x)dx

∣

∣

∣

∣

≤ m

∫ x̃+ p
2|c1|

x̃

h(x)dx

wherex̃ ∈ R is such that
∫ x̃+ p

2|c1|

x̃ h(x)dx ≥
∫ x+ p

2|c1|

x
h(x)dx

for all x ∈ [a, b− p
2|c1| ].

To obtain an upper bound on (20) using Lemma 7, we first
show thatS(dsu|zu, zv, dsv) consists of a finite number of
intervals such thatasuf(dsu|zu, zv, dsv) is monotone for each.
Because|θ| anddsu have a one-to-one relationship, we have

asuf(dsu|zu, zv, dsv) = asuf(|θ||zu, zv, dsv)
d|θ|
ddsu

where
d|θ|
ddsu

=
dsu

dsvduv sin |θ|
=

1

dsv sin |φ|
.

We can easily show thatasu
d|θ|
ddsu

has at most two criti-
cal points from its derivative with respect to|θ| and that
S(|θ||zu, zv, dsv) can be split into at most four intervals
such thatf(|θ||zu, zv, dsv) is a constant for each. Hence,
S(|θ||zu, zv, dsv) can be split into at most six intervals such
thatasuf(|θ||zu, zv, dsv) d|θ|

ddsu
is monotone for each, implying

that S(dsu|zu, zv, dsv) can also be split into at most six
intervals such thatasuf(dsu|zu, zv, dsv) is monotone for each.
Becauseasu ≤ amax andf(|θ||zu, zv, dsv) ≤ 2

∆(zu,zv,dsv)
, we

have

|E[asu cos(
2π

λ
(dsu − dsv))|zu, zv, dsv]|

≤ 12amax

∆(zu, zv, dsv)

∫ d̃su+
λ
2

d̃su

d|θ|
ddsu

ddsu (21)

from Lemma 7, wherẽdsu is such that
∫ d̃su+

λ
2

d̃su

d|θ|
ddsu

ddsu ≥
∫ dsu+

λ
2

dsu

d|θ|
ddsu

ddsu

for all dsu ∈ S(dsu|zu, zv, dsv).
In the same way,

|E[asu sin(
2π

λ
(dsu − dsv))|zu, zv, dsv]|

≤ 12amax

∆(zu, zv, dsv)

∫ d̃su+
λ
2

d̃su

d|θ|
ddsu

ddsu. (22)

We bound
∫ d̃su+

λ
2

d̃su

d|θ|
ddsu

ddsu separately for the cases of
(zu, zv) ∈ Γ1 and (zu, zv) ∈ Γ2. Without loss of generality,
assume thatxv ≤ xu. First, consider the case of(zu, zv) ∈ Γ1.
Note that d|θ|ddsu

is decreasing indsu ∈ [dsv−duv,
√

d2sv − d2uv]

and is increasing indsu ∈ [
√

d2sv − d2uv, dsv + duv]. For the
case of (zu, zv) ∈ Γ1, dsv − duv ∈ S(dsu|zu, zv, dsv) ⊆
[dsv−duv,

√

d2sv − d2uv], and hence, we havẽdsu = dsv−duv.
Therefore, we have

∫ d̃su+
λ
2

d̃su

d|θ|
ddsu

ddsu =

∫ dsv−duv+
λ
2

dsv−duv

d|θ|
ddsu

ddsu

=

∫ |θ̂|

0

d|θ|

= |θ̂|

where |θ̂| is |∠uvs| when dsu = dsv − duv + λ
2 for given

zu, zv, dsv. We have the following bounds oncos |θ̂|:

1−K ′
111

λD

yuvL
≤ cos |θ̂| ≤ 1−K ′

112|θ̂|2 (23)

for some positive constantsK ′
111 andK ′

112. The upper bound
holds since|θ̂| ≪ π and the lower bound is obtained as

cos |θ̂| = d2sv + d2uv − d2su
2dsvduv

∣

∣

∣

∣

dsu=dsv−duv+
λ
2

≥ 1− λ

duv

= 1− λ

yuv
sin |ω|

(a)

≥ 1−K ′
111

λD

yuvL

whereω is the angle between the line throughzu andzv and
the horizontal line crossingzu and (a) is because(zu, zv) ∈
Γ1. From (23), we have

∫ d̃su+
λ
2

d̃su

d|θ|
ddsu

ddsu = |θ̂| ≤
√

K ′
113

λD

yuvL

for some positive constantK ′
113. Using this bound in (21) and

(22), the upper bounds in (19) for the case of(zu, zv) ∈ Γ1

are obtained.
Now consider the case of(zu, zv) ∈ Γ2. The following

lemma gives a lower bound on|φ| for the case of(zu, zv) ∈
Γ2, whose proof is given at the end of the present appendix.

Lemma 8: When (zu, zv) ∈ Γ2 is given, |φ| is lower-
bounded by|φm|.
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|E[asu cos(
2π

λ
(dsu − dsv))|zu, zv, dsv]| =

∣

∣

∣

∣

∫

S(dsu|zu,zv,dsv)

cos(
2π

λ
(dsu − dsv))asuf(dsu|zu, zv, dsv)ddsu

∣

∣

∣

∣

(20)

From the above lemma,

d|θ|
ddsu

=
1

dsv sin |φ|
≤ 1

dsv sin |φm|
and hence,

∫ d̃su+
λ
2

d̃su

d|θ|
ddsu

ddsu ≤ λ

2dsv sin |φm| .

Using this bound in (21) and (22), the upper bounds in (19)
for the case of(zu, zv) ∈ Γ2 are proved.

Proof of Lemma 7: It can be easily shown that for any
interval [a1, b1] on which h(x) is monotonically increasing,
we have

∣

∣

∣

∣

∫ b1

a1

g(c1x+ c2)h(x)dx

∣

∣

∣

∣

≤
∫ b1

b1− p
2|c1|

h(x)dx, (24)

and for any interval[a2, b2] on whichh(x) is monotonically
decreasing,

∣

∣

∣

∣

∫ b2

a2

g(c1x+ c2)h(x)dx

∣

∣

∣

∣

≤
∫ a2+

p
2|c1|

a2

h(x)dx. (25)

From (24) and (25), Lemma 7 is directly obtained.
Proof of Lemma 8: Assume that(zu, zv) ∈ Γ2 is given.

Then,S(φ|zu, zv) is included in either[−π, 0) or (0, π]. |φ|
is given as follows:

|φ| = arccos
d2su + d2sv − d2uv

2dsudsv
.

Fix xs. The derivative ofd
2
su+d2

sv−d2
uv

2dsudsv
with respect toys has

the form of a rational polynomialg1(ys)
g2(ys)

, where g2(ys) is
positive for everyys ∈ [0, D] and g1(ys) is a cubic function
of ys with a positive cubic coefficient whose roots are given
as (26). Sinceφ = 0 whenys =

xs(yu−yv)−xvyu+xuyv

xu−xv
, which

violates the assumption(zu, zv) ∈ Γ2, S(ys) contains at most
one root ofg1(ys). Because the cubic coefficient ofg1(ys) is
positive, d2

su+d2
sv−d2

uv

2dsudsv
is maximized whenys is 0 or D, and

hence,|φ| is minimized whenys is 0 orD.
In a similar way, we can show that|φ| is minimized when

xs is L or L+D for fixed ys. Thus,|φ| is lower bounded by
|φm|.

APPENDIX D
EXTENSION TO A PATH-LOSSEXPONENT LARGER THAN

TWO

In this appendix, we consider the channel model with a path-
loss exponent larger than two, i.e., the discrete-time baseband-
equivalent channel gain (3) between nodesk and i at timem
is changed to

Hik[m] =

√
G

dik[m]α/2
exp

(

−j
2π

λ
dik[m]

)

(27)

with the path-loss exponentα > 2. For α = 4, this channel
model approximates the channel when there are a direct path
and a reflected path off the ground plane between transmit and
receive antennas with a sufficiently large horizontal distance.
For α > 2 and α 6= 4, however, the channel model (27) is
not a direct consequence of Maxwell’s equations, and hence,
the DoF limit characterized in [7] is not valid for this channel
model.

Now, let us present throughput scalings using the modified
HC scheme constructed in Section IV for the channel model
in (27). In dense networks, we can get the same throughput
scaling in Theorem 1. In extended networks, the throughput
scaling using the modified HC scheme is decreased because
the network becomes power-limited. For the same transmit
power, the received power at each node in extended networks
is decreased by a factor ofnα/2−1 as compared to the dense
network. By rescaling the space, an extended network can
be considered as an equivalent dense network on a unit area
but with the average power constraint per node reduced to
P/nα/2−1 instead ofP and the wavelength reduced toλn−1/2

instead ofλ. Note that the average power constraintP/nα/2−1

per node is less thanP . As the bursty modification of the HC
scheme in [4], we use the bursty version of the modified HC
scheme, i.e., we use the modified HC scheme with operating
powerP for n1−α/2 fraction of the time and keep silent for
the remaining fraction of the time. This satisfies the average
power constraint per nodeP/nα/2−1 and yields an aggregate
throughput scaling ofn1−α

2 min
{√

nλ−1, n
}1−ǫ

.
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