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Abstract—Multiple-input double-output (MIDO) codes we demand higher code rates and different number of
are important in the near-future vyirel_ess communications, antennas. On the other hand, the now well known cyclic
where the portable end-user device is physically small and division algebra (CDA) codes designed for a symmetric
will typically contain at most two receive antennas. ESpe- yransmission have full rate and are generalizable to an
cially tempting is the 4 x 2 channel due to its immediate arbitrary number of antennas. Unfortunately, they are
applicability in the digital video broadcasting (DVB). Such lex to decod s v wh ' h |
channels optimally employ rate-two space-time (ST) codes Verylcomp ex 1o decoade, eSpe_Cla y when we have e,SS
consisting of (4 x 4) matrices. Unfortunately, such codes '€C€IVe antennas than transr_mt antennas. Yet there is a
are in general very complex to decode, hence setting forth Strong demand for asymmetric codes that would be fast-
a call for constructions with reduced complexity. decodable, generalizable to more antennas, and would

Recently, some reduced complexity constructions have support higher rates. The special case of two receive
been proposed, but they have mainly been based onantennas is referred to as a multiple input-double output
different ad hoc methods and have resulted in isolated (\MIDO) code.
examples rather than in a more general class of codes. o axample one of the most interesting wireless appli-
In this paper, it will be shown that a family of division cations currently is the design 6% 2 MIDO codes. Such
algebra based MIDO codes will always result in at least . . o

asymmetric systems can be used in the communication

37.5% worst-case complexity reduction, while maintaining ) ) ]
full diversity and, for the first time, the non-vanishing Petween, for instance, a TV broadcasting station and a

determinant (NVD) property. The reduction follows from portable digital TV device. The four transmitters can
the fact that, similarly to the Alamouti code, the codes will either be all at one station or separated between two
be subsets of matrix rings of the Hamiltonian quaternions, different stations in this way providing better coverage
hence allowing simplified decoding. At the moment, such jn the case when the transmission of one of the stations
reductions are among the best known for rate-two MIDO 5 plocked out by a deep shadow.
codes [4], [5]. Several explicit constructions are presead In Europe, the digital video broadcasting (DVB) con-
;B?erszmﬂa?o:s ve excellent performance through com- sortium has adopted different standards for terrestrial
(DVB-T) fixed reception, handheld (DVB-H) reception,
_ Index Terms—Coding gain, cyclic division algebra, dig- satellite (DVB-S) reception as well as an hybrid re-
ital video broadc.:astmg.ne.)d generation handheld (QVB- ception like DVB-SH. The ongoing work towards the
NGH), fast maximum-likelihood (ML) sphere decoding, standardization of the DVB Next Generation Handheld

Hamiltonian quaternions, Hasse invariants, lattices, low L
complexity space-time block codes (STBCs), multiple-ingu (NHG, see the DVB Project's web page [8] for more

single/double/multiple-output (MISO/MIDO/MIMO), non- information) systems is bringing this topic ever more to
vanishing determinant (NVD), orders. the forefront of current MIMO research. The inclusion of

the4 x 2 systems in the consortium’s call for technologies
for the DVB-NGH indicates having a MIDO code in the

, _ coming standard.
Among known space-time codes, the Alamouti code One solution to thel x 2 code construction problem

[6] and the fully diverse4 x 1 quasi-orthogonal codesCould be to use a full-rate CDA code,g. the 4 x 4

[7] stand out due to their orthogonality properties theﬁerfect code [9]. However, when received with two
are beneficial for decoding. Both of these codes howe‘éﬁ{tennas, a rate-four code cannot be optimally decoded
have a low code rate, hence best suitable for an asymmet - linear decoder such as a sphere decoder. Codes
ric transmission, where there are less receive anten'&@ﬁecially designed for thé x 2 channel have been
than trgnsmlt antennas. It is far from obwous_ how tBroposed ire.g.[10], [11], [12], but all the codes require
generalize these codes to asymmetric scenarios Whﬁl@,I complexity maximum-likelihood (ML) decoding,

Part of this work appeared at ISIT 2010 [1], at SPCOM 2010 [2f1amely full-dimensional sphere decoding.
and at ISITA 2010 [3]. A natural approach to this design problem is to imitate
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the form of the code matrices of the already known fask. Related work
decodable codes or use these codes as building blocks fofpe first reduced ML-complexityt x 2 construction

higher rate codes. The key problem in such constructiogs ¢ given in [4], combining two copies of a quasi-

is that it is very hard to guarantee that the resultinghogonal code [13]. This resulted in a MIDO code that

code will still have good performance, thus in manyses have lower decoding complexity, but unfortunately

cases requiring optimization to be carried out througihes not have full rank. Nevertheless, good performance

extensive computer searches. is still achieved at low-to-moderate SNRs and with four
In this paper we are going to adopt a different apeal dimensions less in the sphere decoder.

proach to this problem. We study the algebraic structureThe most recent results on fast-decodable codes have

of known fast-decodable codes like the Alamouti codgppeared in [5], where new constructions with optimized

and the division algebra based quasi-orthogonal codgerformance have been presented, and in [1], [2], [3],

By analyzing the relation between the Hasse-invarianere fast-decodable codes with the NVD property have

and the geometric structure of these codes we are aéen built from crossed product and cyclic presentations

to distill the key algebraic properties that force thessf division algebras. In the preprint [14] the authors

codes to be fast-decodable. This approach then depigé®isider quadratic forms as a tool for characterizing

an infinite family of fast-decodable codes from divisiofhe decoding complexity, and in the preprint [15] multi-

algebras. group ML-decodable collocated and distributed space-
The main advantage of our take on this subject fgne codes are proposed.

that the proposed codes are based on orders of division

algebras and therefore they are not only fast—decodatge,Organizaﬂon and contributions

but are also guaranteed to have full-diversity, the non- i _

vanishing determinant (NVD) property, and further allow The rest of the paper is organized as follows. We

us to perform algebraic minimum determinant optimizf-tart by giving some background on space-time codes

tion. We can show, under given conditions, that the Nm/ith a lattice structure and their decoding via sphere

decoding complexity of a MIDO code will always beqecoding in Section Il. The concept of fast decodability

reduced by at least 37.5%, while maintaining the NV then defined and illustrated in Section Ill, where the

Explicit constructions based on the proposed criteria Wm)le of the Alamouti code is emphasized. To pursue the
be provided. One of the examples introduces a code tﬁ&fdy c_)f fast—_decodable codes, we then focus on CDA
has comparable performance with the best known fag{gdgs n Section |V, where some background_and further
decodable ST codes [4], [5] and further has (provabl otlvgt!ng_ examples are presented, transle_ltlng fast d_e—
NVD. The proposed theory provides fully diverse, fast dability into being able to embed the considered cyclic

decodable (FD) codes with the NVD property for an9Igebra into an algebra of matrices with quaternionic
even numbern, of Tx antennas and any code ratgoefﬁcients. The conditions guaranteeing the existence

< /2. Motivated by the DVB-NGH, most of the of such an embedding are studied in Section V: we

examples are given in the case of 4 Tx antennas a'ﬁ%Ed an_alg_eb_rg whose center_ls 'Fotally real and such
2 Rx antennas. that all its infinite places ramify in the algebra. A

. family of such cyclic algebras is provided. A last design
Sfiterion, the normalized minimum determinant, is added
d bounds on optimal lattice codes with respect to it are
mputed in Section VI. Different explicit construction
methods are described in Section VII. Finally, several
code constructions are presented in Section VIlkfgr
codes followed by simulation results in Section IX. In
Section X the results are extended for more transmit
whereY, X, H, N are the received, transmitted, channefntennas and explicit constructions are providedfoB
and the Gaussian noise matrix, respectively. The Shd6 x 2 codes.
matrix X € M,,(C), while Y,H,N € M, xn,(C), Further generalizations are provided in Section XI,
wheren; (resp.n,.) denotes the number of transmit (respwhere it is also shown that the existence result can
receive) antennas. We assume no correlation, but in thee made explicit via conjugations of the familiar left-
correlated case the transmitter can adapt to the rategular representation. Section XIlI concludes the paper.
one code naturally embedded within the proposed codasAppendix, relevant algebraic results related to central
while maintaining and even improving fast decodabilitsimple algebras and Hasse invariants are presented.

a coherent i.i.d. Rayleigh fading channel with perfe
channel state information at the receiver (CSIR) and wi
no CSIT,

Y = HX + N,



The main contributions of this paper are listed below. « calligraphic letters for algebras,g. A,

General methods to produce space-time lattices £/K for number field extensions and for the
codes with the NVD property and given geometric ~ generator of a cyclic Galois groupal(E/K). Note
structure are given. that K is also used for the rank of a lattice in

A unified construction of families of CDAs thatcan ~ Some instances, but this should cause no danger of
be embedded into matrix rings of the Hamiltonian ~ confusion.

quaternionsM;,(H) is provided. The underlying e« The field norm fromE to K is denoted by

glgebraic principles are studied in full detail. It Nk (@) = zo(z)--- 0" Hz) € K,

is then demonstrated how such a structure can be

beneficial in the decoding. The generality of the Wheren = # Gal(E/K).

constructions is in contrast to the preseaat hoc

constructions available in the literature. Il. SPACE-TIME LATTICE CODES

A complete solution to the discriminant minimiza- We start with as general a definition of a space-
tion problem [16] for division algebras with arbi-time code as possible, and motivate why we focus our
trary centers is given. As an application a normaattention tospace-time latticeodes, which furthermore
ized minimum determinant bound for code latticesan be decoded via sphere decoder, a universal decoder
in M;,(H) is derived from the algebraic results. for lattice codes. We explain in detail how this is done.
We mainly consider the x 2 MIDO case, but also

provide constructions for theéx 2 and6 x 3 cases. A pefinitions

The methods are generalizable to any even numbe

r : ,
of Tx antennas. Abstractly, a space-time codeworX is an (n x k)

. . . matrix with coefficients inC, wheren corresponds to
The main difference with other fast-decodabl ) !
. e number of transmit antennas, ang the coherence
MIDO codes is that all the proposed codes have ) . .
time (or delay) during which the channel is assumed
the NVD property. The proofs for the NVD are S
constant. We will, in this paper, concentrate on the case

based on the underlying algebraic structure of tt}C : : :
o ) . = n, so that a space-time code is a square matrix,
code and hold for infinite constellations. This can

corresponding to minimum delay codes.

be Seen as an Improvement f_or (5], whe_re the Definition 2.1: A space-time codé€ is a set of(n xn)
NVD is conjectured by computing the minimum . ;

: N complex matrices. We often use the abbrevia®FBC
determinant for certain finite QAM alphabets.

) - fqr space-time block code
- 0,
We build explicit codes that have 25-37.5% reduced The spacell, (C) of (n x n) matrices with complex

decoding complexity for general constellations, and __.". . . )
. coefficients is a vector space of dimension
whose performance is comparable to the best known

MIDO codes. Such complexity is among the best dimg (M, (C)) = 2n?
known for the MIDO channel, and can be further

reduced by using a symmetric alphabet — a squaor\(/aerthe reals. Therefore, for every cade. M, (C), we

QAM alphabet, for instance. No tast-decodabl&" consider, following [15], the subspa@@® spanned

MIDO codes with provable NVD other than the y the matrices of. |2t has anR-basis con5|s_t|ng of
. . matrices,l < K < 2n?, so that each matriX in C can
ones in this paper have been reported.

be uniquely written as

K

C. Notations X — Z%Bu (1)
Throughout the paper, we will use the following i=1

notations: where B; are some basis matrices apdare real num-
« Tx for transmit antennas, Rx for receive antennagers. Once the basis matricé®;, ..., Bx} are given,
« n;xn, for a channel witm,; Tx andn, Rx antennas, a space-time cod€ is defined by the values thaf,
e (n x k) for matrix dimensions, i=1,...,K, can take. We write

boldface lowercase letters for vectomsg. g =

(gla"'7gt) Org:(gl7"'7gt)T' g—(gl’7gK)

capital letters for matrice®.g. X or M, and letg take its values irg C RX, so that

x* for the complex conjugate af, X* for element- K

wise conjugation in a matrixX, and XT for the C = {Zngzlg =(g1,...,95) €G }. )

Hermitian conjugate ofX, i1



Typically, G corresponds to a choice of constellatiors. From the linearity imposed ot by (4), we are only
points. For example, if a siz@ pulse amplitude modu- one step away from having space-time lattice code
lation (Q-PAM) is used, therg is the Cartesian productRecall that
of K times Proposition 2.1: An infinite discrete group of matri-
ces inM,,(C) is a lattice.

=@+ 1., =3, -1 1.3, .. @ =1}, We can thus safely assume that infinite space-time
where@ > 2,2|Q. The formulation in (2) is not without codes have a lattice structure, since the discreteness
recalling the notion oflinear dispersion codegl17], condition can be translated by asking the Euclidean
where codewords( are similarly described by a family distance between each pair of codewords to be greater
of dispersion matrice$A;,..., Ax}: X = ZfilgiAi, thanr, for a fixed non-zere. This formalizes the natural
for some coefficientg; belonging to a symmetric set.assumption that codewords should not be chosen too
The critical difference is i By, ..., Bx } being linearly close to each other.
independent, and thus really forming Rrbasis for(C). Definition 2.4: A space-time lattice code C M,,(C)
It consequently makes sense to speak of dimensionhafs the form
(C), which yields the following definition of rate [15]:

Definition 2.2: The dimension rateR; of the codeC 1B, ®1Bs--- ® LBk,
is given by dimg((C)) K where the matrice8, ..., Bx are linearly independent,
Ry = Y i.e., form a lattice basis, anfl’ is called therank of the

lattice. We may also calK the dimensionof the code,
. . ) but do not confuse this with the dimension of the lattice.
Sincel < K < 2n?, we immediately see that the o g

For the actual transmission, a finite subset of code-

maximum rate achievable for square matrices2is words fromC is picked by restricting the integer coef-
One should note that this is not the common definiticH\ P y g g

of a code rate (also used in this paper until now), cients to some sef, as in (2). From now on, we wil

: consider only space-time lattice codes and may call them
which usually counts how many complex symbadsg( space-time codes for short.

QAM symbols) are transmitted in a codeword. With our As recalled above, full diversity is the first design

notation, the common code rate would Be/2 < n. o : i )
S . ._criterion for space-time codes. Once achieved, meaning
The data rate in bits per channel use (bpcu) is defln‘ed .
or lattice codes that

(real) dimensions per channel use.

as follows.
Definition 2.3: The bit rate Ry of the codeC is det(X) #0, X #0,
_ logy(|C]) L . - _
Ry = — the next criterion is to maximize the minimum determi-
nant of the code.
bpcu.

) . . . Definition 2.5: The minimum determinandet,,;,, (C)
While the above considerations have been done (5?a space-time codé C M, (C) is defined to be

full generality, several years of research on space-time

coding have shown that good space-time codes enjoy det,in (C) = inf |det(X)|, X €C.

special properties. Following [18], getting fully diverse X#0

codes has become the first code design criterion. Thapefinition 2.6 [20] If the minimum determinant of

is, we require the lattice is non-zero, we say that the code hawa-
det(X — X')£0, X £ X' €C. (3) Vanishing determinantNVD) .
o The NVD property means that, prior to SNR normal-
From [19] it is known that the best way to actually deabation, the lower bound on the minimum determinant

with this constraint is to first assume that the space-tifdges not depend on the size of the constellation used.
code considered forms an additive group, so that

X+X' ec, (4) B. Sphere decoding

which simplifies (3) to Let X be a space-time lattice codeword. We can flatten
X € M,(C) to obtain a2n?-dimensional real vector
det(X 0, X#0 " .
et(X) #0, X #0, x by first forming a vector of lengtm? out of the
a much more tractable constraint. We note tfiags entries €.g.row by row, or vectorizing that is column by
defined in (2) is not necessarily linear, but of cou§g column) and then replacing each complex entry with the



pair formed by its real and imaginary parts. This definds order to perform real sphere decoding, we have to
a mappinga from M, (C) to R?"’: transform this complex channel equation into a real one,
which can be done via the mappingdefined in (5). The

a:X = x=a(X) ) matrix Yo,y — (vi;) can be turned into a real valued
which is clearlyR-linear: vectory in R'6 by the transformation
arX +r'X") =ra(X) +r'a(X’), r,r €R.  (6) aY) =y =[yyal"
Let||X||r = /Tr(XTX) denote the Frobenius norm ofwith
X. Note that the following equality holds: y1=Ry1.1),SW11),- -, R(y1.4), S(y1.4))
— y2 = R(y2,1), S(y2,1)s - R(y2,4), S(y2,4))-
1XIlp =D > Jzg2=llaX)llz,  (7) The matricesH B; € Mix»(C) are then similarly turned
=1 j=1 into vectorsb; € R16:
where|| - ||z denotes the Euclidean norm of a vector. o(HB;)=b;, i=1,...,16,

This makesx an isometry.
The space-time cod& € M, (C) is transmitted over SO thatd(X) can be expressed as

a coherent Rayleigh fading channel with perfect channel dX) = ||y - HXH% by (8)
state information at the receiver (CSIR): = |la(Y — HX)|]2, by (7)
Y =HX+V, = |la(Y) —a(HX)|3; by (6)

. . : _ = ly = X% gibill3
where H is the channel matrix andl is the Gaussian F th finall i
noise at the receiver. Maximum-likelihood (ML) decod* o™ s We tinally ge

ing consists of finding the codeworxl that achieves the d(X) =|ly - Bgu%, (10)
minimum of the squared Frobenius norm
where
d(X) = [|Y — HX|[}. 8

B = (by,ba,...,bis) € Migxi6(R).

This search can be performed using a real sphere decader

(seee.g.[21]). Since this paper focuses on MIDO codeSNiS shows that the decoding of a space-time lattice
codeC with a basis{Bi,..., Bk} is equivalent to the

and for the sake of simplicity, we will now exemplify , _ _ _ .
the computation of 44 x 4) MIDO code matrixX, that decoding of a 16-dimensional real lattid¢C) described

is, we consider 4 Tx antennas and 2 Rx antennas angthe generator matrig: A(C) = {x = Bg [ g € Z"}.

the channel
[1l. FAST-DECODABLE SPACETIME CODES

Yaxa = HaxaXaxa + Vaxa. ©) We are now ready to explain the notion of fast de-

A (4x4) MIDO code can transmit up to 8 complex (sagodability of space-time lattice codes when using sphere
QAM) information symbols, or equivalently 16 real (saylecoding. We will then give a few examples that will
PAM) information symbols. Following (2), the encodingnotivate the rest of the paper.

can thus be written as mapping the PAM vector

A. Fast sphere decoding
The first step of the sphere decoder is to perform a QR

g=(g1,---,q16)"

into a (4 x 4) matrix decomposition of the lattice generator matii B =
16 QR, with QTQ = I, to reduce the computation of
X = ngu
2 4% = |ly - Bell}
where the basis matriceB;, i = 1,...,16, define the as in (10) to

code. Let us emphasize again that by basis matrices, we

: . X)=|ly — 2 — 10Ty — 2 11
really mean &-basis of the code seen as a lattice. From dX) =lly - QReglly = [IQ"y — Rellx (11)

(9), the received matri¥” can be expressed as whereR is an upper right triangular matrix. The number
16 16 and position of non-zero elements in the upper right
Yoy = H(Z gB)+V = Zgz(HBz) +V. part of R will determine the complexity of the sphere
1 i1 decoding process [4], [5].



The worst case is of course given when the matrix, g10, 911, 912, yielding a worst case complexity of
R is a full upper right triangular matrix. This motivategS|'? (or more precisely2|S|'?) for the real sphere
the following definition of worst case sphere decodindecoding process instead of the full complexity order
complexity: of |S|16.

Definition 3.1: [4, Def. 2] LetS denote the real alpha- The natural question to ask is thus the design of codes
bet in use, and let be the number of independent reafthat is, of the basis matriceB;) that yield a sparse
information symbols fromS within one code matrix. matrix R. To address this question, we further study
The ML decoding complexitys the minimum number the structure of the matribR. By definition of the QR

of values of d(X) in (11) that should be computeddecomposition of the matri® = (b4, ..., bis), we have
while performing ML decoding. This number cannothat
exceedS|”, the complexity of the exhaustive-search ML (e1,b1) (e, by) ... (e1,big)
decoder (o1S|%/? for a complex alphabes). 0 (e2,by) ... (ez,big)
Definition 3.2: The exponenk (resp.x/2) is referred _ 0 0 (e3,b1g)
to as thedimension of a real (resp. complex) sphere .
decoder If the structure of the code is such that 0 0 ' :
decreases, we say that the codéast-decodableln this 0 0 (€16, b1g)
paper, we always refer to the dimension of a real sphevbere
decoder. b
In the MIDO case (9), whereS is a real PAM €1 = |[by]]
alphabet (and hendé&| is the number of PAM symbols by — proje, ba
in use), the worst case complexity j§|'6. A typical € = [bs — proj. byl|
improvement ins can be obtained if the left upper corner °
of the matrix :
ne () o - DoTilb
B> R by, — 3=V proj, byl
from the QR decomposition aB has the form and
* * * x 0 0 0 O projeb:<e’b>e.
0« xx 0000 (e e)
00 0000 The notation(-,-) stands for the usual inner product.
pii_| 000 %0000 ’ (12) Thus having the upper left part @ to look like (12)
0000 x x x means that
000 0 0 % % =% ) )
00 0 0 0 0 % =% (bi,bj>:0,1§2§4,5§j§8,
0000O0O0O0 % or equivalently, by recalling that, = «(H B;)
wherex denotes any non-zero element. Indeed, in this  _ (a(HB;),a(HB;)) = R(Tr(HB;(HB;)")).
case:

1) We start the sphere decoding by going through® sécond equality is true in general and can be shown
every combination of the 8 last real symbol8Y & direct computation:
99, - - -, g16 (We are not choosing the ones that give (a(A),a(B)) = R(Tr(ABY)). (13)
the minimal metric yet, we go through all the op-

tions since we do not know how the last 8 symbols We have now connected the decoding complexity to
will affect the total minimization problem). This the code design. The above computations showed that if

corresponds to treating the matrik®?, and has e 16 basis matrices;, ..., Bjs satisfy

cost|S°. 0=R(T(HB;(HB;)), 1<i<4, 5<j<8,
2) We then look at the first 8 symbolg, ..., gs,

corresponding to the matriR!!, and for every

possible choice of 8-tuplegyo, ..., g16), we de-

the worst case sphere decoding complexity is of the order
of |S|'2. This suggests further improvement: the current
process manages to separate the information symbols

code separately,, ..., g4 andgs, ..., gs thanks to ! )
the structure of?1-!, which has complexit|S|*. into two groups, which could be repeated. Assume that
: we could further have

Altogether, the above structure allows to decode the
PAM symbolsgy, g2, g3, g4 independently of the symbols 0 = %(Tr(HBZ-(HBj)T)), 1<i<2, 3<5<4



and We finally get
0=R(Tr(HB;(HB;)")), 5<i<6, 7<j<8. B = a(HX) = [by, by, b3, by],

3) As earlier, we start the sphere decoding with tHd since(b;, b;) = 0 for i # j, the QR decomposition
matrix 222 and go through all the possibilites forof B is of the form

the 8 last real symbolsgy, ..., g1, for a cost of (1 B

S5, B=|-B)(ch)=QR,
4) For the first 8 symbolg, ..., gs corresponding where

to the matrixR"!, we first separate, ..., g4 and

gs,-..,gs, after which we decode independently c = V/R(h)2+ S(h1)2 + R(h2)? + S(ho)?

{91,92}, {93,94}, {95.96} and{g7,gs}, each of

4 is a normalization factor which make&sg orthonormal.
these costingS|?. e

o - 0 The matrix R is indeed upper right triangular, with in
The worst case complexity is thenS|°[S|® = 4[S|™.  fact only zeroes above its diagonal. Thus the worst case
complexity by using the so-callduard-limiting, see [5, QAM alphabet, that is, of linear order.

Section Vi, p. 924 (1-2)]. In this case, the complexity Finding basis matrices with similar properties as those
will be 4]5%>, where [S] is the size of a complex of the Alamouti code seems a difficult task. The question
signal constellation. However, this is only possible whegg i, general to find families of matriceSB;, . .., Bx }

a square constellatiore g. Q*-QAM) can be employed, \yhich areorthogonalin the sense thaev(B;), a(B;)) =

i.e, the constellation is a cartesian product of two regl ; + j, and will keep this property even after multi-
constellations &.9. Q-PAM). plication by an arbitrary channel matri{. Let us start
modestly and wonder whether we could find such a pair

B. Examples from the ring of Hamiltonian quaternion®f matrices B, B’ € M,(C) whose orthogonality will

. . . resist a channel matrid € My, (C), wheren > k.
To illustrate the material explained above, let us st rsing (13), we need to check that

with the Alamouti code [6]j.e., codewords of the form
. . . 0= (a(HB),a(HB")) = R(Tr(HB(HB")")).
X:<x1 _%)_(gmgz _93“94) (a(HB),a(HB')) = R(Tx(HB(HB')"))

Ty T) 93 +igs g1 —igo As a first example, take
wherex, xo are QAM symbols ang = (g1, g2, 93, 94) g (% 0 and B’ — 0 —a3
is the PAM symbol vector. A decomposition into basis 0 i ro 0 )7

matricesB1, By, By, By is given by wherez, z, € C. These two matrices clearly satisfy the

orthogonality relation(a(B), a(B’)) = 0. Now pick an

X = g1B1 + g2B2 + g3B3 + g4 Ba, . :
arbitrary complex matrix

where o hy Iy
1 0 i 0 " \hy ha/’
! A direct calculation shows that
_ (0 -1 _ (0 Tr(HB(HB
B3—<1 0)’34_<¢0>' (HB(HB")")

= l’ﬂlﬂL’;h; — hgfL’gth’T + wlhgl’;hz — $2h4h§$>{
We assume transmission through a MISO channel de-— ;3 (z,hy23h%) + iS(21hgabhl)

scribed by the vector
so that

H = (hy, hy) R(Tr(HB(HB)) =0,

so thata(H B;), i = 1,2, 3,4, is given by independently of the matri¥.
As a second example, consider

b =a(HB1) = (R(h1),S(h),R(ha),S(ha))", "0 o

by=a(HBy) = (=S(hn),R(h),S(he), —R(h2))", o 0 0
T1*

bs =a(HBs) = (R(ha),S(he),—R(h1),—S(h1))7, B=1, o 5 0 |

by =a(HB)) = (—=S(ha),R(ha), —(h1),R(M))T. 0 0 0 x3*



0 —a2%x 0 0 (s = €*7/5 a primitive 5th root of unity, and consider

B = 5’62 8 8 0 the number fieldZ = Q(i, (5) over K = Q(i), given by
—Ty*
0 0 x4 O Q(i,C5) = {x = a+bGs + ¢ +dC3, a,b,c,d € Q(i)}.
and It is of degree 4i(e., of dimension 4 as a vector space)
I hi ho hs ha over Q(7). Let us assume that we want to encode QAM
~ \hs hg hy hg)’ symbols. Since they can be seen as elemeni[ihC

Q(i), we have that one elementin Q(, ;) encodes 4
We can similarly see thak(Tr(HB(HB')')) = 0. QAM symbols, namelys, b, ¢, d, as linear combinations
The notable thing however is that both examples aji¢ the given basis. The Galois group af(i, ¢5)/Q(0)
closely related to the Alamouti code (the first examplgescribes maps that permute and its conjugatesg,
being really included in it). This is not a surprise, sincg — 2 3 4 while fixing Q@). If o(¢s) = ¢2, we have
most of the work available on fast ML decodability trieghat
to actually exploit the code structure. To pursue our

investigation on fast decodability, we now need to focus o?((s) =G5, 0°(G5) = &, 0 (G) = G5

on algebraic constructions of space-time lattice COd?i%lding a cyclic Galois group. We now build an asso-
from division algebras. ciative algebrad based onZ. As a vector space4 can
be seen as a sum afcopies of the chosen number field
IV. SPACE-TIME CODES FROM DIVISION ALGEBRAS E of degreen. In our example, this gives

A. BaCkground A= Q(Zv C5) D UQ(Zv C5) D U2Q(’L., (5) D qu(i> (5)
Since the work of Sethuraman et al. [19], a standayghere {1,u,u2, u3} forms a basis and/ = u* must

algebraic technique to build space-time block codgg an element of the base fiel@(i), sayu = i. A

is to use cyclic division algebras over number fieldgyace-time block code can be obtained by considering
(that is, finite extensions of the fiel@). For the sake the matrix of left multiplication in this given basis. If
of completeness, we will start by recalling the forma} — ., + uz; + w22y + wdz3 € A, z0,21, 29,73 €

definition of a cyclic algebra, after which we will providegy(;, ¢;), then its corresponding multiplication matrix is
an illustrative example, rather than redo the whole theory,

which the reader can find in [19], or in the tutorial [22]. zo io(x3) ?02(332) 1:0'2(951)
Definition 4.1: Let & be an algebraic number field  x — | %1 (o) 202(953) ?‘73(952) (14)
and assume thak'/K is a cyclic Galois extension of vy o(a1) 02(5”0) 103(953)
degreen with Galois groupGal(E/K) = (o). We can z3  o(z2) o%(z1)  0*(zo0)
now define an associativ -algebra where the factori comes fromu* = i and o/, j =

1,2, 3, 4, are the elements of the Galois group, appearing
due to the non-commutative multiplication defined.4n

whereu € A is an auxiliary generating element subjed zu = uo(z) for z € E.
to the relationseu = uo(z) for all z € E andu™ =+ € Let C be the codebook formed by codewords of

K*, where K* denotesk” without the zero element. the above form. For it to be fully diverse, recall from
The elementy is often called aon-normelement due (3) that it is enough to have

to its rela_ltion to th(? invertibility of the elements 01 det(X’ — X") £ 0

Namely, if there exists no elememte E such that its

norm would beN x (z) = 7', wheret € Z. is a proper for X" # X" in C, or equivalently, by linearity since we

divisor of n, then.4 will be a division algebra [23, Prop.are considering space-time lattice codes

2.4.5]. This result is a straightforward simplification of

a theorem by Albert [24]. det(X) # 0
Space-time codewords are obtained by considerif@g X # 0 in C. This can be obtained by asking fot

matrices of left multiplication by an element of in to be a division algebra, property that depends on the

the above basis. choice of the value ofy (or v = i in our example). If
Let us see how the coding is done more concretdlyere exists no elemeint € Q(i,(5) such that its norm

through an example. We first need a number fiBldf is i or 2, i.e, NaGics) /o) (@) =4, or —1, then A will

degreen whose Galois group is cyclic. For example, takbe a division algebra [24], [23].

A= (E/K,0,7) = E®uE®u*E® - ®u"'E,



Let us check tha#d is indeed a division algebra. Notewhereos is the complex conjugation. This is@-central
for this purpose tha®((s +C5_1) = Q(+/5) is a subfield division algebra of inde®, whose cyclic representation
of Q(¢5). Suppose now that there exists an elemest indeed yields codewords of the type
E such thatVy; ¢.)/0@)(a) = i, then, by transitivity of

the norm (ml _?) )

T2 l’l
Nati.e/06(@) = Nogvs) 0Nt e /at,ve) (@) = wherez; are inZ[i] (that is, they are QAM symbols).
which implies the existence of an elemeht = This algebra is more commonly known as the Hamil-
/\[Q(MS)/Q(Z_’\/E)(Q) such that tonian quaternions

NQ(i,\/g)/Q(i)(b) — i, H={a+ib+ jc+ijd | a,b,c,d € R},

a contradiction [25]. wherei® = j* = —1, ij = —ji.

The case of a horm of1 is tougher though. However, . .
. Probably the most important property of this code
there are several ways to deal with it. We refer the reader :
: IS that, when used over a MISO channel, its worst
to [16, Section 8], where the proof used for the algebra . L .
: case decoding complexity is linear, as was shown in
D, can be used here verbatim.

. Subsection 1lI-B.
We have thus constructed in our example a fully- Let us now consider the division algebra

diverse(4 x 4) space-time code matrix. It furthermore has
the non-vanishing determinant property (see Definition Dot = (Q(i,V2)/Q(V?2), 0, —1) (16)
2.6), since the information symbols are restricted to alge- o _ )

braic integers ir., and hence the minimum determinanfom [7]. This is an index algebra with centeQ(v'2).

belongs toZ[i], yielding minx_ |det(X)| = 1 (cf. It can be turned into a space-time code by mapping the
[16]). elementz = a; + aas + uas + uCgas € Dy 10 @
We conclude with two important invariants of centrafodewordX given by
simple algebras. Central simple-algebras are algebras / o, 4 ay¢y  —a} — af(s 0 0
yvhose cente_r igC and which have_only trivial two-sided | 4. 4+ g,¢q al + a3 0 0
|d_eals. Cyclic algebras are particular cases of cent | 0 0 a —asCs —ai+aict |
simple algebras. We could have stated these definitioRs 0 az —asCs  aj —ay(g
only for cyclic algebras, but for the rest of this work, we o
will need them in more generality. wherea; = gsj1 +ag; € Z[i], j = 1,2,3,4. We can

Definition 4.2: Let A be a central simplés-algebra. Now write this in the form

The degreeof A is the integerdeg(A) = /dimg (A). 8
Wedderburn’s theorenis a major theorem in the X = Zngj>
theory of central simple algebras, which tells that every j=1
central simple algebra (and thus in particular every cyclighereg — (g, ..., gg) is the PAM symbol vector, and

algebra) is isomorphic to a matrix algebra over a centi@ls pasis matrices are
division K-algebraD.

Definition 4.3: The index of A is the integer Bi=diag(1,1,1,1), Bs = diag((s, (5, —Cs, —C3),
ind(A) = deg(D) whereD is the unique central division o L. e
K-algebra associated td by Wedderburn's theorem. 52 = diag(i, —i,1, —i), By = diag(iCs, —iCs, —iCs, iCx),

We have thaind(A) | deg(A) and equality holds if 0 —1 0 —¢
and only if A is a division algebra. B 1 0 B G 0
5= 0 —11° 7T = 0 <§ )
B. Examples L0 —Cs 0
Let us now consider a few well known examples of 0 i 0 ¢
division algebra codes, and see how they behave with i 0 iCs 0
respect to fast decodability. Be = 0 i , Bs = 0 —igg
The Alamouti code [6] can be seen from an algebraic i 0 —is 0

perspective as a cyclic division algebra _ ) )
The decoding complexity of this code for a MISO

D atam = (Q(4)/Q, 0, —1), (15) channel is2|S|* instead of the maximal complexity
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MISO code | matrix | center | index | |S|" (real) | max|S1" | \/ EMpEpDING CODES INTO MATRIX RINGS OF THE
DAlam (2 X 2) Q 2 S |S| ’

Do axd) | o | 2 sl SF HAMILTONIAN QUATERNIONS

A2 2x2) 1 Q 2 1] 1] We have so far discussed fast decodability of space-

TABLE | time codes via sphere decoding, and through several
CODE CONSTRUCTIONSALGEBRAIC PROPERTIES VERSUS  payristic examples concluded that codewords in rings
DECODING COMPLEXITY . . .
M;.(H), for somek andH the Hamiltonian quaternions,
are prone to offer orthogonality relations that induce
fast sphere decoding. Therefore our main interest is now
_ to study space-time codes that are subsets of the rings
|S®. Indeed, write the channel = (h1, ha, hs, ha) @S M, (H). This will be characterized by the ramification
(Hy, Hz) with Hy = (h1, hy) andHs = (hs3, hs), SO that of the cyclic algebra over which the space-time code is
. built.
B; 0
0 B»?

(2

HB; = (Hy, Hy) < ) = (H,B}"', HyB*?),

A. Embedding division algebras intt/;,(H)

whenceR(Tr(H B;(HB;)")) simplifies to Let K/Q be an algebraic extension of degnee We
then have that
R(Te(Hy B (BT HY) + Te(Hy B} *(B*)T HY)). m =1y + 2rs,
The basis matrices are closely related to those of thwéerer; is the number of real embeddings angthe
Alamouti code given in Subsection 1lI-B, and it is easy)umber of pairs of complex embeddings &t We call
using the known orthogonality relations of the Alamouthese embeddings thefinite primesof the field KX and
basis matrices, to see that the non-zero prime ideals of the riidd thefinite primes
of the field K. If the embedding is complex, resp. real,
R(Tr(HB;(HB;)")) =0, i =1,2,3,4, j=5,6,7,8, we call it acomplexresp.real prime. To each prime",
finite or infinite, corresponds a local field p, obtained
yielding an upper triangular matriR of the same form by completion of K with respect to the absolute value
as in (12), and consequently a decoding complexity wfduced byP (the same wayR is obtained fromQ by
2|S%. completion with respect to the usual absolute value).
Our final example is the division algebra Let A be a central divisionk'-algebra of index and
thus degree:. Consider

Ag = \/g ) 7_1 )
2 = (Q(V3)/Q.0.-1) P
wheres(v/3) = —+/3. This algebra is of index 2 with

. a central simpleK p-algebra, which is known to be
centerQ, and yields codewords of the form nespag

isomorphic to M, (D) for somer and some central
division K p-algebraD. We denote bymnp the index of
<$1 +aaV3 st x4\/§> ) Ap and call it thelocal indexof A at P. We say thatP
3t aaV/3 o —aaV3 is ramified in A if mp > 1
Wherez; € Z. However, as far as we know there is no L€t us define the spad@(C),, My x2,(C) by
ex_isting method to reduce the decoding complexity of G(C),, = {(B*, B) € Myyxon(C) |B € My (C)}
this code.

We already observed in Subsection IlI-B that from thendB* = (b};). Now AxgR is a semi-simplé-algebra,
decoding perspective, it might be beneficial for codesd can thus be written as a Cartesian product of simple
to inherit some of the special structure of the Alamousiubalgebras. Its centeris®gR, which is isomorphic to
code. This study of different algebraic code structurespies ofR or C: a copy ofR for each real embedding
seems to concur with the same conclusion, express¥ds, and one ofC for each pair of conjugate complex
now in algebraic terms as: a code should be a subsetbeddings. The simple componentsdibgR will thus
of M (H) for somek. However, which algebras exactlyhave these factors as centers, and will be either central
give fast decodability still seems unclear (see Table Bimple algebras oveR or C: those overC will be matrix
In the following section, we are going to answer thialgebras ove€, while those oveR will be either matrix
guestion. algebras oveR if A is not ramified in the corresponding
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real prime, or matrix algebras ovéf if A is ramified. where ¢* is the complex conjugation anen;(v) is
Formally, we obtain the isomorphism [26] a negative real number. The claim now follows as
(C/R, 0%, —mi()) = H. m
We point out that for rational humberns we have
ni(r) = r. Therefore a negative rational number is
always a suitable non-norm elementAf is a division

A@gR = M, ,(H)* x M,(R)" ™ x G(C), (17)

where w is the number of real places wheré ram-
ifies. Therefore each element id can be seen as a
algebra.

concatenation ofr matrices inM,(C), r; — w matrices _ i
in M, (R) andr pairs of conjugate matrices if,,(C),  Example 5.1:The algebra®,,; andD yia,, discussed
or alternatively as a matrix i/, < (C), recalling that above both fulfill the conditions of Proposition 5.2.
m =1+ 2. ThereforeD 4;4,, can be emebdded intdé/;(H) = H
The above isomorphism (17) implies an injection 2nd Port into Mo (H).
A diag(My, 2 (H)* x M (R)" ™ x G(C)™), (18) B, Embedding space-time lattice codes ittt (H)

where the diag-operator places the (n x n) block to ~ We have given in Corollary 5.1 the conditions for
the ith diagonal block of a matrix inV/,,,,(C). From a division algebraAd of index n to be embedded into
(18), we now see that it is possible to embed a divisidlY,,/»(H). To obtain a space-time lattice code, we need

algebraA into M (H) if and only if to select a discrete subset.df namely one of its orders.
. . We denote by the ring of integers of’, and similarly
¥ A= diag(M, 2 (H)™), (19) by O the ring of integers ofF.

Definition 5.1: An Ok-order A in A is a subring of
A, having the same identity element.d4sand such that
nA is a finitely generated module ovélx and generates
A as a linear space ovéf.

This choice is motivated by the following example:
' Example 5.2:Let E//K be a cyclic extension of alge-
braic number fields an@'/ K, o, ~) be a cyclic division
algebra, withy € K* an algebraic integer. Th&g-
module

namely we must have, = 0 andr; — w = 0. In
summary, we have that
Corollary 5.1: In order to be able to embed a divisio
K-algebraA into M,, ;»(H):
« The centerK cannot have complex places, that is
it must be totally real«; = m).
« Combined with the equation; — w = 0, we then
have thatw = m, so that all the infinite places of
K must be ramified inA.

Let us then suppose tha is indeed a totally real A=0p®uOp®---®u" 'Op

number field. We shgll now give asimplglfamily of cycliqs a subring of the cyclic algebrdz/K, o,~). We refer
K-algebras that fulfill the second condition above.  4.c fing as thenatural order [7]. Most space-time

_Proposition 5.2:Let A = (E/K,0,7) be a cyclic |atice codes built from division algebras [19], [9] have
division algebra, wherd? is a CM-field (€. E is @ paon fyrther restricted to this natural order.
totally complex field containing a totally real fielfly |, y0qretical considerations we will later mostly con-
such that[E : Eq] = 2). Letn,....nm be the Q- giger 0, orders (whereK is the center) but the con-

embeddings ofi’. If #;(v) is negative for anyy;, then . tion 1o coding theory is more visible if we consider
all the infinite places of4 are ramified. O x-orders a<Z-modules

Proof: Let us suppose that; is one of the infinite  pefinition 5.2: A Z-order A in A is a subring ofA,
primes in the fieldK and thaty; is the corresponding having the same identity element ds and such that
Q-embedding. Letk be the smallest possible positiveg , finitely generated module ovér and generatest
power such that* fixes the totally real subfield; of as a linear space ovey.

E. We then have [27, Theorem 30.8] The ring Z is a principal ideal domain and therefore

(E/K,0,—) @9 Kp, ~ (EKp, /Kp,, ok (), a Z-_order is not onlylfinitel_y gen_ergted asZamoQuIe,
(20) but it also has @&-basis. This basis is also@basis for

where ~ refers to equivalence in th@rauer group the algebraA. In particular aZ-basis of an order ind

B(Kp). BecauseP; is a real prime, we can identify 1@Sdimg(A) elements.

Kp andR, and similarly, EKp and C, so that from Remark 5.1:The ring Ok is a finitely generated.-
(203 we get(c*) = Gal(C/R). Iéinally module. It is also known thak' is generated as a linear

space ovef). These results reveal that ady-order is
(E/K,0,—7) ®q Kp, ~ (C/R, 0", —ni(7)), also az-order.
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Let us again consider a general division algebta  Proposition 5.4: Let us suppose that we have a lattice
having a centerX, where[K : Q] = m, and lety) be space-time cod€ C M;(C) N M, »(H), wherek is
the embedding ofd defined in (18). even. We then have that

Proposition 5.3:Let A be aZ-order of A. Thenwy(A) . 9
is amn? dimensional lattice in\Z,,,,(C). If dimg (C) < &7
Consequently, the dimension rat& of C as given in

{av, - dmns} Definition 2.2 is at mosk.
is aZ-basis of the ordeA, then Proof: We can see that, as a subspaceVip(C),
the ring of Hamiltonian quaternions has degded=ach
{¥lar), -, lamn2)} matrix in M, »(H) consist of(k/2)? freely chosen(2 x
is aZ-basis of the lattice)(A). 2) blocks that have the inner structure of Hamiltonian
For any non-zero element of the order we have  quaternions. Therefore we have
2
detnin (¥(A)) 2 1. dimp (Mj, 5 (H)) = 4 <§> = k2.
In particulary(A) is a space-time lattice code that has
the NVD property (see Definition 2.6) and dimension u

rate mn2 /mn = n. If we compare the rate of ¢)(A) with this result, we

Proof: TheZ-basis ofA hasdimg(.4) elements. We 9t n versusnm, wherem = [K : Q. There is thus
have thatA is of indexn and thus degree, so it is of @ trade-off between fast decodability and rate. However,

dimensionn? over the centers. The centerk on the BY choosing the center of the algebdato beQ, we can

we get thatdimg(A) = mn?. Let us now consider Remark 5.3:We warn the reader here. The theory

a Z-basis {ay, ..., amn2} Of A. While it is clear that developed so far is not explicit in a sense that while it
the set{y)(a1), ..., ¥ (amn2)} does generater(A), it is doe€s give_ us a good description of hoyv_ to construct the
not directly obvious that)(a, ), .. . , ¢ (ams>) are linearly Needed division algebras (see Proposition 5.2), we have
independent oveR. For this result and for the claim onnOt given an explicit method to produce the embedding
det,in (1(A)), we refer the reader to [26]. (18). In particular, we have no guarantee that the Igft
According to Definition 2.2, the dimension rafg for egular representation would have anything to do with
the codey(A) is given by the embedding (18). In Section VII and the following
] ) parts of the paper, we will show that there are methods
R, = dimg (4(A)) _mn to overcome this problem and that the left regular
nm nm representation can work as a good starting point.
dimensions per channel use. [
Remark 5.2:Due to the above connection between ay/| BouNDS AND EXISTENCE RESULTS FOR MATRIX
order and a lattice, we may equally call a lattice code LATTICES IN M (H)

anorder code : " D
So far, we have given conditions for a division central
If we now concentrate on codes that are embeddab)| .
: : o -algebra.A to be embedded intd/;(H) and shown
into My (H), we need to restrict to & -central division . : .
. . how to obtain fast-decodable space-time lattice codes
algebraA of index n, where K is totally real and all . : :
o o om orders of A. In this section we are going to
the infinite places are ramified. We then get from (19). . .
: ive bounds and existence results for such codes, taking
an embedding . . o
into account an extra code design criterion, namely the
¢ 2 A diag(M,, o (H)™) C diag(M,(C)™). normalized minimum determinant of a lattice code.

By taking an orderA C A, we get a lattice code ] o )
A. Normalized minimum determinant of an order code

Y(A) =241 & & LAmn> C My (C), The minimum determinant dgt,, (C) is a widely used
where A; € Mnm/Q(H)1 i = 1,...mn?, forms aZ- concept to predict the performance of a finite space-time
basis of the lattice. Its dimension rate is similarly It codeC, since it determines its coding gain. In order to
is clear that forcing a space-time code to be embeddegmpare two finite space-time codés C, € M, (C),
in M, »(H) imposes an extra constraint. The next resudne must first check that
characterizes this constraint in terms of the dimensione both codebooks have equal number of elements:
rate. |Ci| = |C2| and
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o both codes are scaled so that the maximuaf normalized minimum determinanfC), obtained by
power used is equalmax{||A||%|A € C,} = first scaling the lattic&€ to have a unit size fundamental
max{||B||% | B € Cs}. parallelotope and then taking the minimum determinant

In the case of infinite lattice codes, due to the discretef the resulting scaled lattice. A simple computation
ness of the set, a non-zero minimum determinant aufyoves the following.
matically yields the NVD property. Among two NVD Lemma 6.1:Let C be a K-dimensional space-time
codes using the same maximum power, the one wigtice in M, (C). We then have that
higher minimum determinant will have better coding _ ‘ n/K
gain for the infinite lattice, and will thus provide us with 5(C) = detuin (C) /(m(C))"*.
a bound on the coding gain of any finite constellation The normalized minimum determinant predicts which
carved from it. Now given an infinite space-time latticéattice is likely to produce the finite codes with the
codeC, a numberR of codewords, and a fixed poweriggest minimum determinants, while using spherical
constraint, there are different ways to pick a finitgehaping.
constellation that may lead to different coding gains.  Cubic shaping. We also consider another kind of
The two most typical encoding methods are linear dishaping, called cubic or orthogonal shaping.
persion encoding (cf. the discussion underneath EquatiorDefinition 6.1: We say that a space-time latticein
(2)) and spherical encoding. These encoding methotis, (C) is orthogonal or rectangular if the corresponding
usually result in different constellation shaping, that caeal latticea(C) has a basis that is orthogonal according
be either cubic (more generally orthogonal) shaping, pr- the normal inner product of the spaB&™ . If each
vided the lattice is orthogonal to start with, or sphericalf of the basis vectors are of equal length, we say that
shaping. The two possible shapes are described belowiis orthonormal.
more detalil. When the lattice is orthogonal, there is no point of
Spherical shaping.Just as for Gaussian channels, themploying spherical shaping (21), for we get the same
most energy efficient way to choose codewords fromrasult by using simple linear dispersion encoding (see
given lattice is to use spherical shaping. This meatise remark in the end of this section) as described after
that we choose the needed number of lowest enefgguation (2).
codewords from the space-time lattice cadend then  One can get bounds for the normalized minimum
scale the finite codé(r) given by determinant also in the case of cubic shaping, as for

example:
Cr)={AlAeq|lAllr<r}pcC (21) " proposition 6.2:[28] Let us suppose thaf is an

to meet the power constraint, wheredepends on the orthogonally shaped 16-dimensional space-time lattice
number R of wanted codewords. For large code size§0de inMy(C). We then have that

this approach will roughly give lattice points inside&

sphere, wheré is the rank of the code lattice (=number 5(C) < 16 0.0625.

of dispe_rsion matrices). . In the particular case whe& is an order code, that
To fairly compare two finite code§,(r) and Cy(r), g C = ¢(A), with A an order of an index: division

one should first scale them so that both the Iattic%?gebraA _ (E/K,0,7) and [K : Q] = m, we know
have a fundamental parallelotope of volume 1. Since ye& Proposition 5’ 3’tha1‘/)(A) is 'an an-d’imensional

consider a space-time lattice code= M,,(C), to define lattice in M,.,(C) with detin (4(A)) = 1, so that
its volume we first map it t&R?"" via «, yielding the e " '

lattice «(C) whose basis iS«(By),...,a(Bk)}, ob- §(¥(A)) = 1/(m(C))/™
tained from the basiéB;, ..., Bk} of C. The generator
matrix M of «(C) is M = (a(By),...,a(Bk)), where
a(B;) are column vectors, and we define the meas
(or volume)m(C) of the fundamental parallelotope o
the space-time latticé by

and the normalized minimum determinant only depends
§ely the volume of the fundamental parallelotope of the
forder code.
Remark 6.1:Note that the fact whether one uses
linear dispersion encoding (i.e., a symmetric coefficient
m(C)? = det(MMT) = det((?RTr(B,—B})) . set) or spherical shaping (i.e., an optimized coefficient
i j<K set) has nothing to do with the shape of the original
To combine the notion of minimum determinant witHattice. Even though the lattice is not orthogonal, we can
that of scaling the volume of the lattice to evaluate themploy both encoding methods. If the lattice is not badly
performance of finite constellations, we use the notimkewed, then the difference between the two methods is
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usually not very big, whereas for highly skewed latticeEhis reveals that we only have to consider the term
one may see a gap of several dBs.
For orthogonal lattices, both methods will give the Nicja(d(A/Ox))

same result, provided that the target constellation sizeds d(Of /Z)" is fixed (when K is fixed). The

suitable for a symmetric coefficient set to start with. Ox-discriminant d(A/Ok) is an ideal in O, but

Nk /g(d(A/Ok)) can be seen as an element ih

B. Bounds and existence results Therefore we can discuss the size of ideal<gf. By

: . . . this, we mean that ideals are ordered by the absolute
Since the normalized minimum determinant of an 0(/- lues of their norms t@. For example, 0k — Z|i]

der code only depends on the volume of its fundamenw say that the prime ideal generatedzby i is smaller

pargllglotope,_ one may wonder whether, given a Cen}ﬁ%n the prime ideal generated Bybecause they have
K, it is possible to find the smallest volume an ordehrOrmS 5 and 9, respectively

inside any d'V'S'.On algepra ofa given Indexcan have._ We are now ready to state the bounds that characterize
To answer this question, we flrst_furt_her cha_racte.rvtﬁe best order codes in terms of normalized minimum
the volume of the order by connecting it to an InV"’m"’“z]tet(—:‘rminant. The hypotheses take into account that the

of the order. -
" . _ order code can be embedded intf),(H), for somek.
Proposition 6.3:[26] Let A be aZ-order in. 4 and let In the following, we use the notatio? || n which

1 be the embedding (18). We then have that means tha? dividesn, but 4 does not.

m(¢Y(A)) = /|d(A/Z)), Proposition 6.5: Let .4 be aK-central division alge-
. S bra of indexn, 2 | n, whereK is a totally real number

[27], [16] for an exact definition), and further that | ot ys suppose that all the infinite primes are ramified
1 1/2n in A.
d(p(A)) = <7> If 2 and2 | [K : Q], then the minimum
(¥(A)) AT | n | [ QJ

discriminant of A is
Clearly the smaller the absolute value of the k(k—1)
discriminant of an order is, the greater the normalized (P1P,) .
minimum determinant will be. If 4| n then the minimum discriminant ofl is
Inside a given algebra th&-orders having the smallest n(n—1)
possible discriminant are calledaximal ordersAll the (P 1%) .
maximal orders of a given division algebra share the 2 || n and2t [K : Q], then the minimal discriminant
same discriminant. of Ais
While eachO-order is alsoZ-order, the opposite Pln(”_l)p;(k_l)‘
does not have to be true. However if Zorder A )
also is anOx-module, it is anO-order and itsO- Proof: The proof with related background as well

discriminantd(A/Oy) is related to itsZ-discriminant @S More general bounds can be found in Appendm.
by the following transitivity formula: Example 6.1:Consider the question of buildingla-

Lemma 6.4:Let A be aK-central division algebra of dimensional lattice code in/,(C) with the best achiev-
indexn and letA be anOx-order. If A is a Z-order in able normalized minimum determinant. The order code

A, then (M) gives anmn?-dimensional lattice code if/,,,,,(C)
' . for any orderA. To havenm = 4 andmn? = 16, the
d(A/Z) = Nk o(d(A/OK))d(Ok | Z)™, only option is to choosen = 1 andn = 4. According

whered(Og /Z) is just the usual number field discrim-tq Pr_op_osmon 12.3, we haV(_e _th_at the smalles't possible
) : discriminant for aQ-central division algebra of index
inant of the extensio’/Q.

; . __is,212. 312, Let us now suppose that
To summarize, we have just shown that the normalized 3 PP

determinant A= (E/Q,0,7)

S((A)) = 1/(m(c))1/“ is the algebra having a maximal ordeér with the
o promised discriminant. According to Proposition 6.3 we
is given by have that

1

1/2n ) 1 1
S((A)) = <]NK/Q(d(A/OK))d((’)K/Z)"2]) L m((A)) = 65 and S(i5(A)) = (@) — 0.068...
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Proposition 6.5 tells us that we can achieve this boumg get
even with al6-dimensional lattice im/,(C) N Ms(H). »

In [10], the authors managed to build é&dimensional m(y*(A)) = VId(A/Z)|
lattice code IA-MAX in M4(C) having a normalized gpq
minimum determinant equal t0.1361.... We however 1 1/2n
conjecture tha.068.... is the best possible minimum 5(¢* (7)) = <M> :

determinant for a lattice id/4(C) N Ma(H). _ _
Proof: Under the assumption that the embeddings

and the maximal representation are chosen as presented
the proof of these claims is verbatim the same as for
So far our study has been mostly theoretical. Noroposition 6.3 and can therefore found from [26]m
explicit constructions resulting from the mapping18)  unfortunately in the proof of the following proposition
have yet been given. We have only proved that th@e have to use some notions not defined in this paper.
afore described matrix lattices with NVD exist. Let us proposition 7.3:Let us suppose we have an index
now suppose that we havera-central division algebra ;, (-central division algebra and let denote the left

D = (E/K,0,7), where[K : Q] =m and[E : K] =n. regular representation. If we have such a real matix
There existn Q-embeddingss; from K to C. For each that

VIl. EXPLICIT CONSTRUCTION METHODS

B; we can find such an embedding : £ — C f[hat MoD)M™ C M, 5(H),
oi|k = Pi. Let us now suppose thdb,...,0,,} is a
set of representatives of embeddings then 1 /2m
By using the left maximal representation we get an -1y _ 1
: S(Mp(A)M™") =
embeddingp : D — M, (E) C M,(C). Let us suppose |[d(A/Z)]

that a is an element ofD and A is the corresponding

: _ Proof: We will give the proof in the case where the
matrix ¢(a). We then get a mapping

index is 2. The generalization is obvious and we will

V* 1 D = Myspm(C) (22) meet all the needed ideas already in this simplest case.
o _ Let us suppose that¢(A) has a Z-basis
which is defined by {Ay, Ay, A3, Ay}. We denoteB; = MA;M~' and

set B = {(Bi,...,Bs}. We can flatten the matrix
B; into a 4-tuple L(B;) by first forming a vector of
We now have the following explicit version of thelength4 out of the entries ofd; (e.g. row by row). The
previously defined embedding (18). following identities are now easily seen
Proposition 7.1: Let us suppose thal is aZ-order in

a — diag(o1(4),...,om(4)).

, N BT
D and that)* is the embedding (22) defined above. Then L(B:)L(B;)" = Tx(B:B; ) (23)
Y*(A) is amn? dimensional lattice inV/,,,,, xm(C). FOr and
any non-zero element of the ordérwe have L(B,-)L(BJ»T)T = Tx(B;B)). (24)
detin (9" (a)) = 1. The Gram matrix of the latticdZ¢(A)M ! is
However, in general we might loose the connection G — (?R(Tr(B-BT)))‘-*» .
vy =1

between the volume of the fundamental parallelotope
of the order code)*(A) and theZ-discriminant of A. Both B; andB]T. do have Alamouti structure and therefore
However if we can choose the left regular representatigg qoes alsd,; B. This reveals thalr(B;B]) € R and

(2 . 7 7

and the embeddings;...,o,, correctly we have the e can omit taking the real part from the Gram matrix.
following. Let us suppose that we have such a CemerAccording to Equation (23) we can now write
K and an index: division algebraA that -
N o _ . G = (L(B)L(B))")i ;1 = LIB)L(B)',
A®@qR =M, (H)* x M,(R)"™ x G(C)".
. . _ . where the rows of the x 4 matrix L(B) consist of the

Proposmcln_ 7.2:Letus suppose that is aZ-order in yectorsz(B;). A simple permutation of the columns and
Azand thay)* is the previously defined embedding. If Weyjementary properties of determinants give us that
can choose, ..., 0, and a left maximal representation

¢ so that |det(L(B))det(L(B)")| =
P*(A) C diag(M,2(H)* x M, (R)" ™ x G(C)"), |det (L(B))det(L(B)")| = |det(L(B))det(L(B)")],
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where L(B') is a matrix with the rowsL((B;)T). Ac- of the paper was just an instance of the general theory
cording to Equation (24) we now have developed above.
Remark 7.1:These two examples may give us a little
LB)L(B)" = (Tr(MAiAjM_l))iFl' too rosy picture of the power of c‘))ur theo?/y.gln both cases,
A general result on matrix traces tells us thdhe embedding in Proposition 7.1 exactly imitated the
Tr(XCX 1) = Tr(C) for any matricesC’ and X. This embedding (19). On top of that this representation also
result combined with the definition of the discriminanted to codes with reduced decoding complexity. How-

now gives us that ever, we do not have any guarantee that either of these
7 e things will happen more generally. It heavily depends
L(B)L(B)" = (Tr(MAA;M ™)) =1 = on the chosen maximal subfield, non-norm element and
even on the chosen generator of the Galois group. In
(Tr(AiA)))} oy = VA(A/Z). 9 group

Sections VIII and X we will meet situations where
B the left regular representation does not directly give us
Example 7.1:Consider from (15) the division algebrathe required embedding even when the division algebra
) has the correct algebraic structure. Yet, in all these
Daam = (Q(0)/Q, 0, 1), cases a simple manipulation applied after the left regular
which has index 2 and centé). The fieldQ has only representation will give us an embedding to the matrix
one infinite placeco and according to Proposition 5.2ring of quaternions and codes that have reduced decoding
it is ramified in the algebra 4;,,,. We thus have an complexity. While this may seem to be accidental, there
embeddingD ;... — H given by (19). If we choose are some underlying algebraic principles that explain the
a Z-order A in Dajam, ¥(A) € H C My(C) is a4- sudden “luck” we encounter, see Section XI.
dimensional lattice code.
Here the left regular representation directly gives us V!Il. FAST-DECODABLE 4 x 2 MIDO CODES
an explicit version (see (22) and Proposition 7.1) of this So far, we have developed an algebraic theory of fast-
mapping. As demonstrated in the beginning of the papdgcodable codes through different characterizations and
it also gives us a fast-decodable code. bounds. We are now finally putting our theory into use
Example 7.2:Let us consider the example we gave ito give a few different coding strategies that lead to fast-
the very beginning of the paper. The cyclic algebra decodable codes. We start with MIDO codes for 4 Tx
, antennas, with the following properties:
Dort = (Qi, V2)/Q(V2), 0, 1), « They are 16-dimensional lattices i, (C).
is an index2 division algebra with cente@(v/2). Here  « They satisfy the NVD property.
o is simply the complex conjugation. The general theory « Their decoding complexity ranges froft|™ to
tells us thatD,,; can be embedded intbf, (H). |S|'6 when a real alphabet of sizé| is used.
Again the mapping from Proposition 22 will directly
give us an explicit version of the embedding in (19A. A family of fast-decodable MIDO codes withas a
The fieldQ(v/2) has twoQ-embeddings3;, 32, where center
A1(v2) = V2 and 55(v2) = —V/2. The corresponding We give here an example of a MIDO code built
Q-embeddingsr; and o, are defined by the equationgollowing step by step the theory developed so far. The
o1 = id, 03(i) = i andoy(v2) = —v/2 (or equivalently starting point is to consider a division algebra that can
02(Cs) = —(s)- The natural ordeA consists of elementshe embedded intd//;(H) via the embedding) (18).
T = ay + az(s + uaz + ulsas, Wherea; € Z[i]. The left According to Section V and Proposition 5.2, we consider

regular representation now gives us a Q-central division algebrad — (E/Q,0,7) of index
a1+ apls  —aj — aiGE 4, where E' is a CM field andy a negative non-norm
(z) = (CLg +asls  al +ayc ) : element, namely
It is th task to see that cl) [F: Q] =4,
is then an easy task to see tha ¢2) 7,72 & Ny ("), |
oo(a(z)) = (M —a(s —ag+agly c3) GalE/Q) = (o) with o2(f) = f*, where f*
2 C\ag—asls  af —a3¢s ) stands for the complex conjugate ff and

. . c4) y<0.
In particular both and are elements in . .
P a(x) 72(e(2)) One instance of such an algebra is

H and Proposition 7.2 can be applied. These results
reveal that the example code we gave in the beginning Dido = (Q(¢5)/Q, 0,—8/9),
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whereo is given byo(¢s) = ¢3. The prime2 is totally The minimum determinant of the code stays un-
inert in the extensio®({5)/Q and therefore [16, Lemmachanged since the above transformation is actually just a
11.1]1D,i4, is a division algebra. conjugation by a real matrix/. Let us now suppose that
Let Op = Zwy & Zw, & Zws & Zw, be the ring of we have a maximal ordek of the algebraD,,,;4, (such
algebraic integers of. The left representatiop* of an order can be found by using the computer algebra

Dinido NOW Yields system Magma [29]). Now the new code obtained from
. . this maximal order is\/+*(A)M~!, and a direct calcu-
v o (ya) Y3 Yo (y2) . lation reveals that this code lattice meets the normalized
y2 (o) B Va(y?’)* : (25) minimum determinant bound(¢(A)) = 0.068... (cf.
vs  o(y2) Y1 70(3/4)* Propositions 7.2, 7.3, 6.5, and Example 6.1).
ya  o(ys) vz o(y)

To make the code suitable for PAM modulation, we

where y; = v;(94i—3, 94i—2, 94i—3,94i) = gai—3wi + further describe a modified version of this code that will

Gai—ow2 + gai—zw3 + gsws and g4—; € Q for ¢ = have an almost rectangular shaping. The ring of algebraic

1,2,3,4, j = 0,1,2,3. If we pick up an orderA from integers inQ((s) also has &-basis{1 — ¢, ¢ —¢2,¢? —

Dmido, theny*(A) is al6-dimensional lattice code with ¢, ¢3 — ¢*}, where we have abbreviateg = (. The

the NVD property from Proposition 7.2. elements in the code matrix (27) now become, after
We can prove that the discriminant of this algebrrther restricting the coefficientg to Z:

meets the bound of Proposition 6.5, but even if we

choose a maximal order from this algebra there is no Yi = Yi(9ai-3, 9143, Gai~2, 9ai)
guarantee (because we have not fulfilled the conditions = gai—s(1 = Q)+ gui—2(C— ) +
of Proposition 7.2 yet) that this small discriminant would +94i-1(¢% = ) + g0 (3 — ¢Y)

result into good normalized minimum determinant.

This is because we now face here, for the first time, tiqad
problem that the embedding* from Section VII does N 3 3
not directly give us an embedding infd, (H), although o) = gu-s(1—¢ )4+ 942_2(44 42)
Proposition 7.1 promises that such an embedding exists. +94i-1(C = ¢7) + 94i(C" = ¢7).
Luckily, we can perform a series of simple manipulationg,

starting from the left regular representation that wil.}l 16-dimensional lattice code in/>(H). We note that
transform the code matrices into a correct form and g, nhoice ofy = —8/9 prevents this order code from
the same time will recover the connection between theiny 5 natural order. However, after multiplication by
discriminant of the algebra and the normalized miNIMURL yhe resulting lattice code will be included in a natural
determinant of the lattice. order, thus inheriting the NVD property. The geometric
After swapping structure of the code is relatively close to a Cartesian

get a set of matriceXrp a, (v}, y5, ¥4, yy) forming

1) y2 andys, product of fourA,-lattices (see [30]), therefore we call
2) the 2nd and the 3rd column, and it the A, code. This code was also proposed for the DVB
3) the 2nd and the 3rd row, Consortium’sCall for Technologies for DVB-NGHB1].
we get the matrix The variablesgy;_; in each of they, range over
 voly)) o(ys)* a certain PAM set, so that the code encodes overall
l;; %y/i Va(lylg) ’Ww(l?f;)* 16 independent PAM symbols. In other words, a PAM
! . |- 26) vector (g, ... is mapped into &4 x 4) matrix
ys i o(n) vo(y2) (26) (91,---,916) pp d4 x 4)
ye Yz o(ye)  o(y)” 16
Next we perform the following energy balancing trans- ; 9:Bi

formation by distributing the effect ofy| more evenly. _ .
By denotingr = ||'/4, we finally get a code consistingWhere the basis matrices; of the code are

of matrices of the desired type: Bl = Xppoa,(%,(1,0,0,0),0,0,0),
XFD(y17y27y37y4) (27) B2 = XFD7A4(y£(0717070)a070a0)a
K —r2y; =130 (ys) —ga(ys)*
B Y2 Ui ro(ys) —r°o(ys)* '
- fry3 _r3y§ O'(yl) _7'20'(2/2)* : Bl6 - XFD,A4(O707 O7y£1(07 0707 1))
rys  orys rPo(y) o(y)*
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A direct calculation shows that Let us first repeat a remark made above, namely that
-1 . . .
_ W Q¢+ ¢ 1) = Q(V5) is a subfield ofQ(¢5). As a first
R(Te(HB;(HB;)") =0 puncturing, we restrict ourselves to elementsQitn/5)

for 1 <i<4and5<j <8, whereH is a (2 x 4) instead ofQ(¢5). Note that since?((5) = gé,we further
channel matrix. This is exactly the design criterion drave
Subsection IlI-A described by the steps 1-2, yielding a ) R O |
complexity of | S|'2 for the codeA,. TG HGE)=GHG =6 46

We can perform yet another change of basis that wihd thusQ(v/5) is fixed by 2. This yields a codebook
enable us to take advantage of the steps 3-4 descripectonsisting of codewords of the form
in Subsection IlI-A. The new basis

1 1 2 .9 xg io(x3) iwe io(xq)
1 C+¢ ¢=¢ ¢=¢ 1 x1  o(xg) ixs io(xa)
9 2 I 2 Y 4 X = — . (28)
V5| 22 o(x) =z do(x3)
will result in a complexity|S|'°, reduced by as much z3  o(x2) =1 o(xo)

as 37.5% from the full complexitys|™® of a general It is now enough to notice that we are working in

mIDO .C(.)de' H(()jw?ver,_ It 'St not an 'ﬂt?ﬁral t;]as'ts.l’l henGge same field extension as for the Golden code [25],
€ minimum determinant 1s smaf though st nonFneaning that we can use the same shaping technique.

vanishing.

_ : _ _ Denote:

The resulting lattice has almost cubic shaping, but, due
to the coding gain loss, the performance is approximately ) — 1+5
1 dB worse than that of thel, version. The promised 2
complexity reduction is due to the fact that the first two 1-+5

) . o(f) = =1-0,

basis elements are real, while the last two are purely 2
imaginary. Hence the relations given by the steps 1-4 in o = 1+1i—16,
llI-A are all satisfied. ola) = 1+i—io(0).

Remark 8.1:To the best of our knowledge, there is
no guarantee that an integral basis consisting/@freal Every entryz; in the above matrix is now taking the
andn/2 purely imaginary elements even exists. form

Remark 8.2:The matrix manipulations given in this zj = a(aj +b;0), 7=0,1,2,3,
section may also seem to have a somewaathoc
feeling. Yet we will see in Sections X and Xl thatVherea;, b;  Z[i] are chosen to be QAM symbols. We
this strategy can be used far more generally to give {{4!S indeed get a MIDO code carrying 8 complex QAM
embeddings ta\Z;, (H). symbols, with unitary encoding matrix yielding the cubic

Remark 8.3:We also simulated the maximal ordeShaping property. The factof is used to normalize the
code from this algebra achieving the discriminant boufinimum determinant to one.
and the 4, code under spherical shaping. Both codes A straightforward calculation gives that the volume of
had equa”y good performance, gaining almost 1 dBe fundamental parallelotope of this COdeali]S- 28. At
Compared to the |inear|y disperseﬁ_ It seems that the the same time, the minimum determinant of the code
A, code did inherit the good performance of the optimé 1. If we now scale the cod€s with (55 )"/16,
maximal order code. the resulting code lattic€; = (z45)Y/1% - C3 has a

fundamental parallelotope of volume We now see that

. . the normalized minimum determinant of the latti€gis
B. MIDO codes from a bigger center through puncturing e

We now adopt a slightly different approach to the [( 1 >1/16r 1

design problem of MIDO codes via puncturing of MIMO 51.98 20°

codes. We start from the matrix (14)

Comparing this to Proposition 6.2, we conclude that the
normalized minimum determinant of the co@egis very

zo io(x3) io?(wa) io>(x1)
% close to the optimum minimum determinant of orthogo-
)

)
T O'(x()) 1'02(353) ia3(ac2
T9 Jgacl) o%(xg) io3 (w3

vs ol om) oz nally shaped MIDO codes. The good performance of this

code once again suggests that it is favorable for the code
and puncture it in two different ways. performance at low SNRs to maintain the cubic shaping.
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Take again a codeword We perform the following puncturing and restriction of
coefficients. Takerg, z1 of the form

xg io(xg) ixe do(xy)

z1  o(xo) idxg io(x2) a+ibC + cC? +idC3, a,b,c,d € Z

xe o(x1) xmy io(ws) ) . .

z3  o(za) w1 o(xo) so thato®(zg) = z¢*, 0°(z1) = x1*. For z2 and z3,

take instead
and multiply both the 3rd and 4th column bé_/l, where

(s = €%7/3 is a primitive 8th root of unity. Then multiply a(144)+b(1—i)¢+c(1+4)¢* +d(1-i)¢?, a,b,c,d € Z
the 3rd and 4th row this time bys. Note that this to get this timeo?(zs) = —o*, 02(23) — —as*. This

of course brings the matrix entries out of the algebra s in a codeboo&, with codewords given by
we started with, but will do this without changing the 2

determinant. We further note that we can use= —i zo io(r3z) —xo®  dio(w1)”
instead ofy = 4, since—i is not a norm. The proof _ [ #1 o(z0) —a3" —0(582)* (30)
of this fact is similar to that of the non-norm element 2 o(r1)  x* —o(z3)”
i (cf. IV-A), and follows from the same argument of 3 o(z2) 11" o(w)*

the transitivity of the norm. We have to show that thergy, easy computation shows that the 1st and 3rd row,
cannot be an element with normi overQ(i, v5)/Q(i).  resp. the 2nd and 4th row, are orthonormal. By permuting

If there were an element with Ny 5 /0)(@) = =i, the 2nd and 3rd rows and columns resp., we get
thenia would have norm
Xe, (0, 21,22, 73) =

B/ (@) =i v —a} io(xs) io(z1)”
acontradlctlon Again for the caseJ(wfQ Vo (@) = x2 x(E o(z1) O’(I‘g): (31)
7? = —1 we refer the reader to [16, Section 8]. x1 —xy  o(xg) —o(z2)
We now obtain for the codebooks consisting of r3  x]  o(r2)  o(xo)"
matrices which clearly exhibits the Alamouti block structure of
zo —io(z3) —(sr2 —(so(r1) the code.
1 o(wo) —Csrz —(so(x2) (29) As previously for the A;-code, a PAM vector
Gz2  (so(z1) o —io(zs) |’ (91,--.,916) is mapped into g4 x 4) matrix
(sz3  (s0(z2) T o(xo)
Let us denote byeq, co, c3 andcy the 4 columns of ZgiBi’

the above matrix. It can be easily seen that the above
manipulations result in having columns 1 and 3, and\ghere the basis matrices; are
and 4 satisfying

T

B = X X 1,0,07070’0707
cle3 =0, cley =0 1 ¢, (o ) )

B2 XC2(£0(0717070)707070)7

without changing the shaping. This construction thus

increases the “orthogonality-likeness” of the columns of '

the code without altering its other properties. Though Big = Xc,(0,0,0,23(0,0,0,1)).
this transformation does increase the number of zeroes

in the R-matrix of the QR decomposition, it does not

reduce the decoding complexity as defined. This is dueAgain & direct calculation gives

_the fact that, albeit the above relations r_esemble the real %(Tr(HBZ-(HBj) ) =0
inner product, the vectorks actually consist of complex
elements. for 1 <i <4 and5 < j <8 and a complexity ofS|*2.

We now propose another puncturing, which focuses
this time on having orthonormal columns, in order g The Srinath-Rajan (SR) code
have provable fast decodability. SinQ&(s, i) = Q({20),
where ¢ = (y = €27/20 is a primitive 20th root of
unity, we can alternatively take as basis ¢, 5) the
set{1,¢,¢2,¢3}. An elementz is then written as

So far, the best performing fast-decodable 2 code
has been the code based on stacked CIODs proposed
in [5]. The real and imaginary parts of the encoded
symbols are separated in a careful way, so that when
r=a+0b(+cC?+de3, a,b,c,de Qi) a rotated 4- or 16-QAM alphabet is used, the code
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MIDO block error rates at 4 bpcu
T T T

has high coding gain. It is moreover conjectured th i
the code has the NVD property, but this has not be
proved. Before rotating the constellation, the code |
equivalent to transmitting four independent Alamou %
blocks A, B, C, D:

T T
NC (FD,punct.)
—%— NC (FD,A4)

— © —NC (shaped)
—&— BHV (FD,shaped)
—&— SR (FD,shaped) [
— % —NC (FD,A4,spher.)
IA-MAX

107k

A (B
X SR unrotated— {8 C D )

where a primitive 8th root of unitys has been added in
order to maximize the coding gain of the rotated cod 1w
Because the blocks are independent prior to rotatic
the unrotated code does not have full diversity. For th |
reason, getting a proof for the possible NVD by using tt

theory developed in this paper does not seem possib o

107

Block error rate

If we ignore the constargg, the code is exactly of the = @# = ¥ e * 7 ® =# 2

same form as the codes proposed in this paper (except
possibly for the NVD), as clearly Fig. 1. Comparison among different MIDO codes at rate 4 bpcu.

< 40 ) € My(H).
from 16 dB. The Srinath-Rajan (SR) code with a rotated

Adding the constanfs does not affect fast decodability,4-QAM constellation wins the BHV code by a fraction
but helps to maximize the coding gain. of a dB. The spherically shaped, outperforms the

We have not tried whether it is possible to improvBHV and SR codes by roughly 0.5 dB, and performs
the coding gain of the codes proposed in this paper Blightly better compared to the best previously known
using a suitable rotation. This may be seen as a reas@ibO code IA-MAX [10]. The code IA-MAX is
for the small performance loss of the proposed codesnstructed from a certain maximal order, and has
compared to the rotated SR code. We did however thjgher decoding complexity. It is added here for the
another type of optimization, namely using a sphericghke of completeness in comparison.
constellation instead of linearly dispersed constelfatio | et ys point out that we have not optimized any of the
(cf. VI-A). The spherically shaped fast-decodable codgoposed codes hy.g.rotating the constellation. Just out
outperforms the SR code (see Section IX below) by ¢ interest, we simulated the unrotated SR code, and the

fraction of a dB. performance got somewhat worse than that of the
code. Hence, we also expect some improvement in the
IX. SIMULATION RESULTS OF MIDO CODES performance of our codes, when an optimal rotation is

In Figure 1, we have plotted the block error rategsed.
of different MIDO codes at the rate 4 bpcu. All of We can also use the maximal order of tHg code
the codes use the 2-PAM or 4-QAM alphabet, exlgebra, which will result in similar performance as
cept for the spherically shaped, code referred to asthe IA-MAX and spherically shapedl, code. While
NC (FD, A4, spher). This code is constructed by usinghe maximal order codes are not fast-decodable, the
a 6-PAM alphabet and then choosing the codewords wipherically shapedd, code still uses the same linear
the smallest Frobenius norms, resulting in a codebodispersion matrices and hence admits fast decodability.
with 216 codewords. However, an extra step is required to check that the

We can see that the punctured codé; decoded word really belongs to the codebook. For a
(NC (FD,punct)) does not perform too well duedetailed description of the required changes in a sphere
to its small (though non-vanishing) coding gain. Thdecoder, see [32]. As a conclusion, sticking to linear
other new codes, for their part, perform more or lesispersion and natural orders causes a penalty of about
equally to the Biglieri-Hong-Viterbo (BHV) code. The0.5 dB in the BLER performance. On the other hand,
Ay code (NC(FD,A4)) is slightly beaten by the it seems that the requirement of fast-decodability itself
BHV code at low-moderate SNRs, but will eventuallgloes not cause any performance loss. This is hardly
outperform it starting from 20 dB, thanks to its fulla surprise, as the proposed constructions are nothing
diversity. The shaped codeN( (shaped), which is but orders of cyclic division algebras, which have been
not fast-decodable, outperforms the BHV code startirgpown to have excellent performance [16], [33], [10].
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X. FAST-DECODABLE CODES FOR THES X 3 AND wherer = /|v|. Finally, we do the exchange; <> z;

6 x 2 CHANNELS andz4 < x4, followed by 25 <+ z3. The final form of
Let us now extend our code constructions to sii® code matrix now becomes
transmit antennas. While this paper mainly deals with X=PX'P'=(A B C), (32)

MIDO codes,i.e., codes for two receivers, here we als

. _ here each
consider the case of three receivers. The reason for this z0 ot
is that the embedding (18) 0 1
Iy x§
W+ A < diag(M,, o (H)™) ao | w o] 33)
ras xT
into to a matrix ring of the Hamiltonian quaternions T4 _mé
naturally yields codes with dimension rafe, = n, ros a
which is also the number of Tx antennas. Thus, for six 9 .
transmitters we hav&; = 6, which is ideal for reception —rio(zs) _ga(“)*
with three antennas. From this, we can construct a code ro(za) —rio(ws)’
suitable for two receiversH; = 4) by puncturing. The B = o (o) _m(xl)* : (34)
so-calledsmart puncturing34], [10] will be applied in ro(z1) U(wo)*
order to further reduce the decoding complexity, while o(2) _m(x?’)*
maintaining a low peak-to-mean power ratio (PAPR). ro(xs) o(@2)
and
—r20%(x3)  —ro?(z2)*
A. Construction for thes x 3 channel ro?(ze) —r?o?(z3)*
We build our (6 x 6) code matrix analogously to the C— —7"202(%4) —72”02(335): (35)
(4 x 4) case (cf. Subsection VIII-A). To this end, we 7“02(955) —r 02(954)*
consider the index-six cyclic algebra o*(zo) —ro(z1)
, ro?(z1) o?(xg)*
A=(Q)/Q.0: G G, —3/4) consist of three Alamouti blocks.

built upon the 7th cyclotomic field. Since -3 is inert '€ encoding can be performed similarly as in the
((3 mod 7) generates the whole grou), the element 4 x 2 case. Let us denote the 36 basis matrices by
v = —3/4 is a non-norm element and is a division By = B1(x0(1,0,0,0,0,0),0,0,0,0,0),
algebra. As the centdp is totally real and only has one
infinite place which is ramified, we have an embededding
A <= M;(H). By = Bsy(0(0,1,0,0,0,0),0,0,0,0,0),
Let us now build the embedded code matrix more Bag = Bi(0,0,0,0,0,25(0,0,0,0,0,1)).

explicitly. We start by noting that
We then form a finite code by setting
o3(x) = x* 36
for all z € Q(¢7), and hence, taking into account that Coxs = {Z 9iBi | 9i € G},

o(z*) = o(z)*, we get _ =t
whereG C Z is, for instance, &)-PAM alphabet.
ol(z) =o(x)*, o°(z) =c*(z)".

_ _ B. Decoding
We can again start with the left regular representation; .+ s now consider the sphere decoding process as

and perform some simple manipulation on the resur[i'b%scribed in 11l for the code (32). Following the above

matrix: first, we swap the 2r_1d and the 4th row, and tr‘Haotation, we notice that the code lattice has six basis
3rd and the 5th row. After this, we swap the 3rd and ﬂ}ﬁatricesBl By of the form

4th row. Next, we do the same for the columns. Let us

denote this intermediate form h¥’. Then we balance Lo .
the effect ofy to get a more unified energy distribution Lo
among the antennas. This can be done by conjugating o (o)

the matrix X’ by the matrix o (o)

* )

2
o*(zo)
P =diag(r,r?,r,r%,r,r?), o?(xp)*



and six basis matriceBy, ...

, B1s of the form
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matrices that cause nonorthogonality. On the other hand,
it is not a good idea to puncture all six basis matrices

A0 0
0 B 0 corresponding to one of the elementsin (32), because
0o o0 ’ this will cause zeros in the encoding matrix and hence

increase the PAPR.

where . Here we provide just one possible puncturing, to give
;o 0 —rx] . ,
A = < o 0 ) ) the reader an idea as to how one may go about it. Let us
! denote the basis matrices as in the previous section by
B 0 —ro(r1)* By, ..., Bss. We puncture the following basis matrices
ro(xy) 0 ’ :
N z9:  Bis, Bia, Bis,
and 0l
O = 0 —ro (ml) in 3 : Blg, BQQ, Bgl,
2 .
ro®(xy) 0
_ , in x4 : Bas, Bag, Bar,
A straightforward calculation shows that 4 257 226, 27
in x5 :  Bsy, Bsg, Bss.

R(Tr(HB;(HB;)")) =0
The resulting code will still have the same orthogonality

for1 <i<6, 7<j <12 and any channel matri¥. , - i ;
Hence, the(36 x 36) R-matrix of the QR decomposition relations as the original code, but will only have 24 basis
’ elements giving us decoding complexitys|'°.

has a(6 x 6) zero block in the corresponding position,
and the(12 x 12) upper left corner ofR looks like

RY 0
< 0 R2’2 > )

where the blocks?"* are (6 x 6) matrices. From this  As already pointed out, we can always embed a
we see that the symbolg,...,gs can be decoded division algebra into a matrix ring of the Hamiltonian
independently of the symbolg;, ..., gi2, resulting in quaternions, provided that the center is totally real and
complexity 2|5|* instead of the full complexityS|*°.  all of its infinite places ramify. For all such division alge-
Further reductions are possible by a change of basigas, we have that™/?(z) = z*, 071t"/2(z) = o7 (2)*,
similarly as in the4 x 2 case. By forming the basisand~ < 0. The embedding

of elements half of which are real and the other half _

purely imaginary (cf. VIII-A), we get more zeros in the ¥+ A diag M2 (H)™),

R matrix. In that case we again have, for any channghyever, will only give us the existence of a fast-

matrix H, that decodable code with dimension rate= n;.

In what follows, we are going to show how to over-
come the problem of the implicit nature of the map
Once we have constructed a CDA= (E/Q, o,~) of
the required form, the explicit map : A — M, ,»(H)
is given as follows.

Proposition 11.1:Let X denote the left regular rep-
resentation matrix of an elemeat= xy + uzy +--- +
u™ 1z, 1 € A Then

¥(X) = BPX(BP)™" € My, j»(H),

XI. FURTHER GENERALIZATIONS VIA
CONJUGATIONS OF THE LEFIREGULAR
REPRESENTATION

R(Tr(HB;(HB;)")) =0
for 1 <i<6, 7<j <12, but further also get
R(Tr(HB;(HB;)")) =0

for1<i<3,4<j<6and7<i<9, 10<j<12,
resulting in complexityt|S|".

C. Construction for thés x 2 channel by puncturing

In order to construct & x 2 MIDO code, we will
next consider a punctured version of the above codehere the elementd(i,j), 1 < 4,5 < ng of the
The puncturing affects the shape of the code lattigeermutation matrixP are
so different puncturing will give a different lattice and . _ . it

: : . 1, if 2 )i and j= %5,
whence also different performance. One obvious option . ) _ S
. . : P(i,j)=4q 1, if 2|i and j =P,
is to keep an eye on the Gram matrix of the lattice 0. otherwise 2
— the closer it is to a (scaled) identity matrix, the ’
better the shape. A smart puncturing may also aid thed
decoding process, namely we may puncture the basis

B = dlag(\/m7 "Y’? SRR \/m7 h")
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is the energy balance matrix. decomposition of the matri3 (cf. Ill) will consist of
Proof: Let us first consider the columns &f, and (n x n) blocks %/, 1 <i,j < n, where

denoteX = (1,0,...,0™~ ') to represent the fact that RL2_ R34 _ .. _ pn-ln_g 36

the first column is mapped by the identity element, the - - T onxn (36)

second is mapped by, etc. In order to get the requiredand the diagonal block®’!, 1 < i < n, are block-

Alamouti block form, we need to reorder the columngiagonal:

as pLI
(1,712, g2 2 m/2  gm/2=Tgm—1) Rii — < ) P272 > . 37)
nxn
so thato” is followed by its conjugate for alj. This is The zero blocks (36) result from the Alamouti block
done exactly by post-multiplying by P~". o structure and offer us a reduction ofreal dimensions.
Next we have to rearrange the rows. Notice first thagne giagonal block structure (37) is due to the fact
by ignoring, the rows ofXP~! look like that when we construct the algebra upon a complex
o bl g b mu_ltiplication field, we can always choose a basis in
o & ey d which half qf the elements are real and _the other half
! ne/ ne/2 purely imaginary. This, for its part, provides us with
S : : further reduction by; dimensions. Hence, the decoding
st ot ... S U complexity will be of order
b1 aT te bm/2 a;’;t/g < |S|nf—n,—% _ |S|nf—3%
d1 CT N dm/Q Ci;t/2 - ’
. where the facton,? is the exhaustive search complexity.
N . By puncturing, we obtain fast-decodable codes suit-
boostoe g Sy able for any number of receivers. The complexity of the
where the horizontal line divides the matrix in two partBUnctured code is at most
each having:; /2 rows. We easily see that the Alamouti |S|ntR1—3%

)

block form can be achieved by pairing the rows as
where Ry < n, is the dimension rate. Fomn, = 2,
(Lng/24+1),(2,n¢/2 4 2),..., (n4/2,m). we get a complexity reduction ofzZm: — 37.5%

This is done by pre-multiplyingt P~ by P, i.e., we as promised. However, this may require a non-integral

conjugateX by P. As the last step, we should take CarQasis, and hence cause performance loss compared to an
of the effect ofy. By conjugatingPX P~ further by integral basis. With an integral basis, we get a reduction

dn,—n; . . . . .
B = diag(y/I[, ;- s v/ 7)), the elementsy will of 4 = 25% while guaranteeing a high coding gain.
appear in eacli2 x 2) block of the matrix as follows: In Table Il we have summarized the complexities for

ny =4,6,8 and2 < n, < % as an example.
( BV E)M > ‘

Bl GVhI

In addition, the plus and minus signs are automatically

TABLE Il
COMPLEXITIES OF THE PROPOSED FASDECODABLE CODES

rearranged by this conjugation so that the resulting [, x7n, [ Ri | nR: — 22t | Comp.reductiofin k1
matrix consists of Alamouti blocks. | 4x2 4 10 37.50%

Remark 11.1:After Proposition 11.1, we can alge- gig’ i fg g?-ggg’
braically optimize the normalized minimum determinant. Sx4 | 8 59 18:7572
Namely, the resulting parallelotope will be exactly that 8x3 | 6 36 25.00%
given by Proposition 7.3. Notice that this was not the | 8x2 | 4 20 37.50%
case before the conjugation, for while the conjugation : : : :

does not affect the non-normalized minimum determi-
nant, it does affect the measure of the fundamental
parallelotope and hence the normalized minimum deter-
minant! XII. CONCLUSIONS

Now that we have an explicit form of the mapping In this paper, fast-decodable asymmetric lattice space-
1, the fast-decodability property can be seen as followime codes were studied, proposing one possible gener-
with Q as the centerrfp = 1), the R-matrix of the QR alization of the Alamouti code and the quasi-orthogonal



codes to any even number of transmit antennaand for
any dimension rat&; < n;. The codes allow linear ML
processing withe.g. a sphere decoder for any number
of receivers> R;/2, but with lower dimensionality 4]
(less variables per linear equation). It was explicitly
shown how such novel constructions follow from general
algebraic principles by embedding a division algebra int
a matrix ring M (H) of the Hamiltonian quaternions.
All this is in strong contrast to the previousd hoc
constructions of fast-decodable codes that have been
specific to a certain number of antennas and lacking
obvious generalization. The proposed codes furthermore
enjoy the NVD property, a property that no other fast{7]
decodable MIDO code found in the literature has been
proved to have.

We mainly considered th¢ x 2 MIDO case suitable
for DVB-NGH, but also provided constructions for the[9]
6 x 2 and6 x 3 cases. The explicit embeddings obtained
in these situations were shown to be fully generalizaq%]
to any even number of Tx antennas. Simulations were
presented to show that the performance of the proposed
codes is comparable to the best known MIDO coddél!
The achieved complexity reduction up to 37.5% is also
among the best known for the MIDO channel.

In addition, a complete solution to the discriminarlfi2]
minimization problem for division algebras with arbi-
trary centers was given. As an application a normalized
minimum determinant bound for code latticeslify,(H) [13]
was derived from the algebraic results.

(3]

(8]
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of A fulfill the following. When P is a prime ideal of Ok.

APPENDIX
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. . TABLE I
If K has at least two real primes, then there exists a

K-central division algebra of index having a maximal

' iscrimi index K: H-invariants at finite places
order with the discriminant el [K:Q] _ p
(P, PR, 4k odd | hp, = L, hp, = 21
4k even | hp, = &, hp, = &1
If K has only one real primé,,, then there exists a 2k, 2tk | even | hp, = % ;lpz — k_j
K-central division algebra of index having a maximal 2k, 21k | odd hp, = %22 hp, = 1

order with the discriminant

Pn(n—l)Pk(k—l)
! 2 In addition to what is said in the table about the H-
This is the smallest possible discriminant of all ordeiigvariants at the finite places, we suppose that each of

of indexn division algebras with centef’. these algebras have H-invariandsat all the infinite
We have now given completely general discriminaprimes. By a direct calculation we can see that in each
bounds for any center and for any index case we get a division algebra of indexwith all the

Proposition 12.4:Let A be aK-central division alge- infinite primes ramified. This will take care of the first
bra of indexn, 2 | n, whereK is a totally real number two claims of the proposition. In the first case, where
field, and let’; < P be a pair of smallest primes if. 2 || » and2 | [K : Q], the division algebra given in the
Let us suppose that all the infinite primes are ramifiagble will reach the claimed bound which coincides with

in A. the general bound in 12.3. In the caken the algebras
If 2 | nand2 | [K : Q], then the minimal discriminant given in Table Il reach the bound 12.3 and we are done
of Ais with the second claim.
(PP, We are left with the case, whete|| n and2 { [K :

Q] = m. In this case the problem is that while the sum
of the m — 1 first infinite Hasse-invariants is an integer,
(PP, there is still one extra infinite H-invariartp,, = 3 we
If 2|| n and2} [K : Q], then the minimal discriminant have to. takg care of. Tkh_ezrefore we ar? forced tq _choose
of Ais Hasse-invariantép, = ;= andhp, = 1 for the finite
Pln(n—l) Pf(k_l). places. The proof that this set of Hasse-invariants will
give us the optimal discriminant is verbatim the same as
Proof: In the proofs of Theorems 12.3 and 12.2 thg is for the case where the center has exactly one real

general strategy was to choose a set of H-invariants tgdce. This case was dealt in the proof of Proposition
will yield an indexn division algebra (see Theorem 12.1) 2 3 and we refer the reader to [35].
and then prove that our choice was the best possible. We m
will use the same strategy here, but the difference is that
we can do the optimization over division algebras that
are totally ramified at infinite primes.
The assumption of ramified infinite primes always
gives usm non-trivial Hasse invariantéhp,,...,hp, },
wherehp, = % and P; are all the infinite primes irk.
The Hasse-invariants at infinite places do not con-
tribute anything on discriminant of the division algebra.
If we have an index: division algebra, the contribution
of a Hasse-invarianthp = mip where mp is the
local index at finite primeP, to the Og-discriminant
is P7~V%5 | Therefore in most cases we can simply
prove the minimality of the corresponding discriminant
by showing that, despite the extra ramification at infinite
primes, we can choose a set of Hasse-invariants that will
give us an index: division algebra with a discriminant
reaching the bound 12.3 or 12.2.
In Table 11l we have collected the Hasse-invariants (at

finite places) of the algebras we claim to be optimal.

If 4| n then the minimal discriminant ofl is



