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Abstract—Multiple-input double-output (MIDO) codes
are important in the near-future wireless communications,
where the portable end-user device is physically small and
will typically contain at most two receive antennas. Espe-
cially tempting is the 4 × 2 channel due to its immediate
applicability in the digital video broadcasting (DVB). Such
channels optimally employ rate-two space-time (ST) codes
consisting of (4 × 4) matrices. Unfortunately, such codes
are in general very complex to decode, hence setting forth
a call for constructions with reduced complexity.

Recently, some reduced complexity constructions have
been proposed, but they have mainly been based on
different ad hoc methods and have resulted in isolated
examples rather than in a more general class of codes.
In this paper, it will be shown that a family of division
algebra based MIDO codes will always result in at least
37.5% worst-case complexity reduction, while maintaining
full diversity and, for the first time, the non-vanishing
determinant (NVD) property. The reduction follows from
the fact that, similarly to the Alamouti code, the codes will
be subsets of matrix rings of the Hamiltonian quaternions,
hence allowing simplified decoding. At the moment, such
reductions are among the best known for rate-two MIDO
codes [4], [5]. Several explicit constructions are presented
and shown to have excellent performance through com-
puter simulations.

Index Terms—Coding gain, cyclic division algebra, dig-
ital video broadcasting next generation handheld (DVB-
NGH), fast maximum-likelihood (ML) sphere decoding,
Hamiltonian quaternions, Hasse invariants, lattices, low-
complexity space-time block codes (STBCs), multiple-input
single/double/multiple-output (MISO/MIDO/MIMO), non-
vanishing determinant (NVD), orders.

I. INTRODUCTION

Among known space-time codes, the Alamouti code
[6] and the fully diverse4 × 1 quasi-orthogonal codes
[7] stand out due to their orthogonality properties that
are beneficial for decoding. Both of these codes however
have a low code rate, hence best suitable for an asymmet-
ric transmission, where there are less receive antennas
than transmit antennas. It is far from obvious how to
generalize these codes to asymmetric scenarios where

Part of this work appeared at ISIT 2010 [1], at SPCOM 2010 [2],
and at ISITA 2010 [3].

we demand higher code rates and different number of
antennas. On the other hand, the now well known cyclic
division algebra (CDA) codes designed for a symmetric
transmission have full rate and are generalizable to an
arbitrary number of antennas. Unfortunately, they are
very complex to decode, especially when we have less
receive antennas than transmit antennas. Yet there is a
strong demand for asymmetric codes that would be fast-
decodable, generalizable to more antennas, and would
support higher rates. The special case of two receive
antennas is referred to as a multiple input-double output
(MIDO) code.

For example one of the most interesting wireless appli-
cations currently is the design of4×2 MIDO codes. Such
asymmetric systems can be used in the communication
between, for instance, a TV broadcasting station and a
portable digital TV device. The four transmitters can
either be all at one station or separated between two
different stations in this way providing better coverage
in the case when the transmission of one of the stations
is blocked out by a deep shadow.

In Europe, the digital video broadcasting (DVB) con-
sortium has adopted different standards for terrestrial
(DVB-T) fixed reception, handheld (DVB-H) reception,
satellite (DVB-S) reception as well as an hybrid re-
ception like DVB-SH. The ongoing work towards the
standardization of the DVB Next Generation Handheld
(NHG, see the DVB Project’s web page [8] for more
information) systems is bringing this topic ever more to
the forefront of current MIMO research. The inclusion of
the4×2 systems in the consortium’s call for technologies
for the DVB-NGH indicates having a MIDO code in the
coming standard.

One solution to the4 × 2 code construction problem
could be to use a full-rate CDA code,e.g. the 4 × 4
Perfect code [9]. However, when received with two
antennas, a rate-four code cannot be optimally decoded
with a linear decoder such as a sphere decoder. Codes
especially designed for the4 × 2 channel have been
proposed ine.g.[10], [11], [12], but all the codes require
high complexity maximum-likelihood (ML) decoding,
namely full-dimensional sphere decoding.

A natural approach to this design problem is to imitate
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the form of the code matrices of the already known fast-
decodable codes or use these codes as building blocks for
higher rate codes. The key problem in such constructions
is that it is very hard to guarantee that the resulting
code will still have good performance, thus in many
cases requiring optimization to be carried out through
extensive computer searches.

In this paper we are going to adopt a different ap-
proach to this problem. We study the algebraic structure
of known fast-decodable codes like the Alamouti code
and the division algebra based quasi-orthogonal codes.
By analyzing the relation between the Hasse-invariants
and the geometric structure of these codes we are able
to distill the key algebraic properties that force these
codes to be fast-decodable. This approach then depicts
an infinite family of fast-decodable codes from division
algebras.

The main advantage of our take on this subject is
that the proposed codes are based on orders of division
algebras and therefore they are not only fast-decodable,
but are also guaranteed to have full-diversity, the non-
vanishing determinant (NVD) property, and further allow
us to perform algebraic minimum determinant optimiza-
tion. We can show, under given conditions, that the ML
decoding complexity of a MIDO code will always be
reduced by at least 37.5%, while maintaining the NVD.
Explicit constructions based on the proposed criteria will
be provided. One of the examples introduces a code that
has comparable performance with the best known fast-
decodable ST codes [4], [5] and further has (provable)
NVD. The proposed theory provides fully diverse, fast-
decodable (FD) codes with the NVD property for any
even numbernt of Tx antennas and any code rate
≤ nt/2. Motivated by the DVB-NGH, most of the
examples are given in the case of 4 Tx antennas and
2 Rx antennas.

We make the typical assumption of transmission over
a coherent i.i.d. Rayleigh fading channel with perfect
channel state information at the receiver (CSIR) and with
no CSIT,

Y = HX +N,

whereY,X,H,N are the received, transmitted, channel,
and the Gaussian noise matrix, respectively. The ST
matrix X ∈ Mnt

(C), while Y,H,N ∈ Mnr×nt
(C),

wherent (resp.nr) denotes the number of transmit (resp.
receive) antennas. We assume no correlation, but in the
correlated case the transmitter can adapt to the rate-
one code naturally embedded within the proposed codes
while maintaining and even improving fast decodability.

A. Related work

The first reduced ML-complexity4 × 2 construction
was given in [4], combining two copies of a quasi-
orthogonal code [13]. This resulted in a MIDO code that
does have lower decoding complexity, but unfortunately
does not have full rank. Nevertheless, good performance
is still achieved at low-to-moderate SNRs and with four
real dimensions less in the sphere decoder.

The most recent results on fast-decodable codes have
appeared in [5], where new constructions with optimized
performance have been presented, and in [1], [2], [3],
where fast-decodable codes with the NVD property have
been built from crossed product and cyclic presentations
of division algebras. In the preprint [14] the authors
consider quadratic forms as a tool for characterizing
the decoding complexity, and in the preprint [15] multi-
group ML-decodable collocated and distributed space-
time codes are proposed.

B. Organization and contributions

The rest of the paper is organized as follows. We
start by giving some background on space-time codes
with a lattice structure and their decoding via sphere
decoding in Section II. The concept of fast decodability
is then defined and illustrated in Section III, where the
role of the Alamouti code is emphasized. To pursue the
study of fast-decodable codes, we then focus on CDA
codes in Section IV, where some background and further
motivating examples are presented, translating fast de-
codability into being able to embed the considered cyclic
algebra into an algebra of matrices with quaternionic
coefficients. The conditions guaranteeing the existence
of such an embedding are studied in Section V: we
need an algebra whose center is totally real and such
that all its infinite places ramify in the algebra. A
family of such cyclic algebras is provided. A last design
criterion, the normalized minimum determinant, is added
and bounds on optimal lattice codes with respect to it are
computed in Section VI. Different explicit construction
methods are described in Section VII. Finally, several
code constructions are presented in Section VIII for4×2
codes followed by simulation results in Section IX. In
Section X the results are extended for more transmit
antennas and explicit constructions are provided for6×3
and6× 2 codes.

Further generalizations are provided in Section XI,
where it is also shown that the existence result can
be made explicit via conjugations of the familiar left-
regular representation. Section XII concludes the paper.
In Appendix, relevant algebraic results related to central
simple algebras and Hasse invariants are presented.



3

The main contributions of this paper are listed below.

• General methods to produce space-time lattice
codes with the NVD property and given geometric
structure are given.

• A unified construction of families of CDAs that can
be embedded into matrix rings of the Hamiltonian
quaternionsMk(H) is provided. The underlying
algebraic principles are studied in full detail. It
is then demonstrated how such a structure can be
beneficial in the decoding. The generality of the
constructions is in contrast to the presentad hoc
constructions available in the literature.

• A complete solution to the discriminant minimiza-
tion problem [16] for division algebras with arbi-
trary centers is given. As an application a normal-
ized minimum determinant bound for code lattices
in Mk(H) is derived from the algebraic results.

• We mainly consider the4× 2 MIDO case, but also
provide constructions for the6× 2 and6× 3 cases.
The methods are generalizable to any even number
of Tx antennas.

• The main difference with other fast-decodable
MIDO codes is that all the proposed codes have
the NVD property. The proofs for the NVD are
based on the underlying algebraic structure of the
code and hold for infinite constellations. This can
be seen as an improvement for [5], where the
NVD is conjectured by computing the minimum
determinant for certain finite QAM alphabets.

• We build explicit codes that have 25-37.5% reduced
decoding complexity for general constellations, and
whose performance is comparable to the best known
MIDO codes. Such complexity is among the best
known for the MIDO channel, and can be further
reduced by using a symmetric alphabet – a square
QAM alphabet, for instance. No fast-decodable
MIDO codes with provable NVD other than the
ones in this paper have been reported.

C. Notations

Throughout the paper, we will use the following
notations:

• Tx for transmit antennas, Rx for receive antennas,
• nt×nr for a channel withnt Tx andnr Rx antennas,
• (n × k) for matrix dimensions,
• boldface lowercase letters for vectors,e.g. g =
(g1, . . . , gt) or g = (g1, . . . , gt)

T ,
• capital letters for matrices,e.g.X or M ,
• x∗ for the complex conjugate ofx, X∗ for element-

wise conjugation in a matrixX, andX† for the
Hermitian conjugate ofX,

• calligraphic letters for algebras,e.g.A,
• E/K for number field extensions andσ for the

generator of a cyclic Galois groupGal(E/K). Note
that K is also used for the rank of a lattice in
some instances, but this should cause no danger of
confusion.

• The field norm fromE to K is denoted by

NE/K(x) = xσ(x) · · · σn−1(x) ∈ K,

wheren = #Gal(E/K).

II. SPACE-TIME LATTICE CODES

We start with as general a definition of a space-
time code as possible, and motivate why we focus our
attention tospace-time latticecodes, which furthermore
can be decoded via sphere decoder, a universal decoder
for lattice codes. We explain in detail how this is done.

A. Definitions

Abstractly, a space-time codewordX is an (n × k)
matrix with coefficients inC, wheren corresponds to
the number of transmit antennas, andk is the coherence
time (or delay) during which the channel is assumed
constant. We will, in this paper, concentrate on the case
k = n, so that a space-time code is a square matrix,
corresponding to minimum delay codes.

Definition 2.1: A space-time codeC is a set of(n×n)
complex matrices. We often use the abbreviationSTBC
for space-time block code.

The spaceMn(C) of (n × n) matrices with complex
coefficients is a vector space of dimension

dimR(Mn(C)) = 2n2

over the reals. Therefore, for every codeC ⊆Mn(C), we
can consider, following [15], the subspace〈C〉 spanned
by the matrices ofC. It has anR-basis consisting ofK
matrices,1 ≤ K ≤ 2n2, so that each matrixX in C can
be uniquely written as

X =

K
∑

i=1

giBi, (1)

whereBi are some basis matrices andgi are real num-
bers. Once the basis matrices{B1, . . . , BK} are given,
a space-time codeC is defined by the values thatgi,
i = 1, . . . ,K, can take. We write

g = (g1, . . . , gK)

and letg take its values inG ⊆ RK , so that

C = {
K
∑

i=1

giBi |g = (g1, . . . , gK) ∈ G }. (2)
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Typically, G corresponds to a choice of constellation
points. For example, if a sizeQ pulse amplitude modu-
lation (Q-PAM) is used, thenG is the Cartesian product
of K times

{−Q+ 1, . . . ,−3,−1, 1, 3, . . . , Q− 1},
whereQ ≥ 2, 2|Q. The formulation in (2) is not without
recalling the notion oflinear dispersion codes[17],
where codewordsX are similarly described by a family
of dispersion matrices{A1, . . . , AK}: X =

∑K
i=1 giAi,

for some coefficientsgi belonging to a symmetric set.
The critical difference is in{B1, . . . , BK} being linearly
independent, and thus really forming anR-basis for〈C〉.
It consequently makes sense to speak of dimension of
〈C〉, which yields the following definition of rate [15]:

Definition 2.2: The dimension rateR1 of the codeC
is given by

R1 =
dimR(〈C〉)

n
=
K

n

(real) dimensions per channel use.
Since 1 ≤ K ≤ 2n2, we immediately see that the

maximum rate achievable for square matrices is2n.
One should note that this is not the common definition
of a code rate (also used in this paper until now),
which usually counts how many complex symbols (e.g.
QAM symbols) are transmitted in a codeword. With our
notation, the common code rate would beR1/2 ≤ n.

The data rate in bits per channel use (bpcu) is defined
as follows.

Definition 2.3: The bit rate R2 of the codeC is

R2 =
log2(|C|)

n

bpcu.
While the above considerations have been done in

full generality, several years of research on space-time
coding have shown that good space-time codes enjoy
special properties. Following [18], getting fully diverse
codes has become the first code design criterion. That
is, we require

det(X −X ′) 6= 0, X 6= X ′ ∈ C. (3)

From [19] it is known that the best way to actually deal
with this constraint is to first assume that the space-time
code considered forms an additive group, so that

X ±X ′ ∈ C, (4)

which simplifies (3) to

det(X) 6= 0, X 6= 0,

a much more tractable constraint. We note thatC as
defined in (2) is not necessarily linear, but of course〈C〉

is. From the linearity imposed onC by (4), we are only
one step away from having aspace-time lattice code.
Recall that

Proposition 2.1:An infinite discrete group of matri-
ces inMn(C) is a lattice.

We can thus safely assume that infinite space-time
codes have a lattice structure, since the discreteness
condition can be translated by asking the Euclidean
distance between each pair of codewords to be greater
thanr, for a fixed non-zeror. This formalizes the natural
assumption that codewords should not be chosen too
close to each other.

Definition 2.4: A space-time lattice codeC ⊆Mn(C)
has the form

ZB1 ⊕ ZB2 · · · ⊕ ZBK ,

where the matricesB1, . . . , BK are linearly independent,
i.e., form a lattice basis, andK is called therank of the
lattice. We may also callK the dimensionof the code,
but do not confuse this with the dimension of the lattice.

For the actual transmission, a finite subset of code-
words fromC is picked by restricting the integer coef-
ficients to some setG, as in (2). From now on, we will
consider only space-time lattice codes and may call them
space-time codes for short.

As recalled above, full diversity is the first design
criterion for space-time codes. Once achieved, meaning
for lattice codes that

det(X) 6= 0, X 6= 0,

the next criterion is to maximize the minimum determi-
nant of the code.

Definition 2.5: The minimum determinantdetmin (C)
of a space-time codeC ⊂Mn(C) is defined to be

detmin (C) = inf
X 6=0

|det(X)|, X ∈ C.

Definition 2.6: [20] If the minimum determinant of
the lattice is non-zero, we say that the code has anon-
vanishing determinant(NVD) .

The NVD property means that, prior to SNR normal-
ization, the lower bound on the minimum determinant
does not depend on the size of the constellation used.

B. Sphere decoding

LetX be a space-time lattice codeword. We can flatten
X ∈ Mn(C) to obtain a2n2-dimensional real vector
x by first forming a vector of lengthn2 out of the
entries (e.g.row by row, or vectorizing that is column by
column) and then replacing each complex entry with the
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pair formed by its real and imaginary parts. This defines
a mappingα from Mn(C) to R2n2

:

α : X 7→ x = α(X) (5)

which is clearlyR-linear:

α(rX + r′X ′) = rα(X) + r′α(X ′), r, r′ ∈ R. (6)

Let ||X||F =
√

Tr(X†X) denote the Frobenius norm of
X. Note that the following equality holds:

||X||F =

√

√

√

√

n
∑

i=1

n
∑

j=1

|xij |2 = ||α(X)||E , (7)

where || · ||E denotes the Euclidean norm of a vector.
This makesα an isometry.

The space-time codeX ∈Mn(C) is transmitted over
a coherent Rayleigh fading channel with perfect channel
state information at the receiver (CSIR):

Y = HX + V,

whereH is the channel matrix andV is the Gaussian
noise at the receiver. Maximum-likelihood (ML) decod-
ing consists of finding the codewordX that achieves the
minimum of the squared Frobenius norm

d(X) = ||Y −HX||2F . (8)

This search can be performed using a real sphere decoder
(seee.g.[21]). Since this paper focuses on MIDO codes
and for the sake of simplicity, we will now exemplify
the computation of a(4×4) MIDO code matrixX, that
is, we consider 4 Tx antennas and 2 Rx antennas and
the channel

Y2×4 = H2×4X4×4 + V2×4. (9)

A (4×4) MIDO code can transmit up to 8 complex (say
QAM) information symbols, or equivalently 16 real (say
PAM) information symbols. Following (2), the encoding
can thus be written as mapping the PAM vector

g = (g1, . . . , g16)
T

into a (4× 4) matrix

X =

16
∑

i=1

giBi,

where the basis matricesBi, i = 1, . . . , 16, define the
code. Let us emphasize again that by basis matrices, we
really mean aZ-basis of the code seen as a lattice. From
(9), the received matrixY can be expressed as

Y2×4 = H(

16
∑

i=1

giBi) + V =

16
∑

i=1

gi(HBi) + V.

In order to perform real sphere decoding, we have to
transform this complex channel equation into a real one,
which can be done via the mappingα defined in (5). The
matrix Y2×4 = (yi,j) can be turned into a real valued
vectory in R16 by the transformation

α(Y ) = y = [y1,y2]
T

with

y1 = (ℜ(y1,1),ℑ(y1,1), . . . ,ℜ(y1,4),ℑ(y1,4))
y2 = (ℜ(y2,1),ℑ(y2,1), . . . ,ℜ(y2,4),ℑ(y2,4)).

The matricesHBi ∈M4×2(C) are then similarly turned
into vectorsbi ∈ R16:

α(HBi) = bi, i = 1, . . . , 16,

so thatd(X) can be expressed as

d(X) = ||Y −HX||2F by (8)
= ||α(Y −HX)||2E by (7)
= ||α(Y )− α(HX)||2E by (6)

= ||y −∑16
i=1 gibi||2E .

From this we finally get

d(X) = ||y −Bg||2E , (10)

where

B = (b1,b2, . . . ,b16) ∈M16×16(R).

This shows that the decoding of a space-time lattice
codeC with a basis{B1, . . . , BK} is equivalent to the
decoding of a 16-dimensional real latticeΛ(C) described
by the generator matrixB: Λ(C) = {x = Bg | g ∈ Zn}.

III. FAST-DECODABLE SPACE-TIME CODES

We are now ready to explain the notion of fast de-
codability of space-time lattice codes when using sphere
decoding. We will then give a few examples that will
motivate the rest of the paper.

A. Fast sphere decoding

The first step of the sphere decoder is to perform a QR
decomposition of the lattice generator matrixB, B =
QR, with Q†Q = I, to reduce the computation of

d(X) = ||y −Bg||2E
as in (10) to

d(X) = ||y −QRg||2E = ||Q†y −Rg||2E (11)

whereR is an upper right triangular matrix. The number
and position of non-zero elements in the upper right
part of R will determine the complexity of the sphere
decoding process [4], [5].
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The worst case is of course given when the matrix
R is a full upper right triangular matrix. This motivates
the following definition of worst case sphere decoding
complexity:

Definition 3.1: [4, Def. 2] LetS denote the real alpha-
bet in use, and letκ be the number of independent real
information symbols fromS within one code matrix.
The ML decoding complexityis the minimum number
of values of d(X) in (11) that should be computed
while performing ML decoding. This number cannot
exceed|S|κ, the complexity of the exhaustive-search ML
decoder (or|S|κ/2 for a complex alphabetS).

Definition 3.2: The exponentκ (resp.κ/2) is referred
to as thedimension of a real (resp. complex) sphere
decoder. If the structure of the code is such thatκ
decreases, we say that the code isfast-decodable. In this
paper, we always refer to the dimension of a real sphere
decoder.

In the MIDO case (9), whereS is a real PAM
alphabet (and hence|S| is the number of PAM symbols
in use), the worst case complexity is|S|16. A typical
improvement inκ can be obtained if the left upper corner
of the matrix

R =

(

R1,1 R1,2

R2,1 R2,2

)

from the QR decomposition ofB has the form

R1,1 =

























⋆ ⋆ ⋆ ⋆ 0 0 0 0
0 ⋆ ⋆ ⋆ 0 0 0 0
0 0 ⋆ ⋆ 0 0 0 0
0 0 0 ⋆ 0 0 0 0
0 0 0 0 ⋆ ⋆ ⋆ ⋆
0 0 0 0 0 ⋆ ⋆ ⋆
0 0 0 0 0 0 ⋆ ⋆
0 0 0 0 0 0 0 ⋆

























, (12)

where⋆ denotes any non-zero element. Indeed, in this
case:

1) We start the sphere decoding by going through
every combination of the 8 last real symbols
g9, . . . , g16 (we are not choosing the ones that give
the minimal metric yet, we go through all the op-
tions since we do not know how the last 8 symbols
will affect the total minimization problem). This
corresponds to treating the matrixR2,2, and has
cost |S|8.

2) We then look at the first 8 symbolsg1, . . . , g8,
corresponding to the matrixR1,1, and for every
possible choice of 8-tuples,(g9, . . . , g16), we de-
code separatelyg1, . . . , g4 andg5, . . . , g8 thanks to
the structure ofR1,1, which has complexity2|S|4.

Altogether, the above structure allows to decode the
PAM symbolsg1, g2, g3, g4 independently of the symbols

g9, g10, g11, g12, yielding a worst case complexity of
|S|12 (or more precisely2|S|12) for the real sphere
decoding process instead of the full complexity order
of |S|16.

The natural question to ask is thus the design of codes
(that is, of the basis matricesBi) that yield a sparse
matrix R. To address this question, we further study
the structure of the matrixR. By definition of the QR
decomposition of the matrixB = (b1, . . . ,b16), we have
that

R =















〈e1,b1〉 〈e1,b2〉 . . . 〈e1,b16〉
0 〈e2,b2〉 . . . 〈e2,b16〉
0 0 〈e3,b16〉
0 0

. . .
...

0 0 〈e16,b16〉















where

e1 =
b1

||b1||

e2 =
b2 − proje1

b2

||b2 − proje1
b2||

...

ek =
bk −

∑k−1
j=1 projej

bj

||bk −
∑k−1

j=1 projej
bj||

and

projeb =
〈e,b〉
〈e, e〉 e.

The notation〈·, ·〉 stands for the usual inner product.
Thus having the upper left part ofR to look like (12)
means that

〈bi,bj〉 = 0, 1 ≤ i ≤ 4, 5 ≤ j ≤ 8,

or equivalently, by recalling thatbi = α(HBi)

0 = 〈α(HBi), α(HBj)〉 = ℜ(Tr(HBi(HBj)
†)).

The second equality is true in general and can be shown
by a direct computation:

〈α(A), α(B)〉 = ℜ(Tr(AB†)). (13)

We have now connected the decoding complexity to
the code design. The above computations showed that if
the 16 basis matricesB1, . . . , B16 satisfy

0 = ℜ(Tr(HBi(HBj)
†)), 1 ≤ i ≤ 4, 5 ≤ j ≤ 8,

the worst case sphere decoding complexity is of the order
of |S|12. This suggests further improvement: the current
process manages to separate the information symbols
into two groups, which could be repeated. Assume that
we could further have

0 = ℜ(Tr(HBi(HBj)
†)), 1 ≤ i ≤ 2, 3 ≤ j ≤ 4
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and

0 = ℜ(Tr(HBi(HBj)
†)), 5 ≤ i ≤ 6, 7 ≤ j ≤ 8.

3) As earlier, we start the sphere decoding with the
matrix R2,2 and go through all the possibilites for
the 8 last real symbolsg9, . . . , g16, for a cost of
|S|8.

4) For the first 8 symbolsg1, . . . , g8 corresponding
to the matrixR1,1, we first separateg1, . . . , g4 and
g5, . . . , g8, after which we decode independently
{g1, g2}, {g3, g4}, {g5, g6} and {g7, g8}, each of
these costing|S|2.

The worst case complexity is then4|S|8|S|2 = 4|S|10.
Remark 3.1:It is possible to further reduce the (ML)

complexity by using the so-calledhard-limiting, see [5,
Section VI, p. 924 (1-2)]. In this case, the complexity
will be 4|S|4.5, where |S| is the size of a complex
signal constellation. However, this is only possible when
a square constellation (e.g.Q2-QAM) can be employed,
i.e., the constellation is a cartesian product of two real
constellations (e.g.Q-PAM).

B. Examples from the ring of Hamiltonian quaternions

To illustrate the material explained above, let us start
with the Alamouti code [6],i.e., codewords of the form

X =

(

x1 −x∗2
x2 x∗1

)

=

(

g1 + ig2 −g3 + ig4
g3 + ig4 g1 − ig2

)

,

wherex1, x2 are QAM symbols andg = (g1, g2, g3, g4)
is the PAM symbol vector. A decomposition into basis
matricesB1, B2, B3, B4 is given by

X = g1B1 + g2B2 + g3B3 + g4B4,

where

B1 =

(

1 0
0 1

)

, B2 =

(

i 0
0 −i

)

,

B3 =

(

0 −1
1 0

)

, B4 =

(

0 i
i 0

)

.

We assume transmission through a MISO channel de-
scribed by the vector

H = (h1, h2)

so thatα(HBi), i = 1, 2, 3, 4, is given by

b1 = α(HB1) = (ℜ(h1),ℑ(h1),ℜ(h2),ℑ(h2))T ,
b2 = α(HB2) = (−ℑ(h1),ℜ(h1),ℑ(h2),−ℜ(h2))T ,
b3 = α(HB3) = (ℜ(h2),ℑ(h2),−ℜ(h1),−ℑ(h1))T ,
b4 = α(HB4) = (−ℑ(h2),ℜ(h2),−ℑ(h1),ℜ(h1))T .

We finally get

B = α(HX) = [b1,b2,b3,b4],

and since〈bi,bj〉 = 0 for i 6= j, the QR decomposition
of B is of the form

B =

(

1

c
B

)

(cI4) = QR,

where

c =
√

ℜ(h1)2 + ℑ(h1)2 + ℜ(h2)2 + ℑ(h2)2

is a normalization factor which makesQ orthonormal.
The matrixR is indeed upper right triangular, with in
fact only zeroes above its diagonal. Thus the worst case
decoding complexity of such a code is the size of the
QAM alphabet, that is, of linear order.

Finding basis matrices with similar properties as those
of the Alamouti code seems a difficult task. The question
is in general to find families of matrices{B1, . . . , BK}
which areorthogonalin the sense that〈α(Bi), α(Bj)〉 =
0, i 6= j, and will keep this property even after multi-
plication by an arbitrary channel matrixH. Let us start
modestly and wonder whether we could find such a pair
of matricesB,B′ ∈ Mn(C) whose orthogonality will
resist a channel matrixH ∈ Mk×n(C), wheren ≥ k.
Using (13), we need to check that

0 = 〈α(HB), α(HB′)〉 = ℜ(Tr(HB(HB′)†)).

As a first example, take

B =

(

x1 0
0 x∗1

)

andB′ =

(

0 −x∗2
x2 0

)

,

wherex1, x2 ∈ C. These two matrices clearly satisfy the
orthogonality relation〈α(B), α(B′)〉 = 0. Now pick an
arbitrary complex matrix

H =

(

h1 h2
h3 h4

)

.

A direct calculation shows that

Tr(HB(HB′)†)

= x1h1x
∗
2h

∗
2 − h2x2h

∗
1x

∗
1 + x1h3x

∗
2h

∗
4 − x2h4h

∗
3x

∗
1

= iℑ(x1h1x∗2h∗2) + iℑ(x1h3x∗2h∗4)
so that

ℜ(Tr(HB(HB′)†)) = 0,

independently of the matrixH.
As a second example, consider

B =









x1 0 0 0
0 x1∗ 0 0
0 0 x3 0
0 0 0 x3∗









,
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B′ =









0 −x2∗ 0 0
x2 0 0 0
0 0 0 −x4∗
0 0 x4 0









and

H =

(

h1 h2 h3 h4
h5 h6 h7 h8

)

.

We can similarly see thatℜ(Tr(HB(HB′)†)) = 0.
The notable thing however is that both examples are

closely related to the Alamouti code (the first example
being really included in it). This is not a surprise, since
most of the work available on fast ML decodability tries
to actually exploit the code structure. To pursue our
investigation on fast decodability, we now need to focus
on algebraic constructions of space-time lattice codes
from division algebras.

IV. SPACE-TIME CODES FROM DIVISION ALGEBRAS

A. Background

Since the work of Sethuraman et al. [19], a standard
algebraic technique to build space-time block codes
is to use cyclic division algebras over number fields
(that is, finite extensions of the fieldQ). For the sake
of completeness, we will start by recalling the formal
definition of a cyclic algebra, after which we will provide
an illustrative example, rather than redo the whole theory,
which the reader can find in [19], or in the tutorial [22].

Definition 4.1: Let K be an algebraic number field
and assume thatE/K is a cyclic Galois extension of
degreen with Galois groupGal(E/K) = 〈σ〉. We can
now define an associativeK-algebra

A = (E/K, σ, γ) = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

whereu ∈ A is an auxiliary generating element subject
to the relationsxu = uσ(x) for all x ∈ E andun = γ ∈
K∗, whereK∗ denotesK without the zero element.

The elementγ is often called anon-normelement due
to its relation to the invertibility of the elements ofA.
Namely, if there exists no elementx ∈ E such that its
norm would beNE/K(x) = γt, wheret ∈ Z+ is a proper
divisor ofn, thenA will be a division algebra [23, Prop.
2.4.5]. This result is a straightforward simplification of
a theorem by Albert [24].

Space-time codewords are obtained by considering
matrices of left multiplication by an element ofA in
the above basis.

Let us see how the coding is done more concretely
through an example. We first need a number fieldE of
degreen whose Galois group is cyclic. For example, take

ζ5 = e2iπ/5 a primitive 5th root of unity, and consider
the number fieldE = Q(i, ζ5) overK = Q(i), given by

Q(i, ζ5) = {x = a+ bζ5 + cζ25 + dζ35 , a, b, c, d ∈ Q(i)}.

It is of degree 4 (i.e., of dimension 4 as a vector space)
overQ(i). Let us assume that we want to encode QAM
symbols. Since they can be seen as elements inZ[i] ⊂
Q(i), we have that one elementx in Q(i, ζ5) encodes 4
QAM symbols, namelya, b, c, d, as linear combinations
in the given basis. The Galois group ofQ(i, ζ5)/Q(i)
describes maps that permuteζ5 and its conjugatesζj5 ,
j = 2, 3, 4 while fixing Q(i). If σ(ζ5) = ζ25 , we have
that

σ2(ζ5) = ζ45 , σ
3(ζ5) = ζ35 , σ

4(ζ5) = ζ5

yielding a cyclic Galois group. We now build an asso-
ciative algebraA based onE. As a vector space,A can
be seen as a sum ofn copies of the chosen number field
E of degreen. In our example, this gives

A = Q(i, ζ5)⊕ uQ(i, ζ5)⊕ u2Q(i, ζ5)⊕ u3Q(i, ζ5)

where {1, u, u2, u3} forms a basis andγ = u4 must
be an element of the base fieldQ(i), say u4 = i. A
space-time block code can be obtained by considering
the matrix of left multiplication in this given basis. If
x = x0 + ux1 + u2x2 + u3x3 ∈ A, x0, x1, x2, x3 ∈
Q(i, ζ5), then its corresponding multiplication matrix is

X =









x0 iσ(x3) iσ2(x2) iσ3(x1)
x1 σ(x0) iσ2(x3) iσ3(x2)
x2 σ(x1) σ2(x0) iσ3(x3)
x3 σ(x2) σ2(x1) σ3(x0)









(14)

where the factori comes fromu4 = i and σj , j =
1, 2, 3, 4, are the elements of the Galois group, appearing
due to the non-commutative multiplication defined onA
by xu = uσ(x) for x ∈ E.

Let C be the codebook formed by codewordsX of
the above form. For it to be fully diverse, recall from
(3) that it is enough to have

det(X ′ −X ′′) 6= 0

for X ′ 6= X ′′ in C, or equivalently, by linearity since we
are considering space-time lattice codes

det(X) 6= 0

for X 6= 0 in C. This can be obtained by asking forA
to be a division algebra, property that depends on the
choice of the value ofγ (or γ = i in our example). If
there exists no elementa ∈ Q(i, ζ5) such that its norm
is i or i2, i.e., NQ(i,ζ5)/Q(i)(a) = i, or −1, thenA will
be a division algebra [24], [23].
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Let us check thatA is indeed a division algebra. Note
for this purpose thatQ(ζ5+ ζ

−1
5 ) = Q(

√
5) is a subfield

of Q(ζ5). Suppose now that there exists an elementa ∈
E such thatNQ(i,ζ5)/Q(i)(a) = i, then, by transitivity of
the norm

NQ(i,ζ5)/Q(i)(a) = N
Q(i,

√
5)/Q(i)NQ(i,ζ5)/Q(i,

√
5)(a) = i,

which implies the existence of an elementb =
N

Q(i,ζ5)/Q(i,
√
5)(a) such that

N
Q(i,

√
5)/Q(i)(b) = i,

a contradiction [25].
The case of a norm of−1 is tougher though. However,

there are several ways to deal with it. We refer the reader
to [16, Section 8], where the proof used for the algebra
D4 can be used here verbatim.

We have thus constructed in our example a fully-
diverse(4×4) space-time code matrix. It furthermore has
the non-vanishing determinant property (see Definition
2.6), since the information symbols are restricted to alge-
braic integers inL, and hence the minimum determinant
belongs toZ[i], yielding minX 6=0 |det(X)| = 1 (cf.
[16]).

We conclude with two important invariants of central
simple algebras. Central simpleK-algebras are algebras
whose center isK and which have only trivial two-sided
ideals. Cyclic algebras are particular cases of central
simple algebras. We could have stated these definitions
only for cyclic algebras, but for the rest of this work, we
will need them in more generality.

Definition 4.2: Let A be a central simpleK-algebra.
The degreeof A is the integerdeg(A) =

√

dimK(A).
Wedderburn’s theoremis a major theorem in the

theory of central simple algebras, which tells that every
central simple algebra (and thus in particular every cyclic
algebra) is isomorphic to a matrix algebra over a central
divisionK-algebraD.

Definition 4.3: The index of A is the integer
ind(A) = deg(D) whereD is the unique central division
K-algebra associated toA by Wedderburn’s theorem.

We have thatind(A) | deg(A) and equality holds if
and only ifA is a division algebra.

B. Examples

Let us now consider a few well known examples of
division algebra codes, and see how they behave with
respect to fast decodability.

The Alamouti code [6] can be seen from an algebraic
perspective as a cyclic division algebra

DAlam = (Q(i)/Q, σ,−1), (15)

whereσ is the complex conjugation. This is aQ-central
division algebra of index2, whose cyclic representation
indeed yields codewords of the type

(

x1 −x∗2
x2 x∗1

)

,

wherexi are inZ[i] (that is, they are QAM symbols).
This algebra is more commonly known as the Hamil-

tonian quaternions

H = {a+ ib+ jc+ ijd | a, b, c, d ∈ R},

wherei2 = j2 = −1, ij = −ji.

Probably the most important property of this code
is that, when used over a MISO channel, its worst
case decoding complexity is linear, as was shown in
Subsection III-B.

Let us now consider the division algebra

Dort = (Q(i,
√
2)/Q(

√
2), σ,−1) (16)

from [7]. This is an index2 algebra with centerQ(
√
2).

It can be turned into a space-time code by mapping the
elementx = a1 + a2ζ8 + ua3 + uζ8a4 ∈ Dort to a
codewordX given by








a1 + a2ζ8 −a∗3 − a∗4ζ
∗
8 0 0

a3 + a4ζ8 a∗1 + a∗2ζ
∗
8 0 0

0 0 a1 − a2ζ8 −a∗3 + a∗4ζ
∗
8

0 0 a3 − a4ζ8 a∗1 − a∗2ζ
∗
8









,

whereaj = g2j−1 + a2j ∈ Z[i], j = 1, 2, 3, 4. We can
now write this in the form

X =

8
∑

j=1

gjBj,

whereg = (g1, . . . , g8) is the PAM symbol vector, and
the basis matrices are

B1 = diag(1, 1, 1, 1), B3 = diag(ζ8, ζ
∗
8 ,−ζ8,−ζ∗8 ),

B2 = diag(i,−i, i,−i), B4 = diag(iζ8,−iζ∗8 ,−iζ8, iζ∗8 ),

B5 =









0 −1
1 0

0 −1
1 0









, B7 =









0 −ζ∗8
ζ8 0

0 ζ∗8
−ζ8 0









,

B6 =









0 i
i 0

0 i
i 0









, B8 =









0 iζ∗8
iζ8 0

0 −iζ∗8
−iζ8 0









.

The decoding complexity of this code for a MISO
channel is2|S|4 instead of the maximal complexity
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MISO code matrix center index |S|κ (real) max |S|κ
DAlam (2× 2) Q 2 |S| |S|4
Dort (4× 4) Q(

√
2) 2 |S|4 |S|8

A2 (2× 2) Q 2 |S|4 |S|4

TABLE I
CODE CONSTRUCTIONS: ALGEBRAIC PROPERTIES VERSUS

DECODING COMPLEXITY

|S|8. Indeed, write the channelH = (h1, h2, h3, h4) as
(H1,H2) with H1 = (h1, h2) andH2 = (h3, h4), so that

HBi = (H1,H2)

(

B1,1
i 0

0 B2,2
i

)

= (H1B
1,1
i ,H2B

2,2
i ),

whenceℜ(Tr(HBi(HBj)
†)) simplifies to

ℜ(Tr(H1B
1,1
i (B1,1

j )†H†
1) + Tr(H2B

2,2
i (B2,2

j )†H†
2)).

The basis matrices are closely related to those of the
Alamouti code given in Subsection III-B, and it is easy,
using the known orthogonality relations of the Alamouti
basis matrices, to see that

ℜ(Tr(HBi(HBj)
†)) = 0, i = 1, 2, 3, 4, j = 5, 6, 7, 8,

yielding an upper triangular matrixR of the same form
as in (12), and consequently a decoding complexity of
2|S|4.

Our final example is the division algebra

A2 = (Q(
√
3)/Q, σ,−1),

whereσ(
√
3) = −

√
3. This algebra is of index 2 with

centerQ, and yields codewords of the form

(

x1 + x2
√
3 −x3 + x4

√
3

x3 + x4
√
3 x1 − x2

√
3

)

,

wherexi ∈ Z. However, as far as we know there is no
existing method to reduce the decoding complexity of
this code.

We already observed in Subsection III-B that from the
decoding perspective, it might be beneficial for codes
to inherit some of the special structure of the Alamouti
code. This study of different algebraic code structures
seems to concur with the same conclusion, expressed
now in algebraic terms as: a code should be a subset
of Mk(H) for somek. However, which algebras exactly
give fast decodability still seems unclear (see Table I).
In the following section, we are going to answer this
question.

V. EMBEDDING CODES INTO MATRIX RINGS OF THE

HAMILTONIAN QUATERNIONS

We have so far discussed fast decodability of space-
time codes via sphere decoding, and through several
heuristic examples concluded that codewords in rings
Mk(H), for somek andH the Hamiltonian quaternions,
are prone to offer orthogonality relations that induce
fast sphere decoding. Therefore our main interest is now
to study space-time codes that are subsets of the rings
Mk(H). This will be characterized by the ramification
of the cyclic algebra over which the space-time code is
built.

A. Embedding division algebras intoMk(H)

Let K/Q be an algebraic extension of degreem. We
then have that

m = r1 + 2r2,

wherer1 is the number of real embeddings andr2 the
number of pairs of complex embeddings ofK. We call
these embeddings theinfinite primesof the fieldK and
the non-zero prime ideals of the ringOK thefinite primes
of the fieldK. If the embedding is complex, resp. real,
we call it acomplexresp.real prime. To each primeP ,
finite or infinite, corresponds a local fieldKP , obtained
by completion ofK with respect to the absolute value
induced byP (the same wayR is obtained fromQ by
completion with respect to the usual absolute value).

Let A be a central divisionK-algebra of index and
thus degreen. Consider

AP = A⊗K KP

a central simpleKP -algebra, which is known to be
isomorphic toMr(D) for some r and some central
divisionKP -algebraD. We denote bymP the index of
AP and call it thelocal indexof A atP . We say thatP
is ramified inA if mP > 1

Let us define the spaceG(C)n ⊆Mn×2n(C) by

G(C)n = {(B∗, B) ∈Mn×2n(C) |B ∈Mn(C)}

andB∗ = (b∗ij). NowA⊗QR is a semi-simpleQ-algebra,
and can thus be written as a Cartesian product of simple
subalgebras. Its center isK⊗QR, which is isomorphic to
copies ofR or C: a copy ofR for each real embedding
of K, and one ofC for each pair of conjugate complex
embeddings. The simple components ofA⊗QR will thus
have these factors as centers, and will be either central
simple algebras overR or C: those overC will be matrix
algebras overC, while those overR will be either matrix
algebras overR if A is not ramified in the corresponding
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real prime, or matrix algebras overH if A is ramified.
Formally, we obtain the isomorphism [26]

A⊗Q R ∼=Mn/2(H)ω ×Mn(R)
r1−ω ×G(C)r2 , (17)

where ω is the number of real places whereA ram-
ifies. Therefore each element inA can be seen as a
concatenation ofω matrices inMn(C), r1 − ω matrices
in Mn(R) andr2 pairs of conjugate matrices inMn(C),
or alternatively as a matrix inMn×nm(C), recalling that
m = r1 + 2r2.

The above isomorphism (17) implies an injectionψ

A →֒ diag(Mn/2(H)ω ×Mn(R)
r1−ω ×G(C)r2), (18)

where the diag-operator places theith (n × n) block to
the ith diagonal block of a matrix inMmn(C). From
(18), we now see that it is possible to embed a division
algebraA into Mk(H) if and only if

ψ : A →֒ diag(Mn/2(H)m), (19)

namely we must haver2 = 0 and r1 − ω = 0. In
summary, we have that

Corollary 5.1: In order to be able to embed a division
K-algebraA into Mn/2(H):

• The centerK cannot have complex places, that is,
it must be totally real (r1 = m).

• Combined with the equationr1 − ω = 0, we then
have thatω = m, so that all the infinite places of
K must be ramified inA.

Let us then suppose thatK is indeed a totally real
number field. We shall now give a simple family of cyclic
K-algebras that fulfill the second condition above.

Proposition 5.2:Let A = (E/K, σ, γ) be a cyclic
division algebra, whereE is a CM-field (i.e., E is a
totally complex field containing a totally real fieldE1

such that[E : E1] = 2). Let η1, . . . , ηm be theQ-
embeddings ofK. If ηi(γ) is negative for anyηi, then
all the infinite places ofA are ramified.

Proof: Let us suppose thatPi is one of the infinite
primes in the fieldK and thatηi is the corresponding
Q-embedding. Letk be the smallest possible positive
power such thatσk fixes the totally real subfieldE1 of
E. We then have [27, Theorem 30.8]

(E/K, σ,−γ) ⊗Q KPi
∼ (EKPi

/KPi
, σk,−ηi(γ)),

(20)
where ∼ refers to equivalence in theBrauer group
B(KPi

). BecausePi is a real prime, we can identify
KPi

and R, and similarly,EKPi
and C, so that from

(20), we get〈σk〉 = Gal(C/R). Finally,

(E/K, σ,−γ) ⊗Q KPi
∼ (C/R, σ∗,−ηi(γ)),

where σ∗ is the complex conjugation and−ηi(γ) is
a negative real number. The claim now follows as
(C/R, σ∗,−ηi(γ)) ∼= H.

We point out that for rational numbersr we have
ηi(r) = r. Therefore a negative rational number is
always a suitable non-norm element ifA is a division
algebra.

Example 5.1:The algebrasDort andDAlam discussed
above both fulfill the conditions of Proposition 5.2.
ThereforeDAlam can be emebdded intoM1(H) = H

andDort into M2(H).

B. Embedding space-time lattice codes intoMk(H)

We have given in Corollary 5.1 the conditions for
a division algebraA of index n to be embedded into
Mn/2(H). To obtain a space-time lattice code, we need
to select a discrete subset ofA, namely one of its orders.
We denote byOK the ring of integers ofK, and similarly
by OE the ring of integers ofE.

Definition 5.1: An OK -orderΛ in A is a subring of
A, having the same identity element asA, and such that
Λ is a finitely generated module overOK and generates
A as a linear space overK.

This choice is motivated by the following example:
Example 5.2:Let E/K be a cyclic extension of alge-

braic number fields and(E/K, σ, γ) be a cyclic division
algebra, withγ ∈ K∗ an algebraic integer. TheOK -
module

Λ = OE ⊕ uOE ⊕ · · · ⊕ un−1OE

is a subring of the cyclic algebra(E/K, σ, γ). We refer
to this ring as thenatural order [7]. Most space-time
lattice codes built from division algebras [19], [9] have
been further restricted to this natural order.

In theoretical considerations we will later mostly con-
sider OK-orders (whereK is the center) but the con-
nection to coding theory is more visible if we consider
OK -orders asZ-modules.

Definition 5.2: A Z-orderΛ in A is a subring ofA,
having the same identity element asA, and such thatΛ
is a finitely generated module overZ and generatesA
as a linear space overQ.

The ringZ is a principal ideal domain and therefore
a Z-order is not only finitely generated as aZ-module,
but it also has aZ-basis. This basis is also aQ-basis for
the algebraA. In particular aZ-basis of an order inA
hasdimQ(A) elements.

Remark 5.1:The ringOK is a finitely generatedZ-
module. It is also known thatK is generated as a linear
space overQ. These results reveal that anyOK -order is
also aZ-order.
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Let us again consider a general division algebraA
having a centerK, where [K : Q] = m, and letψ be
the embedding ofA defined in (18).

Proposition 5.3:Let Λ be aZ-order ofA. Thenψ(Λ)
is amn2 dimensional lattice inMmn(C). If

{a1, . . . , amn2}
is aZ-basis of the orderΛ, then

{ψ(a1), . . . , ψ(amn2)}
is aZ-basis of the latticeψ(Λ).

For any non-zero element of the orderΛ, we have

detmin (ψ(Λ)) ≥ 1.

In particularψ(Λ) is a space-time lattice code that has
the NVD property (see Definition 2.6) and dimension
ratemn2/mn = n.

Proof: TheZ-basis ofΛ hasdimQ(A) elements. We
have thatA is of indexn and thus degreen, so it is of
dimensionn2 over the centerK. The centerK on the
other hand is anm-dimensionalQ-vector space. Overall
we get thatdimQ(A) = mn2. Let us now consider
a Z-basis{a1, . . . , amn2} of Λ. While it is clear that
the set{ψ(a1), . . . , ψ(amn2)} does generateψ(Λ), it is
not directly obvious thatψ(a1), . . . , ψ(amn2) are linearly
independent overR. For this result and for the claim on
detmin (ψ(Λ)), we refer the reader to [26].

According to Definition 2.2, the dimension rateR1 for
the codeψ(Λ) is given by

R1 =
dimR(ψ(Λ))

nm
=
mn2

nm
= n

dimensions per channel use.
Remark 5.2:Due to the above connection between an

order and a lattice, we may equally call a lattice code
an order code.

If we now concentrate on codes that are embeddable
into Mk(H), we need to restrict to aK-central division
algebraA of index n, whereK is totally real and all
the infinite places are ramified. We then get from (19)
an embedding

ψ : A →֒ diag(Mn/2(H)m) ⊂ diag(Mn(C)
m).

By taking an orderΛ ⊂ A, we get a lattice code

ψ(Λ) = ZA1 ⊕ · · · ⊕ ZAmn2 ⊂Mnm(C),

whereAi ∈ Mnm/2(H), i = 1, . . . mn2, forms aZ-
basis of the lattice. Its dimension rate is similarlyn. It
is clear that forcing a space-time code to be embedded
in Mn/2(H) imposes an extra constraint. The next result
characterizes this constraint in terms of the dimension
rate.

Proposition 5.4:Let us suppose that we have a lattice
space-time codeC ⊂ Mk(C) ∩ Mk/2(H), where k is
even. We then have that

dimR(C) ≤ k2.

Consequently, the dimension rateR1 of C as given in
Definition 2.2 is at mostk.

Proof: We can see that, as a subspace inM2(C),
the ring of Hamiltonian quaternions has degree4. Each
matrix inMk/2(H) consist of(k/2)2 freely chosen(2×
2) blocks that have the inner structure of Hamiltonian
quaternions. Therefore we have

dimR(Mk/2(H)) = 4

(

k

2

)2

= k2.

If we compare the raten of ψ(Λ) with this result, we
get n versusnm, wherem = [K : Q]. There is thus
a trade-off between fast decodability and rate. However,
by choosing the center of the algebraA to beQ, we can
meet the optimal dimension rate of Proposition 5.4.

Remark 5.3:We warn the reader here. The theory
developed so far is not explicit in a sense that while it
does give us a good description of how to construct the
needed division algebras (see Proposition 5.2), we have
not given an explicit method to produce the embedding
(18). In particular, we have no guarantee that the left
regular representation would have anything to do with
the embedding (18). In Section VII and the following
parts of the paper, we will show that there are methods
to overcome this problem and that the left regular
representation can work as a good starting point.

VI. B OUNDS AND EXISTENCE RESULTS FOR MATRIX

LATTICES IN Mk(H)

So far, we have given conditions for a division central
K-algebraA to be embedded intoMk(H) and shown
how to obtain fast-decodable space-time lattice codes
from orders of A. In this section we are going to
give bounds and existence results for such codes, taking
into account an extra code design criterion, namely the
normalized minimum determinant of a lattice code.

A. Normalized minimum determinant of an order code

The minimum determinant detmin (C) is a widely used
concept to predict the performance of a finite space-time
codeC, since it determines its coding gain. In order to
compare two finite space-time codesC1, C2 ∈ Mn(C),
one must first check that

• both codebooks have equal number of elements:
|C1| = |C2| and
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• both codes are scaled so that the maximum
power used is equal:max{||A||2F |A ∈ C1} =
max{||B||2F |B ∈ C2}.

In the case of infinite lattice codes, due to the discrete-
ness of the set, a non-zero minimum determinant auto-
matically yields the NVD property. Among two NVD
codes using the same maximum power, the one with
higher minimum determinant will have better coding
gain for the infinite lattice, and will thus provide us with
a bound on the coding gain of any finite constellation
carved from it. Now given an infinite space-time lattice
codeC, a numberR of codewords, and a fixed power
constraint, there are different ways to pick a finite
constellation that may lead to different coding gains.

The two most typical encoding methods are linear dis-
persion encoding (cf. the discussion underneath Equation
(2)) and spherical encoding. These encoding methods
usually result in different constellation shaping, that can
be either cubic (more generally orthogonal) shaping, pro-
vided the lattice is orthogonal to start with, or spherical
shaping. The two possible shapes are described below in
more detail.

Spherical shaping.Just as for Gaussian channels, the
most energy efficient way to choose codewords from a
given lattice is to use spherical shaping. This means
that we choose the needed number of lowest energy
codewords from the space-time lattice codeC and then
scale the finite codeC(r) given by

C(r) = {A |A ∈ C, ||A||F ≤ r} ⊂ C (21)

to meet the power constraint, wherer depends on the
numberR of wanted codewords. For large code sizes,
this approach will roughly give lattice points inside aK-
sphere, whereK is the rank of the code lattice (=number
of dispersion matrices).

To fairly compare two finite codesC1(r) and C2(r),
one should first scale them so that both the lattices
have a fundamental parallelotope of volume 1. Since we
consider a space-time lattice codeC ∈Mn(C), to define
its volume we first map it toR2n2

via α, yielding the
lattice α(C) whose basis is{α(B1), . . . , α(BK)}, ob-
tained from the basis{B1, . . . , BK} of C. The generator
matrix M of α(C) is M = (α(B1), . . . , α(BK)), where
α(Bi) are column vectors, and we define the measure
(or volume)m(C) of the fundamental parallelotope of
the space-time latticeC by

m(C)2 = det(MMT ) = det(
(

ℜTr(BiB
†
j )
)

1≤i,j≤K
.

To combine the notion of minimum determinant with
that of scaling the volume of the lattice to evaluate the
performance of finite constellations, we use the notion

of normalized minimum determinantδ(C), obtained by
first scaling the latticeC to have a unit size fundamental
parallelotope and then taking the minimum determinant
of the resulting scaled lattice. A simple computation
proves the following.

Lemma 6.1:Let C be a K-dimensional space-time
lattice inMn(C). We then have that

δ(C) = detmin (C) /(m(C))n/K .

The normalized minimum determinant predicts which
lattice is likely to produce the finite codes with the
biggest minimum determinants, while using spherical
shaping.

Cubic shaping. We also consider another kind of
shaping, called cubic or orthogonal shaping.

Definition 6.1: We say that a space-time latticeC in
Mn(C) is orthogonal or rectangular if the corresponding
real latticeα(C) has a basis that is orthogonal according
to the normal inner product of the spaceR2n2

. If each
of of the basis vectors are of equal length, we say that
C is orthonormal.

When the lattice is orthogonal, there is no point of
employing spherical shaping (21), for we get the same
result by using simple linear dispersion encoding (see
the remark in the end of this section) as described after
Equation (2).

One can get bounds for the normalized minimum
determinant also in the case of cubic shaping, as for
example:

Proposition 6.2: [28] Let us suppose thatC is an
orthogonally shaped 16-dimensional space-time lattice
code inM4(C). We then have that

δ(C) ≤ 1

16
= 0.0625.

In the particular case whereC is an order code, that
is C = ψ(Λ), with Λ an order of an indexn division
algebraA = (E/K, σ, γ) and [K : Q] = m, we know
from Proposition 5.3 thatψ(Λ) is anmn2-dimensional
lattice inMmn(C) with detmin (ψ(Λ)) = 1, so that

δ(ψ(Λ)) = 1/(m(C))1/n

and the normalized minimum determinant only depends
on the volume of the fundamental parallelotope of the
order code.

Remark 6.1:Note that the fact whether one uses
linear dispersion encoding (i.e., a symmetric coefficient
set) or spherical shaping (i.e., an optimized coefficient
set) has nothing to do with the shape of the original
lattice. Even though the lattice is not orthogonal, we can
employ both encoding methods. If the lattice is not badly
skewed, then the difference between the two methods is
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usually not very big, whereas for highly skewed lattices
one may see a gap of several dBs.

For orthogonal lattices, both methods will give the
same result, provided that the target constellation size is
suitable for a symmetric coefficient set to start with.

B. Bounds and existence results

Since the normalized minimum determinant of an or-
der code only depends on the volume of its fundamental
parallelotope, one may wonder whether, given a center
K, it is possible to find the smallest volume an order
inside any division algebra of a given indexn can have.

To answer this question, we first further characterize
the volume of the order by connecting it to an invariant
of the order.

Proposition 6.3: [26] Let Λ be aZ-order inA and let
ψ be the embedding (18). We then have that

m(ψ(Λ)) =
√

|d(Λ/Z)|,
whered(Λ/Z) is theZ-discriminant of the orderΛ (see
[27], [16] for an exact definition), and further that

δ(ψ(Λ)) =

(

1

|d(Λ/Z)|

)1/2n

.

Clearly the smaller the absolute value of theZ-
discriminant of an order is, the greater the normalized
minimum determinant will be.

Inside a given algebra theZ-orders having the smallest
possible discriminant are calledmaximal orders. All the
maximal orders of a given division algebra share the
same discriminant.

While eachOK-order is alsoZ-order, the opposite
does not have to be true. However if aZ-order Λ
also is anOK -module, it is anOK -order and itsOK -
discriminantd(Λ/OK) is related to itsZ-discriminant
by the following transitivity formula:

Lemma 6.4:Let A be aK-central division algebra of
indexn and letΛ be anOK -order. If Λ is aZ-order in
A, then

d(Λ/Z) = NK/Q(d(Λ/OK))d(OK/Z)
n2

,

whered(OK/Z) is just the usual number field discrim-
inant of the extensionK/Q.

To summarize, we have just shown that the normalized
determinant

δ(ψ(Λ)) = 1/(m(C))1/n

is given by

δ(ψ(Λ)) =

(

1

|NK/Q(d(Λ/OK ))d(OK/Z)n
2 |

)1/2n

.

This reveals that we only have to consider the term

NK/Q(d(Λ/OK))

as d(OK/Z)
n2

is fixed (when K is fixed). The
OK -discriminant d(Λ/OK) is an ideal in OK , but
NK/Q(d(Λ/OK)) can be seen as an element inZ.
Therefore we can discuss the size of ideals ofOK . By
this, we mean that ideals are ordered by the absolute
values of their norms toQ. For example, ifOK = Z[i],
we say that the prime ideal generated by2+ i is smaller
than the prime ideal generated by3, because they have
norms 5 and 9, respectively.

We are now ready to state the bounds that characterize
the best order codes in terms of normalized minimum
determinant. The hypotheses take into account that the
order code can be embedded intoMk(H), for somek.

In the following, we use the notation2 || n which
means that2 dividesn, but 4 does not.

Proposition 6.5:Let A be aK-central division alge-
bra of indexn, 2 | n, whereK is a totally real number
field, and letP1 ≤ P2 be a pair of smallest primes inK.
Let us suppose that all the infinite primes are ramified
in A.

If 2 || n and 2 | [K : Q], then the minimum
discriminant ofA is

(P1P2)
k(k−1).

If 4 | n then the minimum discriminant ofA is

(P1P2)
n(n−1).

If 2 || n and2 ∤ [K : Q], then the minimal discriminant
of A is

P
n(n−1)
1 P

k(k−1)
2 .

Proof: The proof with related background as well
as more general bounds can be found in Appendix.

Example 6.1:Consider the question of building a16-
dimensional lattice code inM4(C) with the best achiev-
able normalized minimum determinant. The order code
ψ(Λ) gives anmn2-dimensional lattice code inMnm(C)
for any orderΛ. To havenm = 4 andmn2 = 16, the
only option is to choosem = 1 andn = 4. According
to Proposition 12.3, we have that the smallest possible
discriminant for aQ-central division algebra of index4
is 212 · 312. Let us now suppose that

A = (E/Q, σ, γ)

is the algebra having a maximal orderΛ with the
promised discriminant. According to Proposition 6.3 we
have that

m(ψ(Λ)) = 66 and δ(ψ(Λ)) =

(

1

612

)
1

8

= 0.068...
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Proposition 6.5 tells us that we can achieve this bound
even with a16-dimensional lattice inM4(C) ∩M2(H).

In [10], the authors managed to build a16-dimensional
lattice code IA-MAX in M4(C) having a normalized
minimum determinant equal to0.1361.... We however
conjecture that0.068.... is the best possible minimum
determinant for a lattice inM4(C) ∩M2(H).

VII. E XPLICIT CONSTRUCTION METHODS

So far our study has been mostly theoretical. No
explicit constructions resulting from the mappingψ (18)
have yet been given. We have only proved that the
afore described matrix lattices with NVD exist. Let us
now suppose that we have aK-central division algebra
D = (E/K, σ, γ), where[K : Q] = m and[E : K] = n.
There existm Q-embeddingsβi from K to C. For each
βi we can find such an embeddingσi : E →֒ C that
σi|K = βi. Let us now suppose that{σ1, . . . , σm} is a
set of representatives of embeddingsβi.

By using the left maximal representation we get an
embeddingφ : D →֒ Mn(E) ⊆ Mn(C). Let us suppose
that a is an element ofD andA is the corresponding
matrix φ(a). We then get a mapping

ψ∗ : D →Mn×nm(C) (22)

which is defined by

a 7→ diag(σ1(A), . . . , σm(A)).

We now have the following explicit version of the
previously defined embedding (18).

Proposition 7.1:Let us suppose thatΛ is aZ-order in
D and thatψ∗ is the embedding (22) defined above. Then
ψ∗(Λ) is amn2 dimensional lattice inMmn×nm(C). For
any non-zero element of the orderΛ we have

detm(ψ∗(a)) ≥ 1.

However, in general we might loose the connection
between the volume of the fundamental parallelotope
of the order codeψ∗(Λ) and theZ-discriminant ofΛ.
However if we can choose the left regular representation
and the embeddingsσ, . . . , σm correctly we have the
following. Let us suppose that we have such a center
K and an indexn division algebraA that

A⊗Q R ∼=Mn/2(H)ω ×Mn(R)
r1−ω ×G(C)r2 .

Proposition 7.2:Let us suppose thatΛ is aZ-order in
A and thatψ∗ is the previously defined embedding. If we
can chooseσ1, . . . , σm and a left maximal representation
φ so that

ψ∗(Λ) ⊂ diag(Mn/2(H)ω ×Mn(R)
r1−ω ×G(C)r2),

we get

m(ψ∗(Λ)) =
√

|d(Λ/Z)|

and

δ(ψ∗(Λ)) =

(

1

|d(Λ/Z)|

)1/2n

.

Proof: Under the assumption that the embeddings
and the maximal representation are chosen as presented
the proof of these claims is verbatim the same as for
Proposition 6.3 and can therefore found from [26].

Unfortunately in the proof of the following proposition
we have to use some notions not defined in this paper.

Proposition 7.3:Let us suppose we have an index
n Q-central division algebra and letφ denote the left
regular representation. If we have such a real matrixM
that

Mφ(D)M−1 ⊆Mn/2(H),

then

δ(Mφ(Λ)M−1) =

(

1

|d(Λ/Z)|

)1/2n

.

Proof: We will give the proof in the case where the
index is 2. The generalization is obvious and we will
meet all the needed ideas already in this simplest case.

Let us suppose that φ(Λ) has a Z-basis
{A1, A2, A3, A4}. We denoteBi = MAiM

−1 and
set B = {(B1, . . . , B4}. We can flatten the matrix
Bi into a 4-tuple L(Bi) by first forming a vector of
length4 out of the entries ofAi (e.g. row by row). The
following identities are now easily seen

L(Bi)L(Bj)
T = Tr(BiB

T
j ) (23)

and
L(Bi)L(B

T
j )

T = Tr(BiBj). (24)

The Gram matrix of the latticeMφ(Λ)M−1 is

G = (ℜ(Tr(BiB
†
j )))

4
i,j=1.

BothBi andB†
j do have Alamouti structure and therefore

so does alsoBiB
†
j . This reveals thatTr(BiB

†
j ) ∈ R and

we can omit taking the real part from the Gram matrix.
According to Equation (23) we can now write

G = (L(Bi)L(B
∗
j )

T )4i,j=1 = L(B)L(B)†,

where the rows of the4× 4 matrix L(B) consist of the
vectorsL(Bi). A simple permutation of the columns and
elementary properties of determinants give us that

|det(L(B))det(L(B)†)| =

|det(L(B))det(L(B)T )| = |det(L(B))det(L(B′)T )|,
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whereL(B′) is a matrix with the rowsL((Bi)
T ). Ac-

cording to Equation (24) we now have

L(B)L(B′)T = (Tr(MAiAjM
−1))4i,j=1.

A general result on matrix traces tells us that
Tr(XCX−1) = Tr(C) for any matricesC andX. This
result combined with the definition of the discriminant
now gives us that

L(B)L(B′)T = (Tr(MAiAjM
−1))4i,j=1 =

(Tr(AiAj))
4
i,j=1 =

√

d(Λ/Z).

Example 7.1:Consider from (15) the division algebra

DAlam = (Q(i)/Q, σ,−1),

which has index 2 and centerQ. The fieldQ has only
one infinite place∞ and according to Proposition 5.2
it is ramified in the algebraDAlam. We thus have an
embeddingDAlam →֒ H given by (19). If we choose
a Z-order Λ in DAlam, ψ(Λ) ⊂ H ⊂ M2(C) is a 4-
dimensional lattice code.

Here the left regular representation directly gives us
an explicit version (see (22) and Proposition 7.1) of this
mapping. As demonstrated in the beginning of the paper,
it also gives us a fast-decodable code.

Example 7.2:Let us consider the example we gave in
the very beginning of the paper. The cyclic algebra

Dort = (Q(i,
√
2)/Q(

√
2), σ,−1),

is an index2 division algebra with centerQ(
√
2). Here

σ is simply the complex conjugation. The general theory
tells us thatDort can be embedded intoM2(H).

Again the mapping from Proposition 22 will directly
give us an explicit version of the embedding in (19).
The fieldQ(

√
2) has twoQ-embeddingsβ1, β2, where

β1(
√
2) =

√
2 andβ2(

√
2) = −

√
2. The corresponding

Q-embeddingsσ1 and σ2 are defined by the equations
σ1 = id, σ2(i) = i andσ2(

√
2) = −

√
2 (or equivalently

σ2(ζ8) = −ζ8). The natural orderΛ consists of elements
x = a1 + a2ζ8 + ua3 + uζ8a4, whereai ∈ Z[i]. The left
regular representation now gives us

α(x) =

(

a1 + a2ζ8 −a∗3 − a∗4ζ
∗
8

a3 + a4ζ8 a∗1 + a∗2ζ
∗
8

)

.

It is then an easy task to see that

σ2(α(x)) =

(

a1 − a2ζ8 −a∗3 + a∗4ζ
∗
8

a3 − a4ζ8 a∗1 − a∗2ζ
∗
8

)

.

In particular bothα(x) and σ2(α(x)) are elements in
H and Proposition 7.2 can be applied. These results
reveal that the example code we gave in the beginning

of the paper was just an instance of the general theory
developed above.

Remark 7.1:These two examples may give us a little
too rosy picture of the power of our theory. In both cases,
the embedding in Proposition 7.1 exactly imitated the
embedding (19). On top of that this representation also
led to codes with reduced decoding complexity. How-
ever, we do not have any guarantee that either of these
things will happen more generally. It heavily depends
on the chosen maximal subfield, non-norm element and
even on the chosen generator of the Galois group. In
Sections VIII and X we will meet situations where
the left regular representation does not directly give us
the required embedding even when the division algebra
has the correct algebraic structure. Yet, in all these
cases a simple manipulation applied after the left regular
representation will give us an embedding to the matrix
ring of quaternions and codes that have reduced decoding
complexity. While this may seem to be accidental, there
are some underlying algebraic principles that explain the
sudden “luck” we encounter, see Section XI.

VIII. FAST-DECODABLE 4× 2 MIDO CODES

So far, we have developed an algebraic theory of fast-
decodable codes through different characterizations and
bounds. We are now finally putting our theory into use
to give a few different coding strategies that lead to fast-
decodable codes. We start with MIDO codes for 4 Tx
antennas, with the following properties:

• They are 16-dimensional lattices inM4(C).
• They satisfy the NVD property.
• Their decoding complexity ranges from|S|10 to
|S|16 when a real alphabet of size|S| is used.

A. A family of fast-decodable MIDO codes withQ as a
center

We give here an example of a MIDO code built
following step by step the theory developed so far. The
starting point is to consider a division algebra that can
be embedded intoM2(H) via the embeddingψ (18).
According to Section V and Proposition 5.2, we consider
a Q-central division algebraA = (E/Q, σ, γ) of index
4, whereE is a CM field andγ a negative non-norm
element, namely

c1) [E : Q] = 4,
c2) γ, γ2 /∈ NE/Q(E

∗),
c3) Gal(E/Q) = 〈σ〉 with σ2(f) = f∗, where f∗

stands for the complex conjugate off , and
c4) γ < 0.
One instance of such an algebra is

Dmido = (Q(ζ5)/Q, σ,−8/9),
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whereσ is given byσ(ζ5) = ζ35 . The prime2 is totally
inert in the extensionQ(ζ5)/Q and therefore [16, Lemma
11.1]Dmido is a division algebra.

Let OE = Zw1 ⊕ Zw2 ⊕ Zw3 ⊕ Zw4 be the ring of
algebraic integers ofE. The left representationφ∗ of
Dmido now yields









y1 γσ(y4) γy∗3 γσ(y2)
∗

y2 σ(y1) γy∗4 γσ(y3)
∗

y3 σ(y2) y∗1 γσ(y4)
∗

y4 σ(y3) y∗2 σ(y1)
∗









, (25)

where yi = yi(g4i−3, g4i−2, g4i−3, g4i) = g4i−3w1 +
g4i−2w2 + g4i−3w3 + g4iw4 and g4i−j ∈ Q for i =
1, 2, 3, 4, j = 0, 1, 2, 3. If we pick up an orderΛ from
Dmido, thenψ∗(Λ) is a16-dimensional lattice code with
the NVD property from Proposition 7.2.

We can prove that the discriminant of this algebra
meets the bound of Proposition 6.5, but even if we
choose a maximal order from this algebra there is no
guarantee (because we have not fulfilled the conditions
of Proposition 7.2 yet) that this small discriminant would
result into good normalized minimum determinant.

This is because we now face here, for the first time, the
problem that the embeddingψ∗ from Section VII does
not directly give us an embedding intoM2(H), although
Proposition 7.1 promises that such an embedding exists.
Luckily, we can perform a series of simple manipulations
starting from the left regular representation that will
transform the code matrices into a correct form and at
the same time will recover the connection between the
discriminant of the algebra and the normalized minimum
determinant of the lattice.

After swapping

1) y2 andy3,
2) the 2nd and the 3rd column, and
3) the 2nd and the 3rd row,

we get the matrix








y1 γy∗2 γσ(y4) γσ(y3)
∗

y2 y∗1 σ(y3) γσ(y4)
∗

y3 γy∗4 σ(y1) γσ(y2)
∗

y4 y∗3 σ(y2) σ(y1)
∗









. (26)

Next we perform the following energy balancing trans-
formation by distributing the effect of|γ| more evenly.
By denotingr = |γ|1/4, we finally get a code consisting
of matrices of the desired type:

XFD(y1, y2, y3, y4) (27)

=









y1 −r2y∗1 −r3σ(y4) −rσ(y3)∗
r2y2 y∗1 rσ(y3) −r3σ(y4)∗
ry3 −r3y∗3 σ(y1) −r2σ(y2)∗
r3y3 ry∗2 r2σ(y1) σ(y1)

∗









.

The minimum determinant of the code stays un-
changed since the above transformation is actually just a
conjugation by a real matrixM . Let us now suppose that
we have a maximal orderΛ of the algebraDmido (such
an order can be found by using the computer algebra
system Magma [29]). Now the new code obtained from
this maximal order isMψ∗(Λ)M−1, and a direct calcu-
lation reveals that this code lattice meets the normalized
minimum determinant boundδ(φ(Λ)) = 0.068... (cf.
Propositions 7.2, 7.3, 6.5, and Example 6.1).

To make the code suitable for PAM modulation, we
further describe a modified version of this code that will
have an almost rectangular shaping. The ring of algebraic
integers inQ(ζ5) also has aZ-basis{1− ζ, ζ − ζ2, ζ2−
ζ3, ζ3 − ζ4}, where we have abbreviatedζ5 = ζ. The
elements in the code matrix (27) now become, after
further restricting the coefficientsgi to Z:

y′i = y′i(g4i−3, g4i−3, g4i−2, g4i)

= g4i−3(1− ζ) + g4i−2(ζ − ζ2) +

+g4i−1(ζ
2 − ζ3) + g4i(ζ

3 − ζ4)

and

σ(y′i) = g4i−3(1− ζ3) + g4i−2(ζ
3 − ζ)

+g4i−1(ζ − ζ4) + g4i(ζ
4 − ζ2).

We get a set of matricesXFD,A4
(y′1, y

′
2, y

′
3, y

′
4) forming

a 16-dimensional lattice code inM2(H). We note that
the choice ofγ = −8/9 prevents this order code from
being a natural order. However, after multiplication by
94, the resulting lattice code will be included in a natural
order, thus inheriting the NVD property. The geometric
structure of the code is relatively close to a Cartesian
product of fourA4-lattices (see [30]), therefore we call
it theA4 code. This code was also proposed for the DVB
Consortium’sCall for Technologies for DVB-NGH[31].

The variablesg4i−j in each of they′i range over
a certain PAM set, so that the code encodes overall
16 independent PAM symbols. In other words, a PAM
vector(g1, . . . , g16) is mapped into a(4× 4) matrix

16
∑

i=1

giBi,

where the basis matricesBi of the code are

B1 = XFD,A4
(y′1(1, 0, 0, 0), 0, 0, 0),

B2 = XFD,A4
(y′1(0, 1, 0, 0), 0, 0, 0),

...

B16 = XFD,A4
(0, 0, 0, y′4(0, 0, 0, 1)).
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A direct calculation shows that

ℜ(Tr(HBi(HBj)
†) = 0

for 1 ≤ i ≤ 4 and 5 ≤ j ≤ 8, whereH is a (2 × 4)
channel matrix. This is exactly the design criterion of
Subsection III-A described by the steps 1-2, yielding a
complexity of |S|12 for the codeA4.

We can perform yet another change of basis that will
enable us to take advantage of the steps 3-4 described
in Subsection III-A. The new basis

{

1,
ζ + ζ−1

2
,
ζ − ζ−1

2
,
ζ2 − ζ−2

4

}

will result in a complexity|S|10, reduced by as much
as 37.5% from the full complexity|S|16 of a general
MIDO code. However, it is not an integral basis, hence
the minimum determinant is small though still non-
vanishing.

The resulting lattice has almost cubic shaping, but, due
to the coding gain loss, the performance is approximately
1 dB worse than that of theA4 version. The promised
complexity reduction is due to the fact that the first two
basis elements are real, while the last two are purely
imaginary. Hence the relations given by the steps 1-4 in
III-A are all satisfied.

Remark 8.1:To the best of our knowledge, there is
no guarantee that an integral basis consisting ofn/2 real
andn/2 purely imaginary elements even exists.

Remark 8.2:The matrix manipulations given in this
section may also seem to have a somewhatad hoc
feeling. Yet we will see in Sections X and XI that
this strategy can be used far more generally to give us
embeddings toMk(H).

Remark 8.3:We also simulated the maximal order
code from this algebra achieving the discriminant bound
and theA4 code under spherical shaping. Both codes
had equally good performance, gaining almost 1 dB
compared to the linearly dispersedA4. It seems that the
A4 code did inherit the good performance of the optimal
maximal order code.

B. MIDO codes from a bigger center through puncturing

We now adopt a slightly different approach to the
design problem of MIDO codes via puncturing of MIMO
codes. We start from the matrix (14)









x0 iσ(x3) iσ2(x2) iσ3(x1)
x1 σ(x0) iσ2(x3) iσ3(x2)
x2 σ(x1) σ2(x0) iσ3(x3)
x3 σ(x2) σ2(x1) σ3(x0)









and puncture it in two different ways.

Let us first repeat a remark made above, namely that
Q(ζ5 + ζ−1

5 ) = Q(
√
5) is a subfield ofQ(ζ5). As a first

puncturing, we restrict ourselves to elements inQ(
√
5)

instead ofQ(ζ5). Note that sinceσ2(ζ5) = ζ45 , we further
have

σ2(ζ5 + ζ−1
5 ) = ζ45 + ζ−4

5 = ζ−1
5 + ζ5

and thusQ(
√
5) is fixed byσ2. This yields a codebook

C1 consisting of codewords of the form

X =
1√
5









x0 iσ(x3) ix2 iσ(x1)
x1 σ(x0) ix3 iσ(x2)
x2 σ(x1) x0 iσ(x3)
x3 σ(x2) x1 σ(x0)









. (28)

It is now enough to notice that we are working in
the same field extension as for the Golden code [25],
meaning that we can use the same shaping technique.
Denote:

θ =
1 +

√
5

2
,

σ(θ) =
1−

√
5

2
= 1− θ,

α = 1 + i− iθ,

σ(α) = 1 + i− iσ(θ).

Every entryxj in the above matrix is now taking the
form

xj = α(aj + bjθ), j = 0, 1, 2, 3,

whereaj , bj ∈ Z[i] are chosen to be QAM symbols. We
thus indeed get a MIDO code carrying 8 complex QAM
symbols, with unitary encoding matrix yielding the cubic
shaping property. The factor1√

5
is used to normalize the

minimum determinant to one.
A straightforward calculation gives that the volume of

the fundamental parallelotope of this code is54 · 28. At
the same time, the minimum determinant of the code
is 1. If we now scale the codeC3 with ( 1

54·28 )1/16,
the resulting code latticeC∗

3 = ( 1
54·28 )

1/16 · C3 has a
fundamental parallelotope of volume1. We now see that
the normalized minimum determinant of the latticeC∗

3 is
[

(

1

54 · 28
)1/16

]4

=
1

20
.

Comparing this to Proposition 6.2, we conclude that the
normalized minimum determinant of the codeC3 is very
close to the optimum minimum determinant of orthogo-
nally shaped MIDO codes. The good performance of this
code once again suggests that it is favorable for the code
performance at low SNRs to maintain the cubic shaping.
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Take again a codeword








x0 iσ(x3) ix2 iσ(x1)
x1 σ(x0) ix3 iσ(x2)
x2 σ(x1) x0 iσ(x3)
x3 σ(x2) x1 σ(x0)









and multiply both the 3rd and 4th column byζ−1
8 , where

ζ8 = e2iπ/8 is a primitive 8th root of unity. Then multiply
the 3rd and 4th row this time byζ8. Note that this
of course brings the matrix entries out of the algebra
we started with, but will do this without changing the
determinant. We further note that we can useγ = −i
instead ofγ = i, since−i is not a norm. The proof
of this fact is similar to that of the non-norm element
i (cf. IV-A), and follows from the same argument of
the transitivity of the norm. We have to show that there
cannot be an element with norm−i overQ(i,

√
5)/Q(i).

If there were an elementa with N
Q(

√
5,i)/Q(i)(a) = −i,

then ia would have norm

i2N
Q(

√
5,i)/Q(i)(a) = i,

a contradiction. Again for the case ofN
Q(

√
5,i)/Q(i)(a) =

γ2 = −1 we refer the reader to [16, Section 8].
We now obtain for the codebookC3 consisting of

matrices








x0 −iσ(x3) −ζ8x2 −ζ8σ(x1)
x1 σ(x0) −ζ8x3 −ζ8σ(x2)

ζ8x2 ζ8σ(x1) x0 −iσ(x3)
ζ8x3 ζ8σ(x2) x1 σ(x0)









. (29)

Let us denote byc1, c2, c3 and c4 the 4 columns of
the above matrix. It can be easily seen that the above
manipulations result in having columns 1 and 3, and 2
and 4 satisfying

cT1 c3 = 0, cT2 c4 = 0

without changing the shaping. This construction thus
increases the “orthogonality-likeness” of the columns of
the code without altering its other properties. Though
this transformation does increase the number of zeroes
in the R-matrix of the QR decomposition, it does not
reduce the decoding complexity as defined. This is due to
the fact that, albeit the above relations resemble the real
inner product, the vectorsci actually consist of complex
elements.

We now propose another puncturing, which focuses
this time on having orthonormal columns, in order to
have provable fast decodability. SinceQ(ζ5, i) = Q(ζ20),
where ζ = ζ20 = e2iπ/20 is a primitive 20th root of
unity, we can alternatively take as basis forQ(i, ζ5) the
set{1, ζ, ζ2, ζ3}. An elementx is then written as

x = a+ bζ + cζ2 + dζ3, a, b, c, d ∈ Q(i).

We perform the following puncturing and restriction of
coefficients. Takex0, x1 of the form

a+ ibζ + cζ2 + idζ3, a, b, c, d ∈ Z

so thatσ2(x0) = x0
∗, σ2(x1) = x1

∗. For x2 and x3,
take instead

a(1+i)+b(1−i)ζ+c(1+i)ζ2+d(1−i)ζ3, a, b, c, d ∈ Z

to get this timeσ2(x2) = −x2∗, σ2(x3) = −x3∗. This
results in a codebookC2 with codewords given by

X =









x0 iσ(x3) −x2∗ iσ(x1)
∗

x1 σ(x0) −x3∗ −σ(x2)∗
x2 σ(x1) x0

∗ −σ(x3)∗
x3 σ(x2) x1

∗ σ(x0)
∗









. (30)

An easy computation shows that the 1st and 3rd row,
resp. the 2nd and 4th row, are orthonormal. By permuting
the 2nd and 3rd rows and columns resp., we get

XC2
(x0, x1, x2, x3) =









x0 −x∗2 iσ(x3) iσ(x1)
∗

x2 x∗0 σ(x1) −σ(x3)∗
x1 −x∗3 σ(x0) −σ(x2)∗
x3 x∗1 σ(x2) σ(x0)

∗









(31)

which clearly exhibits the Alamouti block structure of
the code.

As previously for the A4-code, a PAM vector
(g1, . . . , g16) is mapped into a(4× 4) matrix

16
∑

i=1

giBi,

where the basis matricesBi are

B1 = XC2
(x0(1, 0, 0, 0), 0, 0, 0),

B2 = XC2
(x0(0, 1, 0, 0), 0, 0, 0),

...

B16 = XC2
(0, 0, 0, x3(0, 0, 0, 1)).

Again a direct calculation gives

ℜ(Tr(HBi(HBj)
†) = 0

for 1 ≤ i ≤ 4 and5 ≤ j ≤ 8 and a complexity of|S|12.

C. The Srinath-Rajan (SR) code

So far, the best performing fast-decodable4× 2 code
has been the code based on stacked CIODs proposed
in [5]. The real and imaginary parts of the encoded
symbols are separated in a careful way, so that when
a rotated 4- or 16-QAM alphabet is used, the code
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has high coding gain. It is moreover conjectured that
the code has the NVD property, but this has not been
proved. Before rotating the constellation, the code is
equivalent to transmitting four independent Alamouti
blocksA,B,C,D:

XSR unrotated=

(

A ζ8B
ζ8C D

)

,

where a primitive 8th root of unityζ8 has been added in
order to maximize the coding gain of the rotated code.
Because the blocks are independent prior to rotation,
the unrotated code does not have full diversity. For this
reason, getting a proof for the possible NVD by using the
theory developed in this paper does not seem possible.

If we ignore the constantζ8, the code is exactly of the
same form as the codes proposed in this paper (except
possibly for the NVD), as clearly

(

A B
C D

)

∈M2(H).

Adding the constantζ8 does not affect fast decodability,
but helps to maximize the coding gain.

We have not tried whether it is possible to improve
the coding gain of the codes proposed in this paper by
using a suitable rotation. This may be seen as a reason
for the small performance loss of the proposed codes
compared to the rotated SR code. We did however try
another type of optimization, namely using a spherical
constellation instead of linearly dispersed constellation
(cf. VI-A). The spherically shaped fast-decodable code
outperforms the SR code (see Section IX below) by a
fraction of a dB.

IX. SIMULATION RESULTS OF MIDO CODES

In Figure 1, we have plotted the block error rates
of different MIDO codes at the rate 4 bpcu. All of
the codes use the 2-PAM or 4-QAM alphabet, ex-
cept for the spherically shapedA4 code referred to as
NC (FD,A4, spher.). This code is constructed by using
a 6-PAM alphabet and then choosing the codewords with
the smallest Frobenius norms, resulting in a codebook
with 216 codewords.

We can see that the punctured codeC2
(NC (FD,punct.)) does not perform too well due
to its small (though non-vanishing) coding gain. The
other new codes, for their part, perform more or less
equally to the Biglieri-Hong-Viterbo (BHV) code. The
A4 code (NC (FD,A4)) is slightly beaten by the
BHV code at low-moderate SNRs, but will eventually
outperform it starting from 20 dB, thanks to its full
diversity. The shaped code (NC (shaped)), which is
not fast-decodable, outperforms the BHV code starting
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Fig. 1. Comparison among different MIDO codes at rate 4 bpcu.

from 16 dB. The Srinath-Rajan (SR) code with a rotated
4-QAM constellation wins the BHV code by a fraction
of a dB. The spherically shapedA4 outperforms the
BHV and SR codes by roughly 0.5 dB, and performs
slightly better compared to the best previously known
MIDO code IA-MAX [10]. The code IA-MAX is
constructed from a certain maximal order, and has
higher decoding complexity. It is added here for the
sake of completeness in comparison.

Let us point out that we have not optimized any of the
proposed codes bye.g.rotating the constellation. Just out
of interest, we simulated the unrotated SR code, and the
performance got somewhat worse than that of theA4

code. Hence, we also expect some improvement in the
performance of our codes, when an optimal rotation is
used.

We can also use the maximal order of theA4 code
algebra, which will result in similar performance as
the IA-MAX and spherically shapedA4 code. While
the maximal order codes are not fast-decodable, the
spherically shapedA4 code still uses the same linear
dispersion matrices and hence admits fast decodability.
However, an extra step is required to check that the
decoded word really belongs to the codebook. For a
detailed description of the required changes in a sphere
decoder, see [32]. As a conclusion, sticking to linear
dispersion and natural orders causes a penalty of about
0.5 dB in the BLER performance. On the other hand,
it seems that the requirement of fast-decodability itself
does not cause any performance loss. This is hardly
a surprise, as the proposed constructions are nothing
but orders of cyclic division algebras, which have been
shown to have excellent performance [16], [33], [10].
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X. FAST-DECODABLE CODES FOR THE6× 3 AND

6× 2 CHANNELS

Let us now extend our code constructions to six
transmit antennas. While this paper mainly deals with
MIDO codes,i.e., codes for two receivers, here we also
consider the case of three receivers. The reason for this
is that the embedding (18)

ψ : A →֒ diag(Mn/2(H)m)

into to a matrix ring of the Hamiltonian quaternions
naturally yields codes with dimension rateR1 = n,
which is also the number of Tx antennas. Thus, for six
transmitters we haveR1 = 6, which is ideal for reception
with three antennas. From this, we can construct a code
suitable for two receivers (R1 = 4) by puncturing. The
so-calledsmart puncturing[34], [10] will be applied in
order to further reduce the decoding complexity, while
maintaining a low peak-to-mean power ratio (PAPR).

A. Construction for the6× 3 channel

We build our(6× 6) code matrix analogously to the
(4 × 4) case (cf. Subsection VIII-A). To this end, we
consider the index-six cyclic algebra

A = (Q(ζ7)/Q, σ : ζ7 7→ ζ37 ,−3/4)

built upon the 7th cyclotomic field. Since -3 is inert
((3 mod 7) generates the whole groupZ∗

7), the element
γ = −3/4 is a non-norm element andA is a division
algebra. As the centerQ is totally real and only has one
infinite place which is ramified, we have an embededding
A →֒M3(H).

Let us now build the embedded code matrix more
explicitly. We start by noting that

σ3(x) = x∗

for all x ∈ Q(ζ7), and hence, taking into account that
σ(x∗) = σ(x)∗, we get

σ4(x) = σ(x)∗, σ5(x) = σ2(x)∗.

We can again start with the left regular representation
and perform some simple manipulation on the resulting
matrix: first, we swap the 2nd and the 4th row, and the
3rd and the 5th row. After this, we swap the 3rd and the
4th row. Next, we do the same for the columns. Let us
denote this intermediate form byX ′. Then we balance
the effect ofγ to get a more unified energy distribution
among the antennas. This can be done by conjugating
the matrixX ′ by the matrix

P = diag(r, r2, r, r2, r, r2),

wherer =
√

|γ|. Finally, we do the exchangex3 ↔ x1
andx4 ↔ x2, followed by x2 ↔ x3. The final form of
the code matrix now becomes

X = PX ′P−1 =
(

A B C
)

, (32)

where each

A =

















x0 −rx∗1
rx1 x∗0
x2 −rx∗3
rx3 x∗2
x4 −rx∗5
rx5 x∗4

















, (33)

B =

















−r2σ(x5) −rσ(x4)∗
rσ(x4) −r2σ(x5)∗
σ(x0) −rσ(x1)∗
rσ(x1) σ(x0)

∗

σ(x2) −rσ(x3)∗
rσ(x3) σ(x2)

∗

















, (34)

and

C =

















−r2σ2(x3) −rσ2(x2)∗
rσ2(x2) −r2σ2(x3)∗

−r2σ2(x4) −rσ2(x5)∗
rσ2(x5) −r2σ2(x4)∗
σ2(x0) −rσ2(x1)∗
rσ2(x1) σ2(x0)

∗

















(35)

consist of three Alamouti blocks.
The encoding can be performed similarly as in the

4× 2 case. Let us denote the 36 basis matrices by

B1 = B1(x0(1, 0, 0, 0, 0, 0), 0, 0, 0, 0, 0),

...

B2 = B2(x0(0, 1, 0, 0, 0, 0), 0, 0, 0, 0, 0),

B36 = B36(0, 0, 0, 0, 0, x5(0, 0, 0, 0, 0, 1)).

We then form a finite code by setting

C6×3 = {
36
∑

i=1

giBi | gi ∈ G},

whereG ⊆ Z is, for instance, aQ-PAM alphabet.

B. Decoding

Let us now consider the sphere decoding process as
described in III for the code (32). Following the above
notation, we notice that the code lattice has six basis
matricesB1, . . . , B6 of the form

















x0
x∗0

σ(x0)
σ(x0)

∗

σ2(x0)
σ2(x0)

∗

















,
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and six basis matricesB7, . . . , B12 of the form




A′ 0 0
0 B′ 0
0 0 C ′



 ,

where

A′ =

(

0 −rx∗1
rx1 0

)

,

B′ =

(

0 −rσ(x1)∗
rσ(x1) 0

)

,

and

C ′ =

(

0 −rσ2(x1)∗
rσ2(x1) 0

)

.

A straightforward calculation shows that

ℜ(Tr(HBi(HBj)
†)) = 0

for 1 ≤ i ≤ 6, 7 ≤ j ≤ 12 and any channel matrixH.
Hence, the(36×36) R-matrix of the QR decomposition
has a(6 × 6) zero block in the corresponding position,
and the(12 × 12) upper left corner ofR looks like

(

R1,1 0
0 R2,2

)

,

where the blocksRi,i are (6 × 6) matrices. From this
we see that the symbolsg1, . . . , g6 can be decoded
independently of the symbolsg7, . . . , g12, resulting in
complexity 2|S|30 instead of the full complexity|S|36.
Further reductions are possible by a change of basis,
similarly as in the4 × 2 case. By forming the basis
of elements half of which are real and the other half
purely imaginary (cf. VIII-A), we get more zeros in the
R matrix. In that case we again have, for any channel
matrix H, that

ℜ(Tr(HBi(HBj)
†)) = 0

for 1 ≤ i ≤ 6, 7 ≤ j ≤ 12, but further also get

ℜ(Tr(HBi(HBj)
†)) = 0

for 1 ≤ i ≤ 3, 4 ≤ j ≤ 6 and7 ≤ i ≤ 9, 10 ≤ j ≤ 12,
resulting in complexity4|S|27.

C. Construction for the6× 2 channel by puncturing

In order to construct a6 × 2 MIDO code, we will
next consider a punctured version of the above code.
The puncturing affects the shape of the code lattice,
so different puncturing will give a different lattice and
whence also different performance. One obvious option
is to keep an eye on the Gram matrix of the lattice
– the closer it is to a (scaled) identity matrix, the
better the shape. A smart puncturing may also aid the
decoding process, namely we may puncture the basis

matrices that cause nonorthogonality. On the other hand,
it is not a good idea to puncture all six basis matrices
corresponding to one of the elementsxi in (32), because
this will cause zeros in the encoding matrix and hence
increase the PAPR.

Here we provide just one possible puncturing, to give
the reader an idea as to how one may go about it. Let us
denote the basis matrices as in the previous section by
B1, . . . , B36. We puncture the following basis matrices

in x2 : B13, B14, B15,

in x3 : B19, B20, B21,

in x4 : B25, B26, B27,

in x5 : B31, B32, B33.

The resulting code will still have the same orthogonality
relations as the original code, but will only have 24 basis
elements giving us decoding complexity4|S|15.

XI. FURTHER GENERALIZATIONS VIA

CONJUGATIONS OF THE LEFT-REGULAR

REPRESENTATION

As already pointed out, we can always embed a
division algebra into a matrix ring of the Hamiltonian
quaternions, provided that the center is totally real and
all of its infinite places ramify. For all such division alge-
bras, we have thatσnt/2(x) = x∗, σj+nt/2(x) = σj(x)∗,
andγ < 0. The embedding

ψ : A →֒ diag(Mn/2(H)m),

however, will only give us the existence of a fast-
decodable code with dimension raten = nt.

In what follows, we are going to show how to over-
come the problem of the implicit nature of the mapψ.
Once we have constructed a CDAA = (E/Q, σ, γ) of
the required form, the explicit mapψ : A →Mnt/2(H)
is given as follows.

Proposition 11.1:Let X denote the left regular rep-
resentation matrix of an elementa = x0 + ux1 + · · · +
unt−1xnt−1 ∈ A. Then

ψ(X) = BPX(BP )−1 ∈Mnt/2(H),

where the elementsP (i, j), 1 ≤ i, j ≤ nt, of the
permutation matrixP are

P (i, j) =







1, if 2 6 | i and j = i+1
2 ,

1, if 2 | i and j = i+nt

2 ,
0, otherwise

and
B = diag(

√

|γ|, |γ|, . . . ,
√

|γ|, |γ|)
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is the energy balance matrix.
Proof: Let us first consider the columns ofX, and

denoteX = (1, σ, . . . , σnt−1) to represent the fact that
the first column is mapped by the identity element, the
second is mapped byσ, etc. In order to get the required
Alamouti block form, we need to reorder the columns
as

(1, σnt/2, σ2, σ2+nt/2, . . . , σnt/2−1σnt−1),

so thatσj is followed by its conjugate for allj. This is
done exactly by post-multiplyingX by P−1.

Next we have to rearrange the rows. Notice first that,
by ignoringγ, the rows ofXP−1 look like































a1 b∗1 . . . ant/2 b∗nt/2

c1 d∗1 . . . cnt/2 d∗nt/2
...

...
...

...
s1 t∗1 . . . snt/2 t∗nt/2

b1 a∗1 . . . bnt/2 a∗nt/2

d1 c∗1 . . . dnt/2 c∗nt/2
...

...
...

...
t1 s∗1 . . . tnt/2 s∗nt/2































where the horizontal line divides the matrix in two parts
each havingnt/2 rows. We easily see that the Alamouti
block form can be achieved by pairing the rows as

(1, nt/2 + 1), (2, nt/2 + 2), . . . , (nt/2, nt).

This is done by pre-multiplyingXP−1 by P , i.e., we
conjugateX by P . As the last step, we should take care
of the effect ofγ. By conjugatingPXP−1 further by
B = diag(

√

|γ|, |γ|, . . . ,
√

|γ|, |γ|), the elementsγ will
appear in each(2× 2) block of the matrix as follows:

(

(±)
√

|γ| (±)|γ|
(±)|γ| (±)

√

|γ|

)

.

In addition, the plus and minus signs are automatically
rearranged by this conjugation so that the resulting
matrix consists of Alamouti blocks.

Remark 11.1:After Proposition 11.1, we can alge-
braically optimize the normalized minimum determinant.
Namely, the resulting parallelotope will be exactly that
given by Proposition 7.3. Notice that this was not the
case before the conjugation, for while the conjugation
does not affect the non-normalized minimum determi-
nant, it does affect the measure of the fundamental
parallelotope and hence the normalized minimum deter-
minant!

Now that we have an explicit form of the mapping
ψ, the fast-decodability property can be seen as follows:
with Q as the center (m = 1), theR-matrix of the QR

decomposition of the matrixB (cf. III) will consist of
(n× n) blocksRi,j, 1 ≤ i, j ≤ n, where

R1,2 = R3,4 = · · · = Rn−1,n = 0n×n (36)

and the diagonal blocksRi,i, 1 ≤ i ≤ n, are block-
diagonal:

Ri,i =

(

P 1,1 0
0 P 2,2

)

n×n

. (37)

The zero blocks (36) result from the Alamouti block
structure and offer us a reduction ofn real dimensions.
The diagonal block structure (37) is due to the fact
that when we construct the algebra upon a complex
multiplication field, we can always choose a basis in
which half of the elements are real and the other half
purely imaginary. This, for its part, provides us with
further reduction byn2 dimensions. Hence, the decoding
complexity will be of order

≤ |S|n2
t−nt−nt

2 = |S|n2
t−

3nt

2 ,

where the factornt2 is the exhaustive search complexity.
By puncturing, we obtain fast-decodable codes suit-

able for any number of receivers. The complexity of the
punctured code is at most

|S|ntR1− 3nt

2 ,

where R1 ≤ nt is the dimension rate. Fornr = 2,
we get a complexity reduction of4nt−2.5nt

4nt
= 37.5%

as promised. However, this may require a non-integral
basis, and hence cause performance loss compared to an
integral basis. With an integral basis, we get a reduction
of 4nt−nt

4nt
= 25% while guaranteeing a high coding gain.

In Table II we have summarized the complexities for
nt = 4, 6, 8 and2 ≤ nr ≤ nt

2 as an example.

TABLE II
COMPLEXITIES OF THE PROPOSED FAST-DECODABLE CODES.

nt × nr R1 ntR1 − 3nt

2
Comp.reduction/ntR1

4× 2 4 10 37.50%
6× 3 6 27 25.00%
6× 2 4 15 37.50%
8× 4 8 52 18.75%
8× 3 6 36 25.00%
8× 2 4 20 37.50%

...
...

...
...

XII. C ONCLUSIONS

In this paper, fast-decodable asymmetric lattice space-
time codes were studied, proposing one possible gener-
alization of the Alamouti code and the quasi-orthogonal
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codes to any even number of transmit antennasnt and for
any dimension rateR1 ≤ nt. The codes allow linear ML
processing withe.g. a sphere decoder for any number
of receivers≥ R1/2, but with lower dimensionality
(less variables per linear equation). It was explicitly
shown how such novel constructions follow from general
algebraic principles by embedding a division algebra into
a matrix ringMk(H) of the Hamiltonian quaternions.
All this is in strong contrast to the previousad hoc
constructions of fast-decodable codes that have been
specific to a certain number of antennas and lacking an
obvious generalization. The proposed codes furthermore
enjoy the NVD property, a property that no other fast-
decodable MIDO code found in the literature has been
proved to have.

We mainly considered the4 × 2 MIDO case suitable
for DVB-NGH, but also provided constructions for the
6×2 and6×3 cases. The explicit embeddings obtained
in these situations were shown to be fully generalizable
to any even number of Tx antennas. Simulations were
presented to show that the performance of the proposed
codes is comparable to the best known MIDO codes.
The achieved complexity reduction up to 37.5% is also
among the best known for the MIDO channel.

In addition, a complete solution to the discriminant
minimization problem for division algebras with arbi-
trary centers was given. As an application a normalized
minimum determinant bound for code lattices inMk(H)
was derived from the algebraic results.
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APPENDIX

In this Appendix we are going to present some basic
results from the theory of central simple algebras and
in particular from the theory of Hasse-invariants. These
results are needed only in Section VI.

For a quick introduction we refer the reader to [16]
and [35] where similar optimization has been done.

Let us consider aK-central division algebra of index
n. Then attached to each pair(A, P ), whereP is a prime
of K, is a positive rational numberhP = a/mP , the so-
calledHasse-invariantof A at P . The Hasse invariants
of A fulfill the following. WhenP is a prime ideal of

K, then

hP =
a

mP
, 0 ≤ a < mP ≤ n, (a,mP ) = 1,

whenP is infinite and real, then

hP = 1/2 or hP = 0,

and whenP is infinite and complex, then

hP = 0.

The numbermP is called thelocal indexat primeP (see
Section V-A). We say that the algebraD is ramified at
the primeP , if hP 6= 0. The Hasse invariants define the
algebraic structure of a division algebra and in particular
the discriminant of the algebra.

Proposition 12.1:Assume thatP1, . . . , Ps are a set of
finite prime ideals ofOK andPs+1, . . . , Pn are a set of
real primes.

Assume further that a sequence of rational numbers
a1
mP1

, . . . ,
as
mPs

,
as+1

mPs+1

, . . . ,
an
mPn

,

subject to the restriction that wheni > s, ai/mPi
= 1/2,

satisfies
n
∑

i=1

ai
mPi

≡ 0 (mod 1),

1 ≤ ai ≤ mPi
, and(ai,mPi

) = 1.
Then there exist aK-central division algebraA that

has local indicesmPi
and the least common multiple

(LCM) of the numbers{mPi
} as an index.

If Λ is a maximalOK-order inA, then the discrimi-
nant ofΛ is

d(Λ/OK) =

s
∏

i=1

P
(mPi

−1) [A:K]

mPi

i .

We have the following two general results.
Theorem 12.2 ([16]):Let us suppose that we have a

number fieldK and an integern, where4 | n or 2 ∤ n. If
P1 ≤ P2 is a pair of smallest primes inOK , then there
exists aK-central division algebra of indexn having a
maximal order with theOK -discriminant

(P1P2)
n(n−1).

This is the smallest possible discriminant for an order
inside anyK-central division algebra of indexn.

The following result is from [35], but is presented here
for he first time in an article.

Theorem 12.3 ([35]):Let A be aK-central division
algebra of index2k = n, wherek and 2 are relatively
prime and letP1 ≤ P2 be a pair of smallest primes in
OK .
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If K has at least two real primes, then there exists a
K-central division algebra of indexn having a maximal
order with the discriminant

(P1P2)
k(k−1).

If K has only one real primeP∞, then there exists a
K-central division algebra of indexn having a maximal
order with the discriminant

P
n(n−1)
1 P

k(k−1)
2 .

This is the smallest possible discriminant of all orders
of indexn division algebras with centerK.

We have now given completely general discriminant
bounds for any center and for any indexn.

Proposition 12.4:Let A be aK-central division alge-
bra of indexn, 2 | n, whereK is a totally real number
field, and letP1 ≤ P2 be a pair of smallest primes inK.
Let us suppose that all the infinite primes are ramified
in A.

If 2 || n and2 | [K : Q], then the minimal discriminant
of A is

(P1P2)
k(k−1).

If 4 | n then the minimal discriminant ofA is

(P1P2)
n(n−1).

If 2 || n and2 ∤ [K : Q], then the minimal discriminant
of A is

P
n(n−1)
1 P

k(k−1)
2 .

Proof: In the proofs of Theorems 12.3 and 12.2 the
general strategy was to choose a set of H-invariants that
will yield an indexn division algebra (see Theorem 12.1)
and then prove that our choice was the best possible. We
will use the same strategy here, but the difference is that
we can do the optimization over division algebras that
are totally ramified at infinite primes.

The assumption of ramified infinite primes always
gives usm non-trivial Hasse invariants{hP1

, . . . , hPm
},

wherehPi
= 1

2 andPi are all the infinite primes inK.
The Hasse-invariants at infinite places do not con-

tribute anything on discriminant of the division algebra.
If we have an indexn division algebra, the contribution
of a Hasse-invarianthP = s

mP
, where mP is the

local index at finite primeP , to the OK -discriminant
is P (mP−1) n

mP . Therefore in most cases we can simply
prove the minimality of the corresponding discriminant
by showing that, despite the extra ramification at infinite
primes, we can choose a set of Hasse-invariants that will
give us an indexn division algebra with a discriminant
reaching the bound 12.3 or 12.2.

In Table III we have collected the Hasse-invariants (at
finite places) of the algebras we claim to be optimal.

TABLE III

index [K:Q] H-invariants at finite places
odd -
4k odd hP1 = 1

4k
, hP2 = 2k−1

4k

4k even hP1 = 1

4k
, hP2 = k−1

4k

2k, 2 ∤ k even hP1 = 1

k
, hP2 = k−1

k

2k, 2 ∤ k odd hP1 = k−2

2k
, hP2 = 1

k

In addition to what is said in the table about the H-
invariants at the finite places, we suppose that each of
these algebras have H-invariants12 at all the infinite
primes. By a direct calculation we can see that in each
case we get a division algebra of indexn with all the
infinite primes ramified. This will take care of the first
two claims of the proposition. In the first case, where
2 || n and2 | [K : Q], the division algebra given in the
table will reach the claimed bound which coincides with
the general bound in 12.3. In the case4 | n the algebras
given in Table III reach the bound 12.3 and we are done
with the second claim.

We are left with the case, where2 || n and 2 ∤ [K :
Q] = m. In this case the problem is that while the sum
of them− 1 first infinite Hasse-invariants is an integer,
there is still one extra infinite H-invarianthPm

= 1
2 we

have to take care of. Therefore we are forced to choose
Hasse-invariantshP1

= k−2
2k andhP2

= 1
k for the finite

places. The proof that this set of Hasse-invariants will
give us the optimal discriminant is verbatim the same as
it is for the case where the center has exactly one real
place. This case was dealt in the proof of Proposition
12.3 and we refer the reader to [35].


