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Generalized Key Equations
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Abstract—The key step of syndrome-based decoding of
Reed–Solomon codes up to half the minimum distance is to
solve the so-called Key Equation. List decoding algorithms, ca-
pable of decoding beyond half the minimum distance, are based
on interpolation and factorization of multivariate polynomials.
This article provides a link between syndrome-based decoding ap-
proaches based on Key Equations and the interpolation-based list
decoding algorithms of Guruswami and Sudan for Reed–Solomon
codes. The original interpolation conditions of Guruswami and
Sudan for Reed–Solomon codes are reformulated in terms of
a set of Key Equations. These equations provide a structured
homogeneous linear system of equations of Block-Hankel form,
that can be solved by an adaption of the Fundamental Iterative
Algorithm. For an ��� �� Reed–Solomon code, a multiplicity � and
a list size �, our algorithm has time complexity ��������.

Index Terms—Block-Hankel matrix, fundamental iterative algo-
rithm (FIA), Guruswami–Sudan interpolation, key equation, list
decoding, Reed–Solomon codes.

I. INTRODUCTION

I N 1999, Guruswami and Sudan [3]–[5] extended Sudan’s
original approach [6] by introducing multiplicities in the

interpolation step of their polynomial-time list decoding proce-
dure for Reed–Solomon and Algebraic Geometric codes. This
modification permits decoding of Reed–Solomon codes
[7] (and Algebraic Geometric codes) of arbitrary code-rate

with increased decoding radius. Guruswami and
Sudan were focused on the existence of a polynomial-time
algorithm. Kötter [8] and Roth-Ruckenstein [9], [10] pro-
posed quadratic time algorithms for the key steps of the
Guruswami–Sudan principle for Reed–Solomon codes, i.e.,
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interpolation and factorization of bivariate polynomials. Var-
ious other approaches for a low-complexity realization of
Guruswami–Sudan exist, e.g., the work of Alekhnovich [11],
where fast computer algebra techniques are used. Trifonov’s
[12] contributions rely on ideal theory and divide and conquer
methods. Sakata uses Gröbner-bases techniques [13], [14].

In this paper, we reformulate the bivariate interpolation step
of Guruswami–Sudan for Reed–Solomon codes in a set of uni-
variate Key Equations [1]. This extends the previous work of
Roth and Ruckenstein [9], [10], where the reformulation was
done for the special case of Sudan. Furthermore, we present a
modification of the so-called Fundamental Iterative Algorithm
(FIA), proposed by Feng and Tzeng in 1991 [15]. Adjusted to
the special case of one Hankel matrix the FIA resembles the ap-
proach of Berlekamp and Massey [16], [17].

Independently of our contribution, Beelen and Høholdt refor-
mulated the Guruswami–Sudan constraints for Algebraic Geo-
metric codes [18], [19]. It is not clear, if the system they obtain
is highly structured.

This contribution is organized as follows. The next section
contains basic definitions for Reed–Solomon codes and bi-
variate polynomials. In Section III, we derive the Key Equation
for conventional decoding of Reed–Solomon codes from the
Welch-Berlekamp approach [20] and we present the adjust-
ment of the FIA for one Hankel matrix. A modified version
of Sudan’s reformulated interpolation problem based on the
work of Roth-Ruckenstein [9] is derived and the adjustment of
the FIA for this case is illustrated in Section IV. In Section V,
the interpolation step of the Guruswami–Sudan principle is
reformulated. The obtained homogeneous set of linear equa-
tions has Block-Hankel structure. We adjust the FIA for this
Block-Hankel structure, prove the correctness of the proposed
algorithm and analyze its complexity. We conclude this contri-
bution in Section VI.

II. DEFINITIONS AND PRELIMINARIES

Throughout this paper, denotes the set of inte-
gers and denotes the set of integers

. An matrix consists
of the entries , where and . A uni-
variate polynomial of degree less than is denoted by

. A vector of length is represented by
.

Let be a power of a prime and let denote the
finite field of order . Let denote nonzero dis-
tinct elements (code-locators) of and let denote
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nonzero elements (column-multipliers), the associated evalua-
tion map ev is

(1)

The associated Generalized Reed–Solomon code of
length and dimension is [21]

(2)

where denotes the set of all univariate polynomials with
degree less than . Generalized Reed–Solomon codes are MDS
codes with minimum distance . The dual of a Gen-
eralized Reed–Solomon is also a Generalized Reed–Solomon
code with the same code locators and column multipliers

, where . The
explicit form of the column multipliers is [22]

(3)

We will take advantage of structured matrices and therefore
we recall the definition of a Hankel matrix in the following.

Definition 1 (Hankel Matrix): An Hankel matrix
is a matrix, where for all

and holds.
Let us recall some properties of bivariate polynomials in

.

Definition 2 (Weighted Degree): Let the polynomial
be in . Then, the

-weighted degree of , denoted by ,

is the maximum over all such that .

Definition 3 (Multiplicity and Hasse Derivative [23]): Let
be a polynomial in . Let

. A bivariate
polynomial has at least multiplicity in the point

, denoted by

(4)

if the coefficients are zero for all . Furthermore,
the th Hasse derivative of the polynomial in the
point is

(5)

Let denote the th Hasse derivative of
with respect to the variable .

We will use the inner product for bivariate polynomials to
describe our algorithms.

Definition 4 (Inner Product): Let two polynomials
and

in be given. The inner product of
and is defined by .

III. WELCH-BERLEKAMP AS LIST-ONE DECODER AND THE

FUNDAMENTAL ITERATIVE ALGORITHM

A. Syndrome-Based Decoding of Reed–Solomon Codes

Let denote the error word and let
be the set of error locations (that is ). Let

. It is well known that a code can
recover uniquely any error pattern if and only if . The

syndrome coefficients depend only
on the error word and the associated syndrome polynomial

is defined by [22]

The error-locator polynomial is and the
error-evaluator polynomial is

. They are related by the Key Equation:

(6)

The main steps for conventional decoding up to half the min-
imum distance are:

1) Calculate the syndrome polynomial from the re-
ceived word .

2) Solve (6) for the error-locator polynomial and deter-
mine its roots.

3) Compute and then determine the error values.

B. Derivation of the Key Equation From Welch-Berlekamp

We derive the classical Key Equation (6) from the simplest in-
terpolation based decoding algorithm, reported as the “Welch-
Berlekamp” decoding algorithm in [24]–[26]. We provide a sim-
pler representation than in [20] and give a polynomial derivation
of the Key Equation.

Consider a code with support set ,
multipliers and dimension . The Welch-
Berlekamp approach is based on the following lemma [27, Ch.
5.2].

Lemma 1 (List-One Decoder): Let be a code-
word of a code and let
be the received word. We search for a polynomial

in such that:
1) ,
2) ,
3) .

If has distance less than or equal to from the
received word , then .

Let us connect Lemma 1 to (6).

Proposition 1 (Univariate Reformulation): Let
be the Lagrange interpolation polynomial, such that

holds. Let .
Then satisfies Conditions 2)
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and 3) of Lemma 1 if and only if there exists a polynomial
such that

(7)

and .
Let . Define the following
reciprocal polynomials:

(8)

Inverting the order of the coefficients of (7) leads to:

With (8), we obtain:

which we can consider modulo . We obtain

(9)

Since , we can define the formal power series
:

(10)

Using the column multipliers (3) for the dual code, it can be
verified that is the series of syndromes with

(11)

Thus, dividing (9) by , we obtain

(12)

which corresponds to the classical Key Equation (6). The syn-
drome polynomial is , and is the error-
locator polynomial .

In the case of errors, we consider only the terms of the
Key Equation of degree greater than and we get the
following homogeneous linear system of equations:

...
...

...
...

(13)

The above syndrome matrix for all and
has Hankel form (see Definition 1). Equation (12)

can be solved by the well-known Berlekamp-Massey algorithm
[16], [17] or with a modification of the Extended Euclidean al-
gorithm [28]. The parallels of the Berlekamp-Massey algorithm
and the Extended Euclidean algorithm have been considered in
[29]–[31].

We consider in the following the FIA [15], that can be used
to find the first linearly dependent columns and connec-
tion coefficients for an arbitrary matrix. The FIA
allows a significant reduction of complexity when adjusted to a
Hankel matrix as in (13).

C. The FIA for One Hankel Matrix

Given an arbitrary matrix , the FIA
outputs the minimal number of linearly dependent
columns together with the polynomial ,
with , such that holds.
The FIA scans the th column of the matrix row-wise in the
order and uses previously stored polynomials to
update the current polynomial . Let be the index of the
current column under inspection, and let
be the current candidate polynomial that satisfies

for some value of the row index . In other words, the coeffi-
cients of the polynomial give us the vanishing linear com-
bination of the matrix consisting of the first rows and the first

columns of the matrix . Suppose that the discrepancy

(14)

for next row is nonzero. If there exists a previously stored
polynomial and a nonzero discrepancy , corre-
sponding to row , then the current polynomial is updated
in the following way:

(15)

The proof of the above update rule is straightforward [15].
In the case and there is no discrepancy stored,

the actual discrepancy is stored as . The corresponding
auxiliary polynomial is stored as . Then, the FIA exam-
ines a new column .

Definition 5 (True Discrepancy): Let the FIA examine the
th row of the th column of matrix . Furthermore, let the

calculated discrepancy (14) be nonzero and no other nonzero
discrepancy be stored for row . Then, the FIA examines a new
column . We call this case a true discrepancy.

Theorem 1 (Correctness and Complexity of the FIA [15]):
For an matrix with , the Fundamental Iterative
Algorithm stops, when the row pointer has reached the last row
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Fig. 1. Illustration of the row pointer � of the classic FIA [(a)] and of the adjusted FIA [b)] when both algorithms are applied to the same 6� 7 Hankel syndrome
matrix of a ������� �� code. The dots indicate a true discrepancy. In this case, both algorithms enter a new column, but with different initial values of their row
pointers.

of column . Then, the last polynomial corresponds to
a valid combination of the first columns. The complexity
of the algorithm is .

For a Hankel matrix (as in Definition 1), the FIA can be
adjusted. Assume the case of a true discrepancy, when the FIA
examines the th row of the th column of the structured matrix

. The current polynomial is . Then, the FIA starts exam-
ining the th column at row with
and not at row zero. This reduces the cubic time complexity into
a quadratic time complexity [15].

To illustrate the complexity reduction of the FIA when ad-
justed to a Hankel matrix (compared to the original, unadjusted
FIA), we traced the examined rows for each column in Fig. 1.
Fig. 1(a) shows the values of of the FIA without any adaption.
The row pointer of the adapted FIA is traced in Fig. 1(b).

The points on the lines in both figures indicate the case, where
a true discrepancy has been encountered.

IV. SUDAN INTERPOLATION STEP WITH A HORIZONTAL BAND

OF HANKEL MATRICES

A. Univariate Reformulation of the Sudan Interpolation Step

In this section, we recall parts of the work of Roth and Ruck-
enstein [9], [10] for the interpolation step of the Sudan [6] prin-
ciple. The aimed decoding radius is denoted by , the corre-
sponding list size is .

Problem 1 (Sudan Interpolation Step [6]): Let the aimed
decoding radius and the received word be
given. The Sudan interpolation step determines a polynomial

, such that
1) ;,
2) ;
3) .

We present here a slightly modified version of [9], to get an
appropriate basis for the extension to the interpolation step in
the Guruswami–Sudan case.

We have
. Let be the Lagrange interpolation polynomial,

s.t. and .
The reciprocal polynomial of is denoted by

.
Similar to Proposition 1, Roth-Ruckenstein [9] proved the

following. There is an interpolation polynomial satis-
fying Conditions (2) and (3) if and only if there exists a uni-
variate polynomial with degree smaller than ,
s.t. .

Let the reciprocal polynomials be defined as in (8). From [9,
(19)] we have

(16)

where . We introduce the power series

(17)

Inserting (17) into (16) leads to

(18)

Based on (18) we can now define syndromes for Problem 1.

Definition 6 (Syndromes for Sudan): The generalized
syndrome polynomials are given
by

(19)

The first-order Extended Key Equation is

(20)
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with .
An explicit form of is

(21)

Note 1: In [9], a further degree reduction is proposed. Then
(18), is modulo and the polynomial disappears.
We do not present this improvement here, because we cannot
properly reproduce this behavior in the Guruswami–Sudan case
(see Note 2).
The degree of the LHS of (16) is smaller than .
If we consider the terms of degree higher than , we
obtain homogeneous linear equations. Reverting back to the
originals univariate polynomials , we get the following
system:

(22)

With , we obtain the fol-
lowing matrix form:

...
(23)

where each submatrix
is a Hankel matrix. The syndrome polynomials

of Definition 6 are associated with
this horizontal band of Hankel matrices by .

In the following, we describe how the FIA can be adapted to
solve the homogeneous system of (23).

B. Adjustment of the FIA for the Reformulated Sudan
Interpolation Problem

The FIA can directly be applied to the matrix
of (23), but if we want to take ad-

vantage of the Hankel structure we have to scan the columns of
in a manner given by the weighted degree

requirement of the interpolation problem.

Let denote the ordering for the pairs
, where is given by

(24)

The pair that immediately follows with respect to
the order defined by is denoted by . The
columns of the matrix are reordered
according to . The pair indexes the th column of

th submatrix . More explicitly, we obtain the following
matrix , where the columns of are reordered [see (25) at
the bottom of the page].

The corresponding homogeneous system of equations can
now be written in terms of the inner product for bivariate poly-
nomials (see Definition 4).

Problem 2 (Reformulated Sudan Interpolation Problem): Let
the syndrome polynomials

be given by Definition 6 and let be
the corresponding bivariate syndrome polynomial. We search a
nonzero bivariate polynomial such that

(26)

Hence, the bivariate polynomial is a valid interpo-
lation polynomial for Problem 1. Note that each polynomial

, as defined in (16), has degree smaller than .
To index the columns of the rearranged matrix , let

(27)

Algorithm 1 is the modified FIA for solving Problem 2. In con-
trast to the original Roth-Ruckenstein adaption we consider all
homogeneous linear equations (instead of ), according to Note
1. The column pointer is given by , for indexing the th
column of the th submatrix . Algorithm 1 virtually scans
the rearranged matrix column after column (see Line 23 of
Algorithm 1). The true discrepancy value for row is stored in
array as , and the corresponding intermediate bivariate
polynomial is stored in array as . The discrepancy calcu-
lation and the update rule [see (14) and (15) for the basic FIA] is
adapted to the bivariate case (see Line 16 of Algorithm 1). For
each submatrix , the previous value of the row pointer is

...
...

...
...

...
...

...
...

...

(25)
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stored in an array as . We prove the initialization rule for
the FIA solving Problem 2 in the following proposition.

Proposition 2 (Initialization Rule): Assume Algo-
rithm 1 examines column of a syndrome matrix

as defined in (23) (or equiva-
lently the bivariate polynomial ). Assume that a true
discrepancy is obtained in row .

Let . Hence, Algorithm 1 can
examine column at row with the initial value

, where is the index of the row,
where the last true discrepancy in the th submatrix was
calculated. The polynomial is the stored intermediate
polynomial for , i.e., and .

Proof: In terms of the inner product (see Definition 4), we
have

Let us write . We have

and we compute

which is zero for the rows of index .

Similarly to the FIA for one Hankel matrix we can start ex-
amining a new th column of the submatrix in row .
Note that the previous value of the row pointer is stored in

.
Before Algorithm 1 enters a new column, the coefficients of

the intermediate bivariate connection polynomial give
us the vanishing linear combination of the submatrix consisting
of the first rows and previous columns of the rearranged
matrix (see (25)). The following theorem summarizes the
properties of Algorithm 1.

Theorem 2 (Algorithm 1): Let be
the matrix as defined in (23) and the as-
sociated bivariate syndrome polynomial for the reformulated
Sudan interpolation problem. Algorithm 1 returns a bivariate
polynomial such that:

The time complexity of Algorithm 1 is .
Proof: The correctness of Algorithm 1 follows from the

correctness of the basic FIA (see Theorem 1) and from the cor-
rectness of the initialization rule (Proposition 2) considering that
Algorithm 1 deals with the column-permuted version of the
original matrix .

The proof of the complexity of Algorithm 1 is as follows. We
trace the triple

where is the current column pointer of Algorithm 1 ex-
amining the th column of the th submatrix . The vari-
ables , are the values of the last row reached in the
submatrices . These values are stored in the
array in Algorithm 1. The value is the number of already
encountered true discrepancies of Algorithm 1. Assume
is the current column pointer of Algorithm 1. The two following
events in Algorithm 1 can happen.
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Fig. 2. Illustration of the row pointer � of Algorithm 1 applied to a horizontal band of three Hankel matrices � � � and � . The columns of the 16� 18
matrix � are arranged under � -ordering. The three lines � � � and � trace the row pointer for each submatrix � � � and � .

1) Either, there is no true discrepancy, then Algorithm 1 stays
in the same column and increases by one. The triple becomes

2) Or, there is a true discrepancy, then Algorithm 1 examines
column and the triple becomes

For both cases, the sum over the triple is

(28)

when Algorithm 1 examines the th column of the ma-
trix . From (27), we have

. The sum increases by one in each iteration of
Algorithm 1. The initial value of is zero and the last value
can be bounded by

Each discrepancy computation costs and Algorithm 1
does not have to examine more than the th columns of
the matrix . Thus, the total
cost of Algorithm 1 is .

In the following, we illustrate the values of the row pointer
of Algorithm 1, when applied to a syndrome matrix

that consists of three Hankel matrices.

C. Example: Sudan Decoding of a Generalized Reed–Solomon
Code With Adapted FIA

We consider a code over . For a decoding
radius , the list size is . The
degrees of the three univariate polynomials
and are limited to and we

TABLE I
COLUMN-INDEX � AND COLUMN POINTER ��� �� OF THE RE-ARRANGED

MATRIX � OF THE REFORMULATED SUDAN INTERPOLATION STEP FOR A

������� �� CODE WITH DECODING RADIUS � � � AND LIST SIZE � � �

have more unknowns than interpolation constraints
.

Fig. 2 illustrates the row pointer of Algorithm 1 when the
16 18 syndrome matrix is examined. The
columns of the syndrome matrix are virtually rearranged
according to the -ordering and Algorithm 1 scans the
rearranged matrix column by column. The column-index

[see (27)] and the corresponding column pointer
are listed in Table I.

The three zig-zag lines , and in Fig. 2 trace
the value of the row pointer for the three submatrices

and , which have a Hankel structure. The dots indicate
the case, where a true discrepancy occurs. After the th column
(here ), every second column corresponds to the same
submatrix.

After column 10 of the rearranged matrix , every third
column of corresponds to the same submatrix . Let us
investigate two cases, where a true discrepancy in Algorithm 1
occurs. They are marked in column and
of the rearranged in Fig. 2. In between column 12 and 15
one column of the submatrices and is examined by
Algorithm 1. In column (0, 8), Algorithm 1 starts investigating
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the second row, because the true discrepancy in column (0, 7)
occurred in the third row (according to Proposition 2).

D. The FIA for a Vertical Band of Hankel Matrices

The FIA can also be adapted to find the first linearly
dependent columns of a matrix consisting of Hankel matrices
arranged vertically. This case has been considered, for example
in [2] and [32]. The basic idea for such a vertical band of Hankel
matrices is the same as in the previous case. The rows of each
submatrix of Hankel structure are scanned in a similar inter-
leaving order as the columns of the previous case.

The obtained time complexity for a vertical band of Hankel
matrices, where each submatrix consist of columns, is

.

V. GURUSWAMI–SUDAN INTERPOLATION STEP WITH A

BLOCK-HANKEL MATRIX

A. The Guruswami–Sudan Interpolation Step for Generalized
Reed–Solomon Codes

We consider again a Generalized Reed–Solomon code with
support set , multipliers and
dimension , as introduced in Section II. Let
according to (3) be the multipliers of the dual Generalized
Reed–Solomon code.

Let be the received word. The Gu-
ruswami–Sudan decoding principle [3]–[5] improves the
previous algorithms by introducing an additional param-
eter , which is the order of multiplicity for the points

. The parameter
influences the decoding radius and the list size . The rela-
tionship between these parameters has been discussed in many
publications (see, e.g., [33]).

Problem 3 (Guruswami–Sudan Interpolation Step [3]):
Let the aimed decoding radius , the multiplicity and
the received word be given. The Gu-
ruswami–Sudan interpolation step determines a polynomial

, such that
1) ,
2) ,
3) .

As in the previous section, let denote the degree of the
univariate polynomials . From Condition 3) of Problem
3 we get

(29)

B. Univariate Reformulation of the Guruswami–Sudan
Interpolation Problem and a Block-Hankel Matrix

We reformulate the Guruswami–Sudan interpolation problem
to obtain not one, but a system of several Extended Key Equa-
tions. The corresponding homogeneous linear system has a
Block-Hankel form.

Proposition 3 (Univariate Reformulation): Let the integers
and the received vector be given. Let

be the Lagrange interpolation polynomial, such that

. Let . A polynomial
satisfies Conditions 2) and 3) of Problem 3, if and only

if there exist polynomials such that

(30)

and .
Note that denotes the th Hasse derivative of the bi-
variate polynomial with respect to the variable (see
Definition 3).

We first prove the following lemma.

Lemma 2: Let be given, and let
be any polynomial such that . A polynomial

has multiplicity at least at if and only if
.

Proof: After translation to the origin, we can assume that
, and , i.e., . Let

, where is homogeneous of degree .
We first suppose that has at least a multiplicity at

(0, 0), i.e., , for . Hence, we have

For , the polynomials have no terms of degree
less than , and with , we have .
It follows, that divides for all .

Suppose for the converse that . That is,
, for some polynomials

and . Using Taylor’s formula with the Hasse derivatives
[22, p. 89] we have

Now, has only terms of degree higher than ,
since . Thus, we have no terms of degree less than in

.

Proof of Proposition 3: From the previous lemma, we
know that . Since
all ’s are distinct the Chinese Remainder Theorem for
univariate polynomials implies that .
The degree condition follows easily.

Proposition 3 enables us to rewrite the equations of (30)
more explicitly

(31)
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As usual, let the reciprocal polynomials be

Inserting them into (31), leads to

(32)

Since is relatively prime to , it ad-
mits an inverse modulo . The Taylor series of

is denoted by . Then (32) leads to
equations

where each equation is denoted by . Note that the degree

of can be greater than and it is not
clear how to properly truncate this identity, as in [9], [10], noted
in Note 1, or as in the case of the classical Key Equation (see
Section III).

In the following, we consider the complete system of
homogeneous linear equations. We have

. We obtain equations for the
th derivative with the following truncation:

(33)

Let us write for the th equation as above.

Proposition 4: Let be the minimum distance
of the considered code. Let be such that

. If is a solution to , then
there exists such that
is a solution to .

Proof: Let us consider (31). We isolate and get

(34)

and thus is the remainder of the Euclidean di-

vision of by ,

as long as , which gives
, i.e., .

Note 2: We denote . Actually, we can consider
(32) and substitute the , for , successively. This
is possible for the case of the first order system , noted
in Note 1. In the more general Guruswami–Sudan case, we can
obtain a reduced system with , but it
seems that this reduced system lost its Block-Hankel structure.
Thus, there are no benefits of reducing the number of unknowns.
We could not find a proper interpretation of the quantity

.
With (33), we now can define the syndrome polynomials for

the reformulated Guruswami–Sudan interpolation problem.

Definition 7 (Syndromes for Guruswami–Sudan): The
syndrome polynomials

with
are given by

(35)

where denotes the power series of .
The ( th order) Extended Key Equations are

(36)

with .
The explicit expression for is difficult to obtain. We claim
that it will not be easier to compute with such a formula
than by calculating the power series expansion of

, which is fast to compute by computer al-
gebra techniques.

Considering the high degree terms, we get
homogeneous equations from (36), which can be

written as

(37)

These linear equations lead to a Block-Hankel matrix. The syn-
drome matrix for all of the
reformulated Guruswami–Sudan interpolation problem has the
following form:

...
. . .

...

(38)

where each submatrix is an

Hankel matrix and are the
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associated polynomials with . All matrices de-
pend on the received vector except the ones on the diagonal:

.

C. The FIA for the Block-Hankel Matrix of the Reformulated
Guruswami–Sudan Interpolation Problem

We adapt the FIA to the Block-Hankel matrix of (38). The
structure of this syndrome matrix is a mixture of the syndrome
matrix (see Definition 2) of the reformulated Sudan interpola-
tion problem and a vertical arrangement of many Hankel ma-
trices.

The extension of the FIA for this case was hinted in [10, Sec.
5.2]. First of all, let us express the Key Equations of (37) in
terms of the inner product of bivariate polynomials.

Problem 4 (Reformulated Guruswami–Sudan Problem): Let
be bivariate syndrome polynomials with

(39)

where the coefficients are given in Definition 7. We search
a nonzero bivariate polynomial that fulfills

(40)

We adjust the FIA as an algorithm on a row- and column-
interleaved version of the Block-Hankel matrix of (38). Let
us first define an ordering to describe the vertical rearrangement
of the rows of the syndrome matrix as in (38). Let denote
the ordering on the rows, indexed by pairs , such that

(41)

Let denote the pair that immediately follows
with respect to order defined by and let

denote the pair that immediately precedes with
respect to order defined by . Furthermore, let

(42)

which we use to index the rows of the virtually rearranged ma-
trix (similar to the horizontal case). Note that

.
In the following, denotes the rearranged version of the ma-

trix of (38), where the columns are ordered under - and the
rows under -ordering.

Algorithm 2 is the Fundamental Iterative Algorithm tailored
to a Block-Hankel matrix as in (38). As in the case of the re-
formulated Sudan interpolation problem, the columns of the
Block-Hankel matrix are indexed by a couple , where

and . Furthermore, the rows are indexed
by a couple , where and .

Now, the arrays storing the discrepancies and the intermediate
polynomials are still indexed by rows, but the indexes of the
rows are two-dimensional, leading to two-dimensional arrays.
The two-dimensional array stores the intermediate bivariate
polynomials and the two-dimensional array , stores the dis-
crepancy values. Both arrays and are indexed by the row
pointer . The discrepancy calculation (see Line 20 of Al-
gorithm 2) is adjusted to a Block-Hankel matrix where each sub-
horizontal band of Hankel matrices is represented by a bivariate
polynomial.
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The intermediate bivariate connection polynomial
of Algorithm 2 examining the th row and the th column of the

th submatrix , gives us the vanishing linear combi-
nation of the submatrix consisting of the first rows and the
first columns of the rearranged syndrome matrix .

The row pointer of the subblock
is stored in the array . Note that row pointers of the
form need to be stored.

The adjusted initialization rule of Algorithm 2 examining the
Block-Hankel syndrome matrix as defined in (38) is stated in
the following proposition (see Line 16, 21, and 27 of Algorithm
2).

Proposition 5 (Initialization Rule): Assume Algorithm 2 ex-
amines column of a Block-Hankel syndrome matrix
as defined in (38) or equivalently the bivariate polynomials

of Problem 4. Assume
that a true discrepancy is obtained. Let

and let be the previously stored value for the
index of the last reached row in the submatrix of index , and
let be the bivariate polynomial stored for that row. If

, we can start examining column
of at row with the initial value
.

Proof: In terms of the inner product (see Definition 4), we
have

(43)

Let us write and

, with , for , and

. Due to the structure of the Block-Hankel matrix ,
we have the following identities:

which is zero for every .

Theorem 3 (Algorithm 2): Let be the
syndrome Block-Hankel matrix of the reformulated Gu-
ruswami–Sudan interpolation problem as in (38) and let

be the corresponding bivariate syndrome

polynomials as defined in Problem 4. Then Algorithm 2 outputs
a bivariate polynomial , such that

The time complexity of Algorithm 2 is .
Proof: The correctness is as usual, considering that we deal

with the row- and column-permuted version of the Block-
Hankel matrix and that the initialization rule is correct.

In the following, we analyze the complexity of Algorithm 2.
As in Section IV, we describe the state of Algorithm 2 with the
following triple:

(44)

where is the current column pointer of Algorithm 2, when
examining the th column of the horizontal band of vertically
arranged Hankel matrices . The
index is the last considered row in the horizontal band
of submatrices . These values
are stored in the array of Algorithm 2. As for Algorithm 1,
denotes the number of already encountered true discrepancies.
Assume is the current column pointer of Algorithm 2.
The same two cases as before can happen.
1) Either, there is no true discrepancy, then Algorithm
2 remains in the same column of the submatrices

and the triple becomes

2) Or, a true discrepancy is encountered and the triple becomes

where . In both cases, the sum
of the triple is

(45)

when Algorithm 2 examines the th column of the Block-
Hankel matrix of (38) and it increases by one in each itera-
tion. The initial value of is zero, and the final value can be
bounded by

The number of iterations of Algorithm 2 is bounded by
.
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Fig. 3. Illustration of the row pointer ��� �� of Algorithm 2 applied to a 48� 50 Block-Hankel matrix �. The matrix consists of two vertically arranged bands of
five horizontally arranged Hankel matrices. The first band consists of 32 rows and the second one of 16. The plotted matrix � consists of the rearranged columns
and rows of the matrix � under� - respective� -ordering. The mixture of rows of the two vertical lines starts in line 16 (marked by the dotted horizontal line).
The five zig-zag lines � � � � � � � � � trace the row pointer for the five subblocks �� � � � �� � � � � � � � �� � � of two
vertically arranged Hankel matrices.

This gives a total of , since the discrepancy calcu-
lation requires .

D. Example: Guruswami–Sudan Decoding of a Generalized
Reed–Solomon Code With Adapted FIA

We consider the case of multiplicity for the
code. The corresponding list size is . The de-

coding radius is now . The degrees of the univariate poly-
nomials are .

The Block-Hankel syndrome matrix

is a matrix. It consists
of nine nonzero Hankel matrices and one all-zero matrix

arranged in two horizontal bands of five Hankel ma-
trices. The values of the row pointer of Algorithm 2
for the Block-Hankel matrix are traced in Fig. 3. The five
zig-zag lines in Fig. 3 trace the row
pointer , when Algorithm 2 examines the five subblocks

. In
Table II, the column and the column pointer ac-
cording to for the syndrome matrix of the
code are listed. Additionally to the horizontal ordering of
the columns (as in the Sudan case), now the rows are ordered
according to . The row-index and the row pointer

are shown in Table III. Let us consider three cases, where
a true discrepancy in Algorithm 2 occurred. The first case are
the most left two points in Fig. 3. The value of the column
pointer is (0, 2) and (0, 3). Algorithm 3 examines the first
band of the two Hankel matrices traced by line

. For the first pair no columns were virtually interchanged
and the horizontal distance is one.

The second two points with the values of the column pointer
(0, 5) and (0, 6) indicate a true discrepancy of Algorithm 3, when

TABLE II
COLUMN-INDEX � AND COLUMN POINTER ��� �� FOR THE BLOCK-HANKEL

SYNDROME MATRIX OF A ������� �� CODE WITH MULTIPLICITY � � �
AND LIST SIZE 	 � �

TABLE III
ROW-INDEX 
 AND ROW POINTER ��� �� OF ALGORITHM 2 FOR

BLOCK-HANKEL SYNDROME MATRIX OF A ��������� CODE WITH

MULTIPLICITY � � � AND LIST SIZE 	 � �

the second band of the two Hankel matrices is
examined. The values are traced by the line in Fig. 3. For
the second pair ((0, 5), (0, 6)), the columns of the first and second
vertical band of Hankel matrices are mixed and, therefore, the
horizontal distance is two.
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The third considered case, where a true discrepancy occurs,
are the most right two points in Fig. 3 indicated by values (1, 10)
and (1, 11) of the row pointer . Algorithm 2 examines the
band of the two Hankel matrices and restarts
(at the point (1, 10)) with the previous stored value of the row
pointer (at (1, 11)). In between four other horizontal bands of
matrices were examined.

VI. CONCLUSION

We reformulated the Guruswami–Sudan interpolation con-
ditions (for a multiplicity higher than one) for Generalized
Reed–Solomon codes into a set of univariate polynomial
equations, which can partially be seen as Extended Key Equa-
tions. The obtained set of homogeneous linear equations has a
Block-Hankel structure. We adapted the Fundamental Iterative
Algorithm of Feng and Tzeng to this special structure and
achieved a significant reduction of the time complexity.

As mentioned in Note 2, the set of equations can be further
reduced, under the observation that the diagonal terms are
constant, i.e., they do not depend on the received word. This
reduction leads to a loss of the Block-Hankel structure and
therefore would destroy the quadratic complexity. We note
that Beelen and Høholdt [34] mentioned this reduction for the
Guruswami–Sudan interpolation step for Algebraic Geometric
codes, to get a smaller interpolation problem, but the system
does not appear to be Block-Hankel.

We conclude that we identified the quantity (see
Note 2) without having found an interpretation of that number.
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