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Abstract

In this paper we study the problem of recovering sparse or compressible signals from uniformly

quantized measurements. We present a new class of convex optimization programs, or decoders, coined

Basis Pursuit DeQuantizer of moment p (BPDQp), that model the quantization distortion more faithfully

than the commonly used Basis Pursuit DeNoise (BPDN) program. Our decoders proceed by minimizing

the sparsity of the signal to be reconstructed subject to a data-fidelity constraint expressed in the `p-norm

of the residual error for 2 6 p 6∞.

We show theoretically that, (i) the reconstruction error of these new decoders is bounded if the

sensing matrix satisfies an extended Restricted Isometry Property involving the `p norm, and (ii), for

Gaussian random matrices and uniformly quantized measurements, BPDQp performance exceeds that

of BPDN by dividing the reconstruction error due to quantization by
√
p+ 1. This last effect happens

with high probability when the number of measurements exceeds a value growing with p, i.e., in an

oversampled situation compared to what is commonly required by BPDN = BPDQ2. To demonstrate

the theoretical power of BPDQp, we report numerical simulations on signal and image reconstruction

problems.
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I. INTRODUCTION

The theory of Compressed Sensing (CS) [2], [3] aims at reconstructing sparse or compressible signals

from a small number of linear measurements compared to the dimensionality of the signal space. In

short, the signal reconstruction is possible if the underlying sensing matrix is well behaved, i.e., if it

respects a Restricted Isometry Property (RIP) saying roughly that any small subset of its columns is

“close” to an orthogonal basis. The signal recovery is then obtained using non-linear techniques based on

convex optimization promoting signal sparsity, such as the Basis Pursuit program [3]. What makes CS

more than merely an interesting theoretical concept is that some classes of randomly generated matrices

(e.g., Gaussian, Bernoulli, partial Fourier ensemble, etc) satisfy the RIP with overwhelming probability.

This happens as soon as their number of rows, i.e., the number of CS measurements, is higher than a

few multiples of the assumed signal sparsity.

In a realistic acquisition system, quantization of these measurements is a natural process that Com-

pressed Sensing theory has to handle conveniently. One commonly used technique is to simply treat the

quantization distortion as Gaussian noise, which leads to reconstruction based on solving the Basis Pursuit

DeNoising (BPDN) program (either in its constrained or augmented Lagrangian forms) [4]. While this

approach can give acceptable results, it is theoretically unsatisfactory as the measurement error created

by quantization is highly non-Gaussian, being essentially uniform and bounded by the quantization bin

width.

An appealing requirement for the design of better reconstruction methods is the Quantization Con-

sistency (QC) constraint, i.e., that the requantized measurements of the reconstructed signal equal the

original quantized measurements. This idea, in some form, has appeared previously in the literature.

Near the beginning of the development of CS theory, Candès et al. mentioned that the `2-norm of

BPDN should be replaced by the `∞-norm to handle more naturally the quantization distortion of the

measurements [4]. More recently, in [5], the extreme case of 1-bit CS is studied, i.e., when only the signs

of the measurements are sent to the decoder. Authors tackle the reconstruction problem by adding a sign

consistency constraint in a modified BPDN program working on the sphere of unit-norm signals. In [6], an

adaptation of both BPDN and the Subspace Pursuit integrates an explicit QC constraint. In [7], a model

integrating additional Gaussian noise on the measurements before their quantization is analyzed and

solved with a `1-regularized maximum likelihood program. However, in spite of interesting experimental

results, no theoretical guarantees are given about the approximation error reached by these solutions.
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The QC constraint has also been used previously for image and signal processing outside of the CS

field. Examples include oversampled Analog to Digital Converters (ADC) [8], and in image restoration

problems [9], [10].

In this paper, we propose a new class of convex optimization programs, or decoders, coined the Basis

Pursuit DeQuantizer of moment p (BPDQp) that model the quantization distortion more faithfully. These

proceed by minimizing the sparsity of the reconstructed signal (expressed in the `1-norm) subject to a

particular data-fidelity constraint. This constraint imposes that the difference between the original and

the reproduced measurements have bounded `p-norm, for 2 6 p 6 ∞. As p approaches infinity, this

fidelity term reproduces the QC constraint as promoted initially in [4]. However, our idea is to study,

given a certain sparsity level and in function of the number of measurements available, which moment

2 6 p 6∞ provides the best reconstruction result.

Our overall result, which surprisingly does not favor p =∞, may be expressed by the principle: Given

a certain sparsity level, if the number of measurements is higher than a minimal value growing with p,

i.e., in oversampled situations, by using BPDQp instead of BPDN = BPDQ2 the reconstruction error due

to quantization can be reduced by a factor of
√
p+ 1.

At first glance, it could seem counterintuitive to oversample the “compressive sensing” of a signal.

After all, many results in Compressed Sensing seek to limit the number of measurements required to

encode a signal, while guaranteeing exact reconstruction with high probability. However, as analyzed for

instance in [11], this way of thinking avoids to considering the actual amount of information needed to

describe the measurement vector. In the case of noiseless observations of a sparse signal, Compressed

Sensing guarantees perfect reconstruction only for real-valued measurements, i.e., for an infinite number

of bits per measurements.

From a rate-distortion perspective, the analysis shown in [12], [13] demonstrates also that CS is

suboptimal compared to transform coding. Under that point of view, the best CS encoding strategy is to

use all the available bit-rate to obtain as few CS measurements as possible and quantize them as finely

as possible.

However, in many practical situations the quantization bit-depth per measurement is pre-determined

by the hardware, e.g., for real sensors embedding CS and a fixed A/D conversion of the measurements.

In that case, the only way to improve the reconstruction quality is to gather more measurements,
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i.e., to oversample the signal1. This does not degrade one of the main interests of Compressed Sensing,

i.e., providing highly informative linear signal measurements at a very low computation cost.

The paper is structured as follows. In Section II, we review the principles of Compressed Sensing and

previous approaches for accommodating the problem of measurement quantization. Section III introduces

the BPDQp decoders. Their stability, i.e., the `2 − `1 instance optimality, is deduced using an extended

version of the Restricted Isometry Property involving the `p-norm. In Section IV, Standard Gaussian

Random matrices, i.e., whose entries are independent and identically distributed (iid) standard Gaussian,

are shown to satisfy this property with high probability for a sufficiently large number of measurements.

Section V explains the key result of this paper; that the approximation error of BPDQp scales inversely

with
√
p+ 1. Section VI describes the convex optimization framework adopted to solve the BPDQp

programs. Finally, Section VII provides experimental validation of the theoretical power of BPDQp on

1-D signals and on an image reconstruction example.

II. COMPRESSED SENSING AND QUANTIZATION OF MEASUREMENTS

In Compressed Sensing (CS) theory [2], [3], the signal x ∈ RN to be acquired and subsequently

reconstructed is typically assumed to be sparse or compressible in an orthogonal2 basis Ψ ∈ RN×N

(e.g., wavelet basis, Fourier, etc.). In other words, the best K-term approximation xK of x in Ψ gives

an exact (for the sparse case) or accurate (for the compressible case) representation of x even for small

K < N . For simplicity, only the canonical basis Ψ = Id will be considered here.

At the acquisition stage, x is encoded by m linear measurements (with K 6 m 6 N ) provided by

a sensing matrix Φ ∈ Rm×N , i.e., all known information about x is contained in the m measurements

〈ϕi, x〉 =
∑

k ϕ
∗
ikxk, where {ϕi}m−1

i=0 are the rows of Φ.

In this paper, we are interested in a particular non-ideal sensing model. Indeed, as measurement of

continuous signals by digital devices always involves some form of quantization, in practice devices

based on CS encoding must be able to accommodate the distortions in the linear measurements created

by quantization. Therefore, we adopt the noiseless and uniformly quantized sensing (or coding) model:

yq = Qα[Φx] = Φx+ n, (1)

1Generally, it is also less expensive in hardware to oversample a signal than to quantize measurements more finely.
2A generalization for redundant basis, or dictionary, exists [14], [15].
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where yq ∈ (αZ + α
2 )m is the quantized measurement vector, (Qα[·])i = αb(·)i/αc+ α

2 is the uniform

quantization operator in Rm of bin width α, and n , Qα[Φx]Φx is the quantization distortion.

The model (1) is a realistic description of systems where the quantization distortion dominates other

secondary noise sources (e.g., thermal noise), an assumption valid for many electronic measurement

devices including ADC. In this paper we restrict our study to using this extremely simple uniform

quantization model, in order to concentrate on the interaction with the CS theory. For instance, this

quantization scenario does not take into account the possible saturation of the quantizer happening when

the value to be digitized is outside the operating range of the quantizer, this range being determined

by the number of bits available. For Compressed Sensing, this effect has been studied recently in [16].

Authors obtained better reconstruction methods by either imposing to reproduce saturated measurements

(Saturation Consistency) or by discarding these thanks to the “democratic” property of most of the

random sensing matrices. Their work however does not integrate the Quantization Consistency for all

the unsaturated measurements. The study of more realistic non-uniform quantization is also deferred as

a question for future research.

In much previous work in CS, the reconstruction of x from yq is obtained by treating the quantization

distortion n as a noise of bounded power (i.e., `2-norm) ‖n‖22 =
∑

k |nk|2. In this case, a robust

reconstruction of the signal x from corrupted measurements y = Φx + n is provided by the Basis

Pursuit DeNoise (BPDN) program (or decoder) [17]:

∆(y, ε) = argmin
u∈RN

‖u‖1 s.t. ‖y − Φu‖2 6 ε. (BPDN)

This convex optimization program can be solved numerically by methods like Second Order Cone

Programming or by monotone operator splitting methods [18], [19] described in Section VI. Notice

that the noiseless situation ε = 0 leads to the Basis Pursuit (BP) program, which may also be solved by

Linear Programming [20].

An important condition for BPDN to provide a good reconstruction is the feasibility of the initial signal

x, i.e., we must chose ε in the (fidelity) constraint of BPDN such that ‖n‖2 = ‖y−Φx‖2 6 ε. In [17], an

estimator of ε for y = yq is obtained by considering n as a random vector ξ ∈ Rm distributed uniformly

over the quantization bins, i.e., ξi ∼iid U([−α
2 ,

α
2 ]).

An easy computation shows then that ‖ξ‖22 6 ε22(α) with probability higher than 1 − e−c0κ
2

for a
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certain constant c0 > 0 (by the Chernoff-Hoeffding bound [21]), where

ε22(α) , E‖ξ‖22 + κ
√

Var‖ξ‖22 = α2

12m+ κ α2

6
√

5
m

1

2 .

Therefore, CS usually handles quantization distortion by setting ε = ε2(α), typically for κ = 2.

When the feasibility is satisfied, the stability of BPDN is guaranteed if the sensing matrix Φ ∈ Rm×N

satisfies one instance of the following property:

Definition 1. A matrix Φ ∈ Rm×N satisfies the (extended) Restricted Isometry Property (RIPp,q) (with

p, q > 0) of order K and radius δK ∈ (0, 1), if there exists a constant µp,q > 0 such that

µp,q (1− δK)1/q ‖u‖q 6 ‖Φu‖p 6 µp,q (1 + δK)1/q ‖u‖q, (2)

for all K-sparse signals u ∈ RN .

In other words, Φ, as a mapping from `mp = (Rm, ‖·‖p) to `Nq = (RN , ‖·‖q), acts as a (scaled) isometry

on K-sparse signals of RN . This definition is more general than the common RIP [22]. This latter, which

ensures the stability of BPDN (see Theorem 1 below), corresponds to p = q = 2 in (2). The original

definition considers also normalized matrices Φ̄ = Φ/µ2,2 having unit-norm columns (in expectation) so

that µ2,2 is absorbed in the normalizing constant.

We prefer to use this extended RIPp,q since, as it will become clear in Section V, the case p > 2 and

q = 2 provides us the interesting embedding (2) for measurement vectors corrupted by generalized Gaus-

sian and uniform noises. As explained below, this definition includes also other RIP generalizations [26],

[28].

We note that there are several examples already described in the literature of classes of matrices which

satisfy the RIPp,q for specific values of p and q. For instance, for p = q = 2, a matrix Φ ∈ Rm×N with

each of its entries drawn independently from a (sub) Gaussian random variable satisfies this property

with an overwhelming probability if m > cK logN/K for some value c > 0 independent of the involved

dimensions [23], [24], [25]. This is the case of Standard Gaussian Random (SGR) matrices whose entries

are iid Φij ∼ N (0, 1), and of the Bernoulli matrices with Φij = ±1 with equal probability, both

cases having µ2,2 =
√
m [23]. Other random constructions satisfying the RIP2,2 are known (e.g., partial

Fourier ensemble) [2], [17]. For the case p = q = 1 +O(1)/ logN , it is proved in [26], [27] that sparse

matrices obtained from an adjacency matrix of a high-quality unbalanced expander graph are RIPp,p (with

µ2
p,p = 1/(1−δK)). In the context of non-convex signal reconstruction, the authors in [28] show also that
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Gaussian random matrices satisfy the Restricted p-Isometry, i.e., RIPp,q for q = 2, 0 < p < 1, µp,2 = 1

and appropriate redefinition of δK .

The following theorem expresses the announced stability result, i.e., the `2 − `1 instance optimality3

of BPDN, as a consequence of the RIP2,2.

Theorem 1 ([22]). Let x ∈ RN be a signal whose compressibility is measured by the decreasing of the

K-term `1-approximation error e0(K) = K−
1

2 ‖x − xK‖1, for 0 6 K 6 N , and xK the best K-term

`2-approximation of x. Let Φ be a RIP2,2 matrix of order 2K and radius 0 < δ2K <
√

2 − 1. Given a

measurement vector y = Φx+n corrupted by a noise n with power ‖n‖2 6 ε, the solution x∗ = ∆(y, ε)

obeys

‖x∗ − x‖2 6 Ae0(K) + B ε
µ2,2

, (3)

for A(Φ,K) = 2 1+(
√

2−1)δ2K
1−(
√

2+1)δ2K
and B(Φ,K) = 4

√
1+δ2K

1−(
√

2+1)δ2K
. For instance, for δ2K = 0.2, A < 4.2 and

B < 8.5.

Let us precise that the theorem condition δ2K <
√

2 − 1 on the RIP radius can be refined (like in

[31]). We know nevertheless from Davies and Gribonval [32] that `1-minimization will fail for at least

one vector for δ2K > 1/
√

2. The room for improvement is then very small.

Using the BPDN decoder to account for quantization distortion is theoretically unsatisfying for several

reasons. First, there is no guarantee that the BPDN solution x∗ respects the Quantization Consistency,

i.e.,

Qα[Φx∗] = yq ⇔ ‖yq − Φx∗‖∞ 6 α
2 , (QC)

which is not necessarily implied by the BPDN `2 fidelity constraint. The failure of BPDN to respect QC

suggests that it may not be taking advantage of all of the available information about the noise structure

in the measurements.

Second, from a Bayesian Maximum a Posteriori (MAP) standpoint, BPDN can be viewed as solving

an ill-posed inverse problem where the `2-norm used in the fidelity term corresponds to the conditional

log-likelihood associated to an additive white Gaussian noise. However, the quantization distortion is not

Gaussian, but rather uniformly distributed. This motivates the need for a new kind of CS decoder that

more faithfully models the quantization distortion.

3Adopting the definition of mixed-norm instance optimality [29].
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III. BASIS PURSUIT DEQUANTIZER (BPDQp)

The considerations of the previous section encourage the definition of a new class of optimization

programs (or decoders) generalizing the fidelity term of the BPDN program.

Our approach is based on reconstructing a sparse approximation of x from its measurements y = Φx+n

under the assumption that `p-norm (p > 1) of the noise n is bounded, i.e., ‖n‖pp =
∑

k |nk|p 6 εp for

some ε > 0. We introduce the novel programs

∆p(y, ε) = argmin
u∈RN

‖u‖1 s.t. ‖y − Φu‖p 6 ε. (BPDQp)

The fidelity constraint expressed in the `p-norm is now tuned to noises that follow a zero-mean Generalized

Gaussian Distribution4 (GGD) of shape parameter p [30], with the uniform noise case corresponding to

p→∞.

We dub this class of decoders Basis Pursuit DeQuantizer of moment p (or BPDQp) since, for reasons

that will become clear in Section V, their approximation error when Φx is uniformly quantized has an

interesting decreasing behavior when both the moment p and the oversampling factor m/K increase.

Notice that the decoder corresponding to p = 1 has been previously analyzed in [33] for Laplacian noise.

One of the main results of this paper concerns the `2− `1 instance optimality of the BPDQp decoders,

i.e., their stability when the signal to be recovered is compressible, and when the measurements are

contaminated by noise of bounded `p-norm. In the following theorem, we show that such an optimality

happens when the sensing matrix respects the (extended) Restricted Isometry Property RIPp,2 for 2 6

p <∞.

Theorem 2. Let x ∈ RN be a signal with a K-term `1-approximation error e0(K) = K−
1

2 ‖x− xK‖1,

for 0 6 K 6 N and xK the best K-term `2-approximation of x. Let Φ be a RIPp,2 matrix on s sparse

signals with constants δs, for s ∈ {K, 2K, 3K} and 2 6 p <∞. Given a measurement vector y = Φx+n

corrupted by a noise n with bounded `p-norm, i.e., ‖n‖p 6 ε, the solution x∗p = ∆p(y, ε) of BPDQp

obeys

‖x∗p − x‖2 6 Ap e0(K) + Bp ε/µp,2,

for values Ap(Φ,K) = 2(1+Cp−δ2K)
1−δ2K−Cp

, Bp(Φ,K) = 4
√

1+δ2K
1−δ2K−Cp

, and Cp = Cp(Φ, 2K,K) given in the proof

of Lemma 2 (Appendix D).

4The probability density function f of such a distribution is f(x) ∝ exp(−|x/b|p) for a standard deviation σ ∝ b.
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As shown in Appendix E, this theorem follows from a generalization of the fundamental result proved

by Candès [22] to the particular geometry of Banach spaces `p.

IV. EXAMPLE OF RIPp,2 MATRICES

Interestingly, it turns out that SGR matrices Φ ∈ Rm×N also satisfy the RIPp,2 with high probability

provided that m is sufficiently large compared to the sparsity K of the signals to measure. This is made

formal in the following Proposition, for which the proof5 is given in Appendix A.

Proposition 1. Let Φ ∈ Rm×N be a Standard Gaussian Random (SGR) matrix, i.e., its entries are iid

N (0, 1). Then, if m > (p− 1)2p+1 for 2 6 p <∞ and m > 0 for p =∞, there exists a constant c > 0

such that, for

Θp(m) > c δ−2
(
K log[eNK (1 + 12δ−1)] + log 2

η

)
, (4)

with Θp(m) = m2/p for 1 6 p <∞ and Θp(m) = logm for p =∞, Φ is RIPp,2 of order K and radius

δ with probability higher than 1 − η. Moreover, the value µp,2 = E‖ξ‖p is the expectation value of the

`p-norm of a SGR vector ξ ∈ Rm.

Roughly speaking, this proposition tells us that to generate a matrix that is RIPp,2 with high probability,

we need a number of measurements m that grows polynomially in K logN/K with an “order” p/2 for

2 6 p <∞, while the limit case p =∞ grows exponentially in K logN/K.

Notice that an asymptotic estimation of µp,2, i.e., for m→∞, can be found in [34] for 1 6 p <∞.

However, as presented in the following Lemma (proved in Appendix C), non-asymptotic bounds for

µp,2 = E‖ξ‖p can be expressed in terms of

(E‖ξ‖pp)1/p = (mE|g|p)1/p = νpm
1/p,

with g ∼ N(0, 1) and νpp = E|g|p = 2
p

2 π−
1

2 Γ(p+1
2 ).

Lemma 1. If ξ ∈ Rm is a SGR vector, then, for 1 6 p <∞,(
1 + 2p+1

m

) 1

p
−1

(E‖ξ‖pp)
1

p 6 E‖ξ‖p 6 (E‖ξ‖pp)
1

p .

5Interestingly, this proof shows also that SGR matrices are RIPp,2 with high probability for 1 < p < 2 when m exceeds a

similar bound to (4).
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In particular, as soon as m > β−1 2p+1 for β > 0, E‖ξ‖p > (E‖ξ‖pp)
1

p (1+β)
1

p
−1 > (E‖ξ‖pp)

1

p (1− p−1
p β).

For p =∞, there exists a ρ > 0 such that ρ−1
√

logm 6 E‖ξ‖∞ 6 ρ
√

logm.

An interesting aspect of matrices respecting the RIPp,2 is that they approximately preserve the decor-

relation of sparse vectors of disjoint supports.

Lemma 2. Let u, v ∈ RN with ‖u‖0 = s and ‖v‖0 = s′ and supp(u) ∩ supp(v) = ∅, and 2 6 p <∞.

If Φ is RIPp,2 of order s+ s′ with constant δs+s′ , and of orders s and s′ with constants δs and δs′ , then

|〈J(Φu),Φv〉| 6 µ2
p,2Cp ‖u‖2‖v‖2, (5)

with (J(u))i = ‖u‖2−pp |ui|p−1 signui and Cp = Cp(Φ, s, s
′) is given explicitly in Appendix D.

It is worth mentioning that the value Cp behaves as
√

(δs + δs+s′) (1 + δs′) (p− 2) for large p, and

as δs+s′ + 3
4(1 + δs+s′)(p − 2) for p ' 2. Therefore, this result may be seen as a generalization of the

one proved in [22] (see Lemma 2.1) for p = 2 with C2 = δs+s′ . As shown in Appendix D, this Lemma

uses explicitly the 2-smoothness of the Banach spaces `p when p > 2 [35], [36], in connection with the

normalized duality mapping J that plays a central role in the geometrical description of `p.

Lemma 2 is at the heart of the proof of Theorem 2, which prevents the later from being valid for

p = ∞. This is related to the fact that the `∞ Banach space is not 2-smooth and no duality mapping

exists. Therefore, any result for p =∞ would require different tools than those developed here.

V. BPDQp AND QUANTIZATION ERROR REDUCTION

Let us now observe the particular behavior of the BPDQp decoders on quantized measurements of a

sparse or compressible signal assuming that α is known at the decoding step. In this Section, we consider

that p > 2 everywhere.

First, if we assume in the model (1) that the quantization distortion n = Qα[Φx] − Φx is uniformly

distributed in each quantization bin, the simple Lemma below provides precise estimator ε for any `p-norm

of n.

Lemma 3. If ξ ∈ Rm is a uniform random vector with ξi ∼iid U([−α
2 ,

α
2 ]), then, for 1 6 p <∞,

ζp = E‖ξ‖pp = αp

2p(p+1) m. (6)

In addition, for any κ > 0, P
[
‖ξ‖pp > ζp + κ αp

2p

√
m
]

6 e−2κ2

, while, limp→∞(ζp + καp

2p

√
m)

1

p = α
2 .
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The proof is given in Appendix F.

According to this result, we may set the `p-norm bound ε of the program BPDQp to

ε = εp(α) , α
2 (p+1)1/p

(
m+ κ (p+ 1)

√
m
) 1

p , (7)

so that, for κ = 2, we know that x is a feasible solution of the BPDQp fidelity constraint with a probability

exceeding 1− e−8 > 1− 3.4× 10−4.

Second, Theorem 2 points out that, when Φ is RIPp,2 with 2 6 p < ∞, the approximation error of

the BPDQp decoders is the sum of two terms: one that expresses the compressibility error as measured

by e0(K), and one, the noise error, proportional to the ratio ε/µp,2. In particular, by Lemma 1, for m

respecting (4), a SGR sensing matrix of m rows induces with a controlled probability

‖x− x∗p‖2 6 Ap e0(K) + Bp
εp(α)

µp,2
. (8)

Combining (7) and the result of Lemma 1, we may bound the noise error for uniform quantization more

precisely. Indeed, for 2 6 p <∞, if m > (p− 1)2p+1, µp,2 > p−1
p νpm

1

p with νp =
√

2π−
1

2p Γ(p+1
2 )

1

p .

In addition, using a variant of the Stirling formula found in [37], we know that |Γ(x)− (2π
x )

1

2 (xe )x| 6
1

9x (2π
x )

1

2 (xe )x for x > 1. Therefore, we compute easily that, for x = (p+1)/2 > 1, νp > c1/p (p+1
e )1/2 >

c (p+1
e )1/2 with c = 8

√
2

9
√
e
< 1. Finally, by (7), we see that,

εp(α)

µp,2
6 p

p−1
9e

16
√

2

(
1
p+1 + κ 1√

m

)1/p α√
p+ 1

< C
α√
p+ 1

, (9)

with C = 9e/(8
√

2) < 2.17, where we used the bound p
p−1 6 2 and the fact that ( 1

p+1 + κ 1√
m

)1/p < 1

if m > (p+1
p κ)2 = O(1).

In summary, we can formulate the following principle.

Oversampling Principle. The noise error term in the `2− `1 instance optimality relation (8) in the case

of uniform quantization of the measurements of a sparse or compressible signal is divided by
√
p+ 1

in oversampled SGR sensing, i.e., when the oversampling factor m/K is higher than a minimal value

increasing with p.

Interestingly, this follows the improvement achieved by adding a QC constraint in the decoding of

oversampled ADC signal conversion [8].
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The oversampling principle requires some additional explanations. Taking a SGR matrix, by Proposition

1, if mp is the smallest number of measurements for which such a randomly generated matrix Φ is RIPp,2

of radius δp < 1 with a certain nonzero probability, taking m > mp allows one to generate a new random

matrix with a smaller radius δ < δp with the same probability of success.

Therefore, increasing the oversampling factor m/K provides two effects. First, it enables one to hope

for a matrix Φ that is RIPp,2 for high p, providing the desired error division by
√
p+ 1. Second, as shown

in Appendix B, since δ = O(m−1/p
√

logm), oversampling gives a smaller δ hence counteracting the

increase of p in the factor Cp of the values Ap > 2 and Bp > 4. This decrease of δ also favors BPDN,

but since the values A = A2 > 2 and B = B2 > 4 in (3) are also bounded from below this effect is

limited. Consequently, as the number of measurements increases the improvement in reconstruction error

for BPDN will saturate, while for BPDQp the error will be divided by
√
p+ 1.

From this result, it is very tempting to choose an extremely large value for p in order to decrease the

noise error term (8). There are however two obstacles with this. First, the instance optimality result of

Theorem 2 is not directly valid for p = ∞. Second, and more significantly, the necessity of satisfying

RIPp,2 implies that we cannot take p arbitrarily large in Proposition 1. Indeed, for a given oversampling

factor m/K, a SGR matrix Φ can be RIPp,2 only over a finite interval p ∈ [2, pmax]. This implies that

for each particular reconstruction problem, there should be an optimal maximum value for p. We will

demonstrate this effect experimentally in Section VII.

We remark that the compressibility error is not significantly reduced by increasing p when the number

of measurements is large. This makes sense as the `p-norm appears only in the fidelity term of the

decoders, and we know that in the case where ε = 0 the compressibility error remains in the BP decoder

[22]. Finally, note that due to the embedding of the `p-norms, i.e., ‖·‖p 6 ‖·‖p′ if p > p′ > 1, increasing

p until pmax makes the fidelity term closer to the QC.

VI. NUMERICAL IMPLEMENTATION

This section is devoted to the description of the convex optimization tools needed to numerically solve

the Basis Pursuit DeQuantizer program. While we generally utilize p > 2, the BPDQp program is convex

for p > 1. In fact, the efficient iterative procedure we describe will converge to to the global minimum

of the BPDQp program for all p > 1.

12



A. Proximal Optimization

The BPDQp (and BPDN) decoders are special case of a general class of convex problems [18], [38]

arg min
x∈H

f1(x) + f2(x), (P)

where H = RN is seen as an Hilbert space equipped with the inner product 〈x, z〉 =
∑

i xizi. We

denote by dom f = {x ∈ H : f(x) < +∞} the domain of any f : H → R ∪ {+∞}. In (P), the

functions f1, f2 : H → R ∪ {+∞} are assumed (i) convex functions which are not infinite everywhere,

i.e., dom f1, dom f2 6= ∅, (ii) dom f1 ∩ dom f2 6= ∅, and (iii) these functions are lower semi-continuous

(lsc) meaning that lim infx→x0
f(x) = f(x0) for all x0 ∈ dom f . The class of functions satisfying these

three properties is denoted Γ0(RN ). For BPDQp, these two non-differentiable functions are f1(x) = ‖x‖1
and f2(x) = ıT p(ε)(x) = 0 if x ∈ T p(ε) and∞ otherwise, i.e., the indicator function of the closed convex

set T p(ε) = {x ∈ RN : ‖yq − Φx‖p 6 ε}.

It can be shown that the solutions of problem (P) are characterized by the following fixed point

equation: x solves (P) if and only if

x = (1 + β∂(f1 + f2))−1(x), for β > 0. (10)

The operator Jβ∂f = (1+β∂f)−1 is called the resolvent operator associated to the subdifferential

operator ∂f , β is a positive scalar known as the proximal step size, and 1 is the identity map on H. We

recall that the subdifferential of a function f ∈ Γ0(H) at x ∈ H is the set-valued map ∂f(x) = {u ∈

H : ∀z ∈ H, f(z) > f(x) + 〈u, z − x〉}, where each element u of ∂f is called a subgradient.

The resolvent operator is actually identified with the proximity operator of βf , i.e., Jβ∂f = proxβf ,

introduced in [39] as a generalization of convex projection operator. It is defined as the unique solution

proxf (x) = arg minz∈H
1
2‖z − x‖22 + f(z) for f ∈ Γ0(H). If f = ıC for some closed convex set

C ⊂ H, proxf (x) is equivalent to orthogonal projection onto C. For f(x) = ‖x‖1, proxγf (x) is given

by component-wise soft-thresholding of x by threshold γ [18]. In addition, proximity operators of lsc

convex functions exhibit nice properties with respect to translation, composition with frame operators,

dilation, etc. [40], [38].

In problem (P) with f = f1 + f2, the resolvent operator Jβ∂f = (1+β∂f)−1 typically cannot be

calculated in closed-form. Monotone operator splitting methods do not attempt to evaluate this resolvent

mapping directly, but instead perform a sequence of calculations involving separately the individual
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Fig. 1. Quality of BPDQp for different m/K and p. Mean (a) and standard deviation (b) of SNR. (c) Fraction of coefficients

satisfying QC.

resolvent operators Jβ∂f1 and Jβ∂f2 . The latter are hopefully easier to evaluate, and this holds true for

our functionals in BPDQp.

Since for BPDQp, both f1 and f2 are non-differentiable, we use a particular monotone operator splitting

method known as the Douglas-Rachford (DR) splitting. It can be written as the following compact

recursion formula [18]

x(t+1) = (1− αt

2 )x(t) + αt

2 S�γ ◦ P�Tp(ε)(x
(t)), (11)

where A� , 2A − 1 for any operator A, αt ∈ (0, 2) for all t ∈ N, Sγ = proxγf1 is the component-

wise soft-thresholding operator with threshold γ > 0 and PTp(ε) = proxf2 is the orthogonal projection

onto the tube T p(ε). From [19], one can show that the sequence (x(t))t∈N converges to some point x?

and PTp(ε)(x
?) is a solution of BPDQp. In the next Section, we provide a way to compute PTp(ε)(x

?)

efficiently.

B. Proximity operator of the `p fidelity constraint

Each step of the DR iteration (11) requires computation of proxf2 = PT p(ε) for T p(ε) = {x ∈ RN :

‖yq − Φx‖p 6 ε}. We present an iterative method to compute this projection for 2 6 p 6∞.

Notice first that, defining the unit `p ball Bp = {y ∈ Rm : ‖y‖p 6 1} ⊂ Rm, we have

f2(x) = ıT p(ε)(x) = (ıBp ◦Aε)(x),

with the affine operator Aε(x) , 1
ε (Φx− yq).
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The proximity operator of a pre-composition of a function f ∈ Γ0(H) with an affine operator can be

computed from the proximity operator of f . Indeed, let Φ′ ∈ Rm×N and the affine operator A(x) , Φ′x−y

with y ∈ Rm. If Φ′ is a tight frame of H, i.e., Φ′Φ′∗ = c1 for some c > 0, we have

proxf◦A(x) = x+ c−1Φ′∗
(

proxcf −1
)
(A(x)) ,

[40], [18]. Moreover, for a general bounded matrix Φ′, we can use the following lemma.

Lemma 4 ([18]). Let Φ′ ∈ Rm×N be a matrix with bounds 0 6 c1 < c2 <∞ such that c1 1 6 Φ′Φ′∗ 6

c2 1 and let {βt}t∈N be a sequence with 0 < inft βt 6 supt βt < 2/c2. Define

u(t+1) =βt(1−proxβ−1
t f )

(
β−1
t u(t) +A(p(t))

)
,

p(t+1) =x− Φ′∗u(t+1).
(12)

If the matrix Φ′ is a general frame of H, i.e., 0 < c1 < c2 < ∞, then f ◦ A ∈ Γ0(H). In addition,

u(t) → ū ∈ Rm and p(t) → proxf◦A(x) = x−Φ′∗ū in (12). More precisely, both u(t) and p(t) converge

linearly and the best convergence rate is attained for βt ≡ 2/(c1+c2) with ‖u(t)−ū‖ 6
(
c2−c1
c2+c1

)t‖u(0)−ū‖.

Otherwise, if Φ′ is just bounded (i.e., c1 = 0 < c2 < ∞), and if f ◦ A ∈ Γ0(H), apply (12), and then

u(t) → ū and p(t) → proxf◦A(x) = x− Φ′∗ū at the rate O(1/t).

In conclusion, computing proxf2 may be reduced to applying the orthogonal projection proxıBp = PBp

by setting f = ıBp , Φ′ = Φ/ε and y = yq/ε inside the iterative method (12) with a number of iterations

depending on the selected application (see Section VII).

For p = 2 and p =∞, the projector PBp has an explicit form. Indeed, if y is outside the closed unit

`p-ball in Rm, then PB2(y) = y
‖y‖2 ; and (PB∞(y))i = sign (yi)×min{1, |yi|} for 1 6 i 6 m.

Unfortunately, for 2 < p < ∞ no known closed-form for the projection exists. Instead, we describe

an iterative method. Set fy(u) = 1
2‖u− y‖

2
2 and g(u) = ‖u‖pp.

If ‖y‖p 6 1, PBp(y) = y. For ‖y‖p > 1, the projection PBp is the solution of the constrained

minimization problem u? = arg minu fy(u) s.t. g(u) = 1. Let L(u, λ) be its Lagrange function (for

λ ∈ R)

L(u, λ) = fy(u) + λ (g(u)− 1). (13)

Without loss of generality, by symmetry, we may work in the positive6 orthant ui > 0 and yi > 0, since

the point y and its projection u? belong to the same orthant of Rm, i.e., yiu?i > 0 for all 1 6 i 6 m.

6The general solution can be obtained by appropriate axis mirroring.
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As fy and g are continuously differentiable, the Karush-Kuhn-Tucker system corresponding to (13) is

∇uL(u?, λ?) = ∇ufy(u?) + λ?∇ug(u?) = 0

∇λL(u?, λ?) = g(u?)− 1 = 0 ,

(14)

where the solution u? is non-degenerate by strict convexity in u [41], and λ? the corresponding Lagrange

multiplier.

Let us write z = (u, zm+1 = λ) ∈ Rm+1 and F = ∇zL : Rm+1 → Rm+1 as

Fi(z) =

 zi + p zm+1 z
p−1
i − yi if i 6 m,(∑m

j=1 z
p
j

)
− 1 if i = m+ 1.

The KKT system (14) is equivalent to F (z?) = 0, where the desired projection u? is then given by

the first m coordinates of z?. This defines a system of m+ 1 equations with m+ 1 unknowns (u?, λ?)

that we can solved efficiently with the Newton method. This is the main strategy underlying sequential

quadratic programming used to solve general-type constrained optimization problems [41].

Given an initialization point z0, the successive iterates are defined by

zn+1 = zn − V (zn)−1F (zn), (15)

where Vij = ∂Fi

∂zj
is the Jacobian associated to F . If the iterates sequence (zn)n>0 is close enough

to (u?, λ?), we known that the Jacobian is nonsingular as u? is non-degenerate. Moreover, since that

Jacobian has a simple block-invertible form, we may compute ([42], p.125)

V −1(z) = 1
µ

µD−1u +
(
zm+1 − b̄Tu

)
b̄

(b̄Tu− zm+1)

, (16)

where D ∈ Rm×m is a diagonal matrix with Dii(z) = 1 + p(p−1)zm+1z
p−2
i , b ∈ Rm with bi(z) = pzp−1

i

for 1 6 i 6 m, b̄ = D−1b, µ = bTD−1b = b̄TD b̄. This last expression can be computed efficiently as D

is diagonal.

We initialize the first m components of z0 by the direct radial projection of y on the unit `p-ball,

u0 = y/‖y‖p, and initialize z0
m+1 = arg minλ ‖F (u0, λ)‖2.

In summary, to compute PBp , we run (15) using (16) to calculate each update step. We terminate

the iteration when the norm of ‖F (zn)‖2 falls below a specified tolerance. Since the Newton method

converges superlinearly, we obtain error comparable to machine precision with typically fewer than 10

iterations.
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VII. EXPERIMENTS

As an experimental validation of the BPDQp method, we ran two sets of numerical simulations for

reconstructing signals from quantized measurements. For the first experiment we studied recovery of

exactly sparse random 1-D signals, following very closely our theoretical developments. Setting the

dimension N = 1024 and the sparsity level K = 16, we generated 500 K-sparse signals where the

non-zero elements were drawn from the standard Gaussian distribution N (0, 1), and located at supports

drawn uniformly in {1, · · · , N}. For each sparse signal x, m quantized measurements were recorded as

in model (1) with a SGR matrix Φ ∈ Rm×N . The bin width was set to α = ‖Φx‖∞/40.

The decoding was accomplished with BPDQp for various moments p > 2 using the optimization

algorithm described in Section VI. In particular, the overall Douglas-Rachford procedure (11) was run

for 500 iterations. At each DR step, the method in (12) was iterated until the relative error ‖p
(t)−p(t−1)‖2
‖p(t)‖2

fell below 10−6; the required number of iterations was dependent on m but was fewer than 700 in all

cases examined.

In Figure 1, we plot the average quality of the reconstructions of BPDQp for various values of p > 2 and

m/K ∈ [10, 40]. We use the quality measure SNR(x̂;x) = 20 log10
‖x‖2
‖x−x̂‖2 , where x is the true original

signal and x̂ the reconstruction. As can be noticed, at higher oversampling factors m/K the decoders

with higher p give better reconstruction performance. Equivalently, it can also be observed that at lower

oversampling factors, increasing p beyond a certain point degrades the reconstruction performance. These

two effects are consistent with the remarks noted at the end of Section V, as the sensing matrices may

fail to satisfy the RIPp,2 if p is too large for a given oversampling factor.

One of the original motivations for the BPDQp decoders is that they are closer to enforcing quantization

consistency than the BPDN decoder. To check this, we have examined the “quantization consistency

fraction”, i.e., the average fraction of remeasured coefficients (Φx̂)i that satisfy |(Φx̂)i− yi| < α
2 . These

are shown in Figure 1 (c) for various p and m/K. As expected, it can be clearly seen that increasing p

increases the QC fraction.

An even more explicit illustration of this effect is afforded by examining histograms of the normalized

residual α−1(Φx̂−y)i for different p. For reconstruction exactly satisfying QC, these normalized residuals

should be supported on [−1/2, 1/2]. In Figure 2 we show histograms of normalized residuals for p = 2

and p = 10, for the case m/K = 40. The histogram for p = 10 is indeed closer to uniform on [−1/2, 1/2].

For the second experiment, we apply a modified version of the BPDQp to an undersampled MRI
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Fig. 2. Histograms of α−1(Φx̂− y)i. Left, p = 2. Right, p = 10.

reconstruction problem. Using an example similar to [43], the original image is a 256 × 256 pixel

“synthetic angiogram”, i.e., N = 2562, comprised of 10 randomly placed non-overlapping ellipses.

The linear measurements are the real and imaginary parts of a fraction ρ of the Fourier coefficients

at randomly selected locations in Fourier space, giving m = ρN independent measurements. These

random locations form the index set Ω ⊂ {1, · · · , N} with |Ω| = m. Experiments were carried out with

ρ ∈ {1/6, 1/8, 1/12}, but we show results only for ρ = 1/8. These were quantized with a bin width

α = 50, giving at most 12 quantization levels for each measurement.

For this example, we modify the BPDQp program III by replacing the `1 term by the total variation

(TV) semi-norm [44]. This yields the problem

argmin
u
‖u‖TV s.t. ‖y − Φu‖p 6 ε,

where Φ = FΩ is the restriction of Discrete Fourier Transform matrix F to the rows indexed in Ω.

This may be solved with the Douglas-Rachford iteration (11), with the modification that Sγ be replaced

by the proximity operator associated to γ times the TV norm, i.e., by proxγ‖·‖TV
(y) = argminu

1
2‖y −

u‖2 + γ‖u‖TV. The latter is known as the Rudin-Osher-Fatemi model, and numerous methods exist for

solving it exactly, including [45], [46], [47], [48]. In this work, we use an efficient projected gradient

descent algorithm on the dual problem, see e.g., [18]. Note that the sensing matrix FΩ is actually a tight

frame, i.e., FΩF
∗
Ω = 1, so we do not need the nested inner iteration (12).

We show the SNR of the BPDQp reconstructions as a function of p in Figure 3, averaged over 50

trials where both the synthetic angiogram image and the Fourier measurement locations are randomized.

This figure also depicts the SNR improvement of BPDQp-based reconstruction over BPDN. For these

simulations we used 500 iterations of the Douglas-Rachford recursion (11). This quantitative results are
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confirmed by visual inspection of Figure 4, where we compare 100×100 pixel details of the reconstruction

results with BPDN and with BPDQp for p = 10, for one particular instance of the synthetic angiogram

signal.

Note that this experiment lies far outside of the justification provided by our theoretical developments,

as we do not have any proof that the sensing matrix FΩ satisfies the RIPp,2, and our theory was developed

only for `1 synthesis-type regularization, while the TV regularization is of analysis type. Nonetheless, we

obtain results analogous to the previous 1-D example; the BPDQp reconstruction shows improvements

both in SNR and visual quality compared to BPDN. These empirical results suggest that the BPDQp

method may be useful for a wider range of quantized reconstruction problems, and also provoke interest

for further theoretical study.

VIII. CONCLUSION AND FURTHER WORK

The objective of this paper was to show that the BPDN reconstruction program commonly used in

Compressed Sensing with noisy measurements is not always adapted to quantization distortion. We

introduced a new class of decoders, the Basis Pursuit DeQuantizers, and we have shown both theoretically

and experimentally that BPDQp exhibit a substantial reduction of the reconstruction error in oversampled

situations.

A first interesting question for further study would be to characterize the evolution of the optimal

moment p with the oversampling ratio. This would allow for instance the selection of the best BPDQp

decoder in function of the precise CS coding/decoding scenario. Second, it is also worth investigating

the existence of other RIPp,2 random matrix constructions, e.g., using the Random Fourier Ensemble.
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(a) Original image (b) SNR = 8.96 dB (c) SNR = 12.03 dB

Fig. 4. Reconstruction of synthetic angiograms from undersampled Fourier measurements, using TV regularization. (a) Original,

showing zoom area (b) BPDN (zoom) (c) BPDQ10 (zoom).

Third, a more realistic coding/decoding scenario should set α theoretically in function of the bit budget

(rate) available to quantize the measurements, of the sensing matrix and of some a priori on the signal

energy. This should be linked also to the way our approach can integrate the saturation of the quantized

measurements [16]. Finally, we would like to extend our approach to non-uniform scalar quantization

of random measurements, generalizing the quantization consistency and the optimization fidelity term to

this more general setting.
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APPENDIX A

PROOF OF PROPOSITION 1

Before proving Proposition 1, let us recall some facts of measure concentrations [49], [50].

In particular, we are going to use the concentration property of any Lipschitz function over Rm, i.e., F

such that ‖F‖Lip , supu,v ∈Rm, u 6=v
|F (u)−F (v)|
‖u−v‖2 <∞. If ‖F‖Lip 6 1, F is said 1-Lipschitz.

Lemma 5 (Ledoux, Talagrand [49] (Eq. 1.6)). If F is Lipschitz with λ = ‖F‖Lip, then, for the random
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vector ξ ∈ Rm with ξi ∼iid N (0, 1),

Pξ
[
|F (ξ)− µF | > r

]
6 2e−

1

2
r2λ−2

, for r > 0,

with µF = EF (ξ) =
∫
Rm F (x) γm(x) dmx and γm(x) = (2π)−m/2 e−‖x‖

2
2/2.

A useful tool that we will use is the concept of a net. An ε-net (ε > 0) of A ⊂ RK is a subset S of

A such that for every t ∈ A, one can find s ∈ S with ‖t− s‖2 6 ε. In certain cases, the size of a ε-net

can be bounded.

Lemma 6 ([50]). There exists a ε-net S of the unit sphere of RK of size |S| 6 (1 + 2
ε )
K .

We will use also this fundamental result.

Lemma 7 ([50]). Let S be a ε-net of the unit sphere in RK . Then, if for some vectors v1, · · · , vK in the

Banach space B normed by ‖·‖B , we have 1− ε 6
∥∥∑K

i=1 sivi
∥∥
B
6 1 + ε for all s = (s1, · · · , sK) ∈

S ⊂ RK , then

(1− β) ‖t‖2 6
∥∥ K∑
i=1

tivi
∥∥
B

6 (1 + β) ‖t‖2,

for all t ∈ RK , with β = 2ε
1−ε .

In our case, the Banach space B is `mp = (Rm, ‖·‖p) for 1 6 p 6 ∞, i.e Rm equipped with the norm

‖u‖pp =
∑

i |ui|p. With all these concepts, we can now demonstrate the main proposition.

Proof of Proposition 1: Let p > 1. We must prove that for a SGR matrix Φ ∈ Rm×N , i.e., with

Φij ∼iid N (0, 1), with the right number of measurements m, there exist a radius 0 < δ < 1 and a

constant µp,2 > 0 such that

µp,2
√

1− δ ‖x‖2 6 ‖Φx‖p 6 µp,2
√

1 + δ ‖x‖2, (17)

for all x ∈ RN with ‖x‖0 6 K.

We begin with a unit sphere ST = {u ∈ RN : suppu = T, ‖u‖2 = 1} for a fixed support T ⊂

{1, · · · , N} of size |T | = K. Let ST be an ε-net of ST . We consider the SGR random process that

generates Φ and, by an abuse of notation, we identify it for a while with Φ itself. In other words,

we define the random matrix Φ = (Φ1, · · · ,ΦN ) ∈ Rm×N where, for all 1 6 i 6 N , Φj ∈ Rm

is a random vector of probability density function (or pdf ) γm(u) = Πm
i=1γ(ui) for u ∈ Rm and
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γ(ui) = 1√
2π
e−u

2
i/2 (the standard Gaussian pdf). Therefore, Φ is related to the pdf γΦ(φ) = ΠN

j=1γ
m(φj),

φ = (φ1, · · · , φN ) ∈ Rm×N .

Since the Frobenius norm ‖φ‖F = (
∑

jk |φjk|2)1/2 of φ and the pdf γΦ(φ) ∝ e−‖φ‖
2
F/2 are invariant

under a global rotation in RN of all the rows of φ, it is easy to show that for unit vector s ∈ RN ,

PΦ

[
|F (Φs)− µF | > r

]
= PΦ

[
|F (Φ1)− µF | > r

]
6 2e−

1

2
r2λ−2

, using Lemma 5 on the SGR vector Φ1.

The above holds for a single s. To obtain a result valid for all s ∈ ST we may use the union bound.

As |ST | 6 (1 + 2/ε)K by Lemma 6, setting r = εµF for ε > 0, we obtain

PΦ

[
|µ−1

F F (Φs)− 1| > ε
]

6 2 eK log(1+2ε−1)− 1

2
ε2µ2

Fλ
−2

,

for all s ∈ ST .

Taking now F (·) = ‖·‖p for 1 6 p 6∞, we have µF = µp,2 = E‖ξ‖p for a SGR vector ξ ∈ Rm. The

Lipschitz value is λ = λp = 1 for p > 2, and λ = λp = m
2−p

2p for 1 6 p 6 2. Consequently,

(1− ε) 6 ‖ 1
µp,2

Φs‖p 6 (1 + ε), (18)

for all s ∈ ST , with a probability higher than 1− 2 exp(K log(1 + 2ε−1)− 1
2ε

2µ2
p,2λ

−2
p ).

We apply Lemma 7 by noting that, as s has support of size K, (18) may be written as

1− ε 6 ‖
K∑
i=1

sivi‖p 6 1 + ε

where vi ∈ Rm are the columns of 1
µp,2

Φ corresponding to the support of s (we abuse notation to let

si range only over the support of s). Then according to Lemma 7 we have, with the same probability

bound and for (
√

2− 1)δ = 2ε
1−ε ,

√
1− δ ‖x‖2 6 (1− (

√
2− 1)δ) ‖x‖2 6 ‖Φx‖p

6 (1 + (
√

2− 1)δ) ‖x‖2 6
√

1 + δ ‖x‖2, (19)

for all x ∈ RN with suppx = T .

The result can be made independent of the choice of T ⊂ {1, · · · , N} by considering that there are(
N
K

)
6 (eN/K)K such possible supports. Therefore, applying again an union bound, (19) holds for all

K-sparse x in RN with a probability higher than 1− 2 e−
1

2
ε2µ2

p,2λ
−2
p +K log[eN

K
(1+2ε−1)].

Let us bound this probability first for 1 6 p < ∞. For m > β−1 2p+1 and β−1 = p − 1, Lemma 1

(page 9) tells us that µp,2 > p−1
p νpm

1

p with νp =
√

2π−
1

2p Γ(p+1
2 )

1

p . A probability of success 1−η with

22



η < 1 is then guaranteed if we select, for 1 6 p < 2,

m > 2
ε2ν2

p
( p
p−1)2

(
K log[eNK (1 + 2ε−1)] + log 2

η

)
,

since λp = m
2−p

2p , and for 2 6 p <∞,

m
2

p > 2
ε2ν2

p
( p
p−1)2

(
K log[eNK (1 + 2ε−1)] + log 2

η

)
, (20)

since λp = 1.

From now, A > cB or A 6 cB means that there exists a constant c > 0 such that these inequalities

hold. According to the lower bound found in Section V, νp > c
√
p+ 1 implying that ν−2

p 6 c. Since

(p/(p− 1))2 6 4 for any p > 2 and ε−1 6
√

2+1√
2−1

δ−1 6 6 δ−1, we find the new sufficient conditions,

m > c δ−2( p
p−1)2

(
K log[eNK (1 + 12δ−1)] + log 2

η

)
,

for 1 6 p < 2, and

m2/p > c δ−2
(
K log[eNK (1 + 12δ−1)] + log 2

η

)
,

for 2 6 p <∞.

Second, in the specific case where p = ∞, since there exists a ρ > 0 such that µ∞,2 > ρ−1
√

logm,

with λ∞ = 1, logm > c δ−2
(
K log[eNK (1 + 12δ−1)] + log 2

η

)
.

Let us make some remarks about the results and the requirements of the last proposition. Notice first

that for p = 2, we find the classical result proved in [23]. Second, as for the comparison between the

common RIP2,2 proof [23] and the tight bound found in [24], the requirements on the measurements

above are possibly pessimistic, i.e., the exponent 2/p occurring in (20) is perhaps too small. Proposition

1 has however the merit to prove that random Gaussian matrices satisfy the RIPp,2 in a certain range of

dimensionality.

APPENDIX B

LINK BETWEEN δ AND m FOR SGR RIPp,2 MATRICES

For 2 6 p < ∞, Proposition 1 shows that, if δ2 > cm−2/p
(
K log[eNK (1 + 12δ−1)] + log 2

η

)
for

a certain constant c > 0, a SGR matrix Φ ∈ Rm×N is RIPp,2 of order K and radius 0 < δ < 1

with a probability higher than 1 − η. Let us assume that δ > dm−1/p for some d > 0. We have,

log δ−1 < 1
p logm− log d, and therefore, the same event occurs with the same probability bound when

δ2 > cm−2/p
(
K log[13eNK ] + K

p logm −K log d + log 2
η

)
. For high m and for fixed K,N and η, this

provides δ = O(m−1/p
√

logm), which meets the previous assumption.
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APPENDIX C

Proof of Lemma 1: The result for p = ∞ is due to [49] (see Eq (3.14)). Let ξ ∈ Rm be a SGR

vector, i.e., ξi ∼iid N (0, 1) for 1 6 i 6 m, and 1 6 p < ∞. First, the inequality E‖ξ‖p 6 (E‖ξ‖pp)1/p

follows from the application of the Jensen inequality ϕ(E‖ξ‖p) 6 Eϕ(‖ξ‖p) with the convex function

ϕ(·) = (·)p. Second, the lower bound on E‖ξ‖p arises from the observation that for f : R+ → R+ with

f(t) = t
1

p , and for a given t0 > 0,

f(t) > f(t0) + f ′(t0)(t− t0) + pf ′′(t0)(t− t0)2, (21)

for all t > 0.

Indeed, observe first that since f (n)(αt′) = α
1

p
−nf (n)(t′) for α > 0 and n ∈ N, it is sufficient to prove

the result for t0 = 1. Proving (21) amounts then to prove f(t) = t
1

p > 2p−1
p t − p−1

p t2, or equivalently,

t
1

p
−1 + p−1

p t > 2p−1
p . The LHS of this last inequality takes its minimum in t = 1 with value 2p−1

p , which

provides the result.

Since µp,2 = E‖ξ‖p = Ef(‖ξ‖pp) and E(‖ξ‖pp − µ̄p,2) = 0, using (21) we find

µp,2 > (t0)
1

p
−2((2− 1

p)µ̄p,2t0 + (1
p − 1)(µ̄2

p,2 + σ̄2
p)
)

writing µ̄p,2 = E‖ξ‖pp and σ̄2
p = E(‖ξ‖pp− µ̄p,2)2 = Var‖ξ‖pp. The RHS of the last inequality is maximum

for t0 = µ̄p,2 (1 + µ̄−2
p,2 σ̄

2
p). For that value, we get finally

µp,2 > (E‖ξ‖pp)
1

p

(
1 + (E‖ξ‖pp)−2 Var‖ξ‖pp

) 1

p
−1
.

Because of the decorrelation of the components of ξ, the last inequality simplifies into

µp,2 > m
1

p (E|g|p)
1

p

(
1 + m−1(E|g|p)−2 Var|g|p

) 1

p
−1
,

with g ∼ N (0, 1).

Moreover, since E|g|p = 2
p

2 π−
1

2 Γ(p+1
2 ) and using the following approximation of the Gamma function

[37] |Γ(x)− (2π
x )

1

2 (xe )x| 6 1
9x (2π

x )
1

2 (xe )x, valid for x > 1, we observe that

0.9 (2π
x )

1

2 (xe )x 6 Γ(x) 6 1.1 (2π
x )

1

2 (xe )x,

that holds also if x = p+1
2 with p > 1. Therefore, (E|g|p)−2 Var|g|p 6

(
1.1
0.92 ( e2)

1

p (2p+1
p+1 )p − 1

)
6

1.1
0.92 ( e2)

1

2 2p and finally

µp,2 > m
1

p (E|g|p)
1

p

(
1 + c 2p

m

) 1

p
−1

for a constant c = 1.1
0.92 ( e2)

1

2 < 1.584 < 2 independent of p and m.
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APPENDIX D

Proof of Lemma 2: Notice first that since J(λw) = λJ(w) for any w ∈ Rm and λ ∈ R, it is

sufficient to prove the result for ‖u‖2 = ‖v‖2 = 1.

The Lemma relies mainly on the geometrical properties of the Banach space `mp = (Rm, ‖·‖p) for

p > 2. In [35], [36], it is explained that this space is p-convex and 2-smooth. The smoothness involves

in particular

‖x+ y‖2p 6 ‖x‖2p + 2〈J(x), y〉+ (p− 1)‖y‖2p, (22)

where J = J2 and Jr is the duality mapping of gauge function t→ tr−1 for r > 1. For the Hilbert space

`2, the relation (22) reduces of course to the polarization identity. For `p, Jr is the differential of 1
r‖·‖

r
p,

i.e., (Jr(u))i = ‖u‖r−p |ui|p−1 signui.

The smoothness inequality (22) involves

2 〈J(x), y〉 6 ‖x‖2p + (p− 1) ‖y‖2p − ‖x− y‖2p, (23)

where we used the change of variable y → −y.

Let us take x = Φu and y = tΦv with ‖u‖0 = s, ‖v‖0 = s′, ‖u‖2 = ‖v‖2 = 1, suppu ∩ supp v = ∅

and for a certain t > 0 that we will set later. Because Φ is assumed RIPp,2 for s, s′ and s + s′ sparse

signals, we deduce

2µ−2
p,2 t |〈J(Φu),Φv〉| 6 (1 + δs) +

(p− 1)(1 + δs′)t
2 − (1− δs+s′)(1 + t2),

where the absolute value on the inner product arises from the invariance of the RIP bound on (23) under

the change y → −y. The value µ−2
p,2|〈J(Φu),Φv〉| is thus bounded by an expression of type f(t) = α+βt2

t

with α, β > 0 for p > 2 given by α = δs+δs+s′ and β = (p−2)+(p−1)δs′+δs+s′ . Since the minimum

of f is 2
√
αβ, we get

µ−2
p,2 |〈J(Φu),Φv〉| 6 [

(δs + δs+s′)
(
p̄+ p̄ δs′ + δs′ + δs+s′

)] 1

2 , (24)

with p̄ = p− 2 > 0.

In parallel, a change y → x+ y in (23) provides

2 〈J(x), y〉 6 −‖x‖2p + (p− 1) ‖x+ y‖2p − ‖y‖2p,

25



where we used the fact that 〈J(x), x〉 = ‖x‖2p. By summing this inequality with (23), we have

4 〈J(x), y〉 6 (p− 2)‖y‖2p + (p− 1) ‖x+ y‖2p − ‖x− y‖2p.

Using the RIPp,2 on x = Φu and y = tΦv as above leads to

4µ−2
p,2t |〈J(Φu),Φv〉| 6 (1 + δs′)p̄ t

2

+ (p− 1)(1 + δs+s′)(1 + t2)− (1− δs+s′)(1 + t2)

= p̄+ pδs+s′ +
(
2p̄+ p̄δs′ + pδs+s′

)
t2,

with the same argument as before to explain the absolute value. Minimizing over t as above gives

2µ−2
p,2 |〈J(Φu),Φv〉| 6 [

(p̄+ p δs+s′)
(

2p̄+ p̄δs′ + p δs+s′
)] 1

2 . (25)

Together, (24) and (25) imply

Cp = min
{[

(δs + δs+s′)
(
δs′ + δs+s′ + p̄ (1 + δs′)

)] 1

2 ,[(
δs+s′ + p̄

1+δs+s′

2

)(
δs+s′ + p̄

2+δs′+δs+s′

2

)] 1

2
}
.

It is easy to check that Cp = Cp(Φ, s, s
′) behaves as

√
(δs + δs+s′) (1 + δs′) p̄ for p̄� δs′+δs+s′

(1+δs′ )
, and as

δs+s′ + 3
4(1 + δs+s′)p̄+O(p̄2) for p ' 2.

APPENDIX E

Proof of Theorem 2: Let us write x∗p = x + h. We have to characterize the behavior of ‖h‖2. In

the following, for any vector u ∈ Rd with d ∈ {m,N}, we define uA as the vector in Rd equal to u on

the index set A ⊂ {1, · · · , d} and 0 elsewhere.

We define T0 = suppxK and a partition {Tk : 1 6 k 6 d(N −K)/K e} of the support of hT c
0
. This

partition is determined by ordering elements of h off of the support of xK in decreasing absolute value.

We have |Tk| = K for all k > 1, Tk ∩ Tk′ = ∅ for k 6= k′, and crucially that |hj | 6 |hi| for all j ∈ Tk+1

and i ∈ Tk.

We start from

‖h‖2 6 ‖hT01
‖2 + ‖hT c

01
‖2, (26)
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with T01 = T0∪T1, and we are going to bound separately the two terms of the RHS. In [22], it is proved

that

‖hT c
01
‖2 6

∑
k>2

‖hTk
‖2 6 ‖hT01

‖2 + 2e0(K), (27)

with eo(K) = 1√
K
‖xT c

0
‖1. Therefore,

‖h‖2 6 2‖hT01
‖2 + 2e0(K).

Let us bound now ‖hT01
‖2 by using the RIPp,2. From the definition of the mapping J , we have

‖ΦhT01
‖2p = 〈J(ΦhT01

),ΦhT01
〉

= 〈J(ΦhT01
),Φh〉 −

∑
k>2

〈J(ΦhT01
),ΦhTk

〉.

By the Hölder inequality with r = p
p−1 and s = p,

〈J(ΦhT01
),Φh〉 6 ‖J(ΦhT01

)‖r‖Φh‖s

= ‖ΦhT01
‖p‖Φh‖p 6 2 ε ‖ΦhT01

‖p

6 2 ε µp,2 (1 + δ2K)
1

2 ‖hT01
‖2,

since ‖Φh‖p 6 ‖Φx − y‖p + ‖Φx∗p − y‖p 6 2ε. Using Lemma 2, as hT01
is 2K sparse and hTk

is K

sparse, we know that, for k > 2,

|〈J(ΦhT01
),ΦhTk

〉| 6 µ2
p,2Cp ‖hT01

‖2 ‖hTk
‖2,

with Cp = Cp(Φ, 2K,K), so that, using again the RIPp,2 of Φ and (27),

(1− δ2K)µ2
p,2‖hT01

‖22 6 ‖ΦhT01
‖2p

6 2εµp,2(1 + δ2K)
1

2 ‖hT01
‖2 + µ2

p,2Cp‖hT01
‖2
∑
k>2

‖hTk
‖2

6 2εµp,2(1 + δ2K)
1

2 ‖hT01
‖2

+ µ2
p,2Cp‖hT01

‖2
(
‖hT01

‖2 + 2e0(K)
)
.

After some simplifications, we get finally

‖h‖2 6 2(Cp+1−δ2K)
1−δ2K− Cp

e0(K) + 4
√

1+δ2K
1−δ2K− Cp

ε
µp,2

.
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APPENDIX F

Proof of Lemma 3: For a random variable u ∼ U([−α
2 ,

α
2 ]), we compute easily that E|u|p = αp

2p(p+1)

and Var|u|p = α2pp2

22p(p+1)2(2p+1) . Therefore, for a random vector ξ ∈ Rm with components ξi independent

and identically distributed as u, E‖ξ‖pp = αp

2p(p+1)m and Var‖ξ‖pp = α2pp2

22p(p+1)2(2p+1) m.

To prove the probabilistic inequality below (6), we define, for 1 6 i 6 m, the positive random

variables Zi = 2p

αp |ξi|p bounded on the interval [0, 1] with EZi = (p+ 1)−1. Denoting S = 1
m

∑
i Zi, the

Chernoff-Hoeffding bound [21] tells us that, for t > 0, P
[
S > (p+ 1)−1 + t

]
6 e−2t2m. Therefore,

P
[
‖ξ‖pp > αp

2p(p+1) m+ αp

2p tm
]

6 e−2t2m,

which gives, for t = κm−
1

2 ,

P
[
‖ξ‖pp > ζp + αp

2p κm
1

2

]
6 e−2κ2

.

The limit value of (ζp + αp

2p κm
1

2 )1/p when p→∞ is left to the reader.
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