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Uncertainty principles and vector
quantization

Yurii Lyubarskii and Roman Vershynin

Abstract— Given a frame in C
n which sat-

isfies a form of the uncertainty principle (as
introduced by Candes and Tao), it is shown
how to quickly convert the frame representation
of every vector into a more robust Kashin’s
representation whose coefficients all have the
smallest possible dynamic range O(1/

√

n). The
information tends to spread evenly among these
coefficients. As a consequence, Kashin’s repre-
sentations have a great power for reduction of
errors in their coefficients, including coefficient
losses and distortions.

Index Terms— Frame representations,
Kashin’s representations, restricted isometries,
uncertainty principles

I. I NTRODUCTION

Quantization is a representation of continu-
ous structures with discrete structures. Digital
signal processing, which has revolutionized
the modern treatment of still images, video
and audio, employs quantization as a conver-
sion step from the analog to digital world. A
survey of the state-of-the-art of quantization
prior to 1998 as well as outline of its nu-
merous applications can be found the paper
[22] by Gray and Neuhoff. For more recent
developments, we refer the reader to [15] and
references therein.

In this paper, we are interested in robust
vector encoding and vector quantization. Or-
thogonal expansions gives a classical way
to encode vectors in finite dimensions. One
first chooses a convenient orthonormal basis
(ui)

n
i=1 of Cn. Then one encodes a vector

x ∈ Cn by the coefficients(ai)ni=1 of its
orthogonal expansion

x =

n
∑

i=1

aiui, whereai = 〈x, ui〉.

An example of this situation is the discrete
Fourier transform. At the next step, one quan-
tizes the coefficientsai using a convenient
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scalar quantizer (for example, a uniform quan-
tizer with fixed number of levels).

A drawback of orthogonal expansions is
that the information contained in the vector
x may get distributed unevenly among the
coefficientsai, which makes this encoding
vulnerable to distortions and losses of the
coefficients. For example, ifx is collinear with
the first basis vectoru1 then all the coeffi-
cients excepta1 are zero. If the first coefficient
a1 is lost (for example due to transmission
failure) then we can not reconstruct the vector
x even approximately.

A popular way to improve the stability
of vector encoding is to use redundant sys-
tems of vectors(ui)

N
i=1 in Cn called tight

frames. These are generalizations of orthonor-
mal bases in the sense that every vectorx ∈
Cn can still be represented as

x =

N
∑

i=1

aiui, whereai = 〈x, ui〉, (I.1)

but for N > n frames are clearly linearly
dependent systems of vectors. These depen-
dencies cause the information contained inx
to spread among several frame coefficientsai,
which improves the stability of such repre-
sentations with respect to errors (for example
losses and quantization errors), see e.g. [11],
[21], [10] and references therein.

The idea of spreading the information
evenly among the coefficients is developed in
the present paper, and in a sense it is pushed
to its limit. As in the previous approaches, we
shall start with a frame(ui)

N
i=1. But instead

of the standard frame expansions (I.1) we will
be looking at expansionsx =

∑N
i=1 aiui

with coefficients having the smallest possi-
ble dynamic range|ai| = O(1/

√
N). This

ensures that the information contained inx
is spread among the coefficientsai nearly
uniformly. We call such representations of
vectorx Kashin representations. In this paper
we demonstrate the following:

(a) there exist frames(ui)
N
i=1 in Cn with

redundancy factorN/n as close as one likes
to 1, and such that every vectorx ∈ C

n has
a Kashin representation;

http://arxiv.org/abs/math/0611343v2
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(b) such frames are those that satisfy a
form of the uncertainty principle. More pre-
cisely, their matrices satisfy a weak version
of the restricted isometry property introduced
by Candes and Tao [8]. In particular, many
natural random frames have this property;

(c) there is a fast algorithm which converts
frame representation (I.1) into a Kashin rep-
resentation ofx.

Kashin’s representations withstand errors
in their coefficients in a very strong way –
the representation error gets bounded by the
average, rather than the sum, of the errors
in the coefficients. These errors may be of
arbitrary nature, including distortion (e.g. due
to scalar quantization) and losses (e.g. due to
transmission failures).

The article is organized as follows. Sec-
tion II introduces Kashin’s representations,
discusses their relation to convex geometry
(Euclidean projections of the cube) and ex-
plains how one can use Kashin’s representa-
tions for vector quantization. In Section III,
we discuss the uncertainty principle for ma-
trices and frames. Theorems 3.5 and 3.9 state
that for frames that satisfy the uncertainty
principle, every frame representation can be
replaced by Kashin’s representation. A robust
algorithm is given to quickly convert frame
into Kashin’s representations. In Section IV,
we discuss families of matrices and frames
that satisfy the uncertainty principle. These
include: random orthogonal matrices, random
partial Fourier matrices, and a large family of
matrices with independent entries (subgaus-
sian matrices), in particular random Gaussian
and Bernoulli matrices.

II. K ASHIN’ S REPRESENTATIONS

A. Frame representations.

A sequence(ui)
N
i=1 ⊂ Cn is called a tight

frame if it satisfies Parseval’s identity

‖x‖22 =

N
∑

i=1

|〈x, ui〉|2 for all x ∈ C
n. (II.1)

This definition differs by a constant normal-
ization factor from one which is often used in
the literature, but (II.1) will be more conve-
nient for us to work with.

A frame (ui)
N
i=1 ⊂ Cn can be identified

with then×N frame matrix U whose columns
are ui. The following properties are easily
seen to be equivalent:

1) (ui)
N
i=1 is a tight frame forCn;

2) every vectorx ∈ C
n admits frame

representation (I.1);

3) the rows of the frame matrixU are
orthonormal;

4) ui = Phi for some orthonormal basis
(hi)

N
i=1 of CN , whereP is the orthog-

onal projection inCN ontoCn.

WhenN > n, the tight frames are linearly
dependent systems, so various coefficientsai
of the frame representation may carry com-
mon information about vectorx ∈ Cn This
makes frames withstand noise in coefficients
better than orthonormal bases, see [11], [21],
[10]. However, using frame representation
(I.1) may not always be the best way to use the
frame redundancy. Some coefficientsai may
be much bigger than others, and thus carry
more information aboutx. In order to help
information spread in the most uniform way,
one should try to make all coefficients of the
same magnitude. Such representations will be
called Kashin’s representations.

B. Kashin’s representations

Consider a sequence(ui)
N
i=1 ⊂ Cn. We say

that the expansion

x =

N
∑

i=1

aiui, max
i
|ai| ≤

K√
N
‖x‖2 (II.2)

is a Kashin’s representation with level K of
vectorx ∈ Cn.

Kashin’s representation produce the small-
est possible dynamic range of the coefficients,
which is

√
n smaller than the dynamic range

of the frame representations. This is the con-
tent of the following simple observation:

Observation 2.1 (Optimality): Let (ui)
N
i=1

be a tight frame inCn. Then:
(a) There exists a vectorx ∈ Cn for which

the coefficientsai = 〈x, ui〉 of the frame
representation (I.1) satisfy

max
i
|ai| ≥

√

n

N
‖x‖2.

(b) For every vectorx ∈ Cn, every repre-
sentation of the formx =

∑N
i=1 aiui satisfies

max
i
|ai| ≥

1√
N
‖x‖2.

Proof. (a) Since the tight frame satisfies
∑N

i=1 ‖ui‖22 = n, one hasmaxi ‖ui‖2 ≥
√

n/N . From this part (a) follows.
(b) The correspondence between tight

frames and orthonormal bases (property 4)
above) yields Bessel’s inequality‖x‖2 ≤
(
∑N

i=1 |ai|2)1/2, from which part (b) follows.
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Not every tight frame admits Kashin’s rep-
resentations with constant levelK; this is
clear if one considers an orthonormal basis in
Cn repeated∼ N/n times and properly nor-
malized. Nevertheless, some natural classes of
frames do have this property.

We start with the following existence result.
Theorem 2.2 (Existence): There exist tight

frames in Cn with arbitrarily small redun-
dancy λ = N/n > 1, and such that every
vector x ∈ Cn has Kashin’s representation
with level K that depends onλ only (not on
n or N ).
Proof. This statement is in essence a re-
formulation of the classical result from ge-
ometric functional analysis due to Kashin
[28] (with an optimal dependenceK =

O
(

√

1
λ−1 log

1
λ−1

)

given later by Garnaev
and Gluskin [17]). To see this, we shall look
at Kashin’s representations from the geometric
viewpoint. LetQN = {x : ‖x‖∞ ≤ 1} and
Bn = {x : ‖x‖2 ≤ 1} stand for the unit
cube and unit Euclidean ball inCN andCn

respectively. The observation below follows
directly from the definition of Kashin’s rep-
resentations.

Observation 2.3: (Kashin’s representations

and projections of the cube): Consider a tight
frame (ui)

N
i=1 in C

n and a numberK > 0.
The following are equivalent:

(i) Every vectorx ∈ Cn has a Kashin’s
representation of levelK with respect to the
system(ui)

N
i=1;

(ii) The n × N matrix U whose columns
areui satisfies

Bn ⊆ K√
N

U(QN ). (II.3)

Inclusion (II.3) yields an equivalence

Bn ⊆ K√
N

U(QN ) ⊆ KBn, (II.4)

the second inclusion holds trivially. Since the
rows of the frame matrixU are orthonormal,
the operatorU : CN → Cn is unitarily
equivalent to an orthogonal projection. We
thus may say thatU realizes Euclidean pro-

jection of the cube. We refer the reader to [34]
Section 6 for more thorough discussion of this
topic.

Kashin’s theorem [28] states that there ex-
ists an orthogonal projection of the unit cube
in CN onto a subspace of dimensionn, which
is equivalent to a Euclidean ball and the coeffi-
cientK depends on the redundancyλ = N/n
only. In other words, there exists ann × N
matrix U whose rows are orthonormal and
which satisfies (II.4).

The first inclusion in (II.4) means that the
columnsui of the matrixU form a system for
which every vector has a Kashin’s represen-
tation. Since the rows ofU are orthonormal,
(ui) is a tight frame. This proves Theorem 2.2.

In geometric functional analysis, many
classes of matricesU are known to realize Eu-
clidean projections of the cube as in (II.4). We
discuss them in more details in Section IV-A.
In fact we will see that random matrixU
with orthonormal rows picked with respect
to a rotationally invariant distribution satisfies
(II.4) with high probability.

Remark Since the levelK of Kashin’s rep-
resentation depends on redundancy only, this
representation become especially efficient in
high dimensions when when the factor

√
n in

the expression for the dynamic range of the
frame expansion overpowers the value ofK

(which ideally isO
(√

1
λ−1 log

1
λ−1

)

). There-
fore we are interested mainly in low redundant
frames just in order to avoid getting too large
volumes of information to be transmitted.

C. Stability, vector quantization

Kashin’s representations have maximal
power to reduce errors in the coefficients.
Indeed, consider a tight frame(ui)

N
i=1 in Cn,

but instead of using frame representations
we shall use Kashin’s representations with
some constant levelK = O(1). So we rep-
resent a vectorx ∈ Cn, ‖x‖2 ≤ 1, with
its Kashin’s coefficients(a1, . . . , aN) ∈ CN ,
|ai| ≤ K/

√
N . Assume these coefficients are

damaged (due to quantization, losses, flips of
bits, etc.) and we only know noisy coeffi-
cients (â1, . . . , âN ) ∈ CN . When we try to
reconstructx from these coefficients aŝx =
∑N

i=1 âiui, the accuracy of this reconstruction
is

‖x− x̂‖2 =
∥

∥

∥

N
∑

i=1

(ai − âi)ui

∥

∥

∥

2

≤
(

N
∑

i=1

|ai − âi|2
)1/2

. (II.5)

Combined with the fact that the coefficients
ai have the dynamic rangeO(1/

√
N), this

yields greater robustness of Kashin’s represen-
tations with respect to noise, and in particular
to quantization errors. Suppose we need to
quantize a vectorx ∈ Cn. We may do this by
quantizing each coefficientai separately by
performing a uniform scalar quantization of
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the dynamic range[−K/
√
N,K/

√
N ] with,

say,L levels. The quantization error for each
coefficient is thus|ai − âi| ≤ K/L

√
N . By

(II.5), this produces the overall quantization
error

‖x− x̂‖2 ≤ K/L = O(1/L).

Similar quantization of frame representations
(I.1) would only give the bound

‖x− x̂‖2 ≤
√
n/L

because its dynamic range is
√
n larger than

that of Kashin’s representations (by Observa-
tion 2.1).

Kashin’s decompositions also withstandar-

bitrary errors made to a small fraction of the
coefficientsai. These may include losses of
coefficients and arbitrary flips of bits. Sup-
pose at mostδN coefficients(a1, . . . , aN) are
damaged in an arbitrary way, which results
in coefficients(â1, . . . , âN ). Since all|ai| ≤
K/
√
N , we can assume (by truncation) that

all |âi| ≤ K/
√
N . When we reconstructx

from these damaged coefficients (as before),
the accuracy of this reconstruction can be
estimated using (II.5) as

‖x− x̂‖2 ≤ 2K
√
δ = O(

√
δ).

Thus the reconstruction error is small when-
ever the (related) number of damaged coeffi-
cientsδ is small.

By Theorem 2.2, the maximal error reduc-
tion effect is achieved using frames with only
a constant redundancy, in fact any redundancy
factor λ = N/n > 1 has the error reduction
power of maximal possible order. This is in
contrast with traditional methods, in which
increasing redundancy of the frame gradually
reduces the representation error.

III. C OMPUTING KASHIN’ S

REPRESENTATIONS

Computing the coefficientsai of Kashin’s
representation (II.2) of a given vectorx can
be described as a linear feasibility problem,
which can be solved in (weakly) polynomial
time using linear programming methods.

In this paper, we take a different approach
to computing Kashin’s representations, by es-
tablishing their connection with the uncer-
tainty principle. This will have several advan-
tages over the linear programming approach:

1) Whenever a frame(ui) satisfies the un-
certainty principle, one can effectively
transform every frame representations
into Kashin’s representation. This will

take O(logN) multiplications of the
matrix U by a vector.

2) The uncertainty principle will thus be a
guarantee that a given frame(ui) yields
Kashin’s representation for every vector.
This can help to identify frames that
yield Kashin’s representations.

3) The algorithm to transform frame repre-
sentations into Kashin’s representations
is simple, natural, and robust. It has
a potential to be implemented on ana-
log devices. Followed by some robust
scalar quantization of coefficients (such
as one-bitβ-quantization [13], [14]),
this algorithm may be used for robust
one-bit vector quantization schemes for
analog-to-digital conversion.

A. The uncertainty principle

The classical uncertainty principle says that
a function and its Fourier transform cannot
be simultaneously well-localized. We refer the
reader to fundamental monograph [25] for his-
tory survey and also for numerous realization
of this heuristic rule. In particular a variant
of the uncertainty principle due to Donoho
and Stark [16] states that iff ∈ L2(R) is
”almost concentrated” on a measurable set
T while its Fourier transformf̂ is ”almost
concentrated” on a measurable setΩ, then
then the product of measures|T ||Ω| admits
a natural low bound. Donoho and Stark pro-
posed applications of this principle for signal
recovery [16].

For signals on discrete domains no satisfac-
tory version of the uncertainty principle was
known until recently. For the discrete Fourier
transform in C

N the uncertainty principle
states that|supp(x)||supp(x̂)| ≥ N for all
x ∈ CN (see [16]). This inequality is sharp
– both terms in this product can be of order√
N .
In papers by Candes, Romberg and Tao [4],

[7], [3] and by Rudelson and Vershynin [35],
[36], a much stronger discrete uncertainty
principle was established forrandom sets of
size proportional toN . Moreover, one of these
sets (say support of the signal in frequency
domain) can be arbitrary (non-random), and
the other (random support in time domain) can
be almost the whole domain. The following
result is a consequence of [35], [36]:

Theorem 3.1 (uncertainty principle): Let
N = (1 + µ)n for some integern and
µ ∈ (0, 1). Consider a random subsetΩ of
{0, . . . , N − 1} of average cardinalityn,
which is obtained from independent random
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{0, 1}-valued variables δ0, . . . δN−1 with
Eδi = n/N asΩ := {i : δi = 1}. ThenΩ
satisfies the following with high probability.
For everyz ∈ CN ,

supp(z) ⊆ Ω implies |supp(ẑ)| > δN,

where δ = cµ2/ log2 N and c > 0 is an
absolute constant.

Moreover, for everyx ∈ CN , |supp(x)| ≤
δN , one has

‖x̂ · 1Ω‖2 ≤ (1− cµ)‖x‖2, (III.1)

where1Ω denotes the indicator function ofΩ.
The first, qualitative, part of the theorem

easily follows from the second, quantitative
part with z = x̂. If supp(x̂) ⊆ Ω and
|supp(x)| ≤ δN then, by the second part,
‖x̂‖2 = ‖x̂ · 1Ω‖2 < ‖x‖2, which would
contradict Parseval equality.

We can regard inequality (III.1) as a prop-
erty of the partial Fourier matrixU , which
consists of the rows of the DFT (discrete
Fourier transform) matrixΦ indexed by the
random setΩ. Then (III.1) says that‖Ux‖2 ≤
(1−cµ)‖x‖2 for all vectorsx ∈ CN such that
|supp(x)| ≤ δN .

Now we can abstract from the harmonic
analysis in question and introduce a general
uncertainty principle (UP) as a property of
matrices.

Definition 3.2 (UP for matrices): An n ×
N matrix U satisfies the uncertainty principle
with parametersη, δ ∈ (0, 1) if, for x ∈ CN ,

|supp(x)| ≤ δN implies ‖Ux‖2 ≤ η‖x‖2.
(III.2)

We will only use the uncertainty principle
for matricesU with orthonormal (or almost
orthonormal) rows, in which case it is always
a nontrivial property.

A related uniform uncertainty principle
(UUP) was introduced by Candes and Tao in
the context of the sparse recovery problems
[8]. The UUP with parametersε, δ ∈ (0, 1)
states that there existsλ > 0 such that, for
x ∈ CN , the condition |supp(x)| ≤ δN
implies

λ(1 − ε)‖x‖2 ≤ ‖Ux‖2 ≤ λ(1 + ε)‖x‖2.

See also [5], [6] for more refined versions.
Known also as the Restricted Isometry Condi-
tion, UUP was shown in [8] to be a guarantee
that one can efficiently solve underdetermined
systems of linear equationsUx = b under
the assumption that the solution is sparse,
|supp(x)| ≤ δN . This is a part of the fast
developing area of Compressed Sensing [9].

The uncertainty principle is a weaker as-
sumption (thus easier to verify) than the UUP:

Observation 3.3: For matrices with or-
thonormal rows, the UUP with parametersε, δ
implies the uncertainty principle with param-
etersη = 1+ε

1−ε

√

n
N , δ.

Proof. Since the columnsui of the matrixU
satisfy

∑N
i=1 ‖ui‖22 = n, there exists a column

with norm ‖ui‖2 ≤
√

n/N . This column is
a preimage of some1-sparse unit vectorei,
i.e. ui = Uei whereei = (0, . . . , 0, 1, . . . , 0)
with 1 on the i-th place. Using the UUP for
x = ei we obtain

λ(1 − ε) ≤ ‖ui‖2 ≤
√

n

N
.

Henceλ ≤ 1
1−ε

√

n
N . In view of this estimate,

the upper bound in the UUP reads as follows:
|supp(x)| ≤ δN implies

‖Ux‖2 ≤
1 + ε

1− ε

√

n

N
‖x‖2.

This is what we wanted to prove.

The uncertainty principle can be reformu-
lated as a property of systems of vectors
(ui)

N
i=1, which form the columns of the matrix

U . We will use it for tight (or almost tight)
frames, in which case it is a nontrivial prop-
erty:

Definition 3.4 (UP for frames): A system
of vectors(ui)

N
i=1 in Cn satisfies the uncer-

tainty principle with parametersη, δ ∈ (0, 1)
if

∥

∥

∥

∑

i∈Ω

aiui

∥

∥

∥

2
≤ η

(

∑

i∈Ω

|ai|2
)1/2

(III.3)

for every subsetΩ ⊂ {1, 2, . . . , N}, |Ω| ≤
δN .

B. Converting frame representations into

Kashin’s representations

For every tight frame that satisfies the
uncertainty principle, one can convert frame
representations into Kashin’s representations.

The conversion procedure is natural and
fast. We truncate the coefficients of the frame
representation (I.1) ofx at level M =
‖x‖2/

√
δN in hope to achieve a Kashin’s

representation with levelK = 1/
√
δ. How-

ever, the truncated representation may sum
up to a vectorx(1) different from x. So we
consider the residualx − x(1), compute its
frame representation and again truncate its
coefficients, now at a lower levelηM . We
continue this process of expansion, truncation
and reconstruction, each time reducing the
truncation level by the factor ofη.
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Using the uncertainty principle, we will be
able to show that the norm of the residual
reduces by the factor ofη at each iteration.
So we can compute Kashin’s representations
of level K = K(η, δ) with accuracyε in
O(log(1/ε)) iterations. Our analysis of this
algorithm will yield:

Theorem 3.5 (frame to Kashin conversion):

Let (ui)
N
i=1 be a tight frame inCn which

satisfies the Uncertainty Principle with
parametersη, δ. Then each vectorx ∈ Cn

admits a Kashin representation of level
K = (1− η)−1δ−1/2.

In order to prove this result, we introduce
and study the truncation operator for frame
representations. Given a numberM > 0,
the one-dimensional truncation at levelM is
defined forz ∈ C \ {0} as

tM (z) =
z

|z| min{|z|,M}, (III.4)

and tM (0) = 0.
Consider a frame(ui)

N
i=1 satisfying the as-

sumptions of the theorem. For everyx ∈ Cn,
we consider the frame representation

x =

N
∑

i=1

biui wherebi = 〈x, ui〉

and define the truncation operator onCn as

Tx =

N
∑

i=1

b̂iui whereb̂i = tM (bi)

andM = ‖x‖2/
√
δN. (III.5)

The uncertainty principle helps us to bound
the residual of the truncation:

Lemma 3.6 (Truncation): In the above no-
tations, for every vectorx ∈ Cn we have

‖x− Tx‖2 ≤ η‖x‖2. (III.6)
Proof. Let x ∈ Cn. Consider the subset
Ω ⊆ {1, . . . , N} defined as

Ω = {i : bi 6= b̂i} = {i : |bi| > M}.

By the definition of tight frame, we have

‖x‖22 =
N
∑

i=1

|bi|2 > |Ω|M2,

thus

|Ω| ≤ ‖x‖22/M2 = δN.

Using the uncertainty principle, we can esti-
mate the norm of the residual

x− TMx =
∑

i∈Ω

(bi − b̂i)ui

as

‖x− TMx‖2 ≤ η
(

∑

i∈Ω

|bi − b̂i|2
)1/2

≤

η
(

∑

i∈Ω

|bi|2
)1/2

≤ η
(

N
∑

i=1

|bi|2
)1/2

= η‖x‖2.

This completes the proof.

Proof of Theorem 3.5 Given x ∈ Cn, for
k = 1, 2, . . . we define the vectors

x(0) := x, x(k) := x(k−1) − Tx(k−1).

Then, for eachr = 0, 1, 2, . . . we have

x =

r
∑

k=0

Tx(k) + x(r+1).

It follows from Lemma 3.6 by induction that
‖x(k)‖2 ≤ ηk‖x‖2, thus

x =

∞
∑

k=0

Tx(k).

Furthermore, by the definition of the trun-
cation operatorT , each vectorTx(k) has
an expansion in the system(ui)

N
i=1 with

coefficients bounded by‖x(k)‖2/
√
δN ≤

ηk‖x‖2/
√
δN . Summing up these expansions

for k = 0, 1, 2, . . ., we obtain an expan-
sion of x with coefficients bounded by(1 −
η)−1‖x‖2/

√
δN . In other words,x admits

Kashin’s representation with levelK = (1 −
η)−1δ−1/2. This completes the proof.

The proof yields an algorithm to compute
Kashin’s representations:

ALGORITHM TO COMPUTE KASHIN’ S

REPRESENTATIONS

Input:

• A tight frame (ui)
N
i=1 in Cn which sat-

isfies the uncertainty principle with pa-
rametersη, δ ∈ (0, 1).

• A vector x ∈ C
n and a number of

iterationsr.
Output: Kashin’s decomposition ofx with
level K = (1− η)−1δ−1/2 and with accuracy
ηr‖x‖2. Namely, the algorithm finds coeffi-
cientsa1, . . . , aN such that

∥

∥

∥
x−

N
∑

i=1

aiui

∥

∥

∥

2
≤ ηr‖x‖2,

max
i
|ai| ≤

K√
N
‖x‖2. (III.7)

Initialize the coefficients and the truncation

level:

ai ← 0, i = 1, . . . , N ; M ← ‖x‖2√
δN

.



7

Repeat the followingr times:

• Compute the frame representation ofx
and truncate at levelM :

bi ← 〈x, ui〉, b̂i ← tM (bi), i = 1, . . . , N.

• Reconstruct and compute the error:

Tx←
N
∑

i=1

b̂iui; x← x− Tx.

• Update Kashin’s coefficients and the
truncation level:

ai ← ai +
√
N b̂i, i = 1, . . . , N ;

M ← ηM.

Remark. (Redistributing information). One
can view this algorithm as a method of redis-
tributing information among the coefficients.
At each iteration, it “shaves off” excessive
information from the few biggest coefficients
(using truncation) and redistributes this excess
more evenly. This process is continued until
all coefficients have a fair share of the infor-
mation.

Remark. (Computing exact Kashin’s repre-

sentations). With a minor modification, this
algorithm can compute anexact Kashin’s rep-
resentation afterr = O(logN) iterations. We
just do not need to truncate the coefficientsbi
during the last iteration.

Indeed, for suchr, the error factor satis-
fies ηr ≤ K√

N
. Thus, duringr-th iteration

the frame coefficientsbi are all bounded by
K√
N
‖x‖2, wherex is the initial input vector.

So bi are already sufficiently small, and we
will not apply the truncation at the last itera-
tion. This yields an exact Kashin’s represen-
tation of x with K ′ = 2K.

Remark. (Robustness). The algorithm above
is robust in the sense of [12].

Specifically, the truncation operation (III.4)
may be impossible to realize on a physical
signal exactly, because it is expensive to build
an analog scheme that has an exact phase
transition at the truncation level|z| = M .
A robust algorithm should not rely on any
assumptions on exact phase transitions of the
operations it uses. Scalar quantizers that are
robust in this sense were first constructed by
Daubechies and DeVore in [12] and further
developed in [24], [13], [14].

Our algorithm is also robust in the follow-
ing sense: the exact truncationtM can be
replaced by any approximate truncation. Such
an approximate truncation at level1 can be

any functiont(z) : C→ C which satisfies for
someν, τ ∈ (0, 1):

|z − t(z)| ≤
{

ν|z| if |z| ≤ τ,

|z| for all z,
(III.8)

and |t(z)| ≤ 1 for all z.

The approximate truncation at levelM is
defined astM (u) := M t( u

M ). An analysis
similar to that above yields:

Theorem 3.7: (Approximate truncation)

The above algorithm remains valid if one
replaces exact truncation by any approximate
one and also adjust the parameters: level
M should be replaced withM ′ = τ−1M ,
parameter η should be replaced with
η′ =

√

η2 + ν2, finally, level K is replaced
with K ′ = τ−1(1 − η′)−1δ−1/2, provided
that η′ < 1.

Moreover, the approximate truncation can
be different each time it is called by the
algorithm, provided that it satisfies (III.8).
This facilitates the algorithm implementation
on analog devices. In particular, one can use
this algorithm to build robust vector quantizers
for analog-to-digital conversion.

Remark. (Almost tight frames). Similar re-
sults also hold for frames that are almost, but
not exactly, tight. This is important for natural
classes of frames, such as random gaussian
and subgaussian frames (see Theorem 4.6).

Definition 3.8: For ε ∈ (0, 1), a sequence
(ui)

N
i=1 ⊂ Cn is called anε-tight frame if

(1 − ε)‖x‖2 ≤
(

N
∑

i=1

|〈x, ui〉|2
)1/2

≤ (1 + ε)‖x‖2 for all x ∈ C
n. (III.9)

An analysis similar to that above yields:
Theorem 3.9: Let (ui)

N
i=1 ⊂ Cn be anε-

tight frame, which satisfies the uncertainty
principle with parametersη andδ. Then The-
orem 3.5 and the algorithm above are valid
for M replaced withM ′ =

√
1 + εM andη

replaced withη′ =
√
1 + ε η + ε, provided

that η′ < 1.
Remark. (History). The idea behind The-
orem 3.5 is certainly not new. Gluskin [19]
suggested to use properties that involved only
‖ · ‖2 norms (like our uncertainty principle)
to deduce results on Euclidean sections ofℓn1
(which by duality is equivalent to Euclidean
projections (II.3) of a cube). A similar idea
was essentially used by Talagrand in his work
on theΛ1 problem [38].

The algorithm to compute Kashin’s repre-
sentations resembles the Chaining Algorithm
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of [18], which also detects a few biggest
coefficients and iterates on the residual, but
it serves tofind all big coefficients rather than
to spread them out.

IV. M ATRICES AND FRAMES THAT SATISFY

THE UNCERTAINTY PRINCIPLE

In this section, we give examples of matri-
ces (equivalently, frames) that satisfy the un-
certainty principle. By Observation 2.3, such
n×N matricesU realize Euclidean projection
of the cube (II.3). Equivalently, these frames
(ui)

N
i=1 (the columns ofU ) yield quickly

computable Kashin’s representations for every
vectorx ∈ Cn.

A. Matrices known to realize Euclidean pro-

jections of the cube

Much attention has been paid to Euclidean
projections of the cube (II.3) in geometric
functional analysis. Results in the literature
are usually stated in the dual form, aboutn-
dimensional Euclidean subspaces ofℓN1 .

Kashin proved (II.3) for random orthogonal
n×N matrix U (formed by the firstn rows
of a random matrix inO(N)), with N = λn
for arbitrary λ > 1, and with exponential
probability ([28], see also [34] Section 6.) The
level K (II.3) depends only onλ; an optimal
dependence was given later by Garnaev and
Gluskin [17]).

A similar result holds forU = 1√
N
Φ, where

Φ is a random Bernoulli matrix, which means
that the entries ofΦ are±1 symmetric inde-
pendent random variables. Schechtman [37]
first proved this withN = O(n), and in [31]
this result is generalized forN = λn with
arbitraryλ > 1. The dependenceK on λ was
improved recently in [1]. In fact, these results
hold for a quite general class of subgaussian
matrices (which includes Bernoulli and Gaus-
sian random matrices).

In is unknown whether Kashin’s theorem
holds for partial Fourier matrix; this conjec-
ture is known as theΛ1 problem. Consider
the Discrete Fourier Transform inCN , where
N = O(n), given by the orthogonalN × N
matrixΦ. It is unknown whether there exists a
submatrixU which consists of somen rows
of Φ and such that it realizes an Euclidean
projection of the cube in the sense of (II.3).

In the positive direction, a partial result
due to Bourgain, later reproved by Talagrand
with a general method [38], states that a
random partial Fourier matrixU satisfies (II.4)
with high probability for N = O(n) and

K = O(
√

log(N) log log(N)). It was re-
cently proved in [23] that Bourgain’s result
holds for arbitrarily small redundancy, that is
for N = λn with arbitraryλ > 1, however at
the cost of a slightly worse logarithmic factor
in K. A similar result can also be deduced
from Theorem 4.3 below (along with Theo-
rem 3.5 and 2.3), which is a consequence of
the uncertainty principle in [35], [36].

No explicit constructions of matricesU are
known. However, there exists small space con-
structions that use a small number of random
bits [2], [26], [27].

B. Random orthogonal matrices

We consider randomn×N matrices whose
rows are orthonormal. Such matrices can be
obtained by selecting the firstn rows of
orthogonalN × N matrices. Indeed, denote
by O(N) the space of all orthogonalN ×N
matrices with the normalized Haar measure.
Then

O(n×N) = {PnV ;V ∈ O(N)}, (IV.1)

where Pn : CN → Cn is the orthogonal
projection on the firstn coordinates. The
probability measure onO(n×N) is induced
by the Haar measure onO(N).

Theorem 4.1: (UP for random orthogonal

matrices)

Let µ > 0 and N = (1 + µ)n. Then,
with probability at least1− 2 exp(−cµ2n), a
random orthogonaln ×N matrix U satisfies
the uncertainty principle with the parameters

η = 1− µ

4
, δ =

cµ2

log(1/µ)
, (IV.2)

wherec > 0 is an absolute constant.

Remark. Assumptionµ > 0 is not essential;
just expressions forη and δ will look differ-
ently. We are most interested in small values
of µ when redundancy is small.

The proof of Theorem 4.1 uses a standard
scheme in geometric functional analysis –
the concentration inequality on the sphere
followed by an ε-net argument. Denote by
SN−1 and σN−1 the unit Euclidean sphere
in CN and the normalized Lebesgue measure
on SN−1.

Lemma 4.2: For arbitrary t > 0, x ∈
SN−1, we have

P

{

‖Ux‖2 > (1 + t)

√

n

N

}

≤ 2 exp(−c1t2n),

wherec1 > 0 is an absolute constant.
Proof. We use representation (IV.1) and also
the fact thatz = V x is a random vector
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uniformly distributed onSN−1. ThusUx is
distributed identically withPnz. We also have

E :=

∫

SN−1

‖Pnz‖2 dσN−1(z) ≤
(

∫

SN−1

‖Pnz‖22 dσN−1(z)
)1/2

=

√

n

N
.

The mapz 7→ ‖Pnz‖ is a1-Lipschitz function
on SN−1. The concentration inequality (see
e.g. [29] Section 1.3) then implies that this
function is well concentrated about its average
valueE:

P{‖Ux‖2 > E + u} ≤
σN−1(z ∈ SN−1 : |‖Pnz‖2 − E| > u}) ≤

2 exp(−cu2N).

Choosingu = t
√

n/N completes the proof.

Proof of Theorem 4.1. Assume thatη and
δ satisfy the assumptions (IV.2). We have to
prove that (III.2) holds with probability at
least1− exp(−cµ2n) .

Consider the set

S := {x ∈ SN−1, |supp(x)| ≤ δN}.
We have

S =
⋃

|I|≤δN

SI ,

here the union is taken over all subsetsI of
{1, . . . , N} of cardinality at mostδN , and
SI = SN−1 ∩CI is the set of all unit vectors
whose supports lie inI. Let ε > 0. For each
I, we can find anε-net ofSI in the Euclidean
norm, and of cardinality at most(3/ε)δN (see
e.g. [34] Lemma 4.16). Taking the union over
all setsI with |I| = ⌈δN⌉, we conclude by the
Stirling’s bound on the binomial coefficients
that there exists anε-netN of S of cardinality

|N | ≤
(

N

⌈δN⌉

)

(3

ε

)δN

≤
(3e

εδ

)δN

.

Then using Lemma 4.2, we obtain

P{∃y ∈ N : ‖Uy‖2 > (1 + t)

√

n

N
} ≤

|N | · 2 exp(−c1t2n).
Every x ∈ S can be approximated by some
y ∈ N within ε in the Euclidean norm, and
sinceU has norm one, we have

‖Ux‖2 ≤ ‖Uy‖2+‖U(x−y)‖2 ≤ ‖Uy‖2+ε.

Therefore

P{∃x ∈ S : ‖Ux‖2 > (1 + t)

√

n

N
+ ε} ≤

|N | · 2 exp(−c1t2n). (IV.3)

It now remains to choose parameters appropri-
ately. Let t = µ/5 and ε = µ/8. Then since
N/n = 1 + µ and by the assumption onη in
(IV.2), we have

(1 + t)

√

n

N
+ ε ≤ η.

Also, we can estimate the probability in (IV.3)
as

|N | · 2 exp(−ct2n) ≤
(24e

δµ

)δN

· 2 exp(−c2t2n) ≤

2 exp
[

(2δ log(24e/δµ)− c2µ
2)n

]

, (IV.4)

where c2 = c1/25. By our choice of δ,
the right hand side of (IV.4) is bounded by
2 exp(−cµ2n), where c > 0 is an absolute
constant. We conclude that

P{∃x ∈ S : ‖Ux‖2 > η} ≤ 2 exp(−cµ2n).

This completes the proof.

C. Random partial Fourier matrices

An important class of matrices that satisfy
the uncertainty principle can be obtained by
selectingn random rows of an arbitrary or-
thogonalN ×N matrix Φ whose entries are
O(N−1/2). Heren can be an arbitrarily big
fraction of N , so the Uncertainty Principle
will hold for almost square random submatri-
ces. This class includes random partial Fourier
matricies, multiplication by such matrix cor-
responds to samplingn random frequencies
of a signal.

More precisely, we select rows ofΦ using
random selectorsδ1, . . . , δN – independent
Bernoulli random variables, which take value
1 each with probabilityn/N . The selected
rows will be indexed by a random subset
Ω = {i : δi = 1} of {1, . . . , N}, whose
average cardinality isn.

Theorem 4.3: (UP for random partial

Fourier matrices)

Let Φ be an orthogonalN×N matrix with
uniformly bounded entries:|Φij | ≤ αN−1/2

for some constantα and all i, j. Let n be an
integer such thatN = (1 + µ)n for some
µ ∈ (0, 1]. Then for eachp ∈ (0, 1) there
exists a constantc = c(p, α) > 0 such that
the following holds.

Let U be a submatrix ofΦ formed by
selecting a subset of the rows of average
cardinalityn. Then, with probability at least
1 − p, the matrixU satisfies the uncertainty
principle with parameters

η = 1− µ

4
, δ =

cµ2

log4 N
.
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Theorem 4.3 is a direct consequence of a
slightly stronger result established in [7] and
improved in [35], [36]. For an operatorU on
a Euclidean space,‖·‖ will denote its operator
norm.

Theorem 4.4: (UUP for partial Fourier

matrices [35], [36])

Assume the hypothesis of Theorem 4.3 is
satisfied. Then there exists a constantC =
C(α) > 0 such that the following holds. Let
r > 0 andε ∈ (0, 1) be such that

n ≥ C
(r logN

ε2

)

log
(r logN

ε2

)

log2 r.

Then the random submatrixU satisfies:

E sup
|T |≤r

‖idT −
N

n
U∗
TUT ‖ ≤ ε. (IV.5)

Here the supremum is taken over all subsets
T of {1, . . . , N} with at mostr elements,UT

denotes the submatrix ofU that consists of the
columns ofU indexed inT , andidT denotes
the identity onCT .

Proof of Theorem 4.3. Observe that for a
linear operatorA on CN one has

‖id−A∗A‖ = sup
x∈CN ,‖x‖2=1

∣

∣〈(id−A∗A)x, x〉
∣

∣

= sup
x∈CN ,‖x‖2=1

∣

∣‖Ax‖22 − ‖x‖22
∣

∣. (IV.6)

We use this observation forA =
√

N
n UT .

SinceUTx = Ux wheneversupp(x) ⊆ T ,
we obtain

E sup
x∈C

N , ‖x‖2=1,
|supp(x)|≤r

∣

∣

∣

N

n
‖Ux‖22 − 1

∣

∣

∣
≤ ε.

By Markov’s inequality, with probability at
least1− p the random matrixU satisfies:

∣

∣

∣

N

n
‖Ux‖22 − 1

∣

∣

∣
< ε/p

for all x ∈ C
N , |supp(x)| ≤ r, ‖x‖2 = 1.

In particular, for suchU , one has:‖Ux‖2 ≤

√

1 + ε/p

√

n

N
‖x‖2 =

√

1 + ε/p

1 + µ
‖x‖2

for all x ∈ C
N , |supp(x)| ≤ r.

Then, if we setε = cpµ for an appropriate
absolute constantc > 0, we can bound the
factor

√

1 + ε/p

1 + µ
≤ 1− µ

4
= η.

This proves the uncertainty principle (III.2)
with δ = r/N . To estimateδ we note that

the condition onn in Theorem 4.4 is satisfied
if

r ≤ c1ε
2N

log4 N
(IV.7)

where c1 = c1(α) > 0. Since we have set
ε = cpµ, condition (IV.7) is equivalent to

δ ≥ cµ2

log4 N

wherec = c(α) > 0. This completes the proof
of Theorem 4.3.

Remarks.

1. (Computing in almost linear time). The
Fourier matrices can be used to compute
Kashin’s representations inCn in time almost
linear in n. Indeed, let for exampleN = 2n.
The columns of then × N partial Fourier
matrix form a tight frame inCn. By Theo-
rem 4.3 and Section III-B, we can convert a
frame representation of every vectorx ∈ Cn

into a Kashin’s representation with levelK =
O(log2 n) in time O(n log2 n). (Recall that
the algorithm makesO(log n) multiplications
by a partial Fourier matrix, and each multi-
plication can be done using the fast Fourier
transform in timeO(n log n)).

2. The constantc = c(α, p) depends poly-
nomially onα and polylogarithmically onp.
The polynomial dependence onα is straight-
forward form the proof of Theorem 4.4 in
[35], [36]. The proof above gives a polynomial
dependence on the probabilityp. To improve
it to a polylogarithmic dependence, one can
use an exponential tail estimate, proved in
[36] Theorem 3.9, instead of the expectation
estimate (IV.5).

3. We stated Theorem 4.3 in the range
µ ∈ (0, 1] which is most interesting for us
(where the redundancy factor is small). A
similar result holds for arbitraryµ > 0.

D. Subgaussian random matrices.

A large family of matrices with indepen-
dent random entries satisfies the uncertainty
principle.

Definition 4.5: A random variableφ is
called subgaussian with parameter β if

P{|φ| > u} ≤ exp(1−u2/β2) for all u > 0.
Examples of subgaussian random variables
include GaussianN(0, 1) random variables
and bounded random variables.

Theorem 4.6: (UP for random subgaussian

matrices)

Let Φ be an×N matrix whose entries are
independent mean zero subgaussian random
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variables with parameterβ. Assume thatN =
λn for someλ ≥ 2. Then, with probability
at least1 − λ−n, the random matrixU =
1√
N
Φ satisfies the uncertainty principle with

parameters

η = Cβ

√

logλ

λ
, δ =

c

λ
, (IV.8)

whereC, c > 0 are absolute constants.
Remark. Theorem 4.6 and Lemma 4.8
below can be deduced from the recent works
[32], [33]. However, we feel that it would be
helpful to include short and rather standard
proofs of these results here.

Theorem 4.6 follows easily from an esti-
mate on the operator norm of subgaussian
matrix.

Lemma 4.7: ([30] Fact 2.4) Letn ≥ k
and Φ be an × k matrix whose entries are
independent mean zero subgaussian random
variables with parameterβ. Then

P{‖Φ‖ > t
√
n} ≤ exp(−c1nt2/β2) (IV.9)

for all t ≥ C1β, hereC1, c1 > 0 are absolute
constants.
Proof of Theorem 4.6. The uncertainty
principle for the matrixU with parametersη, δ
is equivalent to the following norm estimate:

sup
|I|=⌈δN⌉

‖ΦI‖ ≤ η
√
N,

where the supremum is over all subsetsI ⊂
{1, . . . , N} of cardinality ⌈δN⌉, and where
ΦI denotes the submatrix ofΦ obtained by
selecting the columns inI.

Without loss of generality,c < 1. SinceΦI

is a n × ⌈δN⌉ matrix andc2n ≤ ⌈δN⌉ ≤ n,
Lemma 4.7 applies forΦI . Taking the union
bound over allI, we conclude that for every
t > C1β

P{∃I : ‖ΦI‖ > t
√
n} ≤

(

N

⌈δN⌉

)

exp(−c1nt2/β2) ≤

exp
[

(log(e/δ)− c1t
2/β2)n

]

≤
exp(−c3nt2/β2)

if we chooset = Cβ
√
logλ and use our

choice ofδ = c/λ. (Here c3 = c1/2 andC
are absolute constants). With this choice oft,
we can write the estimate above as

P{∃I : ‖ΦI‖ > Cβ

√

logλ

λ

√
N} ≤

exp(−c3C2n logλ) ≤ λ−n

provided we choose the absolute constantC
sufficiently big. This means that the uncer-
tainty principle with parameters (IV.8) fails
with probability at mostλ−n.

Unlike random orthogonal or partial Fourier
matrices considered in Sections IV-B and
IV-C, subgaussian matrices do not in gen-
eral have orthonormal rows. Nevertheless, the
rows of subgaussian matrices are almost or-
thogonal, and their columns form almost tight
frames as we describe below. So, one can use
Theorem 3.9 instead of Theorem 3.5 to com-
pute Kashin’s representations for such almost
tight frames.

The almost orthogonality of subgaussian
matrices can be expressed as follows:

Lemma 4.8: Let Φ be a n × N matrix
whose entries are independent mean zero sub-
gaussian random variables with parameterβ
and with variance1. There exist constants
C = C(β), c = c(β) > 0 such that the
following holds. Assume that

N >
C

ε2
log

(2

ε

)

· n

for someε ∈ (0, 1). Then

P{‖id − 1

N
ΦΦ∗‖ > ε} ≤ 2 exp(−cNε2).

Remark. The dependence inC(β), c(β) is
polynomial. Explicit bounds can be deduced
from [33].

As a straightforward consequence, we ob-
tain:

Corollary 4.9: (Subgaussian frames are al-

most tight) Let Φ be a subgaussian matrix as
in Lemma 4.8. Then the columns of the matrix
1√
N
Φ form anε-tight frame(ui)

N
i=1 in C

n.
Proof of Lemma 4.8. In this proof,
C1, C2, c1, c2, . . . will denote positive abso-
lute constants. By a duality argument as in
(IV.6),

‖id − 1

N
ΦΦ∗‖ = sup

x∈Sn−1

| 1
N
‖Φ∗x‖22 − 1|.

Denote the columns ofΦ by φi. Fix a vector
x ∈ Cn, ‖x‖2 = 1. Since the entries of
the vectorφi are subgaussian with parameter
β, the random variable〈φi, x〉 is also sub-
gaussian with parameterC1β, whereC1 is
an absolute constant (see Fact 2.1 in [30]).
Moreover, this random variable has mean zero
and variance1. We can use Bernstein’s in-
equality (see [39]) to control the average of
the independent mean zero random variables
|〈φi, x〉|2 − 1 asP{| 1N ‖Φ∗x‖22 − 1| > u} =

P

{
∣

∣

∣

1

N

N
∑

i=1

|〈φi, x〉|2 − 1
∣

∣

∣
> u

}

≤

2 exp(−c1Nu2/β4)

for all u ≤ cβ, wherec1 > 0 is an absolute
constant.
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Denote U = 1√
N
Φ. There exists au-

net N of the sphereSn−1 in the Euclidean
norm, and with cardinality|N | ≤ (3/u)n (see
e.g. [34] Lemma 4.16). Using the probability
estimate above, we can take the union bound
to estimate the probability of the event

A := {∀y ∈ N : |‖U∗y‖22 − 1| ≤ u}
as

P(Ac) ≤ (3/u)n · 2 exp(−c1Nu2/β4).

Applying Lemma 4.7 witht = C1β, we
see that the eventB := {‖U∗‖ ≤ C1β}
satisfies P(Bc) ≤ exp(−c2N). Consider a
realization of the random variables for which
the eventA ∩ B holds. For everyx ∈ Sn−1,
we can find an element of the nety ∈ N
such that‖x− y‖2 ≤ u, which implies by the
triangle inequality that

|‖U∗x‖2 − 1| ≤
|‖U∗y‖2 − 1|+ |‖U∗x‖2 − ‖U∗y‖2| ≤
|‖U∗y‖22 − 1|+ ‖U∗(x − y)‖2 ≤

u+ 2C1βu ≤ C2βu,

whereC2 = 1 + 2C1. Now let u = ε/3C2β.
ThusC2βu = ε/3 ∈ (0, 1), and the estimate
above yields|‖U∗x‖22 − 1| < ε for all x ∈
Sn−1 once the eventA ∩B holds. Thus

P{‖id − 1

N
ΦΦ∗‖ > ε} ≤

P{∃x ∈ Sn−1 : |‖U∗x‖22 − 1| > ε} ≤
P((A ∩B)c) ≤

(3/u)n ·2 exp(−c1Nu2/β4)+exp(−c2N) ≤
2 exp(−cNε2)

by our choice ofu and by the assumption on
N .
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