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On the Existence of Perfect Space–Time Codes
Grégory Berhuy and Frédérique Oggier

Abstract—Perfect space–time codes are codes for the coherent
multiple-input multiple-output (MIMO) channel. They have been
called so since they satisfy a large number of design criteria
that makes their performances outmatch many other codes. In
this correspondence, we discuss the existence of such codes (or
more precisely, the existence of perfect codes with optimal signal
complexity).

Index Terms—Central simple algebras, coherent multiple-input
multiple-output (MIMO) channel, perfect space–time codes.

I. PRELIMINARIES

P ERFECT space–time codes are codes for the co-
herent MIMO channel, introduced in [6]. They have been

called so since they satisfy a large number of design criteria.
In order to maximize the throughput, they are full rate in the
sense that the degrees of freedom are used to transmit in-
formation symbols. They are fully diverse [9], and furthermore,
have a lower bound on their minimum determinant, which has
been shown [4] to be a sufficient condition to achieve the diver-
sity-multiplexing tradeoff of Zheng–Tse [10]. They are energy
efficient since encoding the information symbols into the layers
of the space–time codeword does not increase the energy of
the system. Finally, similar average transmit energy per antenna
is required. In [6], perfect codes have been built algebraically
using cyclic division algebras in dimensions and . In
[5], the authors have generalized perfect codes for any dimen-
sion.

The goal of this correspondence is to prove that particular
perfect codes, namely those yielding increased coding gain (or
in other words, those with optimal signaling complexity) only
exist in dimensions and .

The organization of this correspondence is as follows. Since
this paper follows from [6], we let the reader refer to [5] and
[6] for background on space–time coding in general and perfect
space–time codes, in particular. In Section II, we introduce some
mathematical background, while Section III contains a precise
statement of what we mean by perfect codes with optimal sig-
naling complexity and the proof that they exist only in dimen-
sion and .

II. A SHORT INTRODUCTION TO CENTRAL SIMPLE ALGEBRAS

Central division algebras naturally appear in the context of
space–time coding since their elements may always be repre-
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sented as invertible matrices with coefficients in a suitable field.
These particular algebras belong to a broader class of algebras,
namely the central simple algebras.

In the sequel, we start by recalling what is a -algebra and
the basic related definitions. We then define the concept of cen-
tral simple algebras. Our goal is to introduce the notions of index
and degree. Finally, we introduce the definition of Brauer group,
which will allow us to define the notion of exponent. The rela-
tionship among index, degree, and exponent will be crucial for
the proof of our main result.

A. -algebras

All the rings will have a unit element, with an associative
multiplication law.

Definition 1: Let be a ring. The center of , denoted by
, is the subset of defined as

for all

This is a commutative subring of .
For example, if is a field and denote by the

matrices with coefficients in . Then
for all .

Definition 2: Let be a ring with unit element , and denote
by “ ” and “ ” the operations on . We define a new multipli-
cation law on , denoted by , as follows:

for all

It is easy to check that the operations and , together with
the unit element , endows the set with a ring structure. We
denote by this new ring.

For example, if is a commutative ring, then .

Definition 3: Let be a field. A ring is called a -algebra
if is isomorphic to a subring of .

A homomorphism (respectively, isomorphism) of -algebras
is a ring homomorphism (respectively, isomorphism)

which is also -linear.
For example, if is a field extension, then is a -al-

gebra. Another example is given by for all , or
, the set of -linear endomorphisms of , for a finite

dimensional -vector space . The choice of a -basis of
induces an isomorphism of -algebras ,
where .

Notice that if is a -algebra, so is , since
by definition.

From now on, all the -algebras will be finite-dimensional as
a -vector space. We will also always consider as included
in .

We now introduce the concept of tensor product of -alge-
bras.
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Definition 4: Let be two -algebras. The tensor
product of is the -vector space generated by the ele-
ments and submitted to the following
relations, for all and :

1) , ,
2) and ,
3)
One can easily check that is a ring containing in

its center, that is a -algebra.
If and , then one can show that

, and under this isomorphism , the gener-
ator corresponds to the Kronecker product of the ma-
trices and .

The tensor product operation is associative and commuta-
tive, in the sense that we have canonical isomorphisms of -al-
gebras:

1) ;
2) .
Note that if is a -algebra and is a field extension,

then is not only a -algebra, but also an -algebra.
Indeed, the set is a subring of
which is isomorphic to (this follows from the definition of
the multiplication law on and from the fact that is
commutative).

Note for later use that we have .

B. Central Simple Algebras

Definition 5: A central simple -algebra is a -algebra sat-
isfying the two following conditions:

1) is simple, that is the only two-sided ideals of are ( )
and itself,

2) .

A standard example of central simple -algebra is the -al-
gebra for all . One can show that if and are central
simple -algebras, so is (see [8, p. 288], for example).

Another example is given by central division -algebras.

Definition 6: A central division -algebra is a -algebra
satisfying the two following conditions:

1) Every nonzero element of is invertible in ;
2) .

A central division -algebra is a particular central simple
-algebra, since condition 1) easily implies that has no two-

sided ideals, except from ( ) and .
We now cite a theorem which will explain the interest of cen-

tral division -algebras for space–time coding.

Theorem 2.1: Let be a field, and let be a -algebra. The
following conditions are equivalent:

1) is a central simple -algebra.
2) There exists a central division -algebra and an integer

such that as a -algebra. The -al-
gebra is unique up to -isomorphism.

3) There exists a finite Galois extension and an integer
such that as an -algebra.

Proof: See [1, Sec. 5, Sec. 10].

Part 2) of this result is known as Wedderburn’s theorem.

It follows from the previous result that if is a central simple
-algebra, then can be viewed as a subring of for

some field extension as follows: if is
an isomorphism of -algebras, then the map

is an injective ring homomorphism. In particular,
it maps an invertible element of to an invertible matrix.

Hence, if is a central division -algebra and
is an injective ring homomorphism constructed as previously,
then every nonzero-element of is mapped to an invertible
matrix. It is this property of division algebras that made them
popular for space–time coding.

The last part of the theorem, together with the equality
, shows that the dimension of a

central simple -algebra over is always the square of an
integer. Therefore, the following definition makes sense.

Definition 7: Let be a central simple -algebra. The de-
gree of , denoted by , is the integer defined by

Let be a central simple -algebra. By Wedderburn’s the-
orem, we can write , where is a central divi-
sion -algebra, unique up to -isomorphism, for some integer

. In particular, only depends on the isomorphism
class of and .

Definition 8: The index of , denoted by , is defined
by

Notice that if , we have by definition

C. The Brauer Group

Definition 9: We say that two central simple -algebras
are Brauer equivalent if they correspond to the same

division -algebra , namely and ,
for some integers . We write .

One can check that this is indeed an equivalence relation on
the set of central simple -algebras. The equivalence class of

is denoted by . The set of equivalence classes is denoted
by .

We define an addition on the set as follows:

One can show that this operation is well defined. Moreover, it
is commutative and associative (this follows from the properties
of ).

Note that the class is a neutral element for ‘ ’ since
. We will denote it simply by 0. For any ,

one can show that the opposite is the class . Hence the
operation ‘ ’ endows with a structure of abelian group
(see [8, p. 290]).

This group is called the Brauer group of , honoring Richard
Brauer who made the first systematic study of what would ap-
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pear to be a fundamental invariant. Note also for later use that
for all , we have in .

Definition 10: The exponent of is the order of the class
in the Brauer group .

The following theorem gives a relationship among the three
invariants of a central simple algebra that are the exponent, the
index and the degree.

Theorem 2.2: For any central simple -algebra, we have

If moreover is a number field, then .
Proof: For a proof of the first statement, see [3, p. 66]. For

the second one, see [2].

III. CYCLIC ALGEBRAS AND PERFECT CODES

Perfect space–time codes have been built using cyclic divi-
sion algebras. Cyclic algebras, as recalled below, are a partic-
ular class of central simple algebras. After having presented the
results we need about cyclic algebras, we recall the definition of
a perfect space–time code, introduce the particular class of per-
fect space–time codes we consider (namely perfect codes with
increased coding gain or optimal signal complexity), and give
the proof that they exist only in dimension and .

A. Cyclic Algebras

Let us recall the definition of a cyclic algebra.

Definition 11: If is a cyclic extension of degree , and
if is a generator of the Galois group, for any , we can
define a -algebra denoted by as follows:
consider the vector space

and define a product by the relations

Then is called a cyclic algebra.
Cyclic algebras naturally provide families of matrices thanks

to an explicit isomorphism between and .
Since each is expressible as

it is enough to give and . We have that

(1)

is given by

...
. . .

...
for all

. . .
...

. . .

Thus, the matrix of is easily checked to be

...
...

...

(2)
The map is easily seen to be indeed an isomorphism of

-algebras. Therefore, Theorem 2.1 implies what follows.

Proposition 3.1: The algebra is a central
simple -algebra of degree .

One can prove the following result.

Proposition 3.2:
1) We have , where .

In others words, in the Brauer group.
2) in the

Brauer group.
Proof:

1) The proof [8, p. 318] consists in showing that the map

defined by left multiplication by , for ,
and is an isomorphism. There is then a known
isomorphism between , the -linear endomor-
phisms of , and .
The translation in terms of the Brauer group is given by the
fact that , as pointed out before.

2) See [8, p. 319].

The following corollary will play a fundamental role in the
final proof.

Corollary 3.3: Let be a number field, and let
. If is a -root of , then .

Proof: The second point of the previous proposition ap-
plied several times shows that, in the Brauer group

Since by assumption, the first point of the proposition
shows that in the Brauer group. Hence
by definition. Since is a number field, by Theorem 2.2,

and we are done.

In [8], the definition of a cyclic algebra is slightly different
( is defined as a right vector space over ), but it is easy to
check that all the results above are still true with our definition.

B. Existence of Perfect Space–Time Codes

Perfect space–time codes are linear dispersion codes
for the coherent MIMO channel that satisfy the following de-
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sign criteria. They are full rate: the degrees of freedom are
used to transmit information symbols. They have a nonvan-
ishing determinant: prior to SNR normalization, the minimum
determinant of the codebook

is lower bounded by a constant. In particular, the code is fully
diverse. A shaping constraint is imposed at the encoder: the in-
formation symbols are encoded into the layers of the space–time
code without changing the energy at the transmitter. Finally, uni-
form average energy per antenna is required.

The existing codes that satisfy all these properties are built
using cyclic division algebras , where
has base field , respectively, where denotes
a primitive third root of unity. Codewords are of the form given
in (2). The choice of , allows to transmit QAM
or HEX constellations, respectively.

As noticed in [6], in order to obtain both uniform average en-
ergy per antenna and efficient energy encoding at the transmitter,

is asked to satisfy . There are now two possibilities
in choosing .

1) is chosen to be a root of unity (this is the approach of
[6]): in this case, since or , it has to be ,

, respectively, , , . Note that if , then
by Corollary 3.3, we have that . Thus, if ,
cannot be a division algebra (since this requires

). Now if , then is a square in , thus,
a norm, so that cannot be a division algebra [6].

2) is chosen of the form or , with
. Thus, both the numerator and denominator

of are in , , respectively (this is the approach of
[5]).

Let us discuss briefly here how the choice of influences the
minimum determinant of the code (that is, its coding gain). Let

be a codeword of the form (2), but where the coefficients
are chosen in , and furthermore is chosen

to be in , respectively, . Then
[6]. The minimum determinant is, thus, lower bounded by .
If , , respectively, then a lower bound can be
computed as follows: write as

where all the coefficients of are in . The minimum deter-
minant of is again , but the minimum determinant of is
now lower bounded by

In order to maximize the minimum determinant, should be
chosen to be a root of unity. Codes with such a , that is codes
where is a root of unity are called codes with optimal signal
complexity, or codes with increased coding gain. Under this as-
sumption, we will now show that perfect space–time codes exist

only in dimension and . In order to get perfect codes in
all dimensions, one, thus, has to relax this constraint, and adopt
the approach of [5].

Theorem 3.4: Perfect space–time codes where is chosen to
be a root of unity, that is in or , in only
exist in dimension and .

Proof: Since is a fourth or sixth root of 1, the index of
the cyclic algebra used to build the code is or by
Corollary 3.3. Since we want to be a division algebra, we
need . Indeed, if , for a central
division -algebra , then by definition we have

. Hence, will be a division algebra if and only if
, that is . Moreover, since we want ,

the only possible values for are or , and we are done.

IV. CONCLUSION

In this correspondence, we proved that perfect codes where
is chosen to be a root of unity in order to increase the coding

gain only exist in dimension and .
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