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Abstract— We study network coding capacity under a con- We define thauniform coding capacity of a network to be
straint on the total number of network nodes that can perform
coding. That is, only a certain number of network nodes can Ccuniform _ sup{ min 7 (r1,...,Tm) € S} )
produce coded outputs, whereas the remaining nodes are liteid 1<i<m

to performing routing. We prove that every non-negative,
monotonically non-decreasing, eventually constant, ratinal-
valued function on the non-negative integers is equal to the 1™
capacity as a function of the number of allowable coding node CoveTa9¢ — sup {_ Z rii(r1,...,rm) € 5} .
m
i=1

We define theaverage coding capacity of a network to be

of some directed acyclic network.

. INTRODUCTION Routing nodes have edge functions that simply copy

Let N denote the positive integers, and eandQ denote  SPecified input components to output componéntt.a
the real and rational numbers, respectively, with a supiptsc Network’s edge functions are restricted to routing funesio
“4+ denoting restriction to positive values. In this paper, h€nC* % ?‘“dcumf?m will be referred to as thaverage
network is a directed acyclic multigrapts = (V, E), some outing capacity and uniform routing capacity, respectively.
of whose nodes are information sources or receivers (eeg. se Ahlswede, Cai, Li, and Yeung [1] exhibited a network
[11]). Associated with the sources aregenerateanessages, whose average a_nd unlfgrm codlng capgcmes are equal a_nd
where thei'" source message is assumed to be a vector 8f¢ larger than its routing capacity. Li, Yeung, and Cai
k; arbitrary elements of a fixed finite alphabet, of size at [7] showed in the special case of a multicast network, the
least2. At any node in the network, each out-edge carriegverage and uniform coding capacities are both equal to
a vector ofn alphabet symbols which is a function (calledth® linear coding capacity. It was shown in [3], that for
an edge function) of the vectors of symbols carried on the@!l nétworks, the uniform coding capacity is independent of
in-edges to the node, and of the node’s message vectordflf alphabet size (only slight modification of the proof is
it is a source. Associated with each receiver demands, "equired for the average coding capacity case). Clearly the
which are subsets of the network messages. Each receif@rage and uniform routing capacities are also independen
has decoding functions which map its inputs to vectors of of_the alphabet size. It is also known that the coding capacit
symbols in an attempt to produce the messages demandBi@ht not be achievable [4].
at the receiver. The goal is for each receiver to deduce its I" terms of the coding gain of a network, Sanders, Egner,
demanded messages from its in-edges and source messai@g. Tolhuizen [8] showed that for directed networks, the

A (ki,..., km,n) fractional code is a collection of edge throughput achlevab_le with ne_twork codlng can be_arbiyarl
functions, one for each edge in the network, and decodi@rder than that achievable with only routing. An important
functions, one for each demand of each node in the networRfoblem is to determine how many nodes in a network
A (ki,...,km,n) fractional solution is a (ki,...,kn,n) &€ requweq to p(_erform co_dmg in order_ for the n_etwork
fractional code which results in every receiver being abl& achieve its coding capacity (or to achieve a coding rate
to compute its demands via its decoding functions, for aftrbitrarily close to its capacity if the capacity is not aity
possible assignments of length-vectors over the alphabet achievable). A network node is said to bearing node if
to theit" source message, for all at least one of its out-edges has a non-routing edge function

For eachi, the ratiok; /n can be thought of as the rate A similar problem is to determine the number of_ codi_ng
at which source injects data into the network. If a network Nodes needed to assure the network has a solution (i.e. a
has a(ki, .. ., km,n) fractional solution over some alphabet, (K1, - - -, km, n) fractional solution withk, = --- = ky, =
then we say thatki/n, ..., kn/n) is an achievable rate 7 = 1). The pumber of required coding nodes in both
vector, and we define theachievable rate region of the problems can in general range anywhere from zero up to

network as the sét the total number of nodes in the network.
For the special case of multicast networks, the problem of
S ={reQ™:r is an achievable rate vecfor finding a minimal set of coding nodes to solve a network has
been examined previously in [2], [5], [6], [9], the results o
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Bruck [6] determined upper bounds on the minimum number XM x® x @ x @

of coding nodes required for a solution. Their bounds are{ 1 ][ 2 ][ q-1 ][ q ]
given as functions of the number of messages and the number
of receivers. Tavory, Feder, and Ron [9] showed that with
2 source messages, the minimum number of coding nodes
required for a solution is independent of the total number
of nodes in the network, while Fragouli and Soljanin [5]
showed this minimum to be upper bounded by the number
of receivers. Bhattad, Ratnakar, Koetter, and Narayanphn [2
gave a method for finding solutions with reduced numbers of
coding nodes, but their method may not find the minimum
possible number of coding nodes. Wu, Jain, and Kung
[10] demonstrated that only certain network edges require
coding functions. This fact indirectly influences the numbe
of coding nodes required, but does not immediately give an
algorithm for finding a minimum node set.

We study here a related (and more general) problem,
namely how network coding capacities can vary as functions
of the number of allowable coding nodes. Our main result,
given in Theorem 2.2, shows that the capacities of networks,
as functions of the number of allowable coding nodes, can
be almost anything. That is, the class of directed acyclic
networks can witness arbitrary amounts of capacity gain b
using arbitrarily sized node subsets for coding.

[ q+4 ][
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e %@ x@ X@
II. NODE-LIMITED CODING CAPACITY
Fig. 1. The network\ (p, q). Nodesni,...,nq are the sources, with
For each non-negative integer, a (ki,...,km,n) noden; providing message ("), for 1 < i < q. Nodesngs,...,n2q 42

fractional i-node coding solution for a network is a @€ the receivers, with node; demanding message(*~4~2), for g+3 <
1 < 2q + 2. Every source has one out-edge going to nege; and every

(klv_' c kmv n) _fraCtional coding SOIUtiOn with at m_osyl receiver has one in-edge coming from nedg.2. Also, every source:; has
coding nodes (i.e. have output edges using non-routing edgeout-edge going to receiver, o ;, for all 5 # 4. There arep parallel

functions)? For eachi, denote byC;""“"* andC;"*/*""" the ~ edges from nodew, 1 to nodenq.».
average and uniform coding capacities, respectively, when

solutions are restricted to those having at masiding nodes ) )
(we make the convention for all > |V|, that C#"¢"*9¢ = Theorem 2.2: Every monotonically non-decreasing, even-
! 7

caverage ganguniform — cuniformy \we call2v¢re9¢ and  tually constant functionf : N U {0} — Q7 is the node-

v =Yy o . . .
cuniform o nodelimited average acity function and Ilr_'nlted average and uniform capacity function of some
¢ I directed acyclic network.

node-limited uniform capacity function, respectively.
) . . , Proof:
For a given number of coding nodes, if a network’s node- S "NU {0 b b
limited capacity is achievable, then it must be rationalj an upposef : NU {0} — Q7 is given by
cgnnot decrease if more nodes are allowed to perform coding ' pifg; for0<i<s
(since one can always choose not to use extra nodes for f(i) =

erage

) . C ps/qs fori>s
coding). By examining the admissible forms¢jf’ and

ijif"”” we gain insight into the possible capacity benefitsvhere po, ..., ps,qo, - .., ¢s are positive integers such that
of performing network coding at a limited number of nodespo/qo < p1/q1 < --- < ps/qs. Define the positive integers
Theorem 2.2 demonstrates that the node-limited capacities
of networks can vary more-or-less arbitrarily as functiafs b=lem(psgi : 0 <i <s)
the number of allowable coding nodes. - PilG b
Lemma 2.1: For any positive integerg and ¢ > p, the L ps/as

network A/(p, q) shown in Fig. 1 has node-limited average N .
and uniforr(ﬁ cqazpacity functio?‘\s given by d and construct network\" as in Fig. 2, which hasn=b

messages WitV (ao, b), ..., N (as—1,b) as building blocks.
caverage _ Cyniform _ { p/q fori=20
‘ ! 1 fori>1. Let C/*/"™ and C{**"*9° denote the uniform and av-
erage node-limited capacity functions of netwokk Also,
for j=0,...,5—1, let C*™/°"™ and C?Y*"*9° denote the
SArbitrary decoding is allowed at receiver nodes and recenales only fj ’ d ’ d,l limited Jrt f . f th
count towards the total count of coding nodes in a networkhéythave uniform and average node-limite capacny. unctions of the
out-edges performing coding. sub-block\ (a;, b). There are exactly nodes in\ that have



if we replace each directed edge &f by p, parallel edges
in the same orientation, then the resulting netwarkwill
have node-limited average and uniform capacity functions

él(_werage _ ézym'form _ (ps/qs)czym'form _ f(l)

]

One consequence of Theorem 2.2 is that large coding gains
can be suddenly obtained after an arbitrary number of nodes
‘ has been used for coding.

In Theorem 2.2 the existence of networks that achieve
Fig. 2. The network A’ has b source nodes, each emitting prescribed rational-valued node-limited capacity fumcs
?\?e mfssageNEach -Zoursce f]ft?de“ has an hOUt-E%?ethfo eabCh tﬁUb-b‘Was established. It is known in general that not all networks
pre(\lji(z)’us) Source (rzzzgsle’\ggs a?giggq%\yéc;?hiﬁ:evesl}l eacr(1J meggczﬁcé’ noge necessarily achieve their capacities [4]. _It IS presgnﬂy u
is connected by an in-edge from the unique correspondingsawde inv.  known, however, whether a network coding capacity could
Each sub-blockV (a;, b) has routing capacity; /b = (pi/q:)/(ps/gs)- be irrational. Thus, we are not presently able to extend
Theorem 2.2 to real-valued functions. Nevertheless, Theo-

. ) rem 2.2 does immediately imply the following asymptotic
more than one in-edge, and which are therefore pOtent'QEhievability result for real-value functions.

coding nodes (i.e. one potential coding node per block).

For eachi 0,...,s — 1, in order to obtain a
(k1,...,km,n) fractionali-node coding solution, the quan-
tity (k1 + -+ + kn)/(mn) must be at most

g b ][ Na || Na o)

Corollary 2.3: Every monotonically non-decreasing,
eventually constant functiofi : NU {0} — R™ is the limit
of the node-limited uniform (or average) capacity function
of some sequence of directed acyclic networks.
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