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On the Fading Paper Achievable Region of the

Fading MIMO Broadcast Channel
Amir Bennatan,Member, IEEEand David Burshtein,Senior Member, IEEE

Abstract

We consider transmission over the ergodic fading multi-antenna broadcast (MIMO-BC) channel with

partial channel state information at the transmitter and full information at the receiver. Over the equivalent

non-fading channel, capacity has recently been shown to be achievable using transmission schemes that were

designed for the “dirty paper” channel. We focus on a similar“fading paper” model. The evaluation of the

fading paper capacity is difficult to obtain. We confine ourselves to thelinear-assignmentcapacity, which we

define, and use convex analysis methods to prove that its maximizing distribution is Gaussian. We compare

our fading-paper transmission to an application of dirty paper coding that ignores the partial state information

and assumes the channel is fixed at the average fade. We show that a gain is easily achieved by appropriately

exploiting the information. We also consider a cooperativeupper bound on the sum-rate capacity as suggested

by Sato. We present a numeric example that indicates that ourscheme is capable of realizing much of this

upper bound.

Index Terms

Broadcast channel, Dirty paper, MIMO, Sato bound

I. INTRODUCTION

The multiple-antenna Gaussian broadcast channel has recently been the subject of intense research. This

surge of interest was spurred by the seminal work of Caire andShamai [6], who suggested an achievable region

for this channel based on dirty-paper coding. Recently, this region was shown by Weingartenet al. [30] to

exhaust the capacity region of the channel.

However, the channel model examined in [6] assumes that the fading coefficients of the MIMO channel are

fixed and known to both the transmitter and the receiver. In several realistic settings, the coefficients fluctuate

over time. They are estimated at the receiver and are fed backto the transmitter. At best, we can assume that

the transmitter has a rough, outdated estimate of the coefficients.
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Telataret al. [27], in his work on the single-user MIMO channel, focused ona setting where the transmitter

has zero knowledge of the fading coefficients. In a broadcastsetting, this problem is typically uninteresting

because its solution is often trivial. In Appendix I, we willsee such a setting where time-sharing (TDMA)

is the best that can be achieved. However, in a realistic setting, the transmitter hassomeknowledge of the

channel to each of the users. This knowledge can be modelled as channel distribution information1.

We assume an ergodic channel, in the sense that a new channel realization is obtained at each time instance.

However, the channel distribution, which is known to the transmitter, remains fixed for the duration of the

transmission.

The analysis of ergodic broadcast channels was initiated byCover [10]. The capacity of such channels

is known only in special cases, where the signals to the userscan be ordered according to their “strength”.

A large class of such channels, known as “more capable” channels, was considered by El Gamal [12], who

also evaluated the capacity in this case. This class contains “degraded” and ”less noisy” channels as special

cases [12].

Tuninetti and Shamai [28] considered the fadingscalar broadcast channel, which is a special case of the

fading MIMO-BC channel obtained by setting the number of antennas at the transmitter and receivers to

one. They showed that this channel is not “more capable” in general. They nonetheless evaluated the “more

capable” region as defined by [12]. This region is still achievable despite the channel being not “more capable”,

although it is only an inner bound and does not exhaust the entire capacity region.

Jafaret al. [16] considered the fading MISO-BC, characterized by receivers that have only one antenna

each. They considered the case when the distribution of the fading coefficients is isotropic. In this case, they

proved that the capacity region collapses to that of the above fading scalar channel. Lapidoth [21] examined

a similar two-user fading MISO-BC channel, and demonstrated that at the limit of high SNR, a significant

loss is incurred as a result of the unavailability of precisechannel state information at the transmitter. Sharif

and Hassibi [25] proposed a beamforming transmission approach for the case when the knowledge available

to the transmitter is the collection of SINR values available to each of the receivers.

The fading MIMO-BC channel, being not “more capable” in general, is difficult to analyze. In this paper

we focus on an achievable region which is modelled on the dirty paper region of Caire and Shamai [6]. Our

development uses afading-paperapproach which is a generalization of the dirty-paper approach of [6]. A

fading paper solution was previously considered for a wideband fading channel in [3], although they assumed

an interference which is known only causally, unlike the dirty paper problem of Costa. The proof of [30] does

not apply to the fading MIMO-BC capacity region, so that the fading paper approach is not guaranteed to

be optimal. Furthermore, the capacity of the fading-paper channel is in general not known. We focus on its

linear-assignmentcapacity, which we define. We use convex-optimization methods to prove that a Gaussian

1A different model was proposed by Jindal [18] and Caire [5], who incorporated the feedback from the receiver into the channel

model.
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distribution achieves this capacity.

We compare the rate region achieved by this approach to the region that is achievable by a dirty-paper

scheme that ignores the available channel state information and assumes that the channel is fixed at its average.

We show that a substantial benefit is easily achieved by appropriately exploiting the available information.

This paper is organized as follows. We begin with some background in Sec. II. We define our notation and

the channel model, discuss the dirty-paper channel and its application to transmission over the non-fading

MIMO-BC channel. In Sec. III we discuss the fading-paper generalization of the dirty-paper channel, define

the linear-assignment capacity and discuss its maximizingdistribution. In Sec. IV we define a region that is

achievable using linear-assignment fading-paper transmission methods. We also compare this region to that

of dirty-paper based transmission that assumes the channelis fixed at its average. In Sec. V we present ideas

for further research and conclude the paper.

II. BACKGROUND

A. Notation

EH denotes the expectation over the random variableH. Matrices are denoted by upper-case letters, with

bold indicating realizations of random variables (e.g.H is the realization ofH). Vector values are denoted in

boldface and scalar values are denoted in normal typeface. With both, lower-case letters denote the realizations

of random variables (y is a realization ofY andy is a realization ofY ).

The inner product of two equal-dimension matricesA,B ∈ R
M×N is defined by,

< A,B >
∆
=

M
∑

m=1

N
∑

n=1

Am,nBm,n = tr[A ·BT ]

R+ denotes the non-negative real numbers andR++ the positive real numbers.

B. System Model

We consider a broadcast channel withL users. The transmitter hasM transmit antennas and userl hasNl

antennas. For simplicity we assume that all signals are real-valued.

The channel outputY(l)
t observed by receiveru at a discrete time instancet is given by,

Y
(l)
t = H

(l)
t ·Xt + Z

(l)
t

Y
(l)
t is aNl × 1 column vector.H(l)

t is a randomNl ×M matrix denoting the channel transition matrix. We

assume that instances ofH(l)
t are independent over time (for different values oft) and between users (i.e.,

for different values ofl). As noted in Sec. I, we assume that this matrix is known to thereceiver, and in our

subsequent analysis, we consider it as part of the channel output.Xt is anM × 1 column vector denoting the

transmitted signal.Z(l)
t denotes Gaussian noise, distributed as aNl-dimensional zero-mean Gaussian random

variable with identity covariance matrixI 2.

2If the noise’s covariance matrix is notI, we can multiplyY(l)
t by the inverse of the square root of of the matrix and obtain an

equivalent channel that does agree with this model.
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In the sequel, for simplicity, we will drop the time indext. We assume that the transmitter is subject to an

average power constraintP . That is, we require,

E tr(XXT ) ≤ P

The only assumption we make on the distribution ofH(l) is that is has finite energy, i.e.E < H(l),H(l) > is

finite.

C. Dirty Paper Channels

The dirty-paper channel was first considered by Costa [8]. Itis defined by

Y = X + S + Z (1)

The channel inputX is subject to a power constraintP , i.e. The noiseZ is distributed as a zero-mean

Gaussian variable with varianceσ2
Z > 0. S is interference, known to the transmitter but not to the receiver.

Costa obtained the remarkable result that the interference, despite being known only to the encoder, incurs no

loss of capacity in comparison with the standard interference-free channel. Costa assumed thatS is Gaussian

i.i.d distributed. This result was extended in [7] and [13] to arbitrarily distributed interference. Costa’s result

was further extended to the Gaussian MIMO channel by Yuet al. [31]. With this channel model, vector

Y, S, X and Z replace the above scalar equivalents,Z being a zero-mean Gaussian random vector with

nonsingular covariance matrixΣZ
3.

In Sec. II-D we will consider dirty-paper in the context of transmission over nonfading MIMO-BC channels.

In that context, it will be useful to consider the following variation of (1) (using vector substitutes forY , S,

X andZ),

Y = H(X+ S) + Z (2)

whereS andX areM dimensional,Y andZ areN dimensional, andH is anN ×M fixed channel matrix4.

We assume this formulation of the dirty-paper problem throughout the rest of this paper. Once again, the

capacity coincides with that of the corresponding no-interference channel, whose outputŶ is given by,

Ŷ = HX+ Z (3)

The dirty-paper channel is an instance of the more general class ofside-informationchannels, first considered

by Shannon [24]. Such channels are characterized by an inputX, outputY and state-dependent transition

probabilitiesPr[y|x, s] where the channel stateS is i.i.d., known to the transmitter and unknown to the

receiver. In the context of (1), the interferenceS constitutes the channel state.

3Note that unlike the fading MIMO-BC model of Sec. III-A, we find it more convenient to allowΣZ 6= I in this context of the

vector dirty-paper channel.
4The matrixH is denoted in bold since in the next section it will be a realization of a random variable.
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Shannon [24] considered the case of the state sequence beingknown only causally. Kusnetsov and

Tsybakov [20] were the first to consider the case of state sequence known non-causally, and Gel’fand and

Pinsker [14] obtained the capacity formula for this case. The capacity of this channel is given by

C = sup
Pr[u | s],f(·)

{I(U ;Y )− I(U ;S)} (4)

whereU is an auxiliary random variable with conditional distribution Pr[u | s] and f(·) is a deterministic

function, such that the transmitted signalX is given byX = f(S,U).

In [31], the capacity of the dirty-paper channel was obtained from (4) using an auxiliary random variableU

given byU = F·S+X, whereF is a fixed matrix5 andX is a zero-mean Gaussian-distributed random-variable,

independent ofS. The use ofX has a dual role. First, it is a component in the definition of the transition

probabilitiesPr[u | s]. Second, givenU andS, the transmitted signal satisfiesf(U,S)
∆
=U−F ·S = X. The

covariance matrixΣX of X is determined as in the no-interfence channel (see e.g. [9]). An expression forF

was developed by Yu and Cioffi [32]. In this paper, we use the following, equivalent expression:

F = ΣXHT (HΣXHT +ΣZ)
−1H (5)

A proof that this choice ofF indeed achieves the no-inteference capacity is provided inAppendix II. This

proof is different from the proof of [32], and is provided primarily for completeness.

Costa [8] and Yu [31] obtained their results using random codes and maximum-likelihood decoding.

Zamir et al. [33] and Bennatanet al. [1] have presented practical methods for transmitting at rates that

approach the above computed capacities. Their approaches were developed for the scalar dirty-paper channel,

but can easily be adapted to the MIMO setting [1][Sec. VII].

D. The Dirty-Paper Achievable Region

In their construction for the non-fading MIMO broadcast channel, Caire and Shamai [6] used dirty-paper

coding to transmit in the following way. The transmitted signal X is constructed as the vector sum ofL

signalsX1, ...,XL, whereXl contains the transmitted signal to userl. Each user is also allotted a virtual

power constraintPl such that
∑L

l=1 Pl = P . Using dirty-paper coding, the transmitter can generate the signal

Xl such that the interference generated byX1, ...,Xl−1 is effectively pre-subtracted. More precisely, encoding

proceeds in the following way,

1) The transmitter begins by selecting a codewordc1 for user 1.

2) It then proceeds to determine the signal for user 2. It constructs the signalX2 for user 2 using a dirty-

paper transmission scheme, making use of its full non-causal knowledge ofc1 and treating it as known

interference (in lieu ofS in (1)).

3) The signalsX3, ...,XL are constructed in a similar manner. When constructing the signal to userl, the

signalS(l) ∆
=X1 +X2 + ...+Xl−1 is treated as non-causally known interference.

5We denote the matrixF in bold throughout the paper in order to distinguish it from the functionalF (q,Q).
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The operation of the receivers mirrors the above transmission scheme. Receiverl applies dirty-paper decoding,

effectively cancelling the interference generated byX1+X2+ ...+Xl−1 but treatingXl+1+ ...+XL as part

of the unknown noise (alongsideZ).

The above transmission strategy defines an achievable rate region for the Gaussian MIMO broadcast channel.

This region is a function of the virtual power constraintsPl imposed on the users. Furthermore, it is a function

of the covariance matricesΣ(l)
X by which the various codebooks for the signalsXl are randomly generated.

It is also a function of the ordering of the users. The convex-hull of the union of all regions obtained in this

way constitutes the dirty-paper achievable regionCDPC(P ). In [30], this region was shown to exhaust the

MIMO broadcast capacity region.

However, the application of dirty-paper transmission methods in the above algorithm is heavily reliant on

the availability of precise knowledge of the fixed channel matrices{H(l)}Ll=1 at the transmitter. Without these,

the pre-subtraction of the signals{Xi}i<l, when constructingXl, is not possible.

III. T HE FADING-PAPER PROBLEM

A. Channel Model

The fading-paper channel is an adaptation of the dirty-paper model (as expressed in (2)) of Sec. II-C,

designed to account for the absence of channel state information at the receiver. The channel is defined by,

Y = H(X+ S) + Z (6)

Unlike the case in (2), the channel matrix is random and is know to the receiver but not to the transmitter.

The pair(Y,H) constitutes the channel output, whereY is the channel observation andH is the channel

matrix.

The channel transition probabilities are also a function ofthe distribution of the interferenceS and of

the channel matrixH. In this paper, we assumeS to be a zero-mean Gaussian distributed random variable

with covarianceΣS . As noted in Sec. II-B, we make no assumptions on the distribution of H, beyond it

having finite energy. Following the discussion of side-information channels in Sec. II-C, the capacity of the

fading-paper channel is given by,

C = sup
Pr[u | s],f(·)

{I(U;Y,H) − I(U;S)} (7)

whereU is an auxiliary random variable whose joint distribution with S can be obtained viaPr[u | s]. f(·)

is a vector-valued deterministic function, such that the transmitted signalX is given byX = f(U,S).

Note that for any particular choice ofPr[u | s] and f(·), the contents of the braces are an achievable

transmission rate over the channel,

Rachievable= I(U;Y,H) − I(U;S) (8)
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B. The Linear-Assignment Capacity

In this paper, we focus on a subset of achievable rates for thefading-paper channels, modelled on the

dirty-paper capacity-achieving assignment forU and f(·). That is, we focus on an auxiliary random variable

U given by

U = F · S+X (9)

whereF is some arbitrary real-valuedM ×M matrix, andX is an arbitrary zero-mean random-variable,

which may depend onS. We definef(u, s) = u−Fs. We refer to such an assignment as alinear assignment.

We call the maximum in (7), when restricted to such assignments, thelinear assignment capacity.

Linear assignments may equivalently be defined as follows. Alinear assignment is characterized by an

arbitrary zero-meanM -dimensional random variableU (recall thatM is the dimension ofX andS), which

may be dependent onS, and an arbitrary real-valuedM ×M matrix F. In the context of (4),U corresponds

to the auxiliary variableU and f(·, ·) is defined byf(u, s) = u − Fs. A setU,F and f(·, ·) given by the

first definition straightforwardly satisfies the conditionsof the second definition. To see that the reverse holds,

observe that we have allowedX to be completely arbitrary. In particular, we have in no way requiredX to be

Gaussian or independent ofS. Thus, given a pairU andF corresponding to the second definition, we may

defineX = U− F · S and the resulting setU,X,F and f(·, ·) coincides with the first definition.

The optimality of linear assignments for the dirty-paper problem of Sec. II-C is obtained from the fact

that their maximum achievable rate coincides with the capacity of the corresponding no-interference channel.

This is clearly the best we can hope for, and thus such assignments achieve capacity. With fading-paper, the

achievable rate with linear assignments is in general strictly below the no-interference upper-bound. Thus, it

is not known whether it is optimal.

In our above definition of linear assignments, we left the distribution ofX undefined. Specifically (as noted

above), we did not insist onX to be Gaussian, and did not insist on it being independent ofS, as we did

in Sec. II-C when we discussed the capacity-achieving assignment for the dirty-paper channel. However, the

following theorem establishes the optimality of a Gaussian-distributedX. In Sec. IV we will show that we

may also assumeX to be independent ofS.

In the following theorem, we assume the following regularity conditions:

1) We assume that the expectations (29), (30), (31) and (32) (defined below), exist and are finite. Note that

this condition is satisfied, for example, when the distribution of H is discrete and takes a finite set of

values.

2) We assume that the covariance matrix of the vector(S,U),





ΣS ΣS,U

ΣT
S,U ΣU



 (10)
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is nonsingular (i.e., it is a positive definite matrix). Notethat this also implies thatΣS is nonsingular,

being a principal submatrix ofCov(U,S). Since,




S

U



 =





I 0

F I









S

X





and since the matrix on the right hand side of the last equation is nonsingular, a sufficient condition

that (10) is nonsingular is thatdet(ΣS) > 0, det(ΣX) > 0 anddet(ΣX − ΣT
S,XΣ−1

S ΣS,X) > 0 (ΣX

andΣS,X are the covariance ofX and the cross-covariance ofS andX, respectively).

3) We assume an arbitrary densityq(u | s) with respect to the Lebesgue measure.

Definition 1: Given a linear assignment, the collection of matricesΣS,ΣS,X ,ΣX andF is called itssetting.

Theorem 1:Assume the above-mentioned regularity conditions. For anyfixed setting, the linear-assignment

capacity (as defined above) is achieved by a choice ofX that is jointly Gaussian withS.

Proof: We begin with a brief outline of the proof. We consider (8) as afunction of the densityq(u|s) and

of Q(u |y,H), defined below. We then seek to show thatqG(·) andQG(·), corresponding to a joint-Gaussian

choice ofX andS, maximize (8). To do so, we pose the problem as a concave constrained maximization

problem, and show thatqG andQG admit Lagrange multipliers.

We now rewrite (8) asF (q,Q), given by6,

F (q,Q)
∆
=

∫

s∈R
M

∫

u∈R
M

∫

y∈R
N

∫

H∈RH

fS(s)fY,H | S,X(y,H | s,x = f(u, s))q(u | s) ·

· log
Q(u | y,H)

q(u | s)
dH dy du ds (11)

Recall thatM andN are the dimensions ofS andY, respectively. We also denote byRH the support region

of the random variableH. Q(u |y,H) is the conditional distribution of the above-definedU given the channel

outputY and the signal fadeH. fS(s) is the density ofS andfY,H | S,X(y,H |s,x) is the conditional density

of Y andH given the transmittedx and interferences.

Since we make no assumptions on the distribution ofH, the existence of this density is not guaranteed.

However, the generalization to the case when the density does not exist is straightforward. In the sequel, we

drop the subscripts and denote the densities byf(s) andf(y,H |s,x). Note thatf(s) should not be confused

with the previously definedf(u, s).

We definedQ(u | y,H) in (11) to be the conditional density of the above-definedU given the channel

outputY and the signal fadeH. Actually, in the sequel we find it convenient to relax this requirement and

considerF (q,Q) for arbitrary probability densitiesQ(u | y,H). However, the pairq andQ that maximizes

F (q,Q) will satisfy the requirement. In this we follow the example of [17].

For givenΣS, ΣX andΣS,X , let qG(u | s) andQG(u |y,H) denote the conditional densities corresponding

to the choice ofX that is jointly-Gaussian withS. Our objective is to show thatqG andQG maximizeF (q,Q).

6This definition is an adaptation of a similar definition by Heegard and El Gamal [17]
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F (q,Q) as defined in (11) is jointly-concave in its arguments. Thus we may wish to apply methods from the

theory of convex optimization to maximize it. Formally, we seek to solve the following constrained problem

max
q,Q

F (q,Q) subject to (12)
∫

s∈R
M

∫

u∈R
M
f(s)q(u | s)

[

f(u, s) · f(u, s)T
]

du ds = ΣX (13)
∫

s∈R
M

∫

u∈R
M
f(s)q(u | s)

[

s · f(u, s)T
]

du ds = ΣS,X (14)
∫

u∈R
M
q(u | s) du = 1 ∀s ∈ R

M (15)
∫

u∈R
M
Q(u | y,H) du = 1 ∀y ∈ R

N ,∀H ∈ RH (16)

Recall that Theorem 1 assumes a fixed setting. Thus, the matricesΣS,ΣS,X ,ΣX andF are assumed to be

given and fixed. The maximization is performed over the set ofdistributions corresponding to these matrices,

and our objective is to show that a Gaussian distribution is optimal. Optimization of the matrices themselves

is beyond the scope of this proof (such optimization will be discussed in Sec. IV-B).

(13) and (14) are derived from the conditionsΣX andΣS,X on the transmitted signalX. That is, recalling

thatX = f(U,S), they are equivalent to

E
[

X ·XT
]

= ΣX , E
[

S ·XT
]

= ΣS,X

To further simplify our analysis, we allow the argumentsq and Q of F (q,Q) to be arbitrary nonnegative

measurable functions. Constraints (15) and (16), compensate for this and ensure that the final result is a valid

conditional distribution. Functionsq andQ that satisfy constraints (13), (14), (15) and (16) are called feasible.

A straightforward approach to our optimization problem would appear to be to apply the Karush-Kuhn-

Tucker (KKT) conditions to find the global maximum. In reality, this is slightly more involved because

equations (15) and (16) involve an infinite number of constraints. Furthermore, the arguments ofF (q,Q) are

functions rather than vectors. In [26], the necessity of theKKT conditions was proven under certain conditions.

In this paper, we only require their sufficiency for convex functionals, which is easier to prove. Our proof is

tailored to the setting of our particular problem. We begin by defining Lagrange multipliers.

Definition 2: Let q, Q be two positive-valued7 feasible functions. Lagrange multipliers forq and Q are

matricesΓ,Υ ∈ R
M×M , and real-valued functionsα(s) : RM → R andβ(y,H) : RN ×RH → R such that,

∫

y∈R
N

∫

H∈RH

f(s)f(y,H | s,x = f(u, s))

[

log
Q(u | y,H)

q(u | s)
− 1

]

dH dy +

f(s) < Υ, f(u, s) · f(u, s)T > +f(s) < Γ, s · f(u, s)T > +α(s) = 0

∀s ∈ R
M ,∀u ∈ R

M (17)
∫

s∈R
M
f(s)f(y,H | s,x = f(u, s))

q(u | s)

Q(u | y,H)
ds+ β(y,H) = 0

∀u ∈ R
M ,∀y ∈ R

N ,∀H ∈ RH (18)

7The condition thatq andQ be positive-valued is required for the expressions that follow, which involve division byQ(u | y,H)

andq(u | s), to be valid.
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We say that two functionsq andQ admitLagrange multipliers if Lagrange multipliers that satisfyDefinition 2

exist for them.

To obtain some motivation for (17) and (18), consider the formal Lagrangian, defined as

L(q,Q; Υ,Γ, α, β)
∆
= F (q,Q)+ < Υ,E(q) > + < Γ,C(q) > +

∫

s∈R
M
α(s) ·

∫

u∈R
M
q(u | s) du ds+

+

∫

y∈R
N

∫

H∈RH

β(y,H) ·
∫

u∈R
M
Q(u | y,H) du dH dy (19)

whereE(q) andC(q) are matrix-valued functionals given by the left-hand-sideof (13) and (14). Formally

differentiatingL(q,Q; Υ,Γ, α, β) with respect toq(u |s) (for givenu ands) and comparing with zero, would

render (17). Similarly, differentiating with respect toQ(u |y,H) (for givenu,y andH), and comparing with

zero, would render (18). However, the integrals in (19) are defined over unbounded sets, making their rigorous

analysis difficult. We therefore prefer to avoid the use of (19), and rely on Definition 2 as the definition for

Lagrange multipliers.

We are now ready for the following lemma,

Lemma 1:Let q⋆ andQ⋆ be a pair of positive-valued feasible functions for the problem (12). Assume once

again thatQ⋆ is the marginal distribution ofU given y andH, when the distribution ofU is determined

from the densitiesf(s) andq⋆(u | s). If q⋆ andQ⋆ admit Lagrange multipliers, then they are a solution (i.e.,

achieve the global maximum) of (12).

A proof of Lemma 1 is provided in Appendix III. The proof is basically an application of well-known concepts

from convex optimization theory. The proof of Theorem 1 now focuses on showing that the above definedqG

andQG admit Lagrange multipliers. We begin by providing the expressions for these two densities.

Recall once more that the setting of the problem (see Definition 1) is fixed. That is, we assume thatΣS,

ΣS,X , ΣX andF are given and fixed. Also recall thatU is related toS andX throughU = FS +X and

that qG andQG correspond to a choice ofX that is jointly-Gaussian withS.

To obtainqG, we observe that sinceU andS are jointly-Gaussian, the conditional distribution ofU given

S is also Gaussian, with meanmU | S(s) and covarianceΣU | S given by (see e.g. [19]),

mU | S(s) = EU+Cov(U,S) · Σ−1
S · (s− ES)

ΣU | S = Cov(U)− Cov(U,S) · Σ−1
S · Cov(S,U)

Note that by our second regularity assumption (above), thatthe covariance of(U,S) is nonsingular (positive

definite), it follows thatΣU | S is also nonsingular8.

UsingU = FS+X andEU = ES = 0, we obtain,

mU | S(s) = Js, where J
∆
= (FΣS +ΣT

S,X)Σ−1
S (20)

ΣU | S = (FΣSF
T + FΣS,X +ΣT

S,XFT +ΣX)− (FΣS +ΣT
S,X)Σ−1

S (FΣS +ΣT
S,X)T (21)

8 To see this, assume by contradiction thatvΣU | Sv
T = 0 for some nonzero row vectorv. Thus, with probability 1 we would

havev ·U = v ·mU | S(S), and therefore, using (20),[v,−vJ ] · [UT ,ST ]T = 0. This would imply thatCov(U,S) is singular.
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Observe thatJ andΣU | S are fixed matrix functions of the matricesΣX , ΣS, ΣS,X andF that constitute the

problem setting. Hence,

qG(u | s) =
1

√

det(2πΣU | S)
exp(−

1

2
(u− Js)TΣ−1

U | S(u− Js)) s ∈ R
M ,u ∈ R

M , (22)

To obtainQG, we observe that for fixedH, the distribution ofU givenY is also Gaussian.

mU | Y,H(y,H) = E[U |H = H] + Cov(U,Y |H = H) · Cov(Y |H = H)−1 · (y − E[y |H = H])

ΣU | Y,H(H) = Cov(U |H = H)− Cov(U,Y |H = H) · Cov(Y |H = H)−1 · Cov(Y,U |H = H)

We now claim thatΣU | Y,H(H) is also nonsingular. This will be shown by proving thatΣU,Y |H(H) is positive

definite, i.e.

(αT ,βT )ΣU,Y |H(H)





α

β



 = E

{

(

αTU+ βTY
)2
|H = H

}

> 0 ∀(α,β) 6= 0 (23)

Now, by (6) and (9),

Y = H(−F+ I)S+HU+ Z

By our second regularity assumption, the covariance of(U,S) is nonsingular. It follows thatΣU is positive

definite. We thus conclude that (23) holds forβ = 0. If, on the other handβ 6= 0, then

E

{

(

αTU+ βTY
)2
|H = H

}

= E

{

(

αTU+ βT (H(−F+ I)S+HU)
)2
|H = H

}

+E

{

(

βTZ
)2
}

> 0

sinceZ is independent ofX, S andH, and its covariance,ΣZ , is nonsingular. This proves our claim.

Using similar arguments as in the above development ofqG, we obtain

mU | Y,H(y,H) = K(H)y

where,

K(H) =
[

(FΣS + FΣS,X +ΣT
S,X +ΣX)HT

] [

H(ΣS +ΣX +ΣS,X +ΣT
S,X)HT +ΣZ

]−1

and,

ΣU | Y,H(H) = (FΣSF
T + FΣS,X +ΣT

S,XFT +ΣX)−
[

(FΣS + FΣS,X +ΣT
S,X +ΣX)HT

] [

H(ΣS +ΣX +ΣS,X +ΣT
S,X)HT +ΣZ

]−1
×

[

(FΣS + FΣS,X +ΣT
S,X +ΣX)HT

]T
(24)

Observe thatK(H) andΣU | Y,H(H) are fixed matrix functions of the matrices that constitute the problem

setting, and ofH. Hence,

QG(u | y,H) =
1

√

det(2πΣU | Y,H(H))
exp(−

1

2
(u−K(H)y)TΣU | Y,H(H)−1(u−K(H)y))

y ∈ R
N ,H ∈ RH ,u ∈ R

M (25)
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We observe thatqG(u | s) is positive-valued for allu ∈ R
M and s ∈ R

M . Similarly, QG(u | y,H) is

positive-valued for allu ∈ R
M , y ∈ R

N andH ∈ RH , whereRH is the support region ofH. Therefore,

they satisfy this condition of Lemma 1. The conditions of Lemma 1 also require thatQG be the marginal

distribution of U given y and H, when the distribution ofU is determined from the densitiesf(s) and

qG(u | s). This is satisfied by definition.

We proceed by showing that the two functionsqG andQG admit Lagrange multipliers. Finding a Lagrange

multiplier β(y,H) to satisfy (18) is easy. As in the discussion following (47),we have
∫

s∈R
M
f(s)f(y,H | s,x = f(u, s))

qG(u | s)

QG(u | y,H)
ds = qG(y,H) ∀u ∈ R

M ,∀y ∈ R
N ,∀H ∈ RH

Thus, definingβ(y,H) = −qG(y,H), (18) is satisfied.

We now turn our attention to the other Lagrange multipliers and to (17). Letu and s be fixed and let

x
∆
= f(u, s). Simple manipulations of (17) lead to,

∫

y∈R
N

∫

H∈RH

f(y,H | s,x) logQG(u | y,H) dH dy −

−
∫

y∈R
N

∫

H∈RH

f(y,H | s,x) dH dy · [log qG(u | s) + 1] +

+ < Υ,x · xT > + < Γ, s · xT > +
α(s)

f(s)
= 0

We continue,
∫

y∈R
N

∫

H∈RH

f(y,H | s,x) logQG(u | y,H) dH dy − log qG(u | s)+ < Υ,x · xT > + < Γ, s · xT >

+

[

α(s)

f(s)
− 1

]

= 0 (26)

We begin by examining the first element in the above sum. This element is equal to,

EY,H [logQG(u |Y,H) |X = x,S = s] =

= −
1

2
EY,H

[

log det(2πΣU | Y,H(H)) | x, s
]

−
1

2
EY,H

[

(u−K(H)Y)TΣU | Y,H(H)−1(u−K(H)Y) | x, s
]

= −
1

2
EH

[

log det(2πΣU | Y,H(H))
]

−
1

2
EH

{

EY

[

(u−K(H)Y)TΣU | Y,H(H)−1(u−K(H)Y) | x, s,H
]}

(27)

We now focus on the contents of the braces. We useu = Fs+ x, Y = H(x+ s) + Z to obtain,

EY

[

(u−K(H)Y)TΣU | Y,H(H)−1(u−K(H)Y) | x, s,H
]

=

xT
[

(I −K(H)H)TΣU | Y,H(H)−1(I −K(H)H)
]

x+

+sT
[

(F −K(H)H)TΣU | Y,H(H)−1(F−K(H)H)
]

s+

2sT
[

(F−K(H)H)TΣU | Y,H(H)−1(I −K(H)H)
]

x+

+tr
[

K(H)TΣU | Y,H(H)−1K(H) + ΣZ

]
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Thus, we can rewrite (27) as,

xTAx+ sTBs+ sTCx+D =< A,x · xT > + < B, s · sT > + < C, s · xT > +D (28)

where,

A = −
1

2
EH

[

(I −K(H)H)TΣU | Y,H(H)−1(I −K(H)H)
]

(29)

B = −
1

2
EH

[

(F−K(H)H)TΣU | Y,H(H)−1(F−K(H)H)
]

(30)

C = −EH

[

(F−K(H)H)TΣU | Y,H(H)−1(I −K(H)H)
]

(31)

D = −
1

2
EH

[

log det(2πΣU | Y,H(H))
]

−
1

2
EH

{

tr
[

K(H)TΣU | Y,H(H)−1K(H) + ΣZ

]}

(32)

By the conditions of Theorem 1, the above expectations existand are finite. Turning to the second element

of the sum in (26) we obtain, using (22)

− log qG(u | s) =
1

2
log det(2πΣU | S) +

1

2
(u− Js)TΣ−1

U | S(u− Js) (33)

Applying a similar development to that of (27), we can rewrite (33) as,

< Â,x · xT > + < B̂, s · sT > + < Ĉ, s · xT > +D̂ (34)

where

Â =
1

2
Σ−1
U | S

B̂ =
1

2
(F− J)TΣ−1

U | S(F− J)

Ĉ = (F − J)TΣ−1
U | S

D̂ =
1

2
log det(2πΣU | S)

Using (28) and (34), we can rewrite (26) as,

< A+ Â+Υ,x · xT > + < B + B̂, s · sT > + < C + Ĉ + Γ, s · xT > +D + D̂ +

[

α(s)

f(s)
− 1

]

= 0

Finally, we may select our Lagrange multipliers for (17) as follows, completing the proof of Theorem 1.

Υ = −(A+ Â), Γ = −(C + Ĉ), α(s) = f(s)
[

1−D − D̂− < B + B̂, s · sT >
]

Note that with linear-assignment, whenX andS are jointly-Gaussian, the achievable rateI(U;Y,H) −

I(U;S) is a function of the setting (as defined in Definition 1). The expression for the achievable rate can

be computed as follows,

I(U;Y,H) − I(U;S) = h(U | S)− h(U |Y,H) =
1

2
log detΣU | S −

1

2
EH

[

log detΣU | Y,H(H)
]

(35)

The last equation is obtained from the following discussion. For fixeds, the marginal distribution ofU given

S = s is zero-mean Gaussian distributed with varianceΣU | S (which is given by (21) and is independent
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of s). For fixedy andH, the marginal distribution ofU given Y = y andH = H is zero-mean Gaussian

distributed with varianceΣU | Y,H(H) (which is given by (24) and is independent ofy but dependent onH).

Note that the achievability proof of Gel’fand and Pinsker [14], that states that we may indeed achieve the

rateI(U;Y;H)−I(U;S) assumes that the random variables involved are discrete-valued. In Appendix IV we

use quantization arguments to prove thatF (qG, QG), defined using (11) (which assumescontinuousrandom

variables), is indeed achievable.

IV. T HE L INEAR-ASSIGNMENT FADING-PAPER (LAFP) ACHIEVABLE REGION

A. Definition

In Sec. II-D we described how dirty-paper transmission methods can be used to construct an algorithm for

transmission over the non-fading MIMO-BC channel. The sameapproach can be used to construct an algorithm

for transmission over the fading MIMO-BC channel, using thelinear-assignment fading-paper transmission

methods of Sec. III.

In our approach, we rely on Theorem 1 and confine our attentionto Gaussian distributions for the signals

{Xl}
L
l=1, defined as in Sec. II-D. Our choice is greedy in the sense thatwe seek to maximize the rate to

each user individually, while a global perspective could possibly prescribe a different choice. However, a

similar choice in the definition of the dirty-paper achievable region was eventually proven to coincide with

the global optimum as well. We refer to the convex-hull of theunion of rate regions that are achievable using

this approach, as thelinear-assignment fading-paper(LAFP) achievable region.

The analysis of Weingartenet al. [30] does not apply to the fading setting. Furthermore, linear-assignments

have not been proven to exhaust the capacity of the fading-paper channel. Thus, unlike the dirty-paper

achievable region of Sec. II-D, the LAFP achievable region is not guaranteed to be optimal.

The determination of the dirty paper achievable region of Sec. II-D involves determining the covariance

matricesΣ(l)
X for the various signalsXl (see e.g. [6] and [29]). However, each signalXl is assumed to be

independent of the interferenceSl
∆
=
∑

i<l Xi, and Gaussian. In our above definition of the LAFP, we have not

restricted ourselves to signals{Xl}
L
l=1 that are independent of their respective interferences{Sl}

L
l=1. Thus, in

addition to determiningΣ(l)
X , it would appear that we must determine the covarianceΣ

(l)
X,S, betweenXl and

Sl as well.

However, the following theorem proves that we may indeed confine ourselves toΣ(l)
X,S = 0, without loss

of optimality.

Theorem 2:The LAFP achievable region is exhausted by a choice of randomvariables{Xl}
L
l=1 for the

various users that are independent of their respective interferences{Sl}
L
l=1

The proof of this theorem is provided in Appendix V.

Note that in this theorem we donot claim that for the given fading-paper problem observed by user

l, selectingXl to be independent ofSl incurs no loss of optimality. Rather, the proof involves replacing an
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entire given set of signalsX1, ...,XL, which may not be independent (corresponding to some set of achievable

rates on the LAFP achievable region) with a new setX̂1, ..., X̂L that are independent, without sacrificing the

rates of the individual users. In the resulting set, userl’s signal X̂l is indeed independent of̂Sl =
∑

i<l X̂i.

However, the independence was achieved also by altering thefading-paper problem this user faces.

B. Comparison with Dirty-Paper Transmission

So far, we have focused on similarities between the dirty-paper transmission over a fixed MIMO-BC and

LAFP transmission over a fading MIMO-BC channel. Both approaches use linear strategies, both employ

independently distributed Gaussian random variables to construct their signals to the receivers.

However, the two methods differ in two important ways.

1) The choice of the constant matrixF in dirty-paper transmission is based on the fixed channel matrix

H. With fading-paper, only the statistics ofH are known and thusF must be selected differently.

2) The fading-paper receiver accounts for a channel fadeH that fluctuates from one time instance to

another. The dirty-paper receiver assumes thatH is fixed. More precisely, the dirty paper decoder seeks

a codeword that is jointly typical withy, while the fading paper decoder seeks a codeword that is jointly

typical with bothy andH.

Despite these two shortcomings, dirty-paper transmissioncan still be applied to a fading-paper channel by

simply assuming thatH is fixed at its average, and treating its fluctuations as noise. For a fading paper

transmission strategy to be interesting, we must demonstrate that its performance surpasses that of dirty-paper

transmission.

An evaluation of the dirty-paper achievable region (i.e., when the transmitter and receiver assume that the

channel is fixed at its expected valueEH) over the fading MIMO-BC scheme is difficult. This is becauseof

the operation of the decoder, which uses a mismatched model of the channel. However, we may obtain an

outer bound on the dirty-paper achievable region if we replace the receiver with an optimal LAFP receiver

that uses the channel information available to it (unlike the standard dirty-paper receiver). In this case, the

achievable rate may be obtained from (35). With the dirty-paper achievable region, however, the matricesF

(for each instance ofΣX , ΣS andΣZ for the user) are not the optimal fading paper matrices, but rather are

computed using (5), under the assumption of a fixed channel matrix, equal toEH. Under these conditions,

the approach differs from LAFP only in the way the matrixF is selected.

We letFDPC(H) denote the choice ofF with dirty-paper transmission over a channel whose fixed channel

matrix is H. That is,FDPC(H) is a matrix function ofH, given by the right hand side of (5) (for brevity

of notation, we neglect the reliance ofFDPC(·) on ΣX andΣZ ). With this notation, the choice ofF that is

used in the above-mentioned dirty paper like transmission strategy isFDPC(EH).

Evaluating the LAFP region involves determining the union of the regions obtained for all matricesF.

Equivalently, it involves maximizing (35) overF (e.g. using a grid search) given the covariances ofX andS
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(note that by Theorem 2 we setΣS,X = 0). However, we obtained aninner bound by restricting our attention,

for eachΣX andΣZ to the set

F
∆
= { FDPC(H) : H ∈ RH } (36)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

 

 
LAFP inner bound
Dirty paper outer bound
Cooperative Bound

Fig. 1. Comparison between an inner bound on the LAFP achievable region and an outer bound on the dirty paper achievable region.

Fig. 1 presents a numerical example where the two approachesare compared. In this example, there are

two users (receivers). The transmitter has two antennas (M = 2) and the receivers have one antenna each

(N1 = N2 = 1). The power constraint isPTOT = 10. The distributions of the channel matrices are given by,

H(1) =

{

[1, 0.4] with probability 1/2

[1, 3] with probability 1/2
H(2) =

{

[0.4, 1] with probability 1/2

[3, 1] with probability 1/2

The noise variance at each receiver is1.

The achievable regions in both cases (i.e. LAFP and dirty-paper) were found by first applying a grid search

for the matricesΣ(1)
X andΣ(2)

X . In line with Theorem 2, we assumed without loss of optimality that the two

signalsX(1) andX(2) are independent.

For each such pairΣ(1)
X andΣ(2)

X , the matrixF for user 2 was computed as described above. That is, for

the LAFP achievable region,F was found by maximizing the achievable rate of user 2 over thesetF (which

is a function of the user’s covariance matrix9 Σ
(2)
X ). For the dirty-paper achievable region,FDPC(EH) was

used.

With both schemes, for fixed matricesΣ(1)
X , Σ(2)

X andF, the achievable ratesR1 andR2 for the two users

were computed as follows.R1 was obtained using the following expression (recall that user 1’s observed

9In the general case, where there are more than two users,F is also a function of
∑

l>2
Σ

(l)
X

, the unknown interference from

subsequent users, which must be accounted for in the effective noise as explained in Appendix VI.
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signalY (1) is scalar in this example),

R1 =
1

2
EH(1) log

(

1 +
H(1)Σ

(1)
X H(1)T

H(1)Σ
(2)
X H(1)T + 1

)

R2 is given by the right hand side of (35). Since we have assumedX(1) andX(2) to be independent, the

expressions forΣU | S and ΣU | Y,H(H) (which appear in (35)) are simple10. That is,ΣU | S = Σ
(2)
X and

ΣU | Y,H(H) is obtained from (24) by settingΣS,X to zero.

The maximal sum-rate on the dirty paper outer bound was 2.7 bits per channel use, while the maximum

sum-rate on the LAFP inner bound was 2.86. This achievable rate was obtained by selecting,

Σ
(1)
X =





1 2− ǫ

2− ǫ 4



 , Σ
(2)
X =





4.5 −1.5 + ǫ

−1.5 + ǫ 0.5



 , F =





1.0909 0.3636

−0.3636 −0.1212





where0 < ǫ→ 0 such thatΣ(1)
X andΣ(2)

X are positive definite. Thus, a simple approach, which uses knowledge

of the channel distribution at the transmitter, was able to produceat leasta 6% increase in throughput.

Although we have not established the optimality of the LAFP achievable region, we can obtain an idea

of how far we are from the optimum using a cooperative upper bound on the achievable sum-capacity (i.e.,

the maximum achievable sum rate to all users), as suggested by Sato [23]. The use of such a bound in the

context of the (non-fading) MIMO-BC channel was first suggested by Caire and Shamai [6]. Computation of

cooperative upper-bounds for the above fading MIMO-BC example is discussed in Appendix VII. We obtained

a bound of 3.17 on the maximum achievable sum-rate. Thus, in terms of the sum-rate, LAFP is capable of

transmission at rates that are 10% below the optimum.

In Appendix VI we will discuss the computation of the LAFP achievable region with more than two users.

V. CONCLUSION

A. Suggestions for Further Research

1) Heuristic methods for computing F. Expression (36), with which we computed the matrixF for the

LAFP region in Sec. IV-B, was developed heuristically. A different expression could possibly produce a

substantially larger achievable region. One option would be to search forF along a fine grid (as noted

in Sec. IV-B). An alternative option would be to apply a gradient ascent method, usingF as defined

in (36) as a starting point.

2) A wider range of strategies. The confinement to linear assignments as defined in Sec. III isin no

way known to be optimal. Dupuiset al. [11] suggested an algorithm that is based on the concepts

of the Blahut-Arimoto algorithm, that can theoretically beused to evaluate the capacity of a general

side-information channel (of which the fading paper channel is an instance). In practice, applying the

algorithm requires evaluations over a set ofstrategieswhich is impossibly large. However, applying

10In the context of our discussion,S = X(1), X = X(2) andZ has covarianceΣZ = 1. U = FS+X, as usual.
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the algorithm over any subset of these strategies produces an achievable rate. This achievable rate may

further narrow the gap to the cooperative upper-bound (as discussed in Sec. IV-B).

B. Concluding Remarks

The problem of transmitting over fading MIMO-BC channels isof great practical interest. In this paper we

presented an achievable region for this channel that relieson fading-paper transmission strategies. Our main

contribution is Theorem 1, which proves that a Gaussian distribution achieves the linear-assignment capacity.

We believe that the approach we developed in the proof of thattheorem, which employs convex-analysis

methods, could be useful in further analysis of this channel.

In Sec. IV-B we have shown that a simple approach, which makesuse of the channel distribution information

available to the transmitter, easily produces a gain over dirty-paper transmission. Further research (perhaps in

the lines of Sec. V-A) could produce further performance gains.

APPENDIX I

THE OPTIMAL ACHIEVABLE RATE WITH ZERO CHANNEL STATE INFORMATION AT THE TRANSMITTER

Consider a broadcast channel where all the receivers have the same number of antennas. We wish to show

that capacity in this case is achieved by time-sharing amongthe users.

A channel model that assumes zero knowledge of the channel fade to each of the users, effectively assumes

that all channels are the same. The signals at the different receivers are equivalent in their statistical properties,

and thus each receiver is capable, beside decoding its own signal, of decoding all the messages to the other

users as well. Thus, the sum-rate of this system is upper-bounded by the single-user rate of each of the users.

Such a capacity region is exhausted by time-sharing.

APPENDIX II

THE OPTIMAL MATRIX F IN THE ACHIEVABILITY PROOF FORDIRTY-PAPER

In this appendix we prove the optimality ofF as defined by (5). We letU andX be defined as in the

discussion preceding (5). The achievable rate with this choice is given byI(U;Y) − I(U,S) (see (4)). We

now seek to prove that this rate coincides with the capacity of the corresponding no-interference channel

defined by (3). Our proof follows in the lines of a similar proof by Cohen and Lapidoth [6] for the scalar

dirty-paper channel.

To obtain our result, we prove a stronger result. We prove that for any choice ofΣX , letting F be given

by (5), we obtain that the achievable rate coincides with theachievable rateI(X; Ŷ) for the no-interference

channel (3).

Our objective is to show that the achievable rateI(U;Y)− I(U,S), with this choice ofF, coincides with

the achievable rate of the no-interference channel when theinput X is distributed asN (0,ΣX).
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Let X̂ = WŶ be the linear minimum mean-square error (LMMSE) estimate for X givenŶ. W is obtained

by [19],

W = Cov(X, Ŷ)Cov(Ŷ)−1 = ΣXHT (HΣXHT +ΣZ)
−1 (37)

By definition of the LMMSE estimate, the errorE ∆
=X−X̂ is uncorrelated witĥY. SinceE andŶ are jointly-

Gaussian, they are also independent.S is independent of both, and thusE is independent ofY = Ŷ +HS.

ExaminingI(U;Y) − I(U,S), we have

I(U;Y)− I(U,S) = h(U | S)− h(U |Y) (38)

We now examine both elements of the difference on the right hand side of the above.

h(U | S) = h(FS+X | S) = h(X) (39)

where the last equation is obtained by the fact thatS andX are independent.

h(U |Y) = h(FS+X |Y)
(a)
= h(WHS+X |Y)

= h(WHS+X−WY |Y) = h(WHS+X−W(HS+HX+ Z) |Y)

= h(X−W(HX+ Z) |Y) = h(X− X̂ |Y) = h(E |Y)
(b)
= h(E)

(c)
= h(E | Ŷ)

= h(X−WŶ | Ŷ) = h(X | Ŷ) (40)

Equality (a) is obtained from the observation that the righthand side of (5) equalsW ·H whereW is given

by (37). Equalities (b) and (c) are obtained from the fact that E is independent of̂Y andY. Finally, combining

(38), (39) and (40) we obtain our desired result,

I(U;Y)− I(U,S) = h(X) − h(X | Ŷ) = I(X; Ŷ)

APPENDIX III

PROOF OFLEMMA 1

Let q andQ be a pair of feasible functions for (12). We will now show thatF (q,Q) ≤ F (q⋆, Q⋆).

F (q,Q)− F (q⋆, Q⋆) =

∫

s∈R
M

∫

u∈R
M

∫

y∈R
N

∫

H∈RH

f(s)f(y,H | s,x = f(u, s)) ·

·

[

q(u | s) log
Q(u | y,H)

q(u | s)
− q⋆(u | s) log

Q⋆(u | y,H)

q⋆(u | s)

]

dH dy du ds (41)

Let l(x, y)
∆
= x · log(y/x). This function is jointly-concave in its arguments. By the gradient inequal-

ity [4][Chapter 3, Section 3.1.3] for concave functions, wehave for arbitraryx, y ∈ R+ andx⋆, y⋆ ∈ R++,

l(x, y)− l(x⋆, y⋆) ≤ lx(x
⋆, y⋆) · (x− x⋆) + ly(x

⋆, y⋆) · (y − y⋆)
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wherelx andly denote the partial derivatives ofl with respect tox andy, respectively. Thus, we can bound (41)

by,

F (q,Q)− F (q⋆, Q⋆) ≤
∫

s∈R
M

∫

u∈R
M

∫

y∈R
N

∫

H∈RH

f(s)f(y,H | s,x = f(u, s)) ·

· [lx(q
⋆(u | s), Q⋆(u | y,H)) · (q(u | s)− q⋆(u | s)) +

+ ly(q
⋆(u | s), Q⋆(u | y,H)) · (Q(u | y,H)−Q⋆(u | y,H))] dH dy du ds (42)

In the development below, we will show that this integral equals zero. This will then conclude the proof of

the lemma.

To prove this, we will show that the two integrals below equalzero. For simplicity of notation, we letq

andQ denoteq(u | s) andQ(u | y,H), respectively.

∫

s∈R
M

∫

u∈R
M

∫

y∈R
N

∫

H∈RH

f(s)f(y,H | s,x = f(u, s)) · lx(q
⋆, Q⋆) · (q − q⋆) dH dy du ds = 0 (43)

∫

s∈R
M

∫

u∈R
M

∫

y∈R
N

∫

H∈RH

f(s)f(y,H | s,x = f(u, s)) · ly(q
⋆, Q⋆) · (Q−Q⋆) dH dy du ds = 0 (44)

We first prove (43). Multiplying (17) byq − q⋆, and using the fact thatlx(x, y) = log(y/x)− 1, we get

[
∫

y∈R
N

∫

H∈RH

f(s)f(y,H | s,x = f(u, s))lx(q
⋆, Q⋆) dH dy

]

(q − q⋆) +

[

f(s) < Υ, f(u, s) · f(u, s)T >
]

(q − q⋆) +
[

f(s) < Γ, s · f(u, s)T >
]

(q − q⋆) + α(s)(q − q⋆) = 0

∀s ∈ R
M ,∀u ∈ R

M

Integrating the above with respect tou ands would yield zero. We now focus on the integrals of the individual

elements of the above sum. The first integral is equal to the left hand side of (43). To prove this integral is

zero, we will show that the other integrals are zero. This will yield (43).

We first integrate with respect tou and thens. The order of integration matters, because the range of

the integration is unbounded, and some of the integrands arenot non-negative and not necessarily Lebesgue-

integrable (i.e., the integral of their absolute value may be infinite).

∫

s∈R
M

∫

u∈R
M

[

f(s) < Υ, f(u, s) · f(u, s)T >
]

(q − q⋆) du ds

=< Υ,

∫

s∈R
M

∫

u∈R
M
f(s)

[

f(u, s) · f(u, s)T
]

· q du ds

−
∫

s∈R
M

∫

u∈R
M
f(s)

[

f(u, s) · f(u, s)T
]

· q⋆ du ds >

=< Υ,ΣX − ΣX >= 0

The equality before last results from (13) and from the feasibility of the functionsq andq⋆. In a similar way,

using (14), we obtain that,

∫

s∈R
M

∫

u∈R
M

[

f(s) < Γ, s · f(u, s)T >
]

(q − q⋆) du ds = 0
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Finally, we examine the last integral.
∫

s∈R
M

∫

u∈R
M
α(s)(q − q⋆) du ds =

∫

s∈R
M
α(s)

[
∫

u∈R
M
q du−

∫

u∈R
M
q⋆ du

]

ds

=

∫

s∈R
M
α(s) [1− 1] ds = 0

The equality before last results from (15). Thus, we obtain (43).

Similarly, relying on (18) and (16), we obtain,
∫

y∈R
N

∫

H∈RH

∫

u∈R
M

∫

s∈R
M
f(s)f(y,H | s,x = f(u, s)) · ly(q

⋆, Q⋆) · (Q−Q⋆) ds du dH dy = 0 (45)

The order of integration, unfortunately, is not that of (44). To prove that we may change the order of integration,

we must prove that the integrand is Lebesgue-integrable (Fubini’s Theorem, see e.g. [2][Theorem 18.3]). To

do this, we will prove that
∫

y∈R
N

∫

H∈RH

∫

u∈R
M

∫

s∈R
M
f(s)f(y,H | s,x = f(u, s)) · ly(q

⋆, Q⋆) ·Q ds du dH dy <∞ (46)

Since the integrand in the above is nonnegative, this would yield that it is integrable. SinceQ is arbitrary, the

same would apply if we replace it withQ⋆. The integrand in (45), which is not necessarily nonnegative, is

thus also integrable because it is obtained by subtracting the integrand in (46) by the same expression, with

Q replaced byQ⋆.

Using ly(x, y) = x/y, we may rewrite the left hand side of (46) as
∫

y∈R
N

∫

H∈RH

∫

u∈R
M

∫

s∈R
M
f(s)f(y,H | s,x = f(u, s)) ·

q⋆

Q⋆
·Q ds du dH dy

=

∫

y∈R
N

∫

H∈RH

∫

u∈R
M

Q

Q⋆
·

[∫

s∈R
M
f(s)f(y,H | s,x = f(u, s)) · q⋆ ds

]

du dH dy (47)

The inside of the brackets is equal toq⋆(y,H,u), defined to equal the marginal density ofY, H and U

where the distribution ofU givenS is determined by the densityq⋆. Similarly definingq⋆(y,H), we obtain

by the conditions of Lemma 1, thatq⋆(y,H,u) = q⋆(y,H) ·Q⋆(u | y,H). Thus, (47) becomes,
∫

y∈R
N

∫

H∈RH

∫

u∈R
M

Q

Q⋆
· q⋆(y,H) ·Q⋆ du dH dy =

∫

y∈R
N

∫

H∈RH

q⋆(y,H)

∫

u∈R
M
Q du dH dy

=

∫

y∈R
N

∫

H∈RH

q⋆(y,H) · 1 dH dy = 1 <∞

Thus, by the above discussion, the order of integration in (45) can be changed, and we obtain (44). Coupled

with (43), this proves that the right hand side of (42) is zero, concluding the proof of the lemma.

APPENDIX IV

THE ACHIEVABILITY OF F (qG, QG)

The random variablesU,S,Y,H that achieve the LAFP capacity are continuous. In practice one can only

realize the Gelfand-Pinsker capacity of a setÛ, Ŝ, Ŷ, Ĥ of discrete random variables. We now show that

U,S,Y,H can be quantized to a set̂U, Ŝ, Ŷ, Ĥ of discrete random variables that can approach the LAFP
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capacity arbitrarily close. The LAFP capacity is given byRachievable = F (qG, QG) whereF (q,Q) is defined

by (11).

We create a quantized version as follows. LetBn(c, d) denote a cube inRn with centerc and size length

d, i.e.,

Bn(c, d) = {(x1, x2, . . . , xn) : c− d/2 < xi ≤ c+ d/2, i = 1, . . . , n}

We define discrete random variablesŜ, Û, Ŷ, Ĥ which are quantized versions ofS,U,Y,H, respectively,

as follows. Recall thatM andN are the dimensions ofS andY, respectively. The dimension ofH is thus

M × N . Fix someǫ > 0 sufficiently small, andρ > 0 sufficiently large. Letsi, i = 1, . . . , Ns denote all

the points inRM , such thatsi ∈ BM(0, ρ) and such that all the coordinates ofsi are integer multiples ofǫ.

Similarly, let uj, j = 1, . . . , Nu, yk, k = 1, . . . , Ny andHl, l = 1, . . . , Nh denote all the points inRM , RN

andRH , such thatuj ∈ BM (0, ρ), yk ∈ BN (0, ρ) andHl ∈ BMN (0, ρ), and such that all the coordinates of

uj , yk andHl are integer multiples ofǫ.

We define bySi, i = 0, 1, . . . , Ns the following regions,

Si =







R
M ⋂

BM (si, ǫ), if i = 1, 2, . . . , Ns;

R
M \

[

⋃Ns

i=1 BM(si, ǫ)
]

, if i = 0.

Similarly we define

Uj =







R
M ⋂

BM (uj , ǫ), if j = 1, 2, . . . , Nu;

R
M \

[

⋃Nu

j=1 BM(uj , ǫ)
]

, if j = 0.

Yk =







BN (yk, ǫ), if k = 1, 2, . . . , Ny;

R
N \

⋃Ny

k=1 BN (yk, ǫ), if k = 0.

and

Hl =







RH
⋂

BMN (Hl, ǫ), if l = 1, 2, . . . , Nh;

RH \
⋃Nh

l=1 BMN (Hl, ǫ), if l = 0.

The quantized random variablêS is defined as follows:̂S = i if S ∈ Si. The quantized random variableŝU,

Ŷ andĤ are defined similarly. The joint probability of̂S, Û, Ŷ, Ĥ is,

P
(

Ŝ = i, Û = j, Ŷ = k, Ĥ = l
)

=
∫

s∈Si

∫

u∈Uj

∫

y∈Yk

∫

H∈Hl

f(s)f(y,H | s,x = (s,u))qG(u | s) dH dy du ds

The Gelfand-Pinsker achievable rate corresponding to the quantized random variables is,

R̂ =
∑

i,j,k,l

P
(

Ŝ = i, Û = j, Ŷ = k, Ĥ = l
)

log
P (Û = j | Ŷ = k, Ĥ = l)

P (Û = j | Ŝ = i)
(48)

We claim thatR̂ = Rachievable + oǫ,ρ(1) whereoǫ,ρ(1) is a term that approaches0 as ǫ→ 0 andρ→∞.
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To see this, first note that whens ∈ S0 or u ∈ U0 or y ∈ Y0 or H ∈ H0, the contribution toF (qG, QG)

in (11) approaches0 as ρ → ∞. In addition, log QG(u | y,H)
qG(u | s) is uniformly continuous in the regions ∈ S0,

u ∈ U0, y ∈ Y0, H ∈ H0. Hence,

F (qG, QG) =
∑

i 6=0,j 6=0,k 6=0,l 6=0

P
(

Ŝ = i, Û = j, Ŷ = k, Ĥ = l
)

log
QG(uj | yk,Hl)

qG(uj | si)
+ oǫ,ρ(1)

In addition, by the uniform continuity of the Gaussian distribution in the regions ∈ S0, u ∈ U0, y ∈ Y0,

H ∈ H0,

P (Û = j | Ŷ = k, Ĥ = l)

QG(uj | yk,Hl)
= 1 + oǫ,ρ(1)

and

P (Û = j | ŝ = i)

qG(uj | si)
= 1 + oǫ,ρ(1)

Finally by arguments similar to those indicated above, the contribution of terms withi = 0 or j = 0 or

k = 0 or l = 0 in (48) is negligible.

Hence we obtained the desired claim thatR̂ = Rachievable + oǫ,ρ(1).

APPENDIX V

PROOF OFTHEOREM 2

Our approach is the following. We begin with an assignment ofvariables for the LAFP achievable region.

This means a set of variablesX1,...,XL that are not necessarily independent. A set of matricesF1, ...,FL

and a set of auxiliary random variablesUl = FlSl + Xl whereSl = Σi<lXi. Recall that in our current

context,X = X1 + ...+XL denotes the transmitted symbol of the MIMO-BC channel, while Xl denotes the

transmitted signal to userl, equivalent toX as in Sec. III-B.

We will construct an alternative set of independent random variablesX̂1, ...X̂L and F̂1, ..., F̂L such that

the transmitted signal̂X ∆
= X̂1 + ... + X̂L = X1 + ... + XL = X. Thus, the distribution of the actual

transmitted signal is unchanged and satisfies the power constraint. Furthermore, we show that for similarly

definedÛl = F̂lŜl + X̂l and Ŝl = Σi<lX̂i, the achievable rates satisfŷRl ≥ Rl, where

R̂l
∆
= I(Ûl;Yl,Hl)− I(Ûl; Ŝl), Rl = I(Ul;Yl,Hl)− I(Ul;Sl)

A. Definition ofX̂1, ..., X̂L

For eachl = 1, ..., L, using Gram-Schmidt orthogonalization,Xl can be written asXl = ΓlSl +X′
l where

Γl is a matrix and whereSl andX′
l are uncorrelated. Therefore, since we have assumed, in our definition

of the LAFP region in Sec. IV-A, that all variables are jointly Gaussian, they are independent. With this
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definition,

X = SL +XL = (I + ΓL)SL +X′
L

= (I+ ΓL) [SL−1 +XL−1] +X′
L = (I+ ΓL)

[

(I+ ΓL−1)SL−1 +X′
L−1

]

+X′
L

...

= (I+ ΓL) · ... · (I+ Γ2)X
′
1 + (I + ΓL) · ... · (I+ Γ3)X

′
2 + ...+ (I+ ΓL)X

′
L−1 +X′

L

We thus definêXl = GlX
′
l whereGl = (I+ ΓL) · ... · (I+ Γl+1) l = 1, ..., L− 1, GL = I. By construction,

∑L
l=1 X̂l = X =

∑L
l=1Xl, as desired.

The following lemma summarized some properties of our random variables.

Lemma 2:For all l = 1, ..., L,

1) X̂l is independent ofX1, ...,Xl−1.

2) X̂l is independent ofS1, ...,Sl.

3) X̂l is independent of̂X1, ..., X̂l−1.

4) Ŝl = Gl−1Sl

Proof: To prove property 1, observe that the following Markov relations hold:X1, ...,Xl−1 ←→ Sl ←→

Sl,Xl ←→ X̂l. X̂l, by construction, is independent ofSl. It is thus straightforward to verify, using this Markov

relation, that it is also independent ofX1, ...,Xl−1. To obtain properties 2 and 3, observe thatS1, ...,Sl and

X̂1, ..., X̂l−1 are functions ofX1, ...,Xl−1 and thus are independent ofX̂l.

The last property is easily obtained by induction. Forl = 1,

Ŝ1 =
∑

i<1

X̂i = 0 =
∑

i<1

Xi = S1

The rest is obtained by the following induction:

Ŝl+1 = Ŝl + X̂l = Gl−1Sl +GlX
′
l = Gl(I + Γl)Sl +GlX

′
l = Gl

[

(I + Γl)Sl +X′
l

]

= Gl

[

Sl + ΓlSl +X′
l

]

= Gl [Sl +Xl] = GlSl+1

B. Definition ofF̂1, ..., F̂L

We have not yet defined̂Fl. To do so, we first considerGl ·Ul. By the definition ofUl

Gl ·Ul = Gl[FlSl +Xl] = Gl[(Fl + Γl)Sl +X′
l] = Gl(Fl + Γl)Sl + X̂l (49)

where the last inequality was obtained by the definition ofX̂l, above. Using Gram-Schmidt orthogonalization,

Sl can be written asSl = Bl · Ŝl+Dl whereBl is a matrix andDl is uncorrelated witĥSl. Since the variables

are jointly Gaussian,Dl is also independent of̂Sl. We proceed

Gl ·Ul = Gl(Fl + Γl)[BlŜl +Dl] + X̂l

= Gl(Fl + Γl)BlŜl + X̂l +Gl(Fl + Γl)Dl (50)
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We defineF̂l = Gl(Fl + Γl)Bl.

C. Proof ofR̂l > Rl

Recall thatÛl = F̂lŜl + X̂l. To proveR̂l > Rl, we first define an intermediate auxiliary variablẽUl =

Gl ·Ul. SinceŨl is a function ofUl, we have

Rl = I(Ũl,Ul;Yl,Hl)− I(Ũl,Ul;Sl)

= H(Ũl,Ul | Sl)−H(Ũl,Ul |Yl,Hl)

= H(Ũl | Sl)−H(Ũl |Yl,Hl) +H(Ul | Ũl,Sl)−H(Ul | Ũl,Yl,Hl)

=
[

H(Ũl | Sl)−H(Ũl |Yl,Hl)
]

+
[

I(Ul; Ũl,Yl,Hl)− I(Ul; Ũl,Sl)
]

We now wish to show that the contents of the second brackets are non-positive. For this purpose, we will show

that the following Markov relations hold:Ul ←→ Ũl,Sl ←→ Ũl, X̂l, Ŝl ←→ Ũl,X ←→ Ũl,Yl,Hl. The

desired result will then follow from the first and last Markovrelations, using the data processing inequality.

The second relation (first Markov triple) follows from the fact thatX̂l and Ŝl may be determined from̃Ul

andSl by means of deterministic functions:̂Xl through (49), and̂Sl, by Lemma 2 satisfieŝSl = Gl−1Sl. For

the third relation, observe thatX = Ŝl + X̂l +
∑

i>l X̂i. By the above definition all{X̂i}i>l, are independent

of Ul, Ũl, Ŝl,Sl andX̂l. Therefore this Markov relation holds. The last Markov relation is straightforward.

We thus have,

Rl ≤ H(Ũl | Sl)−H(Ũl |Yl,Hl) (51)

Examining the first element of the above difference, we obtain:

H(Ũl | Sl) = H(Gl(Fl + Γl)Sl + X̂l | Sl) = H(X̂l | Sl) = H(X̂l) = H(X̂l | Ŝl) = H(F̂lŜl + X̂l | Ŝl)

= H(Ûl | Ŝl) (52)

where the first equality follows from the definition of̃Ul and from (49). The third equality follows from the

independence of̂Xl andSl and the fourth from the independence ofX̂l and Ŝl.

Examining the second element of (51), we have

H(Ũl |Yl,Hl) = H(Ûl +Gl(Fl + Γl)Dl |Yl,Hl) ≥ H(Ûl +Gl(Fl + Γl)Dl |Yl,Hl,Dl)

= H(Ûl |Yl,Hl,Dl) = H(Ûl |Yl,Hl) (53)

The first equality follows from (50) and the definitions ofŨl, Ûl andF̂l. The inequality results from the fact

that conditioning cannot increase the entropy. To prove thelast equality, we wish to show thatDl andÛl are

independent, givenYl andHl.

Ûl is a function ofŜl andX̂l. Therefore, it suffices to show thatDl is independent of these two random

variables, givenYl and Hl. Dl is independent of̂Sl by construction. In addition,̂Xl is independent of
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Sl, Ŝl and Dl, becauseDl is a function ofSl and of Ŝl, where Ŝl = Gl−1Sl (by Lemma 2), andX̂l

is independent ofSl (again, by Lemma 2). Therefore,Dl is independent of̂Sl and X̂l. To show that the

independence is maintained even when we condition byYl andHl, we prove the following Markov chain

relationDl ←→ Ŝl, X̂l ←→ Ŝl, X̂l, ...X̂L ←→ X←→ Hl,Yl. The second relation (first Markov triple) holds

because the random variableŝXl+1, ..., X̂L are independent of̂Sl and of X̂l by Lemma 2, and ofDl, by

virtue of it being a function of̂Sl andSl. The third relation holds becauseX = Ŝl + X̂l + ... + X̂L. The

fourth relation holds becauseYl = HlX+ Zl andHl andZl are independent of the other random variables

Dl, Ŝl, X̂l, ...X̂L,X.

Combining (51), (52) and (53) we obtain,

Rl ≤ H(Ûl | Ŝl)−H(Ûl |Yl,Hl) = I(Ûl;Yl,Hl)− I(Ûl; Ŝl) = R̂l

This completes the proof.

APPENDIX VI

COMPUTING THE LAFP ACHIEVABLE REGION WHEN THE NUMBER OF USERS ISGREATER THAN TWO

In Sec. IV-B we considered the computation of the LAFP achievable region over a fading MIMO-BC

channel where the number of users is two. In this appendix we briefly consider the case of more than two

users. To obtain the LAFP achievable region, we could again (as in Sec. IV-B) apply a grid search to obtain

{Σ
(l)
X }

L
l=1. A straightforward approach would be to compute, for each choice of such matrices, the achievable

rates for each of the individual users by selecting the matricesF, for each user (except for the first who does

not have an associatedF matrix) so as to maximize (35). However, the computational complexity of such an

approach would grow exponentially with the number of users.

The following observation can be used to reduce the number ofcomputations. The achievable rate for

user l is a function ofΣ(l)
X (the covariance matrix of its transmitted signalXl), of Σ

(l)
S

∆
=
∑

i<l Σ
(i)
X (the

covariance matrix of the interferenceSl =
∑

i<l Xi) andΣ
(l)
Z

∆
=
∑

i>l HΣ
(i)
X HT + I (the covariance matrix

of the effective noiseZl = H
∑

i>l Xi + Z). Thus, the achievable rate for userl needs to be computed only

once for each of the possible choices ofΣ
(l)
S , Σ(l)

X andΣ(l)
Z , and not for each choice of{Σ(i)

X }
L
i=1. A dynamic-

programming algorithm that relies on this observation can dramatically reduce the number of computations.

This approach is useful when the number of transmit antennasand the number of receive antennas of each user

is small (the number of users can be large). Otherwise we can resort to suboptimal methods for computing

the transmit covariances{Σ(l)
X }

L
l=1 (and theF matrices), e.g. using gradient descent or alternate maximization

that maximizes the sum rate with respect to twoΣ
(l)
X -s at a time, while fixing the otherΣ(l)

X -s.

APPENDIX VII

COMPUTING A COOPERATIVE UPPER-BOUND IN OUR SETTING

Sato’s upper bound [23] on the sum rate capacity (the maximumachievable sum-rate) of a broadcast channel

relies on two observations:
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1) A fundamental assumption in the broadcast channel model is that the users are not able to cooperate in

their decoding. Consider a virtual channel where the users are allowed to cooperate. The sum capacity in

this channel is clearly an upper bound on the sum rate capacity of the true channel. Such a cooperative

model is equivalent to transmission to a single virtual user, to whom all the outputs of the broadcast

channel users are made available.

2) The capacity region of a broadcast channel depends not on the joint distribution

Pr(Y1,H1, ...,YL,HL | X) but on the marginal distributionsPr(Y1,H1 | X), ...,Pr(YL,HL | X)

alone. Thus, we may alter our model by introducing correlation between the noise signals and channel

matrices of different users. As long as the marginal statistics of the individual channels to each of the

users stay the same, the resulting broadcast channel’s capacity region will remain unchanged. However,

introducing correlationscould alter (and tighten) the above-mentioned cooperative upperbound.

Note that with any valid choice of correlation that we chooseto introduce, the maximum cooperative sum-rate

produces an upper bound on the broadcast channel’s sum-ratecapacity. We refer to such an upper bound as

a cooperativeupper bound. The Sato upper bound is the tightest such bound.

Consider the channel to the virtual single user corresponding to the fading MIMO-BC example of Sec. IV-B.

This user will observe a virtual channel matrix and a virtualnoise defined as,

H =





H(1)

H(2)



 and Z =





Z(1)

Z(2)





Our above discussion implies that we may freely introduce correlations as long as we do not alter the statistics

of the channel observed by each of the individual users. We may thus introduce a correlation between the

two noise signalsZ(1) andZ(2), following the examples of [6] and [29]. We may also introduce correlation

between the two channel matricesH(1) andH(2). Furthermore, we may introduce correlation between the

channel matrix of one user and the noise of the other.

The possible values forH are,

H ∈







H1 =





1 0.4

0.4 1



 ,H2 =





1 0.4

3 1



 ,H3 =





1 3

0.4 1



 ,H4 =





1 3

3 1











Let p(H) denote the probability assignment to each of the above matrices. To preserve the marginal statistics

of the channel to each of the individual users, we require that p(H) satisfy the following constraints,

p(H1) + p(H2) =
1

2

p(H1) + p(H3) =
1

2

Furthermore, forp(H) to be a valid probability assignment, it must satisfy,

p(H1) + p(H2) + p(H3) + p(H4) = 1
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The constraints imply thatp(H) is completely described byα ∆
=p(H1). That is, for anyα ∈ [0, 1/2], we have

p(H1) = p(H4) = α, p(H2) = p(H3) =
1

2
− α

One way to introduce correlation between the various noise elements is to follow the approach of [6]. That

is, introduce a correlation coefficientρ ∈ (−1, 1) and consider a virtual noiseZ whose covariance matrix is,

Cov(Z) =





1 ρ

ρ 1





However, a more general approach would introduce correlation between the virtual noise and the above virtual

channel matrix in the following way: We will considerfour correlation coefficientsρ1, ρ2, ρ3, ρ4 such that,

Cov(Z |H = Hi) =





1 ρi

ρi 1



 i = 1, ..., 4

The channel noise observed by each of the users remains distributed asN (0, 1). Furthermore, each of the

individual realizations ofZ(1) andZ(2) remains independent of the respective channel matricesH(1) andH(2).

Thus, the marginal statistics of the channels to each of the individual users remain unchanged, as desired.

The capacity of the channel to the virtual user is now obtain by taking the maximum of,

I(X;Y,H) = I(X;H) + I(X;Y |H) = I(X;Y |H) =
4
∑

i=1

p(Hi)I(X;Y |H = Hi)

The first equality is obtained by the chain rule for mutual information, and the second by the independence

of X andH. The distribution that maximizes the above is clearly Gaussian. Thus,

C = max
ΣX

4
∑

i=1

p(Hi)
1

2
log det

(

I+ Λ
−1/2
i HiΣXHT

i Λ
−1/2
i

)

(54)

whereΛi
∆
=Cov(Z |H = Hi).

We may now numerically obtain a cooperative upper bound in the following way. We consider all choices of

α, ρ1, ..., ρ4 along a fine grid. For each such choice, we evaluate (54) by applying semidefinite programming

to determine theΣX that achieves the maximum. Each choice ofα, ρ1, ..., ρ4 produces a cooperative bound.

We conclude by selecting the lowest (tightest) bound11.

In our numerical results (as presented in Sec. IV-B), the tightest bound was obtained by settingα = 0 and

ρ1 = ρ2 = ρ3 = ρ4 = 0.3. Thus, the tightest bound was obtained with a limited exploitation of the available

degrees of freedom in the above approach.
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