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Abstract

This paper is devoted to the finite-length analysis of turbo decoding over the binary erasure channel (BEC).

The performance of iterative belief-propagation (BP) decoding of low-density parity-check (LDPC) codes over the

BEC can be characterized in terms ofstopping sets. We describe turbo decoding on the BEC which is simpler

than turbo decoding on other channels. We then adapt the concept of stopping sets to turbo decoding and state an

exact condition for decoding failure. Apply turbo decodinguntil the transmitted codeword has been recovered, or the

decoder fails to progress further. Then the set of erased positions that will remain when the decoder stops is equal

to the unique maximum-sizeturbo stopping setwhich is also a subset of the set of erased positions. Furthermore,

we present some improvements of the basic turbo decoding algorithm on the BEC. The proposed improved turbo

decoding algorithm has substantially better error performance as illustrated by the given simulation results. Finally,

we give an expression for the turbo stopping set size enumerating function under the uniform interleaver assumption,

and an efficient enumeration algorithm of small-size turbo stopping sets for a particular interleaver. The solution is

based on the algorithm proposed by Garelloet al. in 2001 to compute an exhaustive list ofall low-weight codewords

in a turbo code.

Index Terms

Binary erasure channel, improved decoding, stopping set, turbo decoding, uniform interleaver, weight spectrum.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes as opposed to turbo codes have been studied extensively on the binary

erasure channel (BEC). In [1], an iterative decoding algorithm for LDPC codes over the BEC was proposed, and it

was shown that this scheme approaches channel capacity arbitrarily close. Although carefully optimized irregular

LDPC codes with iterative decoding can achieve channel capacity on the BEC as the code length tends to infinity,
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there is still some performance loss compared to maximum-likelihood (ML) decoding of a given fixed code of finite

length. Recently, some progress has been made towards efficient ML or near ML decoding of LDPC codes over

the BEC [2]–[4]. The Tanner graph representation of an LDPC code is a bipartite graph with left and right nodes.

The left nodes correspond to codeword bits. The right nodes correspond to parity-check constraints. It is known

that iterative belief-propagation (BP) decoding fails if and only if the set of erased bit-positions contains astopping

set [5]. A stopping set is a subset of the bit-positions such thatthe corresponding left nodes in the Tanner graph

have the property that all neighboring nodes are connected to the set at least twice.

In this work we consider turbo decoding over the BEC. Turbo codes have gained considerable attention since their

introduction by Berrouet al. [6] in 1993 due to their near-capacity performance and low decoding complexity. Here

we consider the conventional turbo code which is the parallel concatenation of two identical recursive systematic

convolutional encoders separated by a pseudo-random interleaver. To accurately describe turbo decoding on the

BEC we introduce the concept of aturbo stopping set, and we identify an exact condition for decoding failure.

Assume that we transmit codewords of a turbo code over the BEC. Apply turbo decoding until either the codeword

has been recovered, or the decoder fails to progress further. Then the set of erased positions that will remain when

the decoder stops is equal to the unique maximum-size turbo stopping set which is also a subset of the set of

erased positions. We also consider improved turbo decodingon the BEC. The algorithm applies turbo decoding

until the transmitted codeword is recovered, or the decoderfails to progress further. Then, an unknown (systematic)

bit-position is identified and its value is guessed, after which turbo decoding is applied again. Thus, the algorithm

is based on guessing bit-values in erased bit-positions when turbo decoding does not progress further and has the

samestructureas the algorithms in [4].

Recently, several algorithms have been introduced to compute the first few terms of the weight distribution of

both parallel and serial turbo codes. Both exact algorithms(e.g., [7]–[9]) and approximate algorithms (e.g., [10]–

[12]) have been presented. In this work we also show that basically all trellis-basedalgorithms can be adapted to

find the first few terms of the turbo stopping set size enumerating function. In particular, we have considered in

detail how to adapt the algorithm by Garelloet al. introduced in [8] and the improved algorithm in [7]. Also, an

expression for the (average) turbo stopping set size enumerating function under the uniform interleaver assumption

is presented.

Using linear programming (LP) to decode binary linear codeshas recently been considered by Feldmanet al.

[13]. See also the seminal papers [14], [15] where LP decoding of turbo-like codes is considered. In particular,

repeat-accumulate (RA) codes are considered. A description of LP decoding of arbitrary concatenated codes is

given in [16, Ch. 6]. The obvious polytope for LP decoding is the convex hull of all codewords, in which case LP

decoding is equivalent to ML decoding. However, the convex hull has a description complexity that is exponential

in the codeword length for a general binary linear code. Thus, Feldmanet al. [13] proposed a relaxed polytope

which contains all valid codewords as vertices, but also additional non-codeword vertices. The vertices of the

relaxed polytope are basically what the authors calledpseudo-codewordsin [13]. One desirable property of the LP

decoder is the ML certificate property, i.e., when the LP decoder outputs a codeword, it is guaranteed to be the ML
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codeword. Experimental results with LDPC codes show that the performance of the relaxed LP decoder is better

than with the iterative min-sum algorithm, but slightly worse than with iterative BP decoding.

Recently, some understanding of the performance of iterative BP decoding of finite-length LDPC codes over

general memoryless channels have been developed. Finite graph covers of the Tanner graph and the codes defined

by these covers play an essential role in the analysis [17]. The low complexity of iterative BP decoding is due to

the fact that the algorithm operateslocally on the Tanner graph of the code. This property is also the mainweakness

of iterative BP decoding, since the decoder cannot distinguish if it operates on the original Tanner graph or on any

of the finite covers. Hence, codewords in the code defined by a finite cover of the Tanner graph will influence on

iterative decoding. These codewords are basically what Vontobel and Koetter referred to as pseudo-codewords in

[17]. It turns out that the set of pseudo-codewords of all finite covers of the Tanner graph is equal to the set of points

where all entries are rational numbers from the relaxed polytope of LP decoding of LDPC codes as introduced

by Feldmanet al. in [13]. A similar connection between the relaxed polytope of LP decoding of turbo codes, as

described in [16, Ch. 6], and the pseudo-codewords of all finite covers of the turbo code factor graph [18] was

established in [19]. Furthermore, Rosnes also showed in [19] that there is a many-to-one correspondence between

these pseudo-codewords and turbo stopping sets in the following sense. The support set of any pseudo-codeword,

i.e., the set of non-zero coordinates, is a turbo stopping set, and for any turbo stopping set there is a pseudo-

codeword with support set equal to the turbo stopping set. A similar connection also holds for pseudo-codewords

of finite graph covers of Tanner graphs and stopping sets [17], [20].

For LDPC codes it has been observed that stopping sets, to some degree, also reflect the performance of iterative

decoding for other channels than the BEC [17], [21]. It is therefore our hope that the notion of turbo stopping sets

also can provide some useful insight into turbo decoding on the additive white Gaussian noise (AWGN) channel

or on other memoryless channels. In [19], Rosnes presented some simulation results to indicate that this may be

the case.

This paper is organized as follows. In Section II we define some basic notation and describe simplified turbo

decoding on the BEC. Section III introduces the concept of a turbo stopping set. We further give some of the basic

properties and show that turbo stopping sets characterize exactly the performance of turbo decoding on the BEC.

An improved turbo decoding algorithm on the BEC is introduced in Section IV, and its superiority compared to

conventional turbo decoding is illustrated by simulation examples. Finally, in Section V, we consider enumeration of

small-size turbo stopping sets for a particular interleaver and under the uniform interleaver assumption. Conclusions

and a discussion of future work are given in Section VI.

II. PRELIMINARIES

In this section we introduce the channel, define some basic notation, and describe simplified turbo decoding on

the BEC.

October 29, 2018 DRAFT
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A. The BEC

The BEC model was introduced by Elias [22] in1955. The channel has recently been used for modeling

information transmission over the Internet. The BEC is a two-input, three-output discrete memoryless channel.

Each input bit is erased with probabilityǫ, or received correctly with probability1− ǫ.

B. Some Definitions and Basic Notation

Let C = C(K,Ca, Cb, π) denote a parallel concatenated convolutional code (PCCC),or turbo code, with infor-

mation lengthK, constituent encodersCa andCb of rateR = k/n, and interleaverπ. In this work we consider

dual termination [23], which implies that the length of the interleaverI = K+2ν whereν is the constraint length.

We assume here thatI is a multiple ofk. Let Na andNb denote the lengths of the constituent codes. The length

of the turbo code is denoted byN . For an unpunctured turbo code,Na = Nb = I/R andN = (2/R − 1)I. In

general, the values ofNa, Nb, andN depend on the puncturing patternP and the termination scheme.

We will now define some useful mappings, but we advise the reader that the formal definitions below will be

easier to understand after taking a look at Fig. 1.

Define two mappingsµa : ZN → ZNa
∪ {∗} andµb : ZN → ZNb

∪ {∗} whereZN = {0, 1, . . . , N − 1} for a

positive integerN . The mappingµa gives the index in the first constituent codeword of the turbocodeword index if

such a relation exists, or∗ if not. Similarly, the mappingµb gives the index in the second constituent codeword of

the turbo codeword index if such a relation exists, or∗ if not. Note that for turbo codeword indices that correspond

to systematic bits, the interleaver is used to get the correct constituent codeword index for the second encoder.

Define two mappingsψa : ZNa
→ ZI ∪ {∗} andψb : ZNb

→ ZI ∪ {∗}. The mappingψa gives the systematic

sequence index of the first constituent codeword index if such a relation exists, or∗ if not. Similarly, the mapping

ψb gives the interleaved systematic sequence index of the second constituent codeword index if such a relation

exists, or∗ if not.

Example 1:Consider a turbo code composed of two identical nominal rate-1/2 constituent convolutional codes.

The interleaver lengthI = 6 and parity bits from the two constituent encoders are punctured alternatively to create a

nominal rate-1/2 turbo code. The lengths of the first and second constituent codes areNa = Nb = 9. The interleaver

π is defined by{3, 5, 1, 4, 0, 2} (i.e., 0 → 3, 1 → 5, and so on). The ordering of bits in the turbo codeword is

I0P
a
0 I1P

b
1 I2P

a
2 I3P

b
3 I4P

a
4 I5P

b
5

whereIi andP a
i denote theith systematic and parity bit from the first constituent code,respectively, and where

P b
i denotes theith parity bit from the second constituent code. The mappingsµa, µb, ψa, andψb are depicted

graphically in Fig. 1.

C. Turbo Decoding on the BEC

The aim of turbo decoding on the BEC is to find a set of paths through each constituent code trellis that

is consistent with the received sequence. The decoding starts with a set of all paths and iteratively eliminates
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Fig. 1. Graphical representation of the mappingsµa, µb, ψa, andψb for the turbo code from Example 1.

those that are inconsistent. This iterative process continues until either there is only one possible path left in each

constituent trellis (successful decoding), or there is no change from one iteration step to the next. We will describe

the basic algorithm, but remark that the BEC version of turbodecoding allows more efficient implementations. For

simplicity, we omit the details.

Let T x
info denote aninformation bit-oriented trellis[24]–[26] for constituent codeCx, x = a, b. The trellisT x

info

is time-variant, but periodic, and has two edges out of each vertex. For details, see Section V-A.1. The number

of trellis depths inT x
info is I + 1, i.e., there is one trellis section for each information bit. Below, x̄ denotes the

complement ofx, x = a, b.

Like turbo decoding for an AWGN channel, the constituent decoders work with a forward and a backward pass

through the constituent code trellisT x
info, and during these passes the state metricα

(i)
x (v, j) (resp.β(i)

x (v, j)) for

vertex v at trellis depthj, at the ith iteration, is updated. For the BEC, however, the state metrics are boolean

and define forward (resp. backward) paths that are consistent with the current estimate of the transmitted sequence

ĉ = (ĉ0, . . . , ĉN−1). The decoding for constituent codeCx is performed as follows.

Initially, we setα(1)
x (0, 0) = β

(1)
x (0, I) = β

(0)
x (0, I) = true; β(0)

x (v, j) = true for all verticesv at trellis depth

j in T x
info, j = 1, . . . , I − 1; andα(1)

x (v, 0) = β
(1)
x (v, I) = β

(0)
x (v, I) = false for every non-zero vertexv at trellis

depths0 andI, respectively, inT x
info. Finally, set the estimate of the transmitted sequenceĉ equal to the received

sequence.

Then the forward pass calculates, forj = 1, . . . , I and for each vertexv′ at trellis depthj in T x
info, ζj(v′) and

subsequentlyα(i)
x (v′, j) = (β

(i−1)
x (v′, j) AND ζj(v

′)). Here ζj(v′) is a boolean variable which is true if there

exists, in the(j− 1)th trellis section ofT x
info, an edge consistent witĥc, with right vertexv′, and left vertexv such

that α(i)
x (v, j − 1) = true. Initially, prior to the forward pass, we setα(i)

x (v, 0) = α
(1)
x (v, 0) for all verticesv at

trellis depth0 in T x
info.

In a similar way the backward pass calculatesβ
(i)
x (v, j) for all verticesv at trellis depthj in T x

info, j = 0, . . . , I−1.

Finally, the estimatêc of the transmitted sequence is updated so that only information values consistent with legal
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edges remain, and control is passed to the other constituentdecoder.

The codeword is said to berecoveredif ĉj 6= ⋆, where⋆ denotes an erasure, for allj such thatµa(j) 6= ∗ and

ψa(µa(j)) 6= ∗, j = 0, . . . , N − 1. The decoder is said tofail to progress furtherif, for x = a, b, the state metrics

α
(l)
x (v, j) andβ(l)

x (v, j), for some positive integerl > 1, are equal to the state metricsα(l−1)
x (v, j) andβ(l−1)

x (v, j),

respectively, for all verticesv at trellis depthj in T x
info, j = 1, . . . , I − 1.

III. T URBO STOPPINGSETS

In this section we will introduce the concept of a turbo stopping set. A turbo stopping set is the equivalent of

an LDPC stopping set when turbo decoding andnot iterative BP decoding is performed.

Definition 1: Let C denote a given PCCC with interleaverπ. A set S = S(π) ⊆ {0, . . . , N − 1} is a turbo

stopping set if and only if there exist two linear subcodesC̄a ⊆ Ca ⊆ {0, 1}Na and C̄b ⊆ Cb ⊆ {0, 1}Nb of

dimension> 0 with support setsχ(C̄a) andχ(C̄b), respectively, such that

χ(C̄a) = µa(S) \ {∗}

χ(C̄b) = µb(S) \ {∗}

π(ψa(χ(C̄a)) \ {∗}) = ψb(χ(C̄b)) \ {∗}. (1)

The sizeof a turbo stopping setS is its cardinality.

The lemmas below state some of the properties of a turbo stopping set.

Lemma 1:Let C denote a given PCCC with interleaverπ. The support set of any non-zero codeword fromC is a

turbo stopping set of size equal to the Hamming weight of the given codeword. Thus, the minimum turbo stopping

set size is upper-bounded by the minimum Hamming weight.

Proof: Denote the turbo codeword byc and the corresponding first and second constituent codewords by

ca and cb, respectively. Furthermore, let̄Ca = {ca,0Na
} and C̄b = {cb,0Nb

} where0Nx
denotes an all-zero

sequence of lengthNx, x = a, b. The result follows immediately from Definition 1, sinceχ(C̄a) = µa(χ(c))\ {∗},

χ(C̄b) = µb(χ(c)) \ {∗}, andπ(ψa(µa(χ(c)) \ {∗}) \ {∗}) = ψb(µb(χ(c)) \ {∗}) \ {∗}.

Lemma 2:Let C denote a given PCCC with interleaverπ, and letS = S(π) denote a turbo stopping set. If̄Ca

andC̄b can both be decomposed intodirect sumsof linear subcodes of dimension1 with disjoint support sets, then

S is the support set of a turbo codeword of Hamming weight|S|. The converse is also true.

Proof: Assume thatC̄a and C̄b can both be decomposed into direct sums of linear subcodes ofdimension1

with disjoint support sets. In more detail,

C̄a = {c(0)a ,0Na
}+ · · ·+ {c(p)a ,0Na

} and C̄b = {c
(0)
b ,0Nb

}+ · · ·+ {c
(q)
b ,0Nb

}

wherep and q are non-negative integers. The codewordsca =
∑p

i=0 c
(i)
a and cb =

∑q
i=0 c

(i)
b have support sets

χ(ca) = χ(C̄a) andχ(cb) = χ(C̄b), respectively, since the support sets of the direct sum subcodes are disjoint.

Since the two setsπ(ψa(µa(S) \ {∗}) \ {∗}) = π(ψa(χ(ca)) \ {∗}) andψb(µb(S) \ {∗}) \ {∗} = ψb(χ(cb)) \ {∗}

are equal (from Definition 1), there exists a turbo codewordc with first and second constituent codewordsca and

October 29, 2018 DRAFT
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cb, respectively. Thus, the turbo stopping set is the support set of a turbo codeword of Hamming weight|S|, since

χ(c) = S.

We prove the converse using the following argument. The turbo stopping setS is the support set of a turbo

codewordc. The corresponding first and second constituent codewords are denoted byca and cb, respectively.

Then, there exist subcodes̄Ca = {ca,0Na
} ⊂ Ca and C̄b = {cb,0Nb

} ⊂ Cb both of dimension1 which satisfy

the constraints in (1) withS = χ(c), and the result follows. (The codewordsca andcb may or may not be further

decomposed.)

Construction 1:Let Ta = (Va, Ea) andTb = (Vb, Eb) denote twoarbitrarily chosen Tanner graphs for the first

and second constituent codes, respectively. The node setVx can be partitioned into three disjoint subsetsV s
x , V p

x ,

and V c
x , corresponding to systematic bits, parity bits, and parity-check equations, respectively, wherex = a, b.

There is an edgee ∈ Ex connecting a nodevvx ∈ V v
x = V s

x ∪ V p
x to a nodevcx ∈ V c

x if and only if the first (x = a)

or second (x = b) constituent codeword bit represented byvvx is checked by the parity-check equation represented

by vcx. Next, define

E′
b = {(vsa,j , v

c
b) : v

c
b ∈ V c

b , (v
s
b,π(j), v

c
b) ∈ Eb, j = 0, . . . , I − 1} ∪ {(vpb , v

c
b) : v

p
b ∈ V p

b , v
c
b ∈ V c

b , (v
p
b , v

c
b) ∈ Eb}.

Then, the graphT = (Va ∪ V
p
b ∪ V c

b , Ea ∪ E
′
b) is a Tanner graph for the turbo codeC.

We remark that for a given binary linear code there exist in general several full-rank parity-check matrices, and

thus several (distinct) Tanner graphs. The minimum stopping set size is in general a function of the Tanner graph

[27]–[29]. Note that Construction 1 gives a specific class ofTanner graphs for a turbo code that is a proper subset

of the class of all Tanner graphs of the given turbo code. We will consider this specific class of Tanner graphs

below.

Lemma 3:Let C denote a given PCCC with interleaverπ. For any turbo stopping setS = S(π) there is an LDPC

stopping set of cardinality|S| in any Tanner graphT for C within the class of Tanner graphs from Construction 1.

Proof: We use the notation introduced in Construction 1. The set{vvx,j : j ∈ µx(S) \ {∗}}, wherevvx,j

denotes thejth node inV v
x , is an LDPC stopping set in any Tanner graphTx of Cx, sinceµx(S) \ {∗} is the

support setχ(C̄x) (from Definition 1) of some subcodēCx of Cx of dimension> 0. We have here used the fact

that the variables nodes corresponding to the support set ofa non-zero codeword constitute an LDPC stopping set.

Furthermore, the set
(

{vva,j : j ∈ µa(S) \ {∗}} ∪ {vvb,j : j ∈ µb(S) \ {∗}}
)

\ V s
b (2)

is an LDPC stopping set in the Tanner graphT of the turbo codeC due to the last condition in Definition 1. The

cardinality of the LDPC stopping set in (2) is|S|.

Note that the converse is not necessarily true (i.e., for an LDPC stopping set in any Tanner graphT for C within

the class of Tanner graphs from Construction 1, there is not necessarily a turbo stopping set). Thus, iterative BP

decoding using a Tanner graph within the class of Tanner graphs of a turbo code from Construction 1 is inferior

to turbo decoding on the BEC. The following theorem states anexact condition for decoding failure.

October 29, 2018 DRAFT
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Theorem 1:Let C denote a given PCCC with interleaverπ that we use to transmit information over the BEC.

The received vectors are decoded using turbo decoding untileither the codeword has been recovered, or the decoder

fails to progress further. Then the set of erased positions that will remain when the decoder stops is equal to the

unique maximum-size turbo stopping set which is also a subset of E , whereE denotes the subset of erased positions.

Proof: The proof given here is inspired by the proof given by Diet al. in [5, Lemma 1.1] in the context of

an LDPC stopping set. LetS be a turbo stopping set contained inE . The claim is that the basic turbo decoder

cannot determine the bits corresponding to the positions inthe turbo stopping setS. Assume that all other bits

are known. Turbo decoding starts by activating the first constituent decoder. For the first constituent decoder, the

forward-backward algorithm will determine|C̄a| > 1 possible paths through the trellis. The support set of these

possible paths is equal toµa(S)\{∗}, and they are all equally likely. Consequently, no additional codeword bits can

be determined. Thus, the extrinsic probability distributions for systematic bits in positions inψa(µa(S)\ {∗})\ {∗}

are uniform. For the second constituent decoder, the forward-backward algorithm will determine|C̄b| > 1 possible

paths through the trellis. The support set of these possiblepaths is equal toµb(S) \ {∗} and, since thea priori

probability distributions for systematic bits in positions in π(ψa(µa(S) \ {∗}) \ {∗}) are uniform, and the two

setsπ(ψa(µa(S) \ {∗}) \ {∗}) and ψb(µb(S) \ {∗}) \ {∗} are equal (see Definition 1), all paths are equally

likely. Consequently, no additional codeword bits can be determined. Thus, the extrinsic probability distributions

for systematic bits in positions inψb(µb(S) \ {∗}) \ {∗} are uniform. One iteration of the basic turbo decoding

algorithm has been performed and no additional codeword bits have been determined. Since there is no new

information available to the first constituent decoder, no additional bits will be determined in the next round of

turbo decoding either. It follows that the decoder cannot determine the bits corresponding to the positions in the

unique maximum-size turbo stopping set which is also a subset of E . Note that there is a unique maximum-size

turbo stopping set which is also a subset ofE , since the union of two turbo stopping sets is also a turbo stopping

set. Conversely, if the decoder terminates at a setS, then there will exist subcodes̄Ca ⊆ Ca and C̄b ⊆ Cb of

dimension> 0 with support setsµa(S) \ {∗} andµb(S) \ {∗}, respectively. Since the turbo decoder terminates,

the two setsπ(ψa(µa(S) \ {∗}) \ {∗}) andψb(µb(S) \ {∗}) \ {∗} are equal. From Definition 1, it follows thatS is

a turbo stopping set and, since no erased bit-positions contained in a turbo stopping set can be determined by the

turbo decoder, it must be the maximum-size turbo stopping set which is also a subset ofE .

A. A (155, 64, 18) Turbo Code

In [30], a particularly nice(3, 5)-regular LDPC code of length155, dimension64, and minimum Hamming

distance20 was constructed. The underlying Tanner graph has girth8 which makes the code an excellent candidate

for iterative decoding. This is the reason behind the selected code parameters.

The turbo code is obtained by puncturing of a nominal rate-1/3 turbo code with nominal rate-1/2, constraint

lengthν = 4 constituent codes defined by the parity-check matrixH(D) = (1+D+D2 +D4 1+D3 +D4). The

last polynomial which is irreducible and primitive has beenchosen as the parity polynomial making the constituent

encoders recursive. The information block size is64, the interleaver length is72 due to dual termination [23], and
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the interleaver is a dithered relative prime (DRP) interleaver [10], [31]. The puncturing pattern is designed using the

algorithm in [32]. The minimum distance of18 of the code has been computed using the algorithm in [7]. For this

code there exists a turbo stopping set of size17. The turbo stopping set is depicted in Fig. 2. In Fig. 2, the three

upper rows of nodes correspond to the first constituent encoder, while the three remaining rows of nodes correspond

to the second constituent encoder. The nodes in row number5(i−1)+1 give the bit-position in the turbo codeword

of the corresponding systematic (i = 1) and parity (i = 2) bits. The nodes in row number3(i − 1) + 2 and i + 2

correspond to parity and systematic bits, respectively, from constituent encoderi, i = 1, 2. The blue and dark green

nodes correspond to systematic bits. The blue nodes are information bits (can be assigned freely), while the dark

green nodes are redundant systematic bits (cannot be assigned freely). The red and yellow nodes correspond to

erased bits and punctured (parity) bits, respectively. Thelight green nodes correspond to parity bits. The arrows in

between the upper three rows and the remaining three rows correspond to interleaving of erased information bits.

The remaining part of the interleaver is of no concern for thefollowing discussion. In fact, possible choices forC̄a

and C̄b are the linear subcodes spanned by

c
(1)
a = (0⋄, . . . , 00, 1⋄, 10, 00, 11, 01, 1⋄, 00, . . . , 00, 00, 0⋄, 0⋄, 00, 00, 0⋄, . . . , 0⋄)

c
(2)
a = (0⋄, . . . , 00, 0⋄, 00, 00, 00, 00, 0⋄, 00, . . . , 00, 11, 0⋄, 0⋄, 10, 11, 0⋄, . . . , 0⋄) (3)

and

c
(1)
b = (0⋄, . . . , 00, 1⋄, 01, 0⋄, 0⋄, 10, 01, 0⋄, 0⋄, 00, 00, 00, 0⋄, 00, 00, 01, 01, 00, 01, 1⋄, 0⋄, . . . , 00, 0⋄, 0⋄, 0⋄,

0⋄, 0⋄, 00, . . . , 0⋄)

c
(2)
b = (0⋄, . . . , 00, 0⋄, 00, 0⋄, 1⋄, 01, 01, 0⋄, 0⋄, 00, 00, 00, 0⋄, 00, 00, 01, 01, 00, 01, 1⋄, 0⋄, . . . , 00, 0⋄, 0⋄, 0⋄,

0⋄, 0⋄, 00, . . . , 0⋄)

c
(3)
b = (0⋄, . . . , 00, 0⋄, 00, 0⋄, 0⋄, 00, 00, 0⋄, 0⋄, 00, 00, 00, 0⋄, 00, 00, 00, 00, 00, 00, 0⋄, 0⋄, . . . , 00, 1⋄, 0⋄, 0⋄,

1⋄, 1⋄, 00, . . . , 0⋄), (4)

respectively. The symbol⋄ indicates that the bit-position has been punctured. From Fig. 2 we get

S = {10, 11, 15, 16, 18, 19, 69, 70, 73, 75, 76, 115, 116, 117, 123, 124, 126}

µa(S) = {10, 11, 15, 16, 18, 19, 69, 70, 73, 75, 76, ∗}

µb(S) = {9, 11, 13, 14, 15, 17, 32, 34, 38, 39, 101, 104, 105, ∗}

ψa(µa(S) \ {∗}) = {8, 9, 11, 13, 43, 46, 47, ∗}

ψb(µb(S) \ {∗}) = {7, 10, 11, 25, 61, 64, 65, ∗}. (5)

Furthermore, it holds thatχ(C̄a) = µa(S)\{∗}, χ(C̄b) = µb(S)\{∗}, andπ(ψa(χ(C̄a))\{∗}) = ψb(χ(C̄b))\{∗},

which shows thatS is a turbo stopping set.
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Fig. 2. Turbo stopping set of size17 for the example(155, 64, 18) turbo code. The direct sum of the two upper (lower) sets of binary vectors

(extended to lengthI with zeros) is thesystematic partof the subcodeC̄a (C̄b).

The turbo stopping set depicted in Fig. 2 is given as an example to illustrate the concept of a turbo stopping set.

Actually, it is possible to find an exhaustive list of all turbo stopping sets of size less than some threshold using a

modification of the algorithm in [7]. The details of the algorithm are outlined in Section V. For this code there are

2 turbo stopping sets of size16 and13 of size17.

B. A (201, 64, 21) Turbo Code

From Fig. 2 it is apparent that some of the punctured bits can be reinserted without increasing the size of the

depicted turbo stopping set. In fact,27 out of the31 punctured parity bits from the first constituent code can be

reinserted. For the second constituent code,19 out of the30 punctured parity bits can be reinserted. The minimum

distance of21 of the resulting turbo code has been determined by the algorithm in [7]. Note that this is aconstructed

example, since it is possible to design a puncturing patternof weight15 that will give a length201 and dimension

64 turbo code of minimum distance25 using the same mother code and the algorithm in [32]. The minimum

distance of the unpunctured mother code is27.

C. Remarks

The code considered in Section III-A isnot a rare example in the sense of having turbo stopping sets of size

smaller than the minimum distance. We have found several examples of excellent turbo codes with this property.

For further examples see Section V-E.

IV. I MPROVED TURBO DECODING

In [4], Pishro-Nik and Fekri consider improved iterative BPdecoding of LDPC codes on the BEC. When standard

iterative BP decoding fails, the improved algorithm chooses one of the unknown variables nodes and guesses its

value. The decoding continues until either the transmittedcodeword is recovered, the decoder does not progress
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further, or the decoder reaches aninconsistency. The decoder is said to reach an inconsistency if all the variables

nodes connected to a check node are known, but the check node is not satisfied. If the decoder has reached an

inconsistency, then the value of the guessed variable node is changed and the decoding is repeated. This time

the decoder will not reach an inconsistency, but the decoding can stop again. More sophisticated algorithms for

improved iterative BP decoding of LDPC codes on the BEC were recently proposed by Ravisankar and Fekri

in [2]. These algorithms improve upon the algorithms in [4].Furthermore, the algorithms in [2] use the Tanner

graph representation of the LDPC code actively to identifyequivalentbit-positions when iterative BP decoding has

stopped in a stopping set. In this context, two bit-positions are equivalent if and only if the knowledge of one of the

bits implies the knowledge of the other bit after a series of message-passing in the subgraph of the Tanner graph

composed of all unknown variable nodes and the neighboring check nodes of degree2.

Improved turbo decoding, the pseudo-code of which is given below, has the samestructure as the algorithm

in [4]. In more detail, it is based on guessing unknown systematic bit-positions and then decode until either the

transmitted codeword is recovered, the decoder does not progress further, or the decoder reaches some kind of

inconsistency. In the context of turbo decoding, however, the unknown bit-position to guess can be chosen more

efficiently than in the context of improved iterative BP decoding of LDPC codes, since the forward and backward

passes on the constituent trellises give information on legal paths. Bit-position selection is considered in more detail

in Section IV-A.

In the pseudo-code belowγ(l)x,j, x = a, b, denotes the number of vertices ofT x
info at trellis depthj that are legal

after thelth iteration.

step 1 (Initialization):

1) Choose the maximal number of iterationslmax.

2) Initialize J andT with zero.

step 2 (Original turbo decoding; bit-position selection):

1) Run turbo decoding as described in Section II-C, with a maximum of lmax iterations, until either the codeword

is recovered, or the decoder fails to progress further. LetlJ ≤ lmax denote the number of iterations carried

out and incrementT with lJ .

2) If T = lmax, or the codeword is recovered, make a decision based onĉ, and terminate the algorithm.

3) Computeγ(T )
x,0 , . . . , γ

(T )
x,I for x = a, b and select a bit-positionvT to guess based on these values. See

Section IV-A below for details.

4) Initialize a listL with the orderedsets{(vT , 0)} and{(vT , 1)}.

5) Initialize M0 andM1 with ĉ.

step 3 (Performing additional iterations; bit-position selection):

1) IncrementJ .

2) L = {(L
(0)
1 , L

(0)
2 ), . . . , (L

(|L|−1)
1 , L

(|L|−1)
2 )} is chosen and removed fromL.

3) Initialize ĉ with M
L

(0)
2 ,...,L

(|L|−1)
2

and set̂cl equal toL(j)
2 whereψa(µa(l)) = L

(j)
1 andj = |L| − 1.
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4) Run turbo decoding as described in Section II-C with a maximum of lmax−T iterations, but without assigning

values toĉ in the initialization step of the algorithm, until the decoder fails to progress further, or there is a

trellis depthj in which all vertices inT x
info have false forward or backward state metrics for somex, x = a, b.

In this case the decoder is said to have reached aninconsistency. Let lJ ≤ lmax − T denote the number of

iterations carried out and incrementT with lJ .

5) If T = lmax, or the decoder has not reached an inconsistency andĉj 6= ⋆ for all j such thatµa(j) 6= ∗ and

ψa(µa(j)) 6= ∗, j = 0, . . . , N − 1, make a decision based on̂c, and terminate the algorithm.

6) DeleteM
L

(0)
2 ,...,L

(|L|−1)
2

.

7) If the decoder has not reached an inconsistency, perform the following.

a) Computeγ(T )
x,0 , . . . , γ

(T )
x,I for x = a, b and select a bit-positionvT to guess based on these values. See

Section IV-A below for details.

b) Add the two elementsL0 = L ∪ {(vT , 0)} and L1 = L ∪ {(vT , 1)} to the list L, and initialize

M
L

(0)
0,2,...,L

(|L0|−1)
0,2

andM
L

(0)
1,2,...,L

(|L1|−1)
1,2

with ĉ.

step 4 (Repeating): Repeat step 3.

The list L in improved turbo decoding can be implemented as alast-in first-out queue or as afirst-in first-

out queue. The first-in first-out implementation requires more memory than the last-in first-out implementation.

The efficiency of an improved decoding algorithm with the above structure is very dependent on the selection of

bit-positions to guess.

A. Bit-Position Selection for Improved Turbo Decoding

When turbo decoding fails to progress further, the unknown bit-positions constitute a turbo stopping set. Thus,

guessing a bit-position inχ(C̄x) will free at least one additional bit. Some of the positions inχ(C̄x) can be

determined from the numbersγ(l)x,j of legal vertices at trellis depthj in T x
info (l is the iteration number). In particular,

the jth systematic bit is unknown ifγ(l)a,j = 1 and γ(l)a,j+1 = 2, or γ(l)a,j+1 = 1 and γ(l)a,j = 2. When selecting a

bit-position to guess we would also like to free as many unknown positions as possible. We propose the following

bit-position selection algorithm.

1) For x = a, b do the following.

a) Let lx be the number of indicesj with the property thatγ(T )
x,j = 1 andγ(T )

x,j+1 = 2.

b) Let wx,f be the largest non-negative integer such that there exists an index fx with the property that

γ
(T )
x,fx−1 = 1 andγ(T )

x,fx
= · · · = γ

(T )
x,fx+wx,f

= 2.

c) Let wx,r be the largest non-negative integer such that there exists an index rx with the property that

γ
(T )
x,rx+1 = 1 andγ(T )

x,rx = · · · = γ
(T )
x,rx−wx,r

= 2.

d) Let wx = max(wx,f , wx,r).

2) If la > lb, or la = lb andwa ≥ wb, then setx = a. Otherwise, setx = b.
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3) If wx,f ≥ wx,r, thenvT is set equal tofx − 1 if x = a andπ−1(fx − 1) if x = b. Otherwise,vT is set equal

to rx if x = a andπ−1(rx) if x = b.

B. Remarks

We remark that several variations of the above bit-positionselection algorithm are possible. In particular, one

could use both the number of legal edges in each trellis section, or equivalently the edge entropy, and the number

of legal vertices for each trellis depth, or equivalently the vertex entropy, in combination with the interleaver to

improve the algorithm as described below.

Let vT denote a chosen systematic bit-position within a vertex entropy transition from levelj at time t to level

j+1 at timet+1 (a forward transition from levelj at timet), or from levelj at timet to level j+1 at timet− 1

(a backward transition from levelj at time t) for one of the constituent trellises. Theeffective lengthof vT is the

number of undetermined systematic bit-positions that willbe determined by the forward-backward algorithm on the

considered constituent trellis before any interleaving, if vT is guessed. To simplify notation we assume thatvT is

chosen based on the first constituent trellis. The effectivelength ofvT is a positive integer smaller than or equal

to the number of undetermined systematic bit-positions within the range[t, t+ws − 1] for a forward transition, or

within the range[t−ws, t−1] for a backward transition. The positive integerws is the smallest integer such that the

vertex entropy at timet+ws, for a forward transition, or at timet−ws, for a backward transition, is different from

j+1. A general upper bound on the effective length ofvT is ws. Whenj = 0, we can use the edge entropy to find

the exact value of the effective length ofvT . Let we denote the smallest positive integer such that the edge entropy

for the (t+we)th trellis section, i.e., for the transition from timet+we to time t+we+1, for a forward transition,

or for the (t − 1 − we)th trellis section, for a backward transition, is2. A general upper bound on the effective

length ofvT in this case ismin(ws, we). The exact value is the number of undetermined systematic bit-positions

within the range[t, t+min(ws, we)− 1], for a forward transition, or within the range[t−min(ws, we), t− 1], for

a backward transition. The selection of bit-positions can be improved even further by actively using the interleaver.

If we choose a bit-positionvT with the property that bothvT andπ(vT ) are within vertex entropy transitions, then

the performance will be improved.

Finally, we remark that the simple version described in Section IV-A provides good results as indicated in

Section IV-D below.

C. Some Properties of Improved Turbo Decoding

In this subsection we establish some basic results of improved turbo decoding as described above. The following

lemma is simple, but important, since the bit-position selection algorithm in Section IV-A is based on this result.

Lemma 4:Apply improved turbo decoding as described above using the bit-position selection algorithm in

Section IV-A. Then, the channel value corresponding to the selected bit-positionvT is an erasure.

Proof: The bit-position selection algorithm in Section IV-A selects only (systematic) bit-positionsvT ∈

{0, . . . , I − 1} with the property thatγ(T )
x,πx(vT ) 6= γ

(T )
x,πx(vT )+1 for x = a or b, whereπx(vT ) = vT for x = a
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and πx(vT ) = π(vT ) for x = b. If the channel value isnot erased, then we know thevT th information bit

with probability 1. Since thevT th information bit is known with probability1, and both constituent trellises are

information bit-oriented, there is only a single legal edgeout of each legal vertex at trellis depthπx(vT ) for x = a

or b. Consequently, the number of legal trellis vertices at trellis depthπx(vT ) + 1 is equal to the number of legal

trellis vertices at trellis depthπx(vT ), and the result follows by contradiction.

Lemma 5:Let C denote a given PCCC with interleaverπ. Let S = S(π) denote a turbo stopping set, and erase

all bit-positions inS. Then, choose any bit-positionj ∈ S, and do the following.

1) Fix the bit-value in bit-positionj to 0 and perform turbo decoding until either the decoder fails toprogress

further, or the decoder reaches an inconsistency. If the decoder does not reach an inconsistency, denote the

set of erased positions that remain when the decoder stops byS
(0)
j .

2) Fix the bit-value in bit-positionj to 1 and perform turbo decoding until either the decoder fails toprogress

further, or the decoder reaches an inconsistency. If the decoder does not reach an inconsistency, denote the

set of erased positions that remain when the decoder stops byS
(1)
j .

If the decoder doesnot reach an inconsistency in either of the two cases above, thenthe two setsS(0)
j andS

(1)
j

are equal.

Proof: Fix the bit-value in bit-positionj to c wherec = 0 or 1. Then the number of possible paths in the first

constituent code is immediately reduced by a factor of2, since the subcodēCa corresponding toS is linear. Let

this reduced set of legal paths in the first constituent code be denoted byP (c)
a,j . Furthermore, the forward-backward

algorithm for the first constituent code will determine additional bit-positions (which are previously unknown)

contained within a setS(c)
a,j . For a given bit-positioni ∈ S

(c)
a,j , all paths inP (c)

a,j will have the same bit-value of̃c

(depending on the value ofc) in this bit-position. Since the subcodēCa is linear, all paths inP (c̄)
a,j , wherec̄ denotes

the complement ofc, will also have a fixed bit-value of̃̄c in bit-positioni. Thus, it holds thati ∈ S
(c̄)
a,j , from which

it follows that S(c)
a,j = S

(c̄)
a,j , sincec and i both are arbitrarily chosen. For the second constituent code, several bit-

positions are fixed due to extrinsic information from the first constituent code. However, we can apply the same type

of arguments as above to show that the sequence of additionalbit-positions determined by the forward-backward

algorithm in the second constituent code is independent ofc. The result follows by applying these arguments in an

iterative fashion until there is no further progress.

Lemma 6:Apply improved turbo decoding as described above with the bit-position selection algorithm in

Section IV-A. For any two elements

L = {(L
(0)
1 , L

(0)
2 ), . . . , (L

(|L|−1)
1 , L

(|L|−1)
2 )} ∈ L and L̃ = {(L̃

(0)
1 , L̃

(0)
2 ), . . . , (L̃

(|L̃|−1)
1 , L̃

(|L̃|−1)
2 )} ∈ L

with the property that|L| = |L̃|, it holds thatL(i)
1 = L̃

(i)
1 for all i, i = 0, . . . , |L| − 1, i.e., the actual bit-values

in the guessed bit-positions do not influence on which bit-positions are selected next by the bit-position selection

algorithm in Section IV-A, as long as no inconsistency is reached.

Proof: The result follows directly from Lemma 5.
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We remark that due to Lemma 6 we can reduce the number of times we need to run the bit-position selection

algorithm from Section IV-A when performing improved turbodecoding.

Theorem 2:Improved turbo decoding is ML decoding on the BEC whenlmax → ∞.

Proof: The proof is two-fold. First we prove that if the algorithm terminates, then we have an ML decoder.

Secondly, we prove that the algorithm will always terminate.

1) It follows from the pseudo-code above (step 2, item 2), andstep 3, item 5)) that if the algorithm terminates,

then the decoder has not reached an inconsistency andĉj 6= ⋆ for all j such thatµa(j) 6= ∗ andψa(µa(j)) 6= ∗,

j = 0, . . . , N − 1, sincelmax → ∞. The original turbo decoding algorithm will not introduce bit errors and

neither will the improved turbo decoding algorithm due to items 5) and 7) in step 3. In more detail, the

algorithm will not terminate if the decoder has reached an inconsistency, and no further guessing is performed

if this is the case. Thus, if the improved turbo decoding algorithm terminates, then transmitted codeword is

recovered, or there exists a different turbo codewordc
′ with support setχ(c′) ⊆ E whereE denotes the subset

of remaining erased bit-positions. In the latter case the transmitted codeword is not recovered. An ML decoder

will not be able to determine the transmitted codeword in thelatter case either, since both codewordsc and

c+ c
′ wherec denotes the transmitted codeword are equally likely to havebeen transmitted. Thus, improved

turbo decoding is ML decoding.

2) As the algorithm proceeds, erased bit-positions are guessed. Each time an elementL is removed from the list

L, turbo decoding is performed. If the decoder does not reach an inconsistency and̂cj = ⋆ for somej such

that µa(j) 6= ∗ andψa(µa(j)) 6= ∗, j = 0, . . . , N − 1, then anew erased bit-position is guessed (see the

bit-position selection algorithm in Section IV-A and Lemma4 for details). The decoder will always terminate,

since there is a finite number of bit-positions to guess.

D. Numerical Results

Here we present some simulation results of improved turbo decoding on the BEC. The simulated frame error

rate (FER) is presented in Fig. 3 for the(155, 64, 18) turbo code introduced in Section III-A. We have used the

bit-position selection algorithm described in Section IV-A in the simulations. The truncated union bound (TUB) in

Fig. 3 is computed from the first5 non-zero terms of the code’s weight distribution. The near ML decoding curve

is obtained using improved turbo decoding with a large number for lmax. In Table I we have tabulated, for different

values of the channel erasure probabilityǫ, the empirical value oflmax such that improved turbo decoding is near

ML decoding. In this context, improved turbo decoding is near ML decoding when the fraction of ML-decodable

frame errors observed in the simulation is/ 0.05. The corresponding estimated values of the expected numberof

iterationsE[T ] are tabulated in the third row of the table. The gap between the TUB and the near ML performance

curve at moderate-to-high values ofǫ is due to the fact that only a limited number of codewords are taken into

account in the summation of the union bound. The two remaining curves show the FER for two different values

of lmax. Observe that whenlmax is increased, the performance improves. In Table II estimated values ofE[T ]

October 29, 2018 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 16

of improved turbo decoding are tabulated for different values of ǫ and lmax. From Table II we observe that the

difference in the estimated values ofE[T ] for lmax = 170 andlmax = 10 decreases whenǫ decreases. In particular,

for ǫ = 0.40, there is almost no difference in the expected number of iterations. However, as can be seen from Fig. 3,

there is a large difference in performance. The numbers in Tables I and II are based on more than1000 observed

frame errors forǫ = 0.40, 0.45, 0.50, 0.55, and more than100 frame errors forǫ = 0.35. Similar performance

improvements have been observed for the(3600, 1194, 49) turbo code from [10].

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
10

-8

10
-7

10
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10
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10
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10
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-2

10
-1

10
0

F
E

R

Erasure probability ε

Near ML decoding
Improved turbo decoding (lmax=10)
Improved turbo decoding (lmax=170)
TUB (5)

Fig. 3. FER on the BEC of the(155, 64, 18) turbo code from Section III-A.

V. TURBO STOPPINGSET ENUMERATION

A. Convolutional Codes and Trellises

An edge-labeled directed graph is a triple(V,E,A), consisting of a setV of vertices, a finite setA called the

alphabet, and a setE of ordered triples(v, a, v′), with v, v′ ∈ V anda ∈ A called edges. The edge(v, a, v′) begins

at v, ends atv′, and has labela.

Let C denote a linear(n, k, ν) convolutional code over some finite fieldFq of q elements, whereν is the

constraint length or the code degree. In this work the convolutional code symbols are taken from the binary field

F2 = GF (2). A convolutional code can be defined by an(n− k)× n polynomial parity-check matrixH(D). We
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TABLE I

ESTIMATED EXPECTED NUMBER OF ITERATIONSE[T ] AND EMPIRICAL lmax SUCH THAT IMPROVED TURBO DECODING IS NEARML

DECODING FOR THE(155, 64, 18) TURBO CODE FROMSECTION III-A

ǫ 0.55 0.50 0.45 0.40 0.35

lmax 2600 2400 2000 1100 400a

E[T ] 402 49 4.4 1.46 1.10

aThe estimate is less reliable, since only6 ML-decodable frame errors have been observed compared to about 50 for ǫ > 0.35.

TABLE II

ESTIMATED EXPECTED NUMBER OF ITERATIONSE[T ] OF IMPROVED TURBO DECODING FOR DIFFERENT VALUES OFǫ AND lmax FOR THE

(155, 64, 18) TURBO CODE FROMSECTION III-A

lmax ↓, ǫ→ 0.55 0.50 0.45 0.40 0.35

10 8.3 5.1 2.42 1.42 1.10

170 74 19.5 3.57 1.45 1.10

assume in general acanonicalparity-check matrix [33]. The maximum degree of the polynomials in theith row is

the ith row degree, denoted byνi.

Let HL be the matrixH(0), and letHH be the matrixdiag(Dν1 , . . . , Dνn−k)H(D−1) with D = 0. When a

matrix is given an integer interval subscript we mean the submatrix consisting of the columns with indices in the

interval. The columns in a matrix are indexed from left to right with positive integers.

1) Trellis Representation of Convolutional Codes:The minimal trellis of C can be constructed from a parity-

check matrix of the code as outlined in [34]. The minimal trellis can be regarded (after an initial transient) as the

infinite composition of a basic building block which is called the trellis module. The trellis moduleT = (V,E, Fq)

of C is an edge-labeled directed graph with the property that thevertex setV can be partitioned as

V = V0 ∪ V1 ∪ · · · ∪ Vn (6)

such that every edge inE begins at a vertex inVi and ends at a vertex inVi+1, for somei, i = 0, . . . , n− 1. The

depthof the trellis module isn. The ordered index setI = {0, 1, . . . , n} induced by the partition in (6) is called

the time axisfor T . The partition in (6) also induces a partitionE = E0∪E1∪· · ·∪En−1 of the edge setE where

Ei is the subset of edges that begin at a vertex inVi and end at a vertex inVi+1.

Defineb0 = 0 andbi = rank[HL
n−i+1,n], i = 1, . . . , n, andf0 = 0 andfi = rank[HH

1,i], i = 1, . . . , n. The vertex

setVi is a vector space of dimensiondim(Vi) = ν − n+ k + fi + bn−i ≤ ν + n− k, from which it follows that

dim(V0) = dim(Vn) = ν. The edge setEi is also a vector space of dimensiondim(Ei) = ν−n+k+fi+bn−i−1+1.

Let Iinfo be the subset ofI \{n} consisting ofall integersi with the property thatbn−i = bn−i−1. Furthermore,

we assume without loss of generality thatbn = bn−1 which implies that0 ∈ Iinfo. Let ni = j + 1 wherej is
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the largest non-negative integer≤ n − i − 1 such thatbn−i−1 6= · · · 6= bn−i−j−1 for every i ∈ Iinfo. As argued,

for instance in [26], there aren − k time instancesi ∈ I \ Iinfo in which there is only a single edge out of each

vertex inVi. By sectionalizationthe depth of the trellis moduleT can be reduced tok. This reduced trellis module

is called an information bit-oriented trellis module and isdenoted byTinfo = (Vinfo, Einfo,∪i∈Iinfo
Fni
q ) where

Vinfo = ∪i∈Iinfo∪{n}Vi andEinfo = ∪i∈Iinfo
E′

i. The edge setE′
i is the set of paths that begin at a vertex inVi and

end at a vertex inVi+ni
. The label of an edge inE′

i is the label sequence along the defining path which is aq-ary

sequence of lengthni. The edge setE′
i is a vector space of the same dimension asEi.

In the trellis moduleTinfo there areq edges out of each vertex inVinfo \ Vn. Thus, we can assign aq-ary input

label to each edgee ∈ Einfo, and the trellis moduleTinfo can used for encoding.

2) Trellis Representation of Subcodes of Convolutional Codes: A trellis representing subcodes ofC can be

written (after an initial transient) as the infinite composition of an extendedtrellis moduleT̄ = (V̄ , Ē, F2) where

V̄ = V̄0∪· · ·∪ V̄n andĒ = Ē0∪· · ·∪ Ēn−1 are partitions of̄V andĒ, respectively. Each vertex of̄Vi corresponds

to a subspace ofVi, and each edge of̄Ei corresponds to a subspace ofEi. The number of distinctk-dimensional

subspaces of ann-dimensional vector space overFq, k = 1, . . . , n, denoted byS(k, n, q), is [35, p. 444]

S(k, n, q) =
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
=

[n

k

]

q

from which it follows that

|V̄i| = 1 +

dim(Vi)
∑

j=1

[

dim(Vi)

j

]

q

and|Ēi| = 1 +

dim(Ei)
∑

j=1

[

dim(Ei)

j

]

q

.

The left (resp. right) vertex of an edgee is denoted byvL(e) (resp.vR(e)). The label of an edgee is denoted

by c(e). Note that the edgee could either be an edge in the trellis moduleT or in the extended trellis modulēT .

The connections in the extended trellis moduleT̄ are established as follows. An edgeē ∈ Ēi corresponds to

a subspace ofEi of dimensiond(ē) and basis{e0(ē), . . . , ed(ē)−1(ē)}. The vertex inV̄i that corresponds to the

vector space spanned by{vL(e0(ē)), . . . , vL(ed(ē)−1(ē))} is connected to the vertex in̄Vi+1 that corresponds to

the vector space spanned by{vR(e0(ē)), . . . , vR(ed(ē)−1(ē))} by the edgēe. The binary labelc(ē) of ē is 1 if at

least one of theq-ary labelsc(ej(ē)) of ej(ē) ∈ Ei, j = 0, . . . , d(ē)− 1, is non-zero. Otherwise, it is0. In the case

of parallel edges in̄T with the same label, we keep only one.

Note that an information bit-oriented extended trellis module T̄info can be obtained by sectionalization as described

above. A trellisT̄info constructed as the infinite composition of the trellis module T̄info has paths that are in one-

to-many correspondence with subcodes ofC. The label sequence of a path in̄Tinfo is a binary sequence where the

set of1-positions is equal to the support set of the subcodes represented by the given path. Since distinct subcodes

could have equal support sets, there could be paths inT̄info that have equal label sequences.

Input labels can be assigned to the edges in the trellis module T̄info, and thusT̄info can be used forencoding, but

the encoding isnot one-to-one, since there could be more than one path inT̄info with the same input (and output)

label sequence.
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TABLE III

VERTEX AND EDGE COMPLEXITIES OF THE TRELLIS MODULESTinfo AND T̄info FOR(n, 1, ν) BINARY CONVOLUTIONAL CODES

ν 2 3 4 5 6

µ(Tinfo) 4 8 16 32 64

φ(Tinfo) 8 16 32 64 128

µ(T̄info) 5 16 67 374 2825

φ(T̄info) 16 67 374 2825 29212

Example 2:Consider the(2, 1, 2) binary convolutional code defined by the parity-check matrix H(D) = (1 +

D2 1 +D +D2). The trellis moduleTinfo and the extended trellis modulēTinfo are both depicted in Fig. 4. Note

that the trellis modulēTinfo is non-linear.
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Fig. 4. (a) Basic trellis moduleTinfo, and (b) extended trellis modulēTinfo of the convolutional code from Example 2.

The numbers of vertices and edges of an (extended) information bit-oriented trellis moduleTinfo divided byk

are called the vertex and edge complexities ofTinfo, and are given, respectively, by

µ(Tinfo) =
1

k

∑

i∈Iinfo

|Vi| andφ(Tinfo) =
1

k

∑

i∈Iinfo

|Ei|.

The vertex and edge complexities ofTinfo and T̄info are tabulated in Table III for different values ofν for (n, 1, ν)

binary convolutional codes.

B. The Uniform Interleaver

Consider an(n, k, ν) systematic convolutional code which is terminated to the all-zero vertex at trellis depth

I ≥ ⌈ν/k⌉k in Tinfo where I is assumed to be a multiple ofk. The resulting linear block codeC has length
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δ = (I/k)n and dimensionI − ν. Whenν = 0, the convolutional code is actually a linear block code in which

case we chooseI = k.

Partition all the subcodes ofC of dimensiond, d = 1, . . . , I − ν, into equivalence classes based on their support

sets. In particular, all subcodes within a specific subcode class are required to have the same support set, but the

subcodes may have different dimensions.

We define thesubcode input-redundancy support size enumerating function (SIRSEF) ofC. The SIRSEF has the

form

AC(W,Z) =
I

∑

w=1

δ−I
∑

z=0

aCw,zW
wZz (7)

whereaCw,z is the number of subcode classes ofC of input support set sizew andparity support set sizez. When

analyzing the performance it is useful to group the terms in the SIRSEF according to input support set size. The

conditionalSIRSEF

AC
w(Z) =

δ−I
∑

z=0

aCw,zZ
z (8)

enumerates subcode classes of different parity support setsizes associated with a particular input support set size.

The conditional SIRSEFAC
w(Z) and the SIRSEFAC(W,Z) are related to one another through the following pair

of expressions

AC(W,Z) =

I
∑

w=1

WwAC
w(Z) and A

C
w(Z) =

1

w !
·
∂wAC(W,Z)

∂Ww







W=0
. (9)

Let ACx
w (Z), x = a, b, denote the conditional SIRSEF for the constituent codeCx of a given PCCCC with

interleaver lengthI. We assume that the interleaver is uniform. With a uniform interleaver, the
(

I
w

)

possible sequences

of lengthI and weightw occur with equal probability at the output of the interleaver when the interleaver is fed with

a length-I and weight-w sequence. LetSC(W,Z) denote theinput-redundancy turbo stopping set size enumerating

function (IRTSSEF) ofC. The IRTSSEF has the form

SC(W,Z) =

I
∑

w=1

2(δ−I)
∑

z=0

sCw,zW
wZz (10)

wheresCw,z is the number of turbo stopping sets ofC of input sizew andparity sizez. The conditional IRTSSEF

SC
w(Z) =

2(δ−I)
∑

z=0

sCw,zZ
z (11)

enumerates turbo stopping sets of different parity sizes associated with a particular input size. The conditional

IRTSSEFSC
w(Z) and the IRTSSEFSC(W,Z) are related to one another through the following pair of expressions

SC(W,Z) =
I

∑

w=1

WwSC
w(Z) and S

C
w(Z) =

1

w !
·
∂wSC(W,Z)

∂Ww







W=0
. (12)

A PCCC with a uniform interleaver has a uniform probability of matching a given support set inACa
w (Z) with any

given support set inACb
w (Z). Thus, it follows that the conditional IRTSSEF forC is

SC
w(Z) =

ACa
w (Z)ACb

w (Z)
(

I
w

) . (13)
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The turbo stopping set size enumerating function(TSSEF) forC is

SC(X) =

2δ−I
∑

i=1

sCiX
i, wheresCi =

min(i,I)
∑

w=1

sCw,i−w (14)

andsCi is the number of turbo stopping sets of sizei. If only 1-dimensional subcodes are considered in the constituent

conditional SIRSEFsACa
w (Z) andACb

w (Z), then we get the weight enumerating function (WEF) forC.

1) The(7, 4) Hamming Code:We consider the(7, 4) Hamming code in its cyclic form in which caseν = 0,

I = k = 4, andδ = n = 7. The SIRSEF of the Hamming code is

W (3Z2 + Z3) +W 2(3Z + 3Z2 + 6Z3) +W 3(1 + 3Z + 12Z2 + 4Z3) +W 4(3Z + 3Z2 + Z3).

The IRTSSEF for the PCCCC with a uniform interleaver is

W (2.25Z4 + 1.5Z5 + 0.25Z6) +W 2(1.5Z2 + 3Z3 + 7.5Z4 + 6Z5 + 6Z6)+

W 3(0.25 + 1.5Z + 8.25Z2 + 20Z3 + 42Z4 + 24Z5 + 4Z6) +W 4(9Z2 + 18Z3 + 15Z4 + 6Z5 + Z6)
(15)

from which the TSSEF can be calculated. The result is

0.25X3 + 3X4 + 13.5X5 + 38X6 + 66.25X7 + 45X8 + 10X9 +X10.

Note that the WEF forC is

1 + 0.25X3 + 3X4 + 7.5X5 + 3X6 + 0.25X7 +X10.

We can check the result in (15) by computing the IRTSSEFs of the PCCCs constructed using all the4 ! = 24

possible interleavers. The results are tabulated in Table IV. Only two types of IRTSSEF are possible. It is easy

to verify that the average over all possible interleavers isequal to the expression in (15). Note that the WEF is

dependent on the interleaver while thenon-codewordTSSEF is the same forall interleavers.

2) Convolutional Codes as Constituent Codes:Let TCx(W,Z,Γ,Σ), x = a, b, enumerate all subcode classes

of Cx constructed from trellis paths in constituent trellisT̄ x
info leaving the all-zero vertex at trellis depth zero, and

remerging into the all-zero vertex at or before trellis depth I, with possible remerging into the all-zero vertex at

other depths in between, subject to the constraint that, after remerging, the paths leave the all-zero vertex at the

same trellis depth. In general,

TCx(W,Z,Γ,Σ) =

I
∑

w=1

δ−I
∑

z=0

I
∑

γ=2

⌊γ/2⌋
∑

σ=1

tCx
w,z,γ,σW

wZzΓγΣσ (16)

wheretCx
w,z,γ,σ is the number of subcode classes ofCx of input support set sizew and parity support set sizez

constructed from trellis paths of lengthγ, and withσ remergings with the all-zero vertex. Notice that each subcode

class inTCx(W,Z,Γ,Σ) of input support set sizew and parity support set sizez constructed from trellis paths

of lengthγ, and withσ remergings with the all-zero vertex, gives rise to
(

I−γ+σ
σ

)

subcode classes with the same

input and parity support set sizes. Thus, the conditional SIRSEFACx
w (Z) can be written as

ACx
w (Z) =

δ−I
∑

z=0





I
∑

γ=2

⌊γ/2⌋
∑

σ=1

(

I − γ + σ

σ

)

tCx
w,z,γ,σ



Zz. (17)
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TABLE IV

IRTSSEFS, TSSEFS, AND WEFS OF THEPCCCS CONSTRUCTED USING ALL THE4 ! = 24 POSSIBLE INTERLEAVERS AND WITH THE(7, 4)

HAMMING CODE AS CONSTITUENT CODES.

π SC(W,Z), SC(X), andWEF(X)

3210

SC(W,Z) = 1 +W (2Z4 + 2Z5)

+ W 2(Z2 + 4Z3 + 7Z4 + 6Z5 + 6Z6)

+ W 3(2Z + 8Z2 + 20Z3 + 42Z4 + 24Z5 + 4Z6)

+ W 4(9Z2 + 18Z3 + 15Z4 + 6Z5 + Z6)

SC(X) = 1 + 3X4 + 14X5 + 38X6 + 66X7 + 45X8 + 10X9 +X10

WEF(X) = 1 + 3X4 + 8X5 + 3X6 +X10

3201

3120

3102

3012

3021

2310

2301

2130

2031

1230

1320

1302

1032

0231

0132

0312

0321

2103
SC(W,Z) = 1 +W (3Z4 + Z6) +W 2(3Z2 + 9Z4 + 6Z5 + 6Z6)

+ W 3(1 + 9Z2 + 20Z3 + 42Z4 + 24Z5 + 4Z6)

+ W 4(9Z2 + 18Z3 + 15Z4 + 6Z5 + Z6)

SC(X) = 1 +X3 + 3X4 + 12X5 + 38X6 + 67X7 + 45X8 + 10X9 +X10

WEF(X) = 1 +X3 + 3X4 + 6X5 + 3X6 +X7 +X10

2013

1203

1023

0213

0123

Finding a closed-form expression for the conditional SIRSEF (as we did in Section V-B.1 when the constituent

codes were Hamming codes) for a given (large) value of the interleaver lengthI is difficult. For this reason, we

will use an algorithmic approach to compute the most significant terms of the conditional SIRSEF in (17). One

approach is to use the algorithm to be described in Section V-C with only one constituent code. See Section V-C

below for details.

C. Enumeration of Small-Size Turbo Stopping Sets for a Particular Interleaver

Let T x
info and T̄ x

info denote the information bit-oriented and the extended information bit-oriented trellis modules

of constituent codeCx, x = a, b. We assume thatT x
info and T̄ x

info both have input and output labels assigned to the

edges. The trellises constructed from the trellis modulesT x
info andT̄ x

info are denoted byT x
info andT̄ x

info, respectively.

Let SCx
denote the subset of{0, 1}Nx of label sequences of paths that begin and end at the all-zerovertex at

trellis depths0 and I of the trellis T̄ x
info, x = a, b. Finally, let SC = SC(K,SCa

,SCb
, π) denote the PCCC with
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information lengthK, constituent encodersSCa
andSCb

, and interleaverπ. Note that the support sets of words

of SC are in one-to-one correspondence withall turbo stopping sets ofC. Thus, the minimum Hamming weight of

SC is equal to the minimum turbo stopping set size ofC. In general, the set of turbo stopping sets can be obtained

by turbo encodingusing the constituent encodersSCa
andSCb

. Note that there could exist several paths inT̄ x
info

with the same input label sequence from which it follows thatthe complexity of turbo encoding could be more

than linear inK.

Let Π(SC , τ) be the problem of finding all words ofSC of Hamming weight≤ τ . This problem is equivalent

of finding an exhaustive list of all turbo stopping sets of size ≤ τ . To simplify notation we assume below that the

I −K redundant systematic bits appear at the end of the input block.

A constraint setF is a set{(pi, upi
) : upi

∈ {0, 1} ∀pi ∈ Γp}, whereΓp ⊆ {0, . . . ,K − 1} is a set of

distinct positions. For any constraint setF , let U (F ) be the set of length-K vectors{u = (u0, . . . , uK−1) : uj =

u if (j, u) ∈ F, uj ∈ {0, 1} if j 6∈ Γp}. Let the length l = l(F ) be the number of constraints. We will start with a

constraint setF of lengthl of the form{(0, u0), (1, u1), . . . , (l− 1, ul−1)}, i.e., it applies consecutively to the first

l positions. When the turbo interleaverπ acts onF , we obtain a new constraint setπF = {(π(pi), upi
)}, where in

general the constrained positions are scattered over the input block.

Let S(F )
C be the subset ofSC that is obtained by encoding the input vectors inU (F ), let w(F ) be the minimum

Hamming weight ofS(F )
C , and letw′(F ) be any lower bound forw(F ). The pseudo-code of the algorithm to solve

Π(SC , τ) is given below. Note that the algorithm has the samestructureas the algorithm proposed by Garelloet al.

in [8] to solveΠ(C, τ). We will refer to this algorithm as the GPB algorithm. However, there are some differences

that we will discuss below.

/∗ Find all words of SC of Hamming weight ≤ τ ∗/

Add an empty constraint set F to a

previously empty list L of constraint sets.

(†) If L is empty, terminate the process.

Otherwise,

choose and take out a constraint set F from L.

If w′(F ) ≤ τ, then

If the length l of F is equal to K then:

The single vector in U (F ) produces

low-weight words in SC which are saved.

Otherwise,

construct two new constraint sets:

F ′ = F ∪ {(l, 0)} and F ′′ = F ∪ {(l, 1)}.

Add F ′ and F ′′ to L.

Proceed from (†).

Let S(F )
Ca

be the subset of words generated by the constituent encoderSCa
when the input vectors are contained in

U (F ), and letwa(F ) be the minimum Hamming weight ofS(F )
Ca

. Select any vector fromU (F ) as an input sequence

of SCa
. After l(F ) time units the encoder has reached a subset{σ

(F )
a,0 , . . . , σ

(F )
a,ρ(F )−1} of cardinalityρ(F ) of the set

October 29, 2018 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 24

of trellis vertices ofT̄ a
info at trellis depthl(F ). The trellis path ofT̄ a

info from the all-zero vertex at trellis depth0 to

vertexσ(F )
a,i at trellis depthl(F ) of minimum Hamming weight is denoted byc(F )

a,i . Let w(c(F )
a,i ) be the Hamming

weight of c(F )
a,i , and letw(σ(F )

a,i , l(F )) be the minimum Hamming weight of any path from vertexσ(F )
a,i at trellis

depthl(F ) to the all-zero vertex at trellis depthI. In general, it holds that

wa(F ) = min
i=0,...,ρ(F )−1

(

w(c
(F )
a,i ) + w(σ

(F )
a,i , l(F ))

)

. (18)

The weightsw(σ(F )
a,i , l(F )) can be computed in a preprocessing stage using the Viterbi algorithm. Actually, the

weightsw(σ(F )
a,i , l(F )) depend only on the vertexσ(F )

a,i if l(F ) is not too close toK and T̄ a
info is non-catastrophic.

This reduces the memory requirements. However, the weightsw(c
(F )
a,i ) have to be computed during the course of

the algorithm. In general, the weightsw(c(F )
a,i ) can be computed by aconstrainedViterbi algorithm. Note that in

the original GPB algorithm there is no need to apply a constrained Viterbi algorithm here, sinceρ(F ) = 1, and

there is a unique path inT a
info from the all-zero vertex at trellis depth0 to the vertexσ(F )

a,0 at trellis depthl(F ).

Similarly, let S(πF )
Cb

be the subset of words generated by the constituent encoderSCb
when the input vectors are

contained inU (πF ). Also, letwb(πF ) be the minimum Hammingparity weight ofS(πF )
Cb

. We have

wbound(F ) = wa(F ) + wb(πF ) ≤ w(F ). (19)

Note thatwbound(F ) is a lower bound onw(F ), since the sequence of input bits giving the minimum-weightpath

in the second constituent encoder trellisT̄ b
info is not necessarily an interleaved version of the sequence ofinput

bits giving the minimum-weight path in the first constituentencoder trellisT̄ a
info. The value ofwb(πF ) can be

determined by the use of a constrained Viterbi algorithm. Since the positions ofπF are in general not consecutive,

the complexity of calculating the value ofwb(πF ) by a constrained Viterbi algorithm is larger than the complexity

of calculating the weightsw(c(F )
a,i ), i = 0, . . . , ρ(F )− 1, needed in (18).

In [7] we outlined several improvements to the basic GPB algorithm for solvingΠ(C, τ). All of the improvements

described in the context of solvingΠ(C, τ) can be applied when solvingΠ(SC , τ).

From Table III we observe that the edge complexity ofT̄info is large compared to the edge complexity ofTinfo

even forν = 4. To reduce complexity we propose to remove some of the edges from T̄ x
info. For instance, all edges

in T̄ x
info that correspond to edge subspaces ofT x

info of dimension≥ α, for some integerα ≥ 2, can be removed.

D. Remarks

We remark that in principle everytrellis-basedturbo code weight spectrum computation or estimation algorithm

can be adapted in a straightforward manner to find small-sizeturbo stopping sets. The only requirement is that

the basic trellis module is substituted with the extended trellis module introduced above. We have considered the

impulse methods by Berrou and Vaton [12], Vila-Casado and Garello [11], and Crozieret al. [10] with promising

results.
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E. Numerical Results

We have applied the algorithm from Section V-C with the improvements from [7] on a few example codes.

The example codes are constructed without considering turbo stopping sets. Consider the(828, 270, 36) turbo

code constructed by Crozieret al. in [10]. The code has an optimized minimum distance, is basedon a DRP

interleaver, and is constructed from nominal rate-1/2, ν = 3 constituent codes defined by the parity-check matrix

H(D) = (1 + D + D3 1 + D2 + D3). The last polynomial which is irreducible and primitive has been chosen

as the parity polynomial making the constituent encoders recursive. For this code there are59 (0), 58 (58), and

283 (283) stopping sets (codewords) of size (weight)33, 36, and37, respectively. The minimum turbo stopping set

size is smaller than the code’s minimum distance. This is typically what happens for both short and moderate-length

distance-optimized DRP interleavers. With the uniform interleaver, however, there are

0.08538 (0.08538), 1.245 · 10−7 (1.245 · 10−7), 0.01958 (0.01958), 0.66860 (0.66860), 1.91184 (1.90691),

0.01171 (0.00598), 0.27896 (0.22497), 2.55047 (2.44926), 3.90238 (3.77258), 0.50298 (0.28068),

2.48949 (1.83803), 7.22456 (6.12582), 8.24370 (6.66759), 7.72356 (4.50883)

stopping sets (codewords) of size (weight)9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and23, respectively.

Thus, small-size turbo stopping sets is not a problem with the uniform interleaver for these parameters. As another

example consider an interleaver length of1200. In [10], Crozieret al. constructed an impressive DRP interleaver

of length 1200 with a dither length of8. The corresponding turbo code has length3600, dimension1194, and

minimum distance49. For this code we have found turbo stopping sets of size47. Results for a range of interleaver

lengths are given in Fig. 5. The turbo codes are constructed from the same nominal rate-1/2 constituent codes

as the(828, 270, 36) code above. For each interleaver length between32 and320, in which the dither length is a

divisor, we have found the best (in terms of turbo code minimum distance) DRP interleaver with a dither length of

4. Also, for the same interleavers we have found the minimum turbo stopping set sizes. These results are plotted in

Fig. 5. Note that for several interleaver lengths the minimum turbo stopping set size is smaller than the minimum

distance.

VI. CONCLUSION AND FUTURE WORK

In this work we have considered the finite-length analysis ofturbo decoding on the BEC. In the same way as

iterative BP decoding of LDPC codes is simpler on the BEC thanon other channels, turbo decoding can also be

simplified on this channel. Based on this simplified turbo decoding algorithm we have introduced turbo stopping

sets by adapting the concept of stopping sets from the theoryof iterative BP decoding of LDPC codes. These

turbo stopping sets characterize turbo decoding on the BEC,and an exact condition for decoding failure has been

established as follows. Apply turbo decoding until the transmitted codeword has been recovered, or the decoder

fails to progress further. Then the set of erased positions that will remain when the decoder stops is equal to the

unique maximum-size turbo stopping set which is also a subset of the set of erased positions. Furthermore, we have

presented some improvements of the basic turbo decoding algorithm on the BEC. The proposed improved turbo
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Fig. 5. Minimum distance and minimum turbo stopping set sizeas a function of interleaver length for distance-optimizedDRP interleavers

with a dither length of4.

decoding algorithm has substantially better error performance as illustrated by simulation examples. In the second

part of the paper an expression for the turbo stopping set size enumerating function under the uniform interleaver

assumption was derived. Also, an efficient enumeration algorithm of small-size turbo stopping sets for a particular

interleaver was given. The solution is based on the algorithm proposed by Garelloet al. in 2001 to compute an

exhaustive list ofall low-weight codewords in a turbo code. In fact, it turns out that every trellis-based weight

spectrum computation or estimation algorithm for turbo codes can be adapted to the case of finding small-size turbo

stopping sets. In particular, the impulse methods by Berrouand Vaton, Vila-Casado and Garello, and Crozieret al.

can be adapted in a straightforward manner.

One interesting topic for future work is the design of interleavers in which one considers both low-weight

codewords and small-size turbo stopping sets. Trellis-based interleaver design algorithms can in a similar manner

be adapted to this problem using the extended trellis module.

Finally, we remark that the findings in this paper can be adapted in a fairly straightforward manner to other

turbo-like codes, e.g., RA codes, serial concatenated convolutional codes, and product codes.
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