arXiv:2104.02525v1 [eess. V] 6 Apr 2021

Searching Efficient Model-guided Deep Network for Image Denoising

Qian Ning,! Weisheng Dong,'* Xin Li,> Jinjian Wu,! Leida Li,'! Guangming Shi!

School of Artificial Intelligence, Xidian University

Abstract

Neural architecture search (NAS) has recently reshaped
our understanding on various vision tasks. Similar to the
success of NAS in high-level vision tasks, it is possible to
find a memory and computationally efficient solution via
NAS with highly competent denoising performance. How-
ever, the optimization gap between the super-network and
the sub-architectures has remained an open issue in both
low-level and high-level vision. In this paper, we present a
novel approach to filling in this gap by connecting model-
guided design with NAS (MoD-NAS) and demonstrate its
application into image denoising. Specifically, we pro-
pose to construct a new search space under model-guided
framework and develop more stable and efficient differen-
tial search strategies. MoD-NAS employs a highly reusable
width search strategy and a densely connected search block
to automatically select the operations of each layer as well
as network width and depth via gradient descent. During
the search process, the proposed MoG-NAS is capable of
avoiding mode collapse due to the smoother search space
designed under the model-guided framework. Experimen-
tal results on several popular datasets show that our MoD-
NAS has achieved even better PSNR performance than cur-
rent state-of-the-art methods with fewer parameters, lower
number of flops, and less amount of testing time.

1. Introduction

The field of image restoration, especially image denois-
ing, has advanced rapidly in recent years. Many deep
learning-based methods have achieved great performance
in image denoising applications such as Trainable Non-
linear Reaction Diffusion Network (TNRD) [3], Denois-
ing Convolutional Neural Network (DnCNN) [42], Mem-
ory Network for Image Restoration (MemNet) [33], Non-
local recurrent network (NLRN) [19], Evolutionary search
for convolutional autoencoders (E-CAE) [32], Dual resid-
ual networks (DuRN) [22], and Neural nearest neighbors
networks (N3Net) [28]. Most recently, neural architecture
search (NAS) based approach [40] has been proposed and

*Corresponding author (wsdong @mail.xidian.edu.cn).

2West Virginia University

demonstrated highly competitive performance for the task
of image denoising.

Despite the extensive study of NAS in computer vision
community, the main-stream applications of NAS have been
limited to middle-to-high level vision tasks such as image
classification [48, 21], semantic segmentation [18], and ob-
ject detection [4, 34]. Only a handful of works on leverag-
ing NAS to low-level vision tasks have been published so far
(e.g., image superresolution [12, 5] and denoising [32, 40]).
For example, hierarchical NAS has been studied for vari-
ous low-level vision tasks such as image denoising [40] and
superresolution [12]; however, they have adopted a similar
search space to that in high-level vision tasks [21]. Similar
to DARTS [21], those NAS methods[40, 12] for low-level
tasks have only searched the operations of layers, ignoring
flexibility in terms of network width and depth. Meanwhile,
existing NAS strategies are known for suffering from the
problem of instability, which is believed to arise from the
notorious “optimization gap” between the super-network
and its sub-architectures [30].

The motivation behind this work is mainly two-fold. On
one hand, inspired by recent works of model-guided net-
work for image restoration [8, 41], we propose to construct
a new search space by leveraging the domain knowledge
implied in model-guided neural architecture. To the best
of our knowledge, this is the first work incorporating the
domain knowledge of image restoration into NAS to de-
sign a new search space for low-level tasks. On the other
hand, recent works on densely connected search space [10]
and network pruning [24] have motivated us to pursue more
stable and flexible NAS strategies specifically tailored for
the new constructed search spaces. Unlike previous NAS
methods [40, 12, 21] that only searched the operations of
each layer, our proposed method can automatically select
not only the operations of each layer but also the network
width and depth, achieving the objective of efficiency. The
key contributions of this paper are summarized as follows.

* We propose to search efficient model-guided deep net-
works for image denoising. Our approach consists of
a new constructed search space and a tailored search
strategy for selecting network width and depth auto-
matically, achieving lightweight and low inferring time

simultaneously. The new search space is built under
model-guided framework, in which the deep denoiser
is based on U-net. The construction of search space
by model-guided design guarantees the stability of our
method, avoiding mode collapse during the search pro-
cess.

* Selecting operations of each layer as well as the net-
work width and depth is based on more flexible search
strategies. By combining highly reusable width-search
with densely connected blocks for depth search, effi-
cient and effective networks have been searched for
image denoising and compression artifact reduction.

* We have conducted different benchmark experiments
on our searched network for image denoising and com-
pression artifact reduction. Experimental results on
several popular datasets show that our MoD-NAS per-
forms comparably or even better than current state-of-
the-art methods with fewer parameters, lower number
of flops, and less amount of running time.

2. Related Works
2.1. Model-guided design for image denoising

The problem of image denoising can be formulated as
y = x + n, where x, y denotes the clean/noisy image pair
and n denotes the additive white Gaussian noise. Based
on the above model, we can obtain the clean image x by
Maximum a Posterior (MAP) estimation as

& = argmax logP(x|y) = argmax logP(y|x) + logP(x), (1)

where P(y|x) and P(x) denote Gaussian likelihood and
prior terms respectively, which can be expressed as

1
P(ylz) o< exp(—— [ly — =|13) 2

n

P(x) x exp(—AR(x)), 3)

where o2 is the noise variance and R(x) is the regular-
ization function (e.g., sparsity-based [14], nonlocal self-
similarity based [9, 6, 43]). As mentioned in [43, 8], we
can solve image denoising problem by leveraging a deep
denoising network as a plug-and-play prior [44]. Compared
with hand-crafted priors, deep denoising priors achieve a
more complex and flexible effect. With a mass of training
data, deep network attempts to learn a nonlinear mapping
function v = fpy(x) [8], which can be used as a deep
denoising prior as follows

P(x) < exp(—\||x — v||3),where v = fpn(x). (4)

Therefore, Eq. (1) can be rewritten as

. o1
:c:argmln7\|y—CB||§+)\H.’/B—UH§, (5)
T (=

where v = fpy(x) and A denotes the regularization pa-
rameter. Then, Eq. (5) can be solved by iterative regular-

ization [27] with a relaxation parameter 5t = ﬁ””%’
v®) = fg;v(w(t_l)) (6a)

+ A2
20 — ?JHW — 5Oy 4 (1 - 5D)w®. (6b)

The basic idea of model-guided design (MoD) is to un-
fold conventional model-based iterative algorithms Eq. (6)
into the implementation by cascaded DNN. MoD-based IR-
CNN [43] and DPDNN [8] have shown promising results
on different image restoration tasks such as denoising, de-
blurring, and super-resolution. Since Eq. (6a) is solved by
a manually designed denoising network, there is room for
further improvement (e.g., via NAS) in terms of efficiency
and better denoising performance.

2.2. Network architecture search (NAS)

Search Strategy. NAS has been proposed to overcome
the difficulty of manually designing neural architectures for
deep learning and achieved remarkable performance in var-
ious high-level tasks. Some early works have adopted re-
inforcement learning (RL) [48, 49] and evolutionary algo-
rithm (EA) [20, 29] as search strategies. However, both
RL-based and EA-based methods require tremendous GPU
resources and running time. For example, RL-based NAS-
Net [49] and EA-based AmoebaNet [29] take 48k and 76k
GPU hours respectively. Given such prohibitive complex-
ity, a differential search strategy such as DARTS [21] was
proposed to relax the discrete search space by a differen-
tiable proxy so NAS can be optimized by gradient descent.
Many recent works including ours and [18, 35, 10, 40] have
been inspired by this strategy of differential NAS.

Search Space Design. A cell-based search space has been
proposed by NASNet [49], where the cell is defined by a
directed acyclic graph with several nodes. Those cell-based
methods [49, 29, 21] search the operations between nodes
(so-called feature maps) in a cell and repeat the cell to gain
complete network architecture. However, networks found
by cell-based search spaces often suffer from long inferring
time. In order to improve on efficiency, a flurry of works
such as ProxylessNAS [2], FBNet [35], DenseNAS [10]
have proposed a new search space based on MobileNetV2
[30]. By searching for the expansion ratios and kernel
sizes of MBConv layers, those NAS methods have often
achieved better results than previous methods [48, 49, 29].
These works inspire us to construct a new search space
based on another popular architecture (i.e., U-net) and au-
tomatically search the layer operations, network width and
depth, achieving lightweight and low inferring time simul-
taneously.

y X(O) X(Fl)

3x3 Conv
v

3x3 Conv
|

Encoding

Denoising Network

!—> — — —

6‘(()
V(x) X(t)
1-6Y

Decoding
Block
v
1x1 Conv
x/-\
Z

—*
—*

Normal Layer(NL) Encoding Block

« 3x3 convolution

« 5x5 convolution

« 3x3 separable convolution
« 5x5 separable convolution
« 3x3 dilated convolution

« 5x5 dilated convolution

+ 3x3 Residual block

Up-Sampling Layer (USL)
* 3x3 deconvolution
« Bilinear interpolation
* Nearest interpolation
* Area interpolation

(b) « Sub-pixel layer (d)

Decoding Block

/—l mputs
NL
/r\“\, o 1o ,

t-th stage (a)

NL/DSL/USL Width of One Operation

@t 'wz IF

Uf'— (e) outputs (f) (g)

Figure 1. (a) The overall architecture of the proposed network; (b)-(d) a list of candidate operations to be searched for NL, DSL and USL
respectively; (e) network depth searching; (f) layer operations searching; (g) network width searching.

NAS for Image Restoration. So far, there have been few
works on applying NAS to image restoration. E-CAE [32]
exploits for convolutional autoencoders for image inpaint-
ing and denoising by employing EA as search strategy,
requiring enormous computational resource and costing a
lot of time. HiNAS [40] employs gradient-based search
strategy on cell-based search space for image denoising
and deraining with less search time. Similar to HiNAS,
we adopt gradient-based search strategy but design a new
search space under model-guided framework for low-level
tasks. Besides, our method can automatically search opera-
tions of each layer, network width and depth, while HINAS
has only searched the operations of each layer.

3. Model-guided Design with Neural Architec-
ture Search (MoD-NAS)

We first introduce proposed search space constructed un-
der the model-guided framework. Then we present the
strategies of searching operations for each layer as well as
network width and depth. Finally, we summarize the overall
search procedure of MoD-NAS.

3.1. The Search Space: Searchable U-net Under
Model-guided Framework

Mathematically, the solution to Eq. (5) can be obtained
by iteratively updating v(*) and z(*) following Eq. (6a) and
Eq. (6b). By unfolding iterative updating algorithm through
a deep network, model-guided methods [43, 8, 26] have
achieved excellent performance. However, those networks
are still hand-crafted and their optimality remains question-
able. Under the model-guided framework, the key is to de-
sign a deep network fpy(x). As advocated in [40], NAS
serves as an appealing remedy for optimizing neural archi-

tectures. Meanwhile, we focus on searching computation-
ally efficient and lightweight denoising networks with addi-
tional domain knowledge of image denoising.

Despite the U-net was proposed for medical image seg-
mentation, the U-net has been demonstrated to have great
performance in image restoration domain (e.g., dehaz-
ing [7], video deraining [37], video deblurring [31]), show-
ing the strong ability of denoising. Inspired by those suc-
cess of U-net in image restoration, we propose to construct a
new search space under model-guided framework, in which
deep denoiser fpy(x) is based on U-net structure. When
using U-net as a deep denoising prior, the one-step iteration
Eq. (6) can be unfolded into a deep network implementation
as shown in Fig. 1(a). The addition operator (red module)
faithfully sums up the two terms in Eq. (6b).

Note that the denoising network within the dashed or-
ange box only represents one-step implementation after un-
folding; its concatenation into multiple stages unfolds the
iterative solution to Eq. (5). Specifically, all layers of both
encoding block (EB) and decoding block (DB) are search-
able (highlighted by blue and orange modules). Taking
DB as an example (refer to the right part of Fig. 1(e)), ex-
cept the last DB, each block consists of three normal layers
and one upsampling layer. The last DB consists of three
normal layers only. Similarly, each EB consists of three
normal layers and one down-sampling layer. During the
search, there are seven, four and five candidate opera-
tions to be searched in normal layer, down-sampling layer
and up-sampling layer respectively. The detailed candidate
operations for each layer are listed in Fig. 1(b-d). The net-
work width and depth can also be automatically selected via
proposed searching strategies. By relaxing all discrete ar-
chitectures of network space into differential formulations,
we can search the architectures with gradient descent algo-

250
200
£150
3
©100{

50

0

4 -3 -2-1 0
The value of

3 4

(a) The distribution of the width architecture parameters 3 (b) An example of derived Decoding Block

Searched Denoising Network

3x3 Conv, 48
3x3 Conv, 48
|
3, Conv, 40
3. RB, 40
¥
3, Conv, 32

SC, 40
sKij
2
5, Conv, 40
skip
3, RB, 40
1x1 Conv, 1

3, RB, 40
s

(¢) The searched network architecture

Figure 2. (a) The distribution of width architecture parameters 3 (the x and y axes denote the values and counts of 3 respectively); (b)
an example of derived Decoding Block (the selected layer is highlighted by solid red bounding box and the discarded layer is shown by
dashed gray bounding box); (c) the searched network architecture where RB denotes Residual Block, SC denotes Separable Convolution,
DC denotes Dilated Convolution, NI denotes Nearest Interpolation, BI denotes Bilinear Interpolation. In each layer, the first number
denotes the kernel size and the last number denotes the number of output channels (zoom in for better view). More details of searched

networks can be found in appendix.
rithms such as ADAM [15].

3.2. The Search Strategies

Layer Operations. As shown in Fig. 1(b-d), there are
seven, four and five candidate operations to be searched
in normal layer (NL), down-sampling layer (DSL) and up-
sampling layer (USL) respectively. It is worth mentioning
that each convolution operation starts with a ReLU activa-
tion function but isn’t followed by a batch normalization
layer since it requires more GPU memory [17]. And each
interpolation operation is followed by a 1 x 1 convolution
for channel conversion. Taking the normal layer as an ex-
ample, let O denotes the set of candidate operations listed in
Fig. 1(b). Every candidate operation o € O of each layer ¢
in block b has been allocated an architecture parameter o%/?.
We have adopted the softmax function to compute the ar-
chitecture weight for every operation of layer ¢ in block b:

£,b
exp(aly
Wf,’b = p()Z,b) . @)

Y orcoerplay)
Finally, the output of operations in layer ¢ in block b (refer
to Fig. 1(f)) can be expressed by

20 = wgt oL, ®)

0c0

where L~ 1% denotes the inputs of layer ¢ in block b. In a
similar manner, all other types of layers can also be relaxed.

In summary, the task of choosing the best operation for
layer ¢ in block b has been translated to the problem of op-
timizing architecture parameters o"* which can be solved
through gradient descent algorithms [21]. After the super-
net is trained, we only need to choose the operation 6** with
the largest architecture weight wg’b computed by o*? with
Eq. (7) and discard the others. In other words, the selection
of layer operations can be formulated into the following:

ot = argmax wﬁ’b. 9)
oc0

As shown in Fig. 1(f), only one operational pathway high-
lighted by solid red arrows has been selected.

Network Width. HiNAS [40] and Autolab [18] search
the width of a cell by stacking cells with different widths
side-by-side (i.e., 1W, 2W, and 4W, where W is the ba-
sic width which has to be set manually before the search).
Such strategy suffers from prohibitive cost of computation,
GPU memory and searching time. Besides, this search strat-
egy can only search a finite number of width parameters (as
determined by W) and all layers in one cell have to share
the same width. It follows that many potential architectures
(e.g., with varying layer width in one cell) are excluded
from the search, implying the lack of flexibility.

Inspired by the rapid advances in network pruning [24],
we propose a new highly reusable width-search method for
searching the width of every layer. As shown in the left part
of Fig. 1(g), every channel of operation o of layer ¢ in block
b has been assigned an architecture parameter 32", where
¢ denotes the c-th channel of totally C' channels. During
the search process, the width and other architecture param-
eters will be optimized together by the gradient descent al-
gorithm. Once the supernet has been trained, the probability
distribution of the width architecture parameters 3 typically
observes a heavy-tailed distribution with a single peak at
the origin (as shown in Fig. 2(a)). Such observation implies
that we can discard the channel with small architecture pa-
rameters (3°*® around zero. Specifically, we have chosen
the top—M channels with the largest architecture parameters
242, The criterion for our selection can be written as:

M C
S8 = 00% - 3 (874 (10a)
i=1 j=1

M mod 2" =0, (10b)

where Eq. (10a) reflects the idea of preserving large param-
eters only and Eq. (10b) is used for GPU acceleration (we
have set n = 3 in our experiment) [10]. After the pruning,
preserved channels are shown in the right part of Fig. 1(g).

(O]

Note that the actual number of preserved channels is a vari-
able, which makes our architecture more flexible than fixed-
width searching such as HiNAS [40] and E-CAE [32].
Network Depth. Searching the suitable depth of a network
is crucial to the success of NAS-related applications. Pre-
vious works [36, 35, 2] usually search the depth of network
by adding a skip operation in the candidates. Once a skip
operation has been selected, it is equivalent to the reduction
of network depth by one layer. An undesirable consequence
of such search strategy is that the produced network might
be too shallow when many skip operations have been se-
lected. One possible explanation of this phenomenon is that
the skip has the same probability as the other operations and
skip is often more frequently selected during search because
it does not have any parameter. In this paper, we propose a
new densely connected block to address this issue by uti-
lizing dense connections [45] to implement the strategy of
searching the suitable depth of the network.

As shown in Fig. 1(e), every candidate connection high-
lighted by orange color have been assigned an architecture
parameter. Namely the path from layer ¢ to layer ¢ in block
b has a parameter Wf ' Similar to the relaxation of layer op-
erations, we adopt so ftmax function to compute the prob-
ability p-” of each path. Let L“" denotes the outputs of
layer /¢ of block b, then

-1
b — pr,b L Lib +p§,b b

1=0 (1])
2b
e exp(y;”)

7 N
' Zj:[) el‘p('Yj)

where z%® denotes the output of operations in layer ¢ in
block b. After the supernet is trained, we only choose the
paths with the largest probability pf’b in each layer and dis-
card the others as shown in Fig. 2(b).

3.3. Overall Search Procedure

Putting things together, we can see how the search space
constructed by MoD can be seamlessly integrated with the
strategy of NAS as follows (refer to Algorithm 1). The un-
folding process can be summarized into the procedure of
Forward inferring of Algorithm 1. During this procedure,
the mapping f gz)v corresponds to the denoising network in
Fig. 1(a) at r-th stage. Our MoD-NAS adopts a differen-
tiable search strategy, where the search process can be opti-
mized by gradient descent algorithms such as ADAM [15].
We train the supernet with the following MSE loss:

N
(W,A) = argmin Y || F(y; W, A) —z;[3, (12)

A =1
where y; and x; denote the i-th pair of degraded and orig-
inal image patches respectively and F(y;; W, A) denotes

Algorithm 1 Proposed MoD-NAS Algorithm.
o Initialization:
(1) Initialize x as 20 = Y.
o While the search process not converge do
(1) Forward inferring: fort = 1,2, ,T, do
a) Compute v(® = f{ (z(=1);
b) Compute (") via Eq. (6b);
ot=t+1.
End for
(2) Backpropagation:
a) Update weights by descending VW L4, (W, A);
b) Update architecture parameters by descending
VAL (W, A).
e Derive the final architecture:
(1) derive the final architecture based on the depth pa-
rameter -y, operations parameters « via Eq. (9) and width
parameters 3 via Eq. (10) in sequence.

the reconstructed image patch by the supernet with the pa-
rameters set of operation weights W and the parameters set
of architecture A. We alternatively optimize the operation
weights by descending VW Ly,4:, (W, A) on the training
set, and optimize the architecture parameters by descending
VAL,q (W, A) on the validation set as shown in procedure
Backpropagation of Algorithm 1. When the supernet has
been trained, we derive the final architecture based on the
parameters «, 3,~ as shown in Algorithm 1. An example
of searching for the final denoising network architecture is
shown in Fig. 2(c).

4. Experimental Results
4.1. Experimental Settings

Benchmark Datasets. We have randomly selected 4000
images from the Waterloo dataset for training. Following
[42, 28, 8, 13], three standard benchmark datasets (Setl12,
BSD68, Urban100) are used for testing. The noisy im-
ages are generated by adding white Gaussian noise to the
corresponding clean images with o = 15,25, 50 following
[42, 8, 13]. It is worth mentioning that the search experi-
ments are conducted with o = 25 and the training experi-
ments are conducted with o = 15,25, 50.

Search Settings. The training dataset [25] has been equally
divided into nonoverlapping two parts: one for updating the
weights of network operations (Training W) and the other
for updating the architecture parameters (Training A). We
randomly select 12 noisy patches sized by 64 x 64 as the
inputs. Two ADAM optimizers [15] with 8; = 0.9, 5 =
0.999,¢ = 10~2 are adopted to optimize parameters sets
W and A respectively. The learning rate of two optimizers
decays from 10~2 to 10~° with the cosine annealing sched-
ule [23] within 140 epochs. The stages of supernet is set to
T = 2 and the initial number of channels is set to C' = 48.

301

294

28

PSNR

261

2541

—— MoG-NAS
244 Common-NAS

0 20 40 60 8 100 120 140
Epochs
Figure 3. The performance of supernet evaluated on Set12 dataset
during search process with ¢ = 25. The blue line refers to the
search process with MoD-NAS and orange line refers to the search
process with differentiable NAS (without MoD-NAS).

In the first 40 epochs, we only update the parameters set W
of operations and the parameters sets (W, A) are optimized
alternately in the remaining epochs. Our network is imple-
mented by the Pytorch framework and the total searching
time takes about 7 hours using one NVIDIA 2080Ti GPU.
Training Settings. We train the network that searched by
our method with MSE loss. We randomly select 32 noisy
patches sized by 128 x 128 as the inputs. The ADAM
algorithm [15] with 8; = 0.9,8; = 0.999,¢ = 10~8
is adopted to optimize the network. The learning rate de-
cays from 1073 to 10~° with the cosine annealing schedule
[23] within 600 epochs. The searched denoising network is
shown in Fig. 2(c). Our network is implemented by Pytorch
and the total training takes about 10 hours when 7" = 3 and
using one NVIDIA RTX 2080Ti GPU.

30

25

5 —— Dense connected block
skip in candidate
—== Max Depth

0 20 40 60 80 100 120 140
Epoch

Figure 4. The benefit of searching for network depth. The blue
line refers to the search process with dense connected block and
orange line refers to the search process adding skip in candidates
and gray line refers to the max depth of one U-net.

4.2. Ablation Study

Benifits of MoD-NAS. During the searching process of dif-
ferentiable NAS, there is a phenomenon that the perfor-
mance of supernet drops a lot when the number of search
epochs becomes large. This phenomenon known as mode
collapse has been observed in both high-level tasks[16] and

low-level tasks [40]. DATRS+ [16] for image classifica-
tion and HiNAS [40] for image denoising have employed a
similar way called early stopping. However, this heuristic
strategy does not solve the problem of mode collapse but
gets around it.

In this paper, by incorporating model-guided design with

differentiable NAS (MoD-NAS), the performance of super-
net remains stable and even increases slightly when the
number of search epochs becomes large. To demonstrate
this advantage, we have compared the performance of our
MoD-NAS against common differentiable NAS [21] during
the search process evaluated on the Setl2 dataset as shown
in Fig. 3. Note that we have removed the model-guided de-
sign part by only searching one denoising network as the
baseline control; while all other settings are kept the same
as MoD-NAS. From Fig. 3, we can see that the performance
of proposed MoD-NAS stays stable during the whole search
process, while the baseline method suffers from apparent
collapses, especially when Epochs > 100. Besides, during
the search process, our proposed MoD-NAS demonstrates
improved stability, showing a much smoother PSNR curve
than the baseline. We argue that such benefit of the pro-
posed MoD-NAS method can be explained away by MoD-
NAS providing a smoother search space than differentiable
NAS [21]. Therefore, the proposed MoD-NAS enjoys ex-
cellent convergence property thanks to its search space is
built under mode-guided framework with domain knowl-
edge.
Benefits of Searching for Network Width. To verify the
effectiveness of searching network width, we have con-
ducted the experiment MoD-NAS(T=3) (C' = 64), which
changes all channels of MoD-NAS(T=3) to 64. The ex-
periment results of different widths of MoD-NAS(T=3)
have been shown in Tab. 1, from which we can see that
MoD-NAS(T=3) achieved almost the same result on Set12
dataset. Therefore, MoD-NAS(T=3) achieves a better trade-
off between the number of parameters or flops and accuracy
in searching for network width, reaching the goal of effi-
ciency.

Table 1. Comparisons of different width of MoD-NAS(T=3) on

Set12 dataset with o = 25.
Models parameters | flops | PSNR

MoD-NAS(T=3) 1256k 1.45G | 30.88
MoD-NAS(T=3) (C' = 64) 3245k 3.46G | 30.89

Benefits of Searching for Network Depth. We also have
conducted experiments to verify the validity of proposed
densely connected block for searching the depth of net-
work. As shown in Fig. 4, the blue line shows the search
with dense connected search strategies. It can be seen that
the search procedure is more stable than adding skips (or-
ange line) and the derived network converges rapidly (while
adding skips in candidates converges to a shallow network).

Table 2. Average PSNR results for Gaussian image denoising on three benchmark datasets. The best performance is shown by bold and
the second best performance is shown by underline. The testing time is the total time of evaluating the whole Urban100 dataset.

Methods Set12 BSD68 Urban100 params | flops testing
15] 25 [50 15 [25 [50 15 [25 [50 time

BM3D [0] 3237 | 2997 | 26.72 | 31.07 | 28.57 | 25.62 | 32.35 | 29.70 | 25.95 - - -

TNRD [3] 32.50 | 30.06 | 26.81 | 31.42 | 28.92 | 25.97 | 31.86 | 29.25 | 25.88 - - -
DnCNN [42] 32.86 | 30.44 | 27.18 | 31.73 | 29.23 | 26.23 | 32.68 | 29.97 | 26.28 | 556k | 1.28G | 21.45s
N3Net [28] - 30.55 | 27.43 - 29.30 | 26.39 - 30.19 | 26.82 | 706k | 1.62G | 594.38s
MemNet [33] 32.96 | 30.60 | 27.03 | 30.76 | 29.19 | 25.25 | 32.33 | 30.68 | 25.56 | 2905k | 6.69G | 93.83s
DPDNN [8] ¢ 3291 | 30.54 | 27.50 | 31.83 | 29.27 | 26.40 | 32.98 | 30.30 | 26.85 | 1363k | 5.25G | 68.62s
FOCNet [13] 33.07 | 30.73 | 27.68 | 31.83 | 29.38 | 26.50 | 33.15 | 30.64 | 27.40 - - 125.13s
RDN [47] 32.95 | 30.66 | 27.60 | 31.74 | 29.29 | 26.41 | 33.04 | 30.50 | 27.40 | 21970k | 50.6G | 386.95s
E-CAE [32] - - 26.53 - - 25.86 - - 24.51 | 1062k | 2.45G | 40.04s
HiNAS [40]°? 32.50 | 30.35 | 27.25 | 31.16 | 28.92 | 26.04 | 31.92 | 29.52 | 26.01 630k - 145.89s
MoD-NAS(T=1) | 33.09 | 30.73 | 27.62 | 31.86 | 29.40 | 26.50 | 32.93 | 30.38 | 26.88 | 418k | 0.48G | 11.45s
MoD-NAS(T=3) | 33.21 | 30.88 | 27.83 | 31.91 | 29.47 | 26.59 | 33.19 | 30.73 | 27.37 | 1253k | 1.45G | 18.12s
MoD-NAS(T=6) | 33.28 | 30.95 | 27.87 | 31.94 | 29.50 | 26.61 | 33.34 | 30.88 | 27.54 | 2506k | 2.91G | 33.39s

“DPDNN can be viewed as a baseline method since it is a model-guided method and the denoising network is manually designed based on U-net.
bSince the code of HiINAS is not publicly available, we have tried our best to reproduce HiNAS based on the technical details of the original paper.

4.3. Comparisons with State-of-the-art Methods 0.09dB over DPDNN [8] on the average with only 30.7%
parameters, 9.1% flops and 16.7% testing time. We have
also shown the visual comparison of denoised images with
competing methods in Fig. 5, from which one can clearly
observe the superiority of our method in terms of more fine-
detailed texture patterns. The average SSIM and more vi-

sual results can be found in appendix.

For image denoising, we have compared MoD-NAS with
several current state-of-the-art methods on three commonly
used datasets. The average PSNR results of the benchmark
methods in Tab. 2 are either directly cited from the origi-
nal papers or reproduced by running the officially released
source codes. The testing time is shown in Tab. 2 is the
total time of evaluating the whole Urban100 dataset when
o = 25. To gain deeper insight into the deep unfolding
framework, we have considered three different 7" values and
compared their PSNR performance. We have shown the ex-
perimental results of 7' = 1,7 = 3 and T" = 6 in Tab. 2.

It can be observed that our MoD-NAS is consistently su-
perior to other competing methods in terms of PSNR per-
formance for all datasets. More importantly, our single-
stage model (MoD-NAS(T=1)) has achieved comparable
and even better performance than most benchmark meth-
ods with the fewest parameters, the lowest number of flops,
and the least amount of testing time. As for bigger models,

MoD-NAS(T=3) and MoD-NAS(T=6) have achieved better
results than other benchmark methods with a larger margin
as shown in Tab. 2. Although the number of parameters
in MoD-NAS(T=3) and MoD-NAS(T=6) is comparable to
those in previous methods such as N3Net [28], DPDNN[&],
MoD-NAS(T=3) and MoD-NAS(T=6) have a great advan-
tage over others in terms of flops and testing time. For in-
stance, our finalized MoD-NAS(T=3) has 1253k parame-
ters, which is only 5.7% that of RDN [47] and 43% that of
MemNet[33]. When compared with RDN [47], our MoD-
NAS(T=3) reduces the testing time on Urban100 dataset by

y DPDNN [£] MoD-NAS(T=3) . GT

Figure 5. Denoising visual quality comparison. The first row
shows the comparison for an image from Setl12 with o = 15; the
second row shows the comparison for an image from BSD68 with
o = 25; the third row shows the comparison Urban100 for an

image from with o = 50 (zoom in for better view).

RDN [47]

4.4. Comparisons with Other NAS Methods

Table 3. Comparison of other NAS methods on BSD200 dataset
with o = 50.

Models PSNR GPU (Memory) search+training time | search strategy
as much as 95.3% with even better PSNR results. When Ejf&‘é ;2;; f?‘l"‘sll?)?) i;gg;)) 19665"}?““ if}
. . . i A esla 3 .5 hours gradient
compared with model—gulded method DPDNN [8] that the MoD-NAS(T=3) | 27.26 | 1 RTX 2080Ti (11GB) 17 hours gradient

denoising network was manually designed based on U-
net, our single-stage network MoD-NAS(T=1) has gained

Only a small number of NAS methods (e.g., image

super-resolution [12, 5] and denoising [32, 40]) have been
proposed for low-level vision tasks. Here we compare our
proposed MoD-NAS with E-NAS [32] and HiNAS [40] in
Tab. 2 and Tab. 3. Apparently, in Tab. 3, methods with
search strategy based on gradient descent have advantages
on the cost of GPU memory and searching/training time.
When compared with HINAS [40], our proposed method
has the following main advantages.

* We have proposed a new efficient search space un-
der model-guided framework, which deep denoiser
is based on U-net to address the problem that net-
works found by cell-based search spaces which Hi-
NAS adopted often suffer from long testing time. As
shown in Tab. 2, MoD-NAS(T=1) takes 7.8% testing
time of HINAS and haves less parameters than HiNAS,
which demonstrates MoD-NAS achieves lightweight
and low inferring time simultaneously with more com-
petent performance than HiNAS.

e Compared with HiNAS and E-CAE in Tab. 2 and
Tab. 3, our searched networks MoD-NAS(T=1,3,6)
achieve much better performance in terms of PSNR,
which indicates the superiority of MoD-NAS

* By employing a new highly reusable width search
strategy for searching the network width, our super-
net can be searched by using one 11G'B 2080Ti GPU
while HiNAS [40] is trained by using one 32G B V100
GPU.

4.5. Real image denoising on SIDD Dataset.

To demonstrate the generalization ability of our searched
network, we evaluate the performance of MoD-NAS(T=3)
on a real blind denoising task with SIDD [1] benchmark.
SIDD dataset has provided one medium training set (320
image pairs) and a validation set (40 image pairs) for fast
training and evaluation, but the testing results can only be
obtained by online submission. We have trained MoD-
NAS(T=3) on the medium training set and obtained results
of testing sets by online submission. Tab. 4 shows the PSNR
and SSIM results of different methods on SIDD testing set.
Note that the results on testing sets are cited from the offi-
cial website!. From Tab. 4, we can see that MoD-NAS(T=3)
can achieve promising results in terms of PSNR and SSIM
comparing with other methods. We have shown the real im-
age denoising visual comparison on SIDD dataset in Fig. 6,
from which we can see that our method has achieved a bet-
ter result than other methods (e.g., more effective noise sup-
pression).

4.6. Image Compression Artifact Reduction.

We apply the proposed MoD-NAS search method to im-
age compression artifact reduction for further evaluating the
generalization capability of our method. We employ the

Uhttps://www.eecs.yorku.ca/ kamel/sidd/benchmark. php

Table 4. Comparison of different methods on SIDD testing set.

Methods | CBDNet[11] | VDN [38] | DANet [39] | MoD-NAS(T=3)
PSNR 33.28 39.26 39.25 39.29
SSIM 0.868 0.955 0.955 0.955
params 4346k 2325k 9154k 1253k

coloreh” coloreh? coloreh? coloreh” colore

o { t { |

Noisy CBDNet [11] VDN [38] DANet [39] MoD-NAS(T=3)
Figure 6. Real image denoising visual quality comparison on

SIDD testing set(zoom in for better view).

Table 5. Comparisons of different methods on image compression
artifact reduction with ¢ = 20 on LIVEI dataset.

Methods | TNRD [3] | DnCNN [42] | MemNet [33] | RDN [47] | MoD-NAS-AR
PSNR 31.46 31.59 31.83 32.07 3230
SSIM 0.8769 0.8802 0.8846 0.8882 0.8945
params - 668k 2905k 21970k 1670K

same searching and training setting as the denoising ex-
periments. The results of JPEG quality ¢ = 20 are listed
in Tab. 5 and shown in Fig. 10. As shown in Tab. 5, the
MoD-NAS-AR searched by MoD-NAS achieves much bet-
ter performance than other methods. When compared with
RDN, MoD-NAS-AR gains 0.23d B improvement in terms
of PSNR with only 7.6% parameters of RDN. More visual
comparisons can be found in appendix.

JEPG(q=20)
Figure 7. Image compression Artifact reduction visual quality

comparison on LIVE1 dataset (zoom in for better view).

MemNet [33] RDN [46] MoD-NAS-AR GT

5. Conclusion

In this paper, we have presented a novel MoD-NAS
based approach to image denoising. By incorporating
the strengths of model-guided design and NAS, we have
constructed a new search space and designed flexible search
strategies specially tailored for the task of image denoising.
Through searching in the space of concatenated U-net, we
demonstrate how the joint consideration of layer operation,
network width, and network depth can lead to a network
solution with excellent performance including visual qual-
ity and convergence property. Our proposed network could
achieve at least comparable and often even better PSNR
results than current leading methods with less number of
parameters and flops as well as less amount of testing time.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Abdelrahman Abdelhamed, Stephen Lin, and Michael S.
Brown. A high-quality denoising dataset for smartphone
cameras. In 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1692-1700, 2018. 8
Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In In-
ternational Conference on Learning Representations, 2018.
2,5

Yunjin Chen and Thomas Pock. Trainable nonlinear reaction
diffusion: A flexible framework for fast and effective image
restoration. IEEE Transactions on Pattern Analysis Machine
Intelligence, 39(6):1256-1272,2017. 1,7, 8

Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng,
Chunhong Pan, and Jian Sun. Detnas: Neural architecture
search on object detection. 2019. 1

Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, Jixiang
Li, and Qingyuan Li. Fast, accurate and lightweight super-
resolution with neural architecture search. arXiv preprint
arXiv:1901.07261,2019. 1, 8

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and
Karen Egiazarian. Image denoising by sparse 3-d transform-
domain collaborative filtering. IEEE Transactions on image
processing, 16(8):2080-2095, 2007. 2, 7

Hang Dong, Jinshan Pan, Lei Xiang, Zhe Hu, Xinyi Zhang,
Fei Wang, and Ming-Hsuan Yang. Multi-scale boosted
dehazing network with dense feature fusion. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2157-2167, 2020. 3

Weisheng Dong, Peiyao Wang, Wotao Yin, Guangming Shi,
Fangfang Wu, and Xiaotong Lu. Denoising prior driven deep
neural network for image restoration. [EEE transactions
on pattern analysis and machine intelligence, 41(10):2305—
2318,2018. 1,2,3,5,7,12

Weisheng Dong, Lei Zhang, Rastislav Lukac, and Guang-
ming Shi. Sparse representation based image interpolation
with nonlocal autoregressive modeling. IEEE Transactions
on Image Processing, 22(4):1382-1394, 2013. 2

Jiemin Fang, Yuzhu Sun, Qian Zhang, Yuan Li, Wenyu Liu,
and Xinggang Wang. Densely connected search space for
more flexible neural architecture search. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10628-10637, 2020. 1, 2, 4

Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei
Zhang. Toward convolutional blind denoising of real pho-
tographs. In 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 1712-1722,
2019. 8

Yong Guo, Yongsheng Luo, Zhenhao He, Jin Huang, and
Jian Chen. Hierarchical neural architecture search for sin-
gle image super-resolution. /EEE Signal Processing Letters,
27:1255-1259, 2020. 1, 8

Xixi Jia, Sanyang Liu, Xiangchu Feng, and Lei Zhang. Foc-
net: A fractional optimal control network for image denois-
ing. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6054-6063, 2019. 5,7

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

[27]

Kwang In Kim and Younghee Kwon. Single-image super-
resolution using sparse regression and natural image prior.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 32(6):1127-1133, 2010. 2

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 4,5, 6

Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He,
Weiran Huang, Kechen Zhuang, and Zhenguo Li. Darts+:
Improved differentiable architecture search with early stop-
ping, 2020. 6

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW),
pages 1132-1140, 2017. 4

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L. Yuille, and Li Fei-Fei. Auto-
deeplab: Hierarchical neural architecture search for seman-
tic image segmentation. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
82-92,2019. 1,2, 4

Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, and
Thomas S Huang. Non-local recurrent network for image
restoration. In Advances in Neural Information Processing
Systems, pages 1673-1682, 2018. 1

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha
Fernando, and Koray Kavukcuoglu. Hierarchical represen-
tations for efficient architecture search. In ICLR 2018 : In-
ternational Conference on Learning Representations 2018,
2018. 2

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. In ICLR 2019 : 7th Inter-
national Conference on Learning Representations, 2019. 1,
2,4,6

Xing Liu, Masanori Suganuma, Zhun Sun, and Takayuki
Okatani. Dual residual networks leveraging the potential
of paired operations for image restoration. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7007-7016, 2019. 1

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In ICLR (Poster), 2016. 5, 6
Xiaotong Lu, Han Huang, Weisheng Dong, Xin Li, and
Guangming Shi. Beyond network pruning: a joint search-
and-training approach. In Proc. of IJCAI 1, 4

Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang,
Hongwei Yong, Hongliang Li, and Lei Zhang. Waterloo Ex-
ploration Database: New challenges for image quality as-
sessment models. /EEE Transactions on Image Processing,
26(2):1004-1016, Feb. 2017. 5

Q. Ning, W. Dong, G. Shi, L. Li, and X. Li. Accurate and
lightweight image super-resolution with model-guided deep
unfolding network. IEEE Journal of Selected Topics in Sig-
nal Processing, pages 1-1, 2020. 3

Stanley J. Osher, Martin Burger, Donald Goldfarb, Jinjun
Xu, and Wotao Yin. An iterative regularization method for
total variation-based image restoration. Multiscale Modeling
and Simulation, 4(2):460-489, 2005. 2

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

Tobias Pl6tz and Stefan Roth. Neural nearest neighbors net-
works. In Advances in Neural Information Processing Sys-
tems, pages 1087-1098, 2018. 1, 5,7, 12

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.
Le. Regularized evolution for image classifier architecture
search. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(1):4780-4789, 2019. 2

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
45104520, 2018. 2

Hyeonjun Sim and Munchurl Kim. A deep motion deblur-
ring network based on per-pixel adaptive kernels with resid-
ual down-up and up-down modules. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 2140-2149, 2019. 3

Masanori Suganuma, Mete Ozay, and Takayuki Okatani. Ex-
ploiting the potential of standard convolutional autoencoders
for image restoration by evolutionary search. In ICML 2018:
Thirty-fifth International Conference on Machine Learning,
pages 4771-4780, 2018. 1, 3,5,7, 8

Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-
net: A persistent memory network for image restoration. In
2017 IEEE International Conference on Computer Vision
(ICCV), pages 4549-4557,2017. 1,7, 8, 12, 13

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2820-2828, 2019. 1
Bichen Wu, Kurt Keutzer, Xiaoliang Dai, Peizhao Zhang,
Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter
Vajda, and Yangqing Jia. Fbnet: Hardware-aware efficient
convnet design via differentiable neural architecture search.
In 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10734-10742, 2019. 2, 5
Lingxi Xie, Xin Chen, Kaifeng Bi, Longhui Wei, Yuhui
Xu, Zhengsu Chen, Lanfei Wang, An Xiao, Jianlong Chang,
Xiaopeng Zhang, et al. Weight-sharing neural architec-
ture search: A battle to shrink the optimization gap. arXiv
preprint arXiv:2008.01475, 2020. 1, 5

Wenhan Yang, Jiaying Liu, and Jiashi Feng. Frame-
consistent recurrent video deraining with dual-level flow. In
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1661-1670, 2019. 3
Zongsheng Yue, Hongwei Yong, Qian Zhao, Lei Zhang, and
Deyu Meng. Variational denoising network: Toward blind
noise modeling and removal. In Advances in Neural Infor-
mation Processing Systems, pages 1690-1701, 2019. 8
Zongsheng Yue, Qian Zhao, Lei Zhang, and Deyu Meng.
Dual adversarial network: Toward real-world noise removal
and noise generation. arXiv: Computer Vision and Pattern
Recognition, 2020. 8

Haokui Zhang, Ying Li, Hao Chen, and Chunhua Shen.
Memory-efficient hierarchical neural architecture search for
image denoising. In 2020 IEEE/CVF Conference on Com-

(41]

[42]

[43]

(44]

(45]

[46]

[47]

(48]

[49]

puter Vision and Pattern Recognition (CVPR), pages 3657—
3666, 2020. 1,2,3,4,5,6,7,8

Kai Zhang, Luc Van Gool, and Radu Timofte. Deep unfold-
ing network for image super-resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3217-3226, 2020. 1

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang. Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising. IEEE Transactions on Image
Processing, 26(7):3142-3155, 2017. 1,5,7, 8

Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang.
Learning deep cnn denoiser prior for image restoration. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2808-2817, 2017. 2, 3

Kai Zhang, Wangmeng Zuo, and Lei Zhang. Deep plug-and-
play super-resolution for arbitrary blur kernels. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1671-1681, 2019. 2

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2472-2481, 2018. 5

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2472-2481, 2018. 8, 12, 13
Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image restoration. /EEE
Transactions on Pattern Analysis and Machine Intelligence,
pages 1-1, 2020. 7, 8

Barret Zoph and Quoc Le. Neural architecture search with
reinforcement learning. In ICLR 2017 : International Con-
ference on Learning Representations 2017,2017. 1,2
Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.
Le. Learning transferable architectures for scalable image
recognition. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8697-8710, 2018. 2

A. More Comparisons of Gaussian image de-
noising with State-of-the-art Methods

Here, we have reported SSIM results and more visual
comparisons of Gaussian image denoising results in Tab. 6
and Fig. 9 respectively. As shown in Tab. 6, it is easy to
see that MoD-NAS is superior to all competing methods in
terms of SSIM values. Besides, the visual comparison re-
sults with different o are shown in Fig. 9 where our searched
network performs better than other competing methods in
terms of more recovered image texture details. For exam-
ple, the first row of Fig. 9 shows the result of ‘Img 027
from BSD68 with o = 25, where MoD-NAS-B has recov-
ered with fewer visible artifacts and sharper edge of bird
hair than other competing methods; the second row of Fig. 9
shows the result of ‘Img_013’ from Urban with ¢ = 50,
where our searched network has recovered the stripe shape
of wooden window better than others.

31.0 x 3000 44.0
-%- PSNR
Params /)(_-»—": 135
-m- Flops - 2500
. 308} e el
[e d
2 QU n 3.0
© g R4
3 Lo - 2000
o Re - 42.5
S 306 X .l
/ . _
S ’ e ©)
£ /’ - 1500 © 12.0 %
S /) ¢ vV a
/ s o
c ’ Pid ™
S 30447 ./’ 115
3 e 1000
z oo
z ‘m {1.0
& 302f L
A 500
K 105
30.0 L . L L L 0 Jo.0
1 2 3 4 5 6 7

Number of Stages

Figure 8. The average PSNR performance as a function of param-
eter 1" (the total number of Unet stages) of proposed MoG-NAS
with o = 25 on Set12.

B. More Visual Comparisons of Image Com-
press Artifact Reduction with State-of-the-
art Methods

In this section, we have shown more visual comparisons
of image compression artifact reduction with ¢ = 20 in
Fig. 10. Taking the second row of Fig. 10 as an example,
our searched MoD-NAS-AR has recovered the right letters
IT H on the helmet with fewer artifacts than other compet-
ing methods.

C. Ablation study of impact of stage number T

To explore the impact of the number of unfolded stages
on the denoising performance, we have conducted another
experiment with varying the parameter 7. Fig. 8 shows

the average PSNR results of different stages 7' from two
to seven with o = 25. It can be seen that the PSNR in-
creases as the number of stages increases which indicates
that we can choose the suitable number of stages 1" based
on the real application to balance the trade-off between per-
formance and cost.

D. Details of Searched Architectures

Architecture details of our searched MoD-NAS-B for
image denoising and MoD-NAS-AR for image compres-
sion artifact reduction are described in Tab. 7 and Tab. 8
respectively.

Noisy with o = 25

RDN [46]

N3Net [28] MemNet [33]

MoD-NAS-B

.-::\\-:-lET o -
‘Img_013’ from Urban100 Noisy with o = 50 N3Net [28] MemNet [33]

NN

DPDNN [5] RDN [4(7 MoD-NAS-B GT

‘Img-017" from Urban100 Nolsy with o = 50 N3Net [28] MemNet [3 ~J

ii

DPDNN [8] RDN [46] MoD-NAS-B
Figure 9. Image denoising visual quality comparison (zoom in for better view).

Table 6. Average SSIM results for Gaussian image denoising on three benchmark datasets. The best performance is shown by bold. The
testing time is the total time of evaluating the whole Urban100 dataset.
Methods Set12 BSD68 Urban100 params | flops testing
15 [25 [50 15 [25 [50 15 [25 [50 time
BM3D 0.8952 | 0.8504 | 0.7676 | 0.8717 | 0.8013 | 0.6864 | 0.9220 | 0.8777 | 0.7791 - - -
TNRD 0.8958 | 0.8512 | 0.7680 | 0.8769 | 0.8093 | 0.6994 | 0.9031 | 0.8473 | 0.7563 - - -
DnCNN 0.9031 | 0.8622 | 0.7829 | 0.8907 | 0.8278 | 0.8278 | 0.9255 | 0.8797 | 0.7874 | 556k | 1.28G | 21.45s
N3Net - 0.8644 | 0.7939 - 0.7957 | 0.6455 - 0.8917 | 0.8148 | 706k | 1.62G | 594.38s
MemNet 0.9001 | 0.8652 | 0.7563 | 0.8848 | 0.7966 | 0.6466 | 0.9264 | 0.8793 | 0.7554 | 2905k | 6.69G | 93.83s
DPDNN 0.8970 | 0.8594 | 0.7907 | 0.8738 | 0.8123 | 0.7095 | 0.9322 | 0.8937 | 0.8166 | 1363k | 525G | 68.62s
RDN 0.9030 | 0.8680 | 0.7504 | 0.8884 | 0.7942 | 0.6431 | 0.9291 | 0.8804 | 0.7657 | 21970k | 50.6G | 386.95s
MoG-NAS(T=1) | 0.9070 | 0.8689 | 0.7999 | 0.894 | 0.8350 | 0.7325 | 0.9319 | 0.8953 | 0.8163 | 418k | 0.48G | 11.45s
MoG-NAS(T=3) | 0.9087 | 0.8720 | 0.8065 | 0.8950 | 0.8365 | 0.7371 | 0.9347 | 0.9011 | 0.8317 | 1253k | 1.45G | 18.12s
MoG-NAS(T=6) | 0.9101 | 0.8729 | 0.8070 | 0.8956 | 0.8371 | 0.7376 | 0.9364 | 0.9039 | 0.8358 | 2506k | 2.91G | 33.39s

JEPG(q=20)
Figure 10. Image compression Artifact reduction visual quality comparison on LIVE] testing set(zoom in for better view).

MemNet [33]

RDN [46]

MoD-NAS-AR

GT

Inputs size Operation kernel_size | C;,, | Cour | Act | Stride
128 x 128 x 1 Conv 3x3 1 48 | Relu 1
128 x 128 x 48 Conv 3x3 48 48 | Relu 1
128 x 128 x 48 Conv 3x3 48 40 | Relu 1
128 x 128 x 40 Residual block 3x3 40 40 | Relu 1
128 x 128 x 40 Residual block 3x3 40 40 | Relu 1
128 x 128 x 40 Conv 3x3 40 24 | Relu 2
64 x 64 x 24 Conv 3x3 24 32 | Relu 1
64 x 64 x 32 Separable Conv 5x5 32 40 | Relu 1
64 x 64 x 40 skip - - - - -
64 x 64 x 40 Nearest interpolation - 40 32 - -
32 x 32 x 32 Conv 5x5 32 40 | Relu 1
32 x 32 x 40 skip - - - - -
32 x 32 x 40 Residual block 3 X3 40 40 | Relu 1
32 x 32 x 40 Nearest interpolation - 40 32 - -

16 x 16 x 32 Conv 5x5 32 48 | Relu 1
16 x 16 x 48 Dilated Conv 3 X3 48 48 | Relu 1
16 x 16 x 48 skip - - - - -
16 x 16 x 48 | Bilinear interpolation - 48 40 - -
32 x32x 72 Conv 3x3 72 36 - 1
32 x 32 x 36 skip - - - - -
32 x 32 x 36 Dilated Conv 5 x5 36 40 | Relu 1
32 x 32 x 40 skip - - - - -
32 x 32 x 40 | Bilinear interpolation - 40 40 - -
64 x 64 x 72 Conv 3x3 72 36 - 1
64 x 64 x 36 Residual block 3x3 36 32 | Relu 1
64 x 64 x 32 skip - - - - -
64 x 64 x 32 Residual block 3x3 32 32 | Relu 1
64 x 64 x 32 | Bilinear interpolation - 32 32 - -
128 x 128 x 56 Conv 3x3 56 28 - 1
128 x 128 x 28 Residual block 3x3 28 40 | Relu 1
128 x 128 x 40 Residual block 3x3 40 40 | Relu 1
128 x 128 x 40 skip - - - - -
128 x 128 x 40 Conv 1x1 40 1 Relu 1

Table 7. Architecture details of MoD-NAS-B for image denoising.

Inputs size Operation kernel_size | C;,, | Cour | Act | Stride
128 x 128 x 1 Conv 3x%x3 1 48 | Relu 1
128 x 128 x 48 Conv 3x%x3 48 48 | Relu 1
128 x 128 x 48 Residual block 3x3 48 48 Relu 1
128 x 128 x 48 skip - - - - -
128 x 128 x 48 Residual block 3x%x3 48 40 | Relu 1
128 x 128 x 40 Conv 3x%x3 40 48 | Relu 2
64 x 64 x 48 Dilated Conv 5%x5 48 32 | Relu 1
64 x 64 x 32 skip - - - - -
64 x 64 x 32 Separable Conv 5x5 32 48 | Relu 1
64 x 64 x 48 Area interpolation - 48 48 - -
32 x 32 x 48 skip - - - - -
32 x 32 x 48 Residual block 3x3 48 40 | Relu 1
32 x 32 x 40 skip - - - - -
32 x 32 x 40 Conv 3x%x3 40 48 | Relu 2

16 x 16 x 48 Separable Conv 5x5 48 48 | Relu 1
16 x 16 x 48 Conv 5 x5 48 32 | Relu 1
16 x 16 x 32 skip - - - - -
16 x 16 x 32 | Bilinear interpolation - 32 48 - -
32 x 32 x 96 Conv 3x%x3 96 48 - 1
32 x 32 x 48 Residual block 3x3 48 48 Relu 1
32 x 32 x 48 Dilated Conv 5x5 48 48 Relu 1
32 x 32 x 48 Conv 5x5 48 32 | Relu 1
32 x 32 x 32 Nearest interpolation - 32 48 - -
64 x 64 x 96 Conv 3x%x3 96 48 - 1
64 x 64 x 48 skip - - - - -
64 x 64 x 48 Conv 3x%x3 48 48 | Relu 1
64 x 64 x 32 Residual block 3x3 32 48 Relu 1
64 x 64 x 48 Deconvolution 3x3 48 40 | Relu 2
128 x 128 x 88 Conv 3x%x3 88 44 - 1
128 x 128 x 44 Dilated Conv 3x%x3 44 40 | Relu 1
128 x 128 x 40 Residual block 3x%x3 40 40 | Relu 1
128 x 128 x 40 Conv 3x3 40 40 | Relu 1
128 x 128 x 40 Conv 1x1 40 1 Relu 1

Table 8. Architecture details of MoD-NAS-AR for compression artifact reduction.

