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 
Abstract:  
Nowadays, reconfiguration and adaptation by means of optimal 

re-parametrization in industrial cyber-physical systems (ICPS) is 
one of the bottlenecks for the digital transformation of the 
manufacturing industry. This work proposes a cloud-to-edges-
based ICPS equipped with machine learning techniques. The 
proposed reasoning module includes a learning procedure based 
on two reinforcement learning techniques, running in parallel, for 
updating both the data-conditioning and processing strategy and 
the prediction model. The presented solution distributes 
computational resources and analytic engines in multiple layers 
and independent modules increasing the smartness and the 
autonomy for monitoring and control the behavior at shop floor 
level. The suitability of the proposed solution, evaluated in a pilot 
line, is endorsed by fast time response (i.e., 0.01s at the edge level) 
and the appropriate setting of optimal operational parameters for 
guaranteeing the desired quality surface roughness during macro 
and micro milling operations.  
 

Index Terms— Cloud-to-edge-based concept, reinforcement 
learning, Industrial Cyber-Physical Systems, Machine-learning 
library, Condition-based monitoring, smart manufacturing, 
Industry 4.0. 
 

I. INTRODUCTION  

HE digitalization roadmap is a top priority in the global 
manufacturing industry. Information Technology (IT)-

based solutions in the industrial domain have been for decades 
employed for monitoring and control of industrial processes [1, 
2]. Factories can now be visualized and monitored via web 
browsers and other interfaces from remote locations. The R&D 
community is continuously reviewing state-of-the-art 
approaches that support the operational efficiency of large-scale 
systems [3, 4]. 

Generally, IT-based approaches are in greater demand, due 
to the impact and the requirements of the well-known Industry 
4.0 (I4.0) paradigm [5]. Revolutionary changes have been 
evolving against the backdrop of Industrial Cyber Physical 
Systems (ICPS) [6, 7], the Industrial Internet of Things (IIoT), 
and smart-manufacturing solutions, in real-time/non-real-time 
communication, data exchange from multiple devices, factory 
integration, information flow (traceability), system monitoring, 
anomaly detection and prediction, and actions in support of 
knowledge-based decision-making [8].  

 
 

 

Within that area, smart solutions for different manufacturing 
industries have been identified, to increase connectivity, 
interactivity, resource sharing, and data-collection from 
machines, robots, and other devices, as well as, the 
digitalization of processes, production systems, and product 
traceability [9, 10]. The I4.0-based solutions have introduced 
new paradigms into manufacturing environments such as: 
Service-oriented Architecture (SOA) [11], Reference 
Architectural Model Industrie 4.0 (RAMI 4.0) [3], and cloud-
based service-oriented architectures [12, 13]. Nevertheless, 
there are still several difficulties over creating, consuming, 
representing, and inferring information for data inputs from 
heterogeneous sources [14]. Standards such as Asset 
Administrator Shell [15] are focused on describing the attribute 
of each asset in an optimal (plug and work) way, in order to 
interconnect layers in the factory of the future. Finally, 
communications security and data-transfer safety between 
systems and assets operating down the industrial chain should 
all be part of these new digital solutions [16]. New strategies 
such as blockchain lay the foundations of the new paradigm for 
safe data exchange in ICPS ecosystems [17]. 

At the same time, other emergent fields have, over past 
decades, been related with Machine-Learning (ML) techniques 
with practical applications. Rapid advances of the newly 
developed algorithms, computing resources, and open source 
community make ML-based solutions a key player for the 
digital transformation of industry [18, 19]. Following the digital 
transformation roadmap, it can be assumed that the factory of 
the future, will not only be fully-connected and digitalized, but 
will also be smarter than the current manufacturing 
environments [20].  

Trends found in many industrial sectors reveal that sensor 
reliability, condition-based monitoring, anomaly detection, and 
prediction, prescriptive actions (anticipation), and knowledge-
based decision-making will play an important role in smart 
manufacturing scenarios [21, 22]. Furthermore, the 
combination of unsupervised and supervised leaning, 
clustering, and metaheuristic techniques, and the new self-
functionalities will yield a new set of methods and know-how 
for advancing our  understanding of these complex cutting-edge 
industrial manufacturing processes [23, 24].  

In this context, ML-based solutions can transform the human 
perspective towards the interpretation of variable relations, 

Cloud-based Industrial Cyber-Physical System 
for Data-driven Reasoning. A Review and Use 

Case on an Industry 4.0 Pilot Line  
A. Villalonga, G. Beruvides, Member, IEEE, F. Castaño and R. Haber, Member, IEEE 

T



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2

physical phenomena, cause-effect analysis, and decision-
making effectiveness beyond the current state of the art [25]. 
The expectations will be faster, customizable, more efficient 
and clean (green manufacturing), but at the same time, more 
accessible and better aligned with the demands of society [26]. 

This paper will present a data-driven reasoning method 
comprising learning and the optimization of computational 
procedures, for enabling re-parametrization of the edge 
modules, based on the available process knowledge. The 
unsupervised learning procedure consists of two Q-learning 
strategies for simultaneously updating both the data 
conditioning and processing strategy and the prediction model. 
A cloud-to-edge-based industrial cyber-physical system (ICPS) 
for smart manufacturing is also introduced for supporting the 
data-driven reasoning approach. The industrial target is to 
improve the prediction of the surface roughness quality in 
macro and micro-milling operations by means of re-
parametrization of the data-conditioning and processing 
strategy, and updating the prediction model.   

The paper is structured as follows. After the introduction, the 
role of machine-learning for the digital transformation of 
manufacturing is analyzed. Then, the proposed cloud-based 
architecture is described in section III. Subsequently, in section 
IV, the Industry 4.0 pilot line validation is introduced.  Finally, 
the conclusions are presented in section V.  

II. THE ROLE OF MACHINE-LEARNING IN THE DIGITAL 

TRANSFORMATION OF MANUFACTURING 

In the previous section, several approaches to the digital 
transformation of the industry were described. Even so, the 
common misconception in many industrial environments that 
“Industry 4.0 is only related with a fully-automated (digitalized) 
factory” must be dismissed. The question that should be asked 
is: “whether factory A, which has integrated the full vertical 
value chain of information that is collected from the production 
line (even in real-time), and transmitted to a cloud-based 
platform, is a highly digitalized factory?” The answer is “Yes” 
in the opinion of the authors, because one main function of the 
digitalization paradigm is the digitalization of information from 
multiple sources, and formats based on standards and open 
protocols, to connect the entire manufacturing value chain [27]. 
However, with these actions alone, the answer to the question 
“Is it a smart factory?”, will be probably “No”. Fig 1. attempts 
to clarify the above affirmations in a simple way. Indeed, Fig. 
1 shows the digitalization degree of manufacturing companies 
in the Y axis. Nevertheless, this is only a conceptual 
representation of the company maturity level and the required 
steps to be addressed according to the Industry 4.0 roadmap for 
the digital transformation. Furthermore, this degree of 
digitalization ("full-digitalized vertical company") is a 
medium-term target for manufacturing companies. 

Nowadays, several companies have adopted Industry 4.0-
based platforms to increase product traceability, access to 
information, and real-time visualization of the current status of 
machines, factory production, and assembly lines [28]. Factory 
A represents a full-digitalized vertical company, able to provide 
the above-mentioned functionalities. However, the conclusions 

from line operators to their executives will only be based on 
what they see. To do so, actions will only be taken on the basis 
of expertise acquired from the management of issues and trends 
displayed on the UX/UI dashboards. 

On the other hand, factory B introduces horizontal growth in 
the form of ML core solutions, which learn new patterns from 
the system, correlate events (root cause analysis), predict a 
potential status, support (based on data-driven decisions) the 
decision-making process, and optimize the sequence of actions 
to improve the manufacturing process [29].   

         

 
 Fig 1 . Maturity level of IT and AI-based solutions in the manufacturing 

scope.  

Despite the potential benefits of ML-based solutions there 
are some limitations such as limited amounts of data, 
appropriate and structured data formats, limited time-stamped 
or event-stamped data for a proper description of the process, 
and the consideration of other key performance indicators (e.g., 
spare-part delivery, logistics, maintenance scheduling). There 
is, therefore, a clear need for new methods to fill in 
computational platforms, whether provided through web 
services or onsite, for adding new capabilities to smart 
manufacturing (see Factory C).  

In that sense, Table I summarizes some reported ICPS 
architectures for smart manufacturing. A complete review of all 
the approaches developed to date goes beyond the scope of this 
paper, due to the large amount and the diversity of methods and 
operating  systems, and the main frameworks and techniques, 
etc. [30]. 

 
TABLE I. REVIEW OF STATE-OF-THE-ART IN ICPS ARCHITECTURES FOR SMART 

MANUFACTURING. FIT AND GAPS. 
Project 

acronym 
Main features Main approaches Reference 

SOCRADES Factory 
automation, 

service-oriented 
infrastructure 

Collaborative and 
heuristic methods at 

device and 
application levels 

[31] 

CONMICRO Control, self-
learning, 

middleware. 

Artificial cognitive 
systems. 

[32, 33] 

PLANTCockpit Automation, 
web-services, 

production and 
logistics cockpit 

Statistics methods. [34, 35] 

COGNETCON Control, Self-
optimization, 

federate 
architecture 

Evolved neurofuzzy 
systems. 

[36, 37] 
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IMC-AESOP Automation, 
Services-

oriented, cloud 
services, service 

mediators 

Modular 
collaborative 

systems. 

[38] 

ARROWHEAD design, 
engineering, and 

operation of 
large automation 

system, web-
services 

Cooperation as 
system of systems, 

interoperability, 
verification. 

[39] 

PRIME Multi-agent 
technology 

 Self-organization. [40] 

GRACE Quality control, 
Service-oriented 

architecture, 
Multi-agent 
technology 

self-adaptation 
method, quality 
control method. 

[41] 

IDEAS Evolvable 
assembly 

architecture, 
distributed 

control 
applications  

Evolvable systems, 
self-reconfiguring. 

[42] 

REBORN Flexible 
assembly 

architecture, 
machine 

automation 

Symbiotic assembly 
method, evolutionary 

method. 

[43] 

PERFORM Distributed 
control systems, 

industry-
oriented system 

architecture, 
middleware 

plug-and-produce 
concept, human 

factor in the loop.  

[44] 

 
A cloud-based ICPS configuration is proposed, in order to 

fill this gap, designed and validated on an Industry 4.0 pilot line 
in which multiple edge-to-cloud solutions are introduced. In 
addition, another important motivation behind this ICPS 
proposal are the current solutions such as Enterprise Resource 
Planning (ERP) systems, dynamic manufacturing scheduling, 
and logistics, amongst others, that are currently migrating to the 
cloud as a services platform, to deploy real-time control for all 
stakeholders involved in end-to-end business values [45].  

III. CLOUD-BASED ICPS DESCRIPTION 

The proposed cloud-to-edges-based ICPS is based on a 
generic cloud-edge system (see Fig 2.). 

Each edge has monitoring functions, based on signals and 
events analysis, the operational features, and the performance 
of the production chain elements. Process monitoring is based 
on three fundamental subsystems: (i) signal processing; (ii) 
predictive model; and, (iii) local decision-making embedded in 
the local edges. The location of these subsystems into the 
architecture is shown at the bottom of the edge device in Fig. 3. 

 

A. Cloud-based platform  

The cloud layer takes charge of supervising the distributed 
set of edges, based on the configurations at plant level. The edge 
parametrization can be done at any time, providing the system 
with a dynamic re-parametrization mechanism, based on 
optimal key performance indicators estimated by the reasoning 
layer. In this way, the cloud-based platform will modify the 
configuration of the different edge parameters, depending on 
the behavior of the process. For this purpose, the edge modules 
will require continuous information flows on the process, from 
the cloud, thereby activating the reasoning module that will 
compute the most appropriate set of parameters for every 
recommended action. The cloud is composed of six main 
subsystems, as shown in Fig. 3. 
 Global warehouse: the global data, supplied by each 

process/machine component connected to the edges, are  
Fig 2. Overall diagram of the cloud-based ICPS  

 
Fig 3. Scheme of the cloud-edge interaction and internal module 

interconnections  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4

stored in a structured database that is used for the 
reasoning and the management phases. The same 
database also stores data to validate the training and the 
performance indices of the different predictive models. 

 Machine learning library: consists of a set of modeling 
techniques based on machine learning methods to 
generate predictive models of each component of the 
plant. 

 Pre-processing library: composed of different time-
domain methods such as peak-to-peak value, mean 
square root, kurtosis, and frequency domain techniques, 
such as Fast-Fourier transform and Wavelet transform 
for data pre-processing. 

 Reasoning module: supported by the hybridization of a 
reinforcement learning procedure (i.e., Q-learning 
method) and an evolutionary algorithm in charge of 
yielding predictive modules with optimal 
parametrization. The reasoning process is triggered by 
the arrival of new data from the production line. 

 Global management module: in charge of the 
synchronization of all the different subsystems that 
constitute the cloud platform. 

 Visualization: based on a web service, a customized 
visualization can be streamed of each machine 
component in action, as well as, their overall 
performance. 

B. Edge  

The local edge is responsible for monitoring and diagnosis 
on the basis of sensory information gathered from different 
subsystems on the shop-floor, such as spindle temperature, 
lubricant level, working time of main components, etc. Each 
edge is equipped with different communication protocols such 
as OPC UA, Profibus, Modbus, and Ethernet. This sensory 
information is processed, and then evaluated through a 
predictive model provided by the cloud. The model output is 
analyzed for the decision-making module and shown to the 
users through a web service.  

The edge is composed of six main blocks, as depicted in Fig. 
3: 
 Signal processing: contains the techniques defined by 

the cloud for data-processing in each subsystem. 
 Model: the predictive model defined by the cloud that is 

triggered to obtain performance rates according to the 
key performance indicators defined in the global module 
for each subsystem. 

 Local decision-making: receives data on representative 
variables and manages possible alarms or events that can 
occur in a certain period. It uses a decision-making 
procedure with an adaptive threshold using the weighted 
sum of squared residuals (WSSR).  

 Visualization: consists of a web-based user interface and 
facilitates the interpretation of the information that is 
displayed. In this interface, the user can track the 
behavior of the different components of the machine and 
the history of alarms, events, and failures of the 
corresponding components, and parts. 

 Local database contains the local information of the 
machine. The information on alarms, failures, and 
process variables. 

 Local Management module: synchronizes the operation 
of all the subsystems that comprise the edge and that 
control cloud communications.  

C. In-process decision-making support   

A model-based decision-making module consists of three 
essential parts: the residuals generation (difference between the 
actual output and the estimated output by the model), the 
residuals evaluation and decision-making relating to processes 
condition, or state. The threshold can be set using different 
statistical criteria (variance, standard deviation, mean), 
deterministic criteria (based on distance measurements in 
vector spaces), or using methods based on artificial intelligence 
techniques. Among the simplest strategies is the weighted sum 
of the square of the residuals (WSSR) [46]. The WSSR method 
is based on the sequence of residuals: 
      ˆMe t y t y t    (1) 

In the edge decision-making module, two criteria were 
considered by combining the influence of the residuals vector 
and its derivative. In this way, the data from the residuals vector 
and its derivative are used, not only to evaluate the degree of 
process-model matching, but also to use the residual vector 
trend for the detection of the process state. 
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where  


 and
2

  are the infinite norm and the Euclidean 

norm respectively; Me and  Me are the residual vector and  its 

derivative in the window [t-NT –1, t]. 

D. Knowledge-based re-parameterization in the cloud   

The reasoning module performs the re-parameterization in 
the cloud. Based on a reinforcement learning procedure, it is 
possible to capture new knowledge on the process, based on 
new data and the accumulated information extracted from 
previous data. 

With the aim of implementing the reinforcement learning in 
the reasoning module, a Q-learning method is selected. Q-
learning is one of the most frequently used approaches to find 
optimal policy in finite Markov decision processes. The main 
goal of the method is to maximize the total reward obtained 
from a set of actions executed from the initial state. The quality 
of each state-action is measured by the function Q (equation 4).  

𝑄ሺ𝑠, 𝑎ሻ ← 𝑄௧ሺ𝑠, 𝑎ሻ ൅ 
൅𝛼ሾ𝑅ሺ𝑠, 𝑎ሻ ൅ 𝛾𝑚𝑎𝑥𝑄௧ାଵሺ𝑠௧ାଵ, 𝑎௧ାଵሻ െ 𝑄ሺ𝑠, 𝑎ሻሿ  (4) 
 
where, st is the state in time t; at is the action taken in time t; R 
is the reward received after performing action at; α is the 
learning rate; and, γ is the discount factor which trades off the 
importance of sooner versus later rewards. 
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In each step, the Q function is updated based on the selected 
policy. From among several policies the ϵ-greedy policy was 
used in this particular implementation to select an action. 

Two reward functions were defined, in order to identify 
certain central aspects of the learning process through the 
selection of the best fit model with the greatest accuracy and 
with the lowest computational load. The first reward was 
designed to select the best predictive model. The second one 
was designed to choose the best pre-processing tools, to reduce 
irrelevant background noise in the data. 

On the one hand, three main aspects were considered to 
define the first reward function, i.e., model accuracy, 
generalization capability, and computational load. The first and 
the second are well-known model-quality parameters. The last 
one was chosen, because those models process data in real time 
where the computational load is a critical factor for these sorts 
of applications. The determination coefficient (R2) and the 
Relative Absolute Error (RAE) were selected as performance 
indices, to take into consideration the accuracy and the 
generalization capability, defining a reward matrix illustrated in 
table II.  

TABLE II. REWARD MATRIX FOR DECISION-MAKING MODEL. 

R2 
RAE 

0 – 10% 10 -20% 20 – 40% 40 – 70% > 70% 

90 – 100% 1 0.95 0.78 0.5 0.2 
80 – 90% 0.88 0.82 0.68 0.4 0.15 
70 – 80% 0.72 0.61 0.55 0.3 0.1 
30 – 60% 0.55 0.4 0.32 0.2 0.05 
0 – 30% 0.3 0.22 0.15 0.1 0.01 

 
A penalty coefficient in the reward function was included, in 

order to consider the computational load factor, as shown in 
equation 5.  

 𝑅௠௢ௗ௘௟ሺ𝑠, 𝑎ሻ ൌ 𝑅ሺ𝑠, 𝑎ሻ െ 𝜆ሺ𝑚ሻ  (5) 

 
where, Rmodel (s,a) is the total reward calculated for the 

corresponding model, R(s,a) is the reward from the matrix (see 
table 1), defined by the performance indices of the model (R2, 
RAE), and the penalty coefficient, λ(m). The penalty coefficient 
was defined on the basis of the computational load of each ML 
algorithm included in the library. 

On the other hand, the second reward function was designed 
to select the most appropriate data pre-processing methods, to 
generate model outputs of greater accuracy. Two main 
characteristics were considered to define this second reward 
function. Firstly, the Mean Absolute Error (MAE) of the data 
that were processed to train the models was considered for 
assessing the accuracy of the models. Secondly, a penalty 
coefficient was defined that was linked to the computational 
load of each signal processing tool in the library. Equation 6 
represents the reward function for the selection of the pre-
processing tool. 

 
 𝑅௣ି௧௢௢௟ሺ𝑠, 𝑎ሻ ൌ 𝛼ሺ1 െ 𝑀𝐴𝐸ሻ െ 𝜂 (6) 
 

where, Rp-tool is the total reward; α is the learning rate 
coefficient; and, η is the penalty coefficient.  

Feature extraction of measured signals in industrial processes 
extracts information from the signal that is difficult to interpret, 
due to background noise and irrelevant information. The 
application of those techniques is therefore of great importance 
and even essential for some systems.  

Therefore, as two reward functions are available, there are 
also two Q-learning functions that will be updated in parallel to 
determine the optimal model, considering both the best 
processing strategy and the best prediction model. Taking into 
account these modifications, the functions to update the Q-
values will be: 

 
 𝑄୫୭ୢ௘௟ሺ𝑠, 𝑎ሻ ← 𝑄௧ሺ𝑠, 𝑎ሻ ൅ 
൅𝛼ሾ𝑅୫୭ୢ௘௟ሺ𝑠, 𝑎ሻ ൅ 𝛾max𝑄௧ାଵሺ𝑠௧ାଵ, 𝑎௧ାଵሻ െ 𝑄ሺ𝑠, 𝑎ሻሿ (7) 
 𝑄௣ି௧௢௢௟ሺ𝑠, 𝑎ሻ ← 𝑄௧ሺ𝑠, 𝑎ሻ ൅ 
+𝛼ሾ𝑅௣ି௧௢௢௟ሺ𝑠, 𝑎ሻ ൅ 𝛾max𝑄௧ାଵሺ𝑠௧ାଵ, 𝑎௧ାଵሻ െ 𝑄ሺ𝑠, 𝑎ሻሿ (8) 
 

As a final step, if the optimal model, selected from the 
interpretation of the update process, yields different results for 
both Q functions, they will be downloaded to the edge. This 
procedure is part of the learning algorithm, shown below in Fig. 
4. 

 

Learning algorithm  

1  Initialize, train and optimize all models  
2 Initialize Q matrices 
3  repeat  
4   for each step do 
5      receive data from shop floor 
6      evaluate all models 
7     calculate performances indices  
8     update Qmodel  

9    update Qp-tool 
10     choose best model 
11       choose best pre-processing tool 
12     update edge model if different 
13        update edge pre-processing tool if different   
14   end 
15 until reach learning epochs   

Fig 2 . Learning algorithm running the reasoning module. 

IV. INDUSTRY 4.0 PILOT LINE: A USE CASE ANALYSIS 

A. Pilot line for smart manufacturing. Description.   

The use case demonstrates cloud-based reasoning applied to 
a pilot line for smart manufacturing that represents both a 
challenge and an opportunity for Industry 4.0. The ICPS 
framework serves to address some key issues related with the 
Industry 4.0 paradigm. Fig. 5 illustrates the configuration of the 
pilot line. 

The milling process is the most frequent machining operation 
in any manufacturing industry. Milling is the process for 
removing material by advancing a rotation cutter into a work 
piece. Milling covers a wide variety of different operations and 
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machines, on scales from micro scale (less than 0.5 mm of 
cutting tool diameter) up to macro scale (more than 0.5 mm of 
cutting tools diameter). This process is essential for producing 
high quality parts with complex shapes including ramps, 
contours, pocket, holes, etc. at high removal material rate. 
Nowadays, several manufacturing industries in aeronautics, 
health and space sectors demand high productivity with very 
high quality of the products. The surface roughness is one of the 
most important key performance indicators related surface 
quality and the overall quality of components. However, the 
setting of parameters for guaranteeing the required surface 
roughness is very cumbersome and challenging and the industry 
lacks systematic procedures for predicting surface roughness 
either at micro and macro scale milling processes. 

The pilot line has three machine tools fully equipped with 
sensors, two manipulator robots, two conveyor belts, and an 
autonomous robot for inspection. The machine tools are a 
Deckel Maho DMC 75V Linear high-speed machining centre 
with a CNC Siemens 840D, a Kondia HS 1000 with a CNC 
Siemens 820D, and an ultra-precision micromachining centre 
equipped with a laser control Nano NT. In addition, two 
manipulator robots, Universal Robots UR5e and Stäubli RX90, 
are located next to the machines, for operational handling of the 
work pieces. Finally, two conveyor belts are in charge of 
transporting the work pieces between machines that perform 
different cutting operations. Further down the two conveyor 
belts, an autonomous robot, RWI B-21 is responsible for 
inspection of the manufactured parts. 

Furthermore, it is important to highlight that the 
communication link, between the edges and the machine tools 
are implemented by two industrial standard protocols, i.e., 
Profibus to communicate with the Deckel Maho, and industrial 
Ethernet to Kondia HS. The edge application was embedded in 
two raspberry pi 3B+ models with 16 Gb storage card. The 
cloud application was running on a virtual machine linked to a 
remote central server in another town, at some distance from 
the pilot line location. The cloud and edge application were 
implemented in C/C++ with Qt library version 5.10, using an 
Integrated Development Environment Qt Creator 4.5.0. The 
visualization dashboard was implemented in Python 3.6.2. 

B. Manufacturing shop-floor validation   

The validation of the proposed Cloud-based ICPS and more 
specifically, the reasoning module, was performed for a 
condition-based monitoring process of two machining centers 
out of the three connected in parallel on the pilot line, as 

previously described. Specifically, the representative variable 
to be monitored is surface roughness [47].  

In the first manufacturing process (process A), a micro-
milling operation was selected using a Kern Evo machine (see 
Fig. 6 A)) [48]. A set of piezoelectric accelerometers were also 
attached to measure vibrations on each (x, y, and z) axis. 

 

 
Fig 6. Detail of the micromachining center and devices.  

 

The second manufacturing process (process B) was a milling 
operation using a Kondia HS1000 machine (see Fig. 6 B) [36]. 
In addition, an external sensory system that consisted of three 
piezoelectric accelerometers was also added, for measuring the 
vibration signals of each (x, y and z) axis. 
1) Dataset generation and model training 

The main goal was to generate an on-production dataset 
capable of initial training and then, validation of the 
corresponding machine-learning-based models implemented in 
the Cloud-based ICPS, as described below [49]. The process 
monitoring consisted of the measurement of feed per tooth (fz), 
tool diameter (D), radial depth of cut (ae), spindle speed (rpm) 
and the resulting vibration signals. Subsequently, the pieces 
were subjected to quality control, measured through their 
surface quality and more specifically, considering the 
arithmetic average roughness value, Ra. The models should 
therefore predict in-process the Ra value using as inputs, the 
vibration signal and the fz. Table III illustrates the structure of 
both datasets. 

TABLE III. DATA SETS FOR TRAINING AND VALIDATION. 
Micro machining (Samples) Macro machining (Samples) 
Training  Valid Training Valid 

241 137 5890 2000 

 
Five strategies for developing the predictive models using the 

ML library were used, in order to demonstrate the advantages 
of the reasoning module in the cloud-based ICPS configuration: 
(i) k-Nearest Neighbors (kNN); (ii) Support Vector Machine 
(SVM); (iii) Ordinary Least Square Regression (OLS); (iv) 

 
Fig 5. Overall view of Industry 4.0 pilot line for ICPS: testing and applications. 
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Multilayer Perceptron (MLP); and, (v) Hybrid Incremental 
Modeling (HIM). Moreover, the pre-processing and signal 
processing library was populated with ten techniques based on 
temporal, frequency and time-frequency analysis. 
2) Evaluation of the overall Cloud-based ICPS 

For the sake of clarity and in order to show the advantage of 
the proposed cloud-based ICPS for data-driven reasoning, 
different studies were conducted. Firstly, the overall assessment 
was carried out taking into account computational performance 
indices (i.e., computational load and cost) of the model and the 
reasoning module. Secondly, an error-based performance 
index, i.e., the relative absolute error (RAE) of the estimated Ra 
in relation to the actual measured Ra, was computed and the 
comparative analysis with and without the application of the 
reasoning module was performed.  

Having generated the dataset necessary for processes A and 
B, the experimental evaluation of the overall cloud-based ICPS 
was performed. Firstly, the cloud begins the reasoning process 
by training and optimal parametrization of the ML-based 
models, selecting the most appropriate initial model and the 
pre-processing data methods as required.  

Initially, as a default configuration in the first iteration, the 
reasoning module selects well-known time-domain techniques, 
i.e., the RMS value, for conditioning the input data of both 
processes. In addition, the two models with the best 
performance indices were selected: HIM-based model and 
MLP-based model. They were chosen from among the five ML-
based models for predicting surface roughness in the evaluation 
procedure for processes A and B, respectively. 

After yielding the initial models, the configuration 
parameters and the models were downloaded to the 
corresponding edges and the supervision process was therefore 
ready to start. Each time either of the two processes, A or B, 
sent a new set of data to the cloud through its edge, the 
corresponding reasoning process was triggered. The epochs of 
the learning algorithms were set to 100 for both processes.  

Computational load is an important performance index, to 
evaluate the behavior of the Cloud-based ICPS. Table IV shows 
the computational load in terms of the latency times of some of 
the main events at the edge. 

TABLE IV. COMPUTATIONAL LOAD. 
Event Time (s) 

Downloading models from the cloud 4.5 
Signal processing in edge 0.003 

Model evaluate in the edge  0.008 
Initial model training and optimization 2546 

 

With the aim of evaluating the improvements introduced to 
the cloud-based ICPS by the proposed data-driven reasoning 
module, a comparative study using two simulations was 
performed. The first comparison was focused on the analysis of 
the model fitting error in the edge for the best model selected 
with brute-force search algorithm and the best model selection 
by the reasoning module (i.e., the re-parametrized model). The 
second comparison was centered on the computational load of 
the reasoning procedure and the brute force algorithm. A brute-
force search or exhaustive search refers to the fact that all 

models, once trained, are evaluated in each reasoning iteration 
with datasets obtained from each signal processing strategy. 

Table V shows the computational load, in terms of the 
latency of the best model selection at the end of the reasoning 
process in comparison with brute-force search or exhaustive 
search. Shorter latency times are indicative of improvements to 
the reasoning procedure, i.e., latency time 13 times less than the 
latency time for brute force. It is important to note that the brute 
force selection algorithm can only take into account one of the 
selected performance indices used by the reasoning process in 
the best algorithm selection. 

 

TABLE V. REASONING VS BRUTE-FORCE SEARCH OF COMPUTATIONAL 

LOAD. 
Event Time (s)

Best model selection by the reasoning module 0.085 
Best model selection with brute-force search 1.10 

 

 
In order to illustrate the actual performance of the cloud-

based reasoning module, Fig. 7 shows the results of re-
parametrization and updating of predictive models of processes 
A and B, during the run of the edges. There is not updating in 
the predictive model for the process B. This predictive model, 
based on MLP, yields a RAE of 1.06%, and therefore with this 
accuracy no further re-parametrization and updating are 
required. On the contrary, there are two clear transitions in the 
behavior of the predictive model corresponding to the process 
A. The increase of the error detected by the reasoning module 
triggers two updates of predictive models of the process A. This 
updating of the predictive model from HIM-based to SVM-
based model, and vice versa decreased RAE in about 7% which 
is very significant from industrial informatics viewpoint.  

 

 

Fig 7. Best model for processes A and B selected by the reasoning module  
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Fig 8. RAE in re-parametrized model vs initial model in process A. 

For the sake of coherence and due to the high fidelity of the 
MLP-based predictive model for the process B, no further 
details of the corresponding RAE are shown. On the contrary, 
the contribution of the reasoning module to improve RAE of the 
process A is detailed in Fig. 8. The behavior of the predictive 
model of the process A clearly depicts a remarkable decrease in 
RAE of the best model selected from the reasoning module with 
regard to the brute force selected model (i.e., HIM-based 
model). At the beginning, both models depict similar behavior 
in relation to the corresponding RAE. However, after some 
iterations, the good performance of the reasoning module, by 
improving the accuracy in predicting surface roughness, is 
clearly shown in Fig. 8. 

V. CONCLUSION 

A cloud-based data-driven reasoning process is presented 
that enables re-parametrization of predictive models in a set of 
edge modules based on the new knowledge extracted from data 
in an industrial cyber-physical system. The application of 
unsupervised learning procedures, represented by a Q-learning 
method, updates both the data-processing strategy and the 
prediction model. The reasoning module was therefore 
integrated into a cloud-to-edge industrial cyber-physical system 
that can visualize, monitor, predict, and deploy the main 
parameters in smart manufacturing scenarios. During the 
execution phase, a machine-learning-based model library is run 
to pre-process the decision-making actions and to enable the re-
parameterization of models, using information collected by 
sensors on the factory floor.  

Finally, all modules were tested and validated on an Industry 
4.0 pilot line, outperforming the results of single predictive 
models. The reasoning module is able to select the best fitting 
model for multiple manufacturing processes running in parallel. 
Future works will be conducted to add more functionalities to 
the current cloud-based framework and to explore other 
machine learning-based procedures, in order to increase the 

degrees of freedom of the reasoning module.    
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