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Onur Günlü, Member, IEEE

Abstract—A basic model for key agreement with a remote
(or hidden) source is extended to a multi-user model with joint
secrecy and privacy constraints over all entities that do not
trust each other after key agreement. Multiple entities using
different measurements of the same source through broadcast
channels (BCs) to agree on mutually-independent local secret
keys are considered. Our model is the proper multi-user extension
of the basic model since the encoder and decoder pairs are
not assumed to trust other pairs after key agreement, unlike
assumed in the literature. Strong secrecy constraints imposed
on all secret keys jointly, which is more stringent than separate
secrecy leakage constraints for each secret key considered in the
literature, are satisfied. Inner bounds for maximum key rate,
and minimum privacy-leakage and database-storage rates are
proposed for any finite number of entities. Inner and outer
bounds for degraded and less-noisy BCs are given to illustrate
cases with strong privacy. A multi-enrollment model that is used
for common physical unclonable functions is also considered to
establish inner and outer bounds for key-leakage-storage regions
that differ only in the Markov chains imposed. For this special
case, the encoder and decoder measurement channels have the
same channel transition matrix and secrecy leakage is measured
for each secret key separately. We illustrate cases for which it
is useful to have multiple enrollments as compared to a single
enrollment and vice versa.

Index Terms—Information theoretic privacy, multiple enroll-
ments, multiple entities, physical unclonable functions.

I. INTRODUCTION

A natural source of randomness is biometric identifiers such
as fingerprints that are generally transformed into a frequency
domain and quantized to obtain bit sequences that are unique
to an individual [1]. Similarly, physical identifiers such as fine
variations of ring oscillator (RO) outputs or random start-
up values of static random access memories (SRAMs) that
are caused by uncontrollable manufacturing variations, are
safer and cheaper alternatives to key storage in a non-volatile
memory [2]. Physical identifiers for digital devices such as
Internet-of-Things (IoT) devices can be implemented using
physical unclonable functions (PUFs) [2]. One can use PUFs
in various coding schemes as a source of local randomness
[3, Chapter 1], e.g., in the randomized encoder of the wiretap
channel [4] and of the strong coordination problem [5], [6].

We use the basic source model for key agreement from
[7], [8] to find achievable rate regions for key agreement
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with PUFs and biometric identifiers. In this classic model, an
encoder observes a source output to generate a secret key and
sends public side information, i.e., helper data, to a decoder,
so the decoder can reliably reconstruct the same secret key by
observing another source output and the helper data. The main
constraints are that the information leaked about the secret key,
i.e., secrecy leakage, is negligible and the information leaked
about the identifier output, i.e., privacy leakage, is small [9],
[10]. Furthermore, the amount of public storage should also
be minimized to limit the hardware cost [11].

Suppose the encoder generates a key from a noisy measure-
ment of a hidden (or remote) source output, and a decoder
has access to another noisy measurement of the same source
and the helper data to reconstruct the same key. We call this
model the generated-secret (GS) model with a hidden source.
This model is introduced in [12] as an extension of the visible
(noiseless) source outputs observed by the encoder, considered
in [9], [10]. Similarly, for the chosen-secret (CS) model, an
embedded (or chosen) key and noisy identifier measurements
are combined by the encoder to generate the public helper data.
We consider both models to address different applications.

A. Related Work and Motivation

The same identifier is used by multiple encoder and decoder
pairs in [13], where the identifier outputs observed by different
encoders are the same because the encoder measurements are
assumed to be noiseless. Therefore, the multiple use of the
same noiseless source output allows all encoders to know the
secret key of the other encoders. This model does not fit well
to the practical key agreement with identifier scenarios because
there is noise in every identifier measurement.

Multiple enrollments of a hidden source using noisy mea-
surements are considered in [14], where weakly secure secret
keys are generated without privacy leakage and storage con-
straints. Furthermore, there is a causality assumption in [14] on
the availability of the helper data, i.e., any decoder has access
to all previously-generated helper data. This assumption is not
necessarily realistic as a decoder of, e.g., an IoT device that
embodies a PUF should be low complexity and the amount
of data to process increases linearly with the number of
enrollments. In addition, any manipulation in any of the helper
data can cause the complete multi-enrollment system to fail.

A classic method used for key agreement, i.e., the fuzzy
commitment scheme (FCS) [15], is used in [16] in combina-
tion with an SRAM PUF to enroll the noisy outputs of the
same SRAM multiple times. The symmetry condition in [16,
Eq. (16)] conditioned on a fixed SRAM cell state is entirely
similar to the symmetry satisfied by binary-input symmetric
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output (BISO) channels; see e.g., [17, p. 613], [12, Eq. (14)].
For SRAM outputs that satisfy this symmetry, the normalized
(weak) secrecy leakage about each separate secret key is
shown to be zero. It is discussed in [18, Section 3.4] that
any uniformly-distributed hidden identifier output with BISO
measurement channels satisfies the results in [16]. In [18,
Theorem 1] the secret-key capacity of the two-enrollment key
agreement problem is established for measurement channels
with the same channel transition matrix. However, these multi-
enrollment models do not consider the privacy leakage and
storage constraints, there is no constraint on the independence
of the secret keys of different enrollments, and the secrecy
leakage constraint is weak and is not applied jointly on all se-
cret keys. Furthermore, optimal random linear code construc-
tions that achieve the boundaries of the key-leakage-storage
regions are given in [19], where the classic code constructions
FCS and code-offset fuzzy extractors [20] are shown to be
strictly suboptimal. Therefore, the multi-enrollment models
and constructions in the literature are strictly suboptimal and
not necessarily realistic. We therefore list stronger secrecy
constraints jointly on all entities, which approximates the re-
ality better in combination with storage rate and joint privacy-
leakage rate constraints. These constraints define the multi-
entity key agreement problem, where the entities that use the
same identifier do not have to trust other entities after key
agreement. Therefore, the multi-entity key agreement problem
is a proper multi-user extension of single-enrollment models.
We first consider the multi-entity key agreement problem
and then analyze a special case of the multi-enrollment key
agreement problem to illustrate scenarios for which a single
enrollment can be more useful than multiple enrollments and
vice versa.

Every measurement of an identifier is considered to be
noisy due to, e.g., local temperature and voltage changes
in the hardware of the PUF circuit or a cut on the finger.
Noise components at the encoder and decoder measurements
of a hidden source can be also correlated due to, e.g., the
surrounding logic in the hardware [21] or constant fingertip
moisture. This correlation between the noise sequences is
modeled in [22] as a broadcast channel (BC) [23] with an
input that is the hidden source output and with outputs that
are the noisy encoder and decoder measurements. We use this
model for multi-entity key agreement with identifiers, where
each entity (i.e., each encoder and decoder pair) observes
noisy identifier outputs of the same hidden source through
different BCs. For the multi-entity key agreement problem,
we allow the BCs to be different as honest entities generally
use different hardware implementations of the encoder and
decoder pairs, which results in different correlations between
noise components.

We also consider physically-degraded (PD) and less-noisy
(LN) BCs to give finer inner and outer bounds to the key-
leakage-storage regions for the GS and CS models of the
multi-entity key agreement problem. For the considered PD
and LN BCs, we prove that strong privacy can be achieved.
In [9], [10], [24], an extra common randomness that is
available to the encoder and decoder and that is hidden from
the eavesdropper is required to obtain strong privacy. This

assumption is not realistic since such a common randomness
requires hardware protection against invasive attacks, and if
such a protection is feasible, then it is not necessary to use an
identifier for key agreement.

B. Models for Identifier Outputs

We study physical and biometric identifier outputs that are
independent and identically distributed (i.i.d.) according to a
given probability distribution. These models are reasonable if
one uses transform-coding algorithms from [25] that occupy a
small hardware area to extract almost i.i.d. bits from PUFs
under varying environmental conditions. Similar transform-
coding based algorithms have been applied to biometric
identifiers to obtain independent output symbols [26]. These
transform-coding algorithms provide almost i.i.d. identifier
outputs and noise sequences; however, the correlation between
the noise components on the encoder and decoder components
are not removed using these methods. Furthermore, PUFs are
used for on-demand key reconstruction and physical attacks
on PUFs permanently change the identifier outputs [27], so
we assume that the eavesdropper cannot obtain information
correlated with the PUF outputs, unlike biometric identifiers.

C. Summary of Contributions

We extend the key-leakage-storage rate tuple analysis of
the single-enrollment model for hidden identifier outputs mea-
sured through general BCs in [22] to consider multi-entity and
multi-enrollment key agreement with a set of stringent secrecy
constraints. A summary of the main contributions is as follows.
• We derive achievable key-leakage-storage rate tuples for

the GS model with strong secrecy for any finite number of
entities using the same identifier’s measurements through
different BCs for key agreement. Separate identifier mea-
surements considered in [12], [28] correspond to a PD BC
and the visible source model in [9], [10] corresponds to
a semi-deterministic BC.

• For a set of PD and LN BCs, the privacy-leakage rates
for the two-entity key agreement problem are calculated.
These PD and LN BCs are shown to provide strong
privacy without the need of a common randomness. An
outer bound is given for the considered PD and LN BCs.

• We next consider a special case of the multi-enrollment
key agreement problem, where all measurement channels
are separate (i.e., PD BCs) and they have the same
transition matrix. This is a common model used for
SRAM PUFs. Using a less stringent secrecy leakage
constraint that bounds the information leakage for each
secret key separately and without the mutual indepen-
dence constraint on the secret keys, we establish inner and
outer bounds for the strong-secrecy key-leakage-storage
region for this two-enrollment key agreement problem.
The bounds differ only in the Markov chains imposed.
This result is a significant improvement to the two-
enrollment secret-key rate region (without storage and
privacy-leakage rate constraints) established in [18] for
weak secrecy, which is recovered by eliminating auxiliary
random variables in the proposed rate regions.
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• All inner and outer bounds for the GS model are extended
to the CS model, which comprises secret-key binding
methods that embed a chosen secret key to the encoder.

• We give two scenarios to compare single-enrollment and
two-enrollment models and illustrate that for different
assumptions on measurement channels, either of the two
models can perform better in terms of the privacy-leakage
vs. secret-key rate boundary tuples.

D. Organization

This paper is organized as follows. In Section II, we describe
the multi-entity key agreement problem with BC measure-
ments. We give achievable key-leakage-storage regions for the
GS and CS models with strong secrecy and BC measurements
for any finite number of entities in Section III in addition to
inner and outer bounds for PD and LN BCs that satisfy strong
privacy. The proposed inner bounds for the two-enrollment
key agreement problem in Section IV are shown to differ
from the outer bounds only in the Markov chains imposed
for a special case with less stringent secrecy constraints. In
Sections V and VI, proofs of the given rate regions for the
general multi-entity key agremeent problem and for the two-
enrollment key agreement problem, respectively, are given.
Section VII concludes the paper.

E. Notation

Upper case letters represent random variables and lower
case letters their realizations. A superscript denotes a string of
variables, e.g., Xn=X1, X2, . . . , Xi, . . . , Xn, and a subscript
i denotes the position of a variable in a string. A random
variable X has probability distribution PX . Calligraphic letters
such as X denote sets, set sizes are written as |X | and their
complements as X c. [1 : J ] denotes the set {1, 2, . . . , J}
for an integer J ≥ 1 and [1 : J ] \ {j} denotes the set
{1, 2, , . . . , j − 1, j + 1, . . . , J} for any j ∈ [1 : J ]. Hb(x) =
−x log x− (1− x) log(1− x) is the binary entropy function,
where we take logarithms to the base 2, and H−1b (·) denotes its
inverse with range [0, 0.5]. X ∼ Bern(α) is a binary random
variable with Pr[X = 1] = α. A binary symmetric channel
(BSC) with crossover probability p is denoted by BSC(p). Q(·)
is the Q-function that gives the tail probability for the standard
normal distribution.

II. MULTI-ENTITY KEY AGREEMENT MODEL

Consider hidden identifier outputs Xn that are i.i.d. accord-
ing to a probability distribution PX . The hidden (or remote)
source with outputs Xn is common to all honest entities that
enroll the same identifier, but they observe different noisy
measurements of the same hidden source. If there are a finite
number J of honest entities that use the same identifer, the j-th
encoder and decoder pair observes noisy source measurements
that are outputs of a BC PX̃jYj |X , with abuse of notation, for

all j ∈ [1 : J ], where X̃j , Yj , and X are finite sets.
For the GS model illustrated in Fig. 1(a) for J = 2 honest

entities, the j-th encoder fGS,j(·) generates helper data Wj

and a secret key Sj from its observed sequence X̃n
j . All secret
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X̃n
2

(b)(a)

(a) (b)

Fig. 1. Illustration of the multi-entity key agremeent problem for J = 2
entities with encoder and decoder measurements through BCs for (a) the GS
model and (b) the CS model.

keys are stored in a secure database, whereas helper data are
stored in a public database so that an eavesdropper has access
only to the helper data. Using the helper data Wj and its
observed sequence Y n

j , the j-th decoder gj(·, ·) generates the
key estimate Ŝj . Similar steps are applied for the CS model
in Fig. 1(b) also for J = 2 honest entities, except that each
Sj should be embedded into the j-th encoder fCS,j(·, ·).

Denote a set of secret keys as

SK = {Sj : j ∈ K} (1)

and a set of helper data as

WK = {Wj : j ∈ K} (2)

for any K ⊆ [1 : J ]. A (secret-key, privacy-leakage, storage),
or key-leakage-storage, rate tuple is denoted as (Rs, R`, Rw).
Similarly, we denote a set of secret-key rates, for any K ⊆
[1 : J ], as

Rs,K = {Rs,j : j ∈ K} (3)

and a set of storage rates as

Rw,K = {Rw,j : j ∈ K}. (4)

We next define the multi-entity key-leakage-storage regions.
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Definition 1. A key-leakage-storage rate tuple
(Rs,[1:J], R`,Rw,[1:J]) is achievable for the multi-entity GS
and CS models with j-th encoder and decoder measurements
through a BC PX̃jYj |X if, given any δ>0, there is some n≥1,

and J encoder and decoder pairs for which Rs,j =
log |Sj |
n

for all j ∈ [1 : J ] and

Pr

 ⋃
j∈[1:J]

{Sj 6= Ŝj}

 ≤ δ (reliability) (5)

1

n
H(Sj) ≥ Rs,j − δ, ∀j∈ [1 :J ] (key uniformity) (6)

I (SK;SKc) ≤ δ, ∀K⊆ [1 :J ] (strong key ind.) (7)
1

n
I(Xn;W[1:J])≤R`+δ (privacy) (8)

I
(
S[1:J];W[1:J]

)
≤ δ (strong secrecy) (9)

1

n
log |Wj | ≤ Rw,j+δ, ∀j∈ [1 :J ] (storage). (10)

The multi-entity key-leakage-storage regions Cgs for the GS
model and Ccs for the CS model are the closures of the set of
all achievable rate tuples (Rs,[1:J], R`,Rw,[1:J]).

Both secret-key uniformity (6) and storage rate (10) con-
straints correspond to J separate constraints. However, relia-
bility (5), strong and mutual key independence (7), privacy-
leakage rate (8), and secrecy leakage (9) constraints are joint
constraints for all J honest entities. Suppose after a key gen-
eration, an honest entity has access only to its corresponding
secret key and it does not have access to other entities’ keys
or sequences or even to the sequence it observed to generate
its secret key.

The mutual key independence constraint in (7) is not im-
posed in the multi-enrollment key agreement problem consid-
ered in [16]. Furthermore, a normalized (weak) version of this
constraint is imposed in the multi-enrollment key agreement
problem considered in [14], where the j-th decoder gj(·, ·) is
assumed to have access to the set of helper data W[1:j] for
all j ∈ [1 : J ]. The lack of the mutual key independence
constraint and the assumption of availability of all previous
helper data require that different encoder and decoder pairs
should trust each other after key agreement. This can be the
case, e.g., if all enrollments are made by the same entity.
Therefore, the multi-entity key agreement problem imposes
strictly more stringent constraints than the multi-enrollment
key agreement problem.

The unnormalized secrecy leakage constraint (9) provides
strong secrecy, which is a stronger notion than the weak
secrecy considered in [9], [10], [12], [14], [16], [28]. Further-
more, (9) is more stringent than the set of individual secrecy
leakage constraints I(Sj ;W[1:J]) imposed for all j ∈ [1 : J ],
considered in [16] for symmetric SRAM PUF outputs in
combination with the suboptimal FCS.

The unnormalized privacy leakage I(Xn;W[1:J]) cannot be
bounded by a finite number in general. We illustrate special
strong privacy cases in the next section.

III. INNER BOUNDS

We are interested in characterizing the optimal trade-off
among the secret-key, privacy-leakage, and storage rates with
strong secrecy for BC measurements at the encoders and
decoders of any finite number J of entities that use the same
hidden identifier outputs for the multi-entity key agreement
problem. We give achievable rate regions for the GS and CS
models in Theorem 1. The proofs are given in Section V.

Denote

UK = {Uj : j ∈ K} (11)

and define a function max{·, ·} that gives the maximum of the
input values as its output.

Theorem 1 (Inner Bounds for Multi-entity GS and CS Mod-
els). An achievable rate region Rgs for the multi-entity GS
model with J entities is the union over all PUj |X̃j

for all
j ∈ [1 : J ] of the rate tuples such that Rs,j ≥ 0 for all
j ∈ [1 : J ] and

Rs,j ≤ I(Uj ;Yj)− I(Uj ;U[1:J]\{j}), ∀j ∈ [1 : J ] (12)

R` ≥
J∑

j=1

max{0, I(Uj ;X)−I(Uj ;Yj)}, (13)

Rw,j≥I(Uj ; X̃j)− I(Uj ;Yj), ∀j ∈ [1 : J ] (14)
Rs,j +Rw,j ≤ H(Uj | U[1:J]\{j}), ∀j ∈ [1 : J ]. (15)

An achievable rate region Rcs for the multi-entity CS model
with J entities is the union over all PUj |X̃j

for all j ∈ [1 : J ]

of the rate tuples such that Rs,j ≥ 0 for all j ∈ [1 : J ], (12),
(13), and

Rw,j≥I(Uj ; X̃j)− I(Uj ;U[1:J]\{j}), ∀j ∈ [1 : J ] (16)
Rw,j ≤ H(Uj | U[1:J]\{j}), ∀j ∈ [1 : J ]. (17)

For the achievable rate regions Rgs and Rcs, we have

PU[1:J]X̃[1:J]XY[1:J]
= PX

J∏
j=1

PUj |X̃j
PX̃jYj |X . (18)

Corollary 1. Suppose for all j ∈ [1 : J ] that
• X̃j−Yj−X form a Markov chain, i.e., X is a PD version

of Yj with respect to X̃j , or
• PXYj |X̃j

is a LN BC with I(Uj ;Yj) ≥ I(Uj ;X) for all
PUj |X̃j

.
For these cases, strong privacy, i.e.,

R` ≥ 0 (19)

can be achieved for the multi-entity GS and CS models in
combination with the other corresponding bounds given in
Theorem 1.

The proof of Corollary 1 follows from Theorem 1 because
I(Uj ;X) − I(Uj ;Yj) ≤ 0 for all j ∈ [1 : J ] for BCs
considered in Corollary 1.

Corollary 1 illustrates that it is possible to obtain strong
privacy, i.e., negligible unnormalized privacy leakage, without
the requirement of a common randommness that is hidden
from an eavesdropper assumed in [9], [10], [24]. This is the
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case because the observation Y n
j of each decoder is “better”

than the observation X̃n
j of the corresponding encoder with

respect to the hidden source Xn for all entities.

Remark 1. The rate regions for our problem depend on the
joint conditional probability distributions PXYj |X̃j

rather than
only the marginal conditional distributions. Thus, the key-
leakage-storage regions for the stochastically-degraded BCs
are not necessarily equal to the regions for the corresponding
PD BCs, unlike in the classic BC problem. Furthermore, since
PX̃[1:J]XY[1:J]

is fixed, the distinction between the LN BCs and
essentially-less noisy BCs [29], is not necessary.

We next give simple outer bounds for the multi-entity key-
leakage-storage regions Cgs for the GS model and Ccs for the
CS model when the BCs PXYj |X̃j

for all j ∈ [1 : J ] are PD
BCs or LN BCs, as defined in Corollary 1. These simple outer
bounds give insights into the reason for different bounds on the
secret-key rates. Based on these insights, we show a special
multi-enrollment case in the next section with a less stringent
secrecy constraint, for which the inner and outer bounds differ
only in the Markov chains imposed and we illustrate that they
match for simpler models.

Lemma 1. Suppose one of the cases given in Corollary 1
is satisfied by the BCs PXYj |X̃j

for all j ∈ [1 : J ]. An outer
bound on the multi-entity key-leakage-storage region Cgs is the
union over all PUj |X̃j

, where Uj−X̃j−(X,Yj) form a Markov
chain, for all j ∈ [1 : J ] of the rate tuples such that Rs,j ≥ 0
for all j ∈ [1 : J ], (14), (19), and

Rs,j ≤ I(Uj ;Yj), ∀j ∈ [1 : J ]. (20)

An outer bound to the multi-entity key-leakage-storage
region Ccs for the same BCs PXYj |X̃j

is the union over all

PUj |X̃j
, where Uj − X̃j − (X,Yj) form a Markov chain, for

all j ∈ [1 : J ] of the rate tuples such that Rs,j ≥ 0 for all
j ∈ [1 : J ], (19), (20), and

Rw,j ≥ I(Uj ; X̃j), ∀j ∈ [1 : J ]. (21)

The proof of Lemma 1 follows straightforwadly by fol-
lowing the steps in [12, Section VI], defining the auxiliary
random variables Uj,i = (Sj ,Wj , Y

i−1
j ) for all j ∈ [1 : J ] and

i ∈ [1 : n], and by bounding I(Xn;W[1:J]) ≥ 0; therefore,
we omit the proof.

The outer bounds do not include the inequalities in (15) and
(17). Furthermore, the secret-key rate achieved by the inner
bound in (12) is smaller than the outer bound given in (20),
where the difference is the term −I(Uj ;U[1:J]\{j}). This term
is a result of the constraint in (44) that is imposed to satisfy the
strong and mutual key independence constraint given in (7).
Therefore, we next consider a model without the constraint in
(7) and use a secrecy-leakage constraint that is less stringent
than the one in (9), i.e., replace (9) by

I(Sj ;W[1:J]) ≤ δ, ∀j ∈ [1 : J ] (22)

which is also a strong secrecy metric. Due to the lack
of a mutual key independence constraint, the model in the
next section is not a multi-entity model but rather a multi-
enrollment model. For a special case of this multi-enrollment

key agreement problem, we establish inner and outer bounds
for the key-leakage-storage regions that comprise the same
bounds but for different Markov chains.

IV. BOUNDS FOR A MULTI-ENROLLMENT MODEL

Consider next the multi-enrollment model, where the strong
and mutual key independence constraint (7) of the multi-entity
model is not imposed. Assume further J = 2 entities that
measure noisy outputs of the same hidden source Xn through
separate channels that have the same channel transition matri-
ces, i.e., for all j ∈ [1 : 2], x̃j ∈ X̃ , and yj ∈ X̃ we have

PX̃jYj |X(x̃j , yj |x) = PX̃|X(x̃j |x)PX̃|X(yj |x). (23)

This model is common for SRAM PUFs, for which each
measurement channel is modeled as a BSC with the same
crossover probability corresponding to a worst case scenario
[30]. Using (23), we define a multi-enrollment model.

Definition 2. A key-leakage-storage rate tuple
( sRs,1, sRs,2, sR`, sRw,1, sRw,2) is achievable for the multi-
enrollment GS and CS models with measurements through
a BC PX̃Y |X(x̃, y|x) as in (23) if, given any δ > 0, there
is some n ≥ 1, and two encoder and decoder pairs for

which sRs,1 =
log |S1|
n

, sRs,2 =
log |S2|
n

, sRw,1 =
H(W1)

n
,

sRw,2 =
H(W2)

n
, and

Pr
[
{S1 6= Ŝ1}

⋃
{S2 6= Ŝ2}

]
≤ δ (reliability) (24)

1

n
H(Sj) = sRs,j − δ, j = 1, 2 (key uniformity) (25)

1

n
I(Xn;W1,W2)= sR`+δ (privacy) (26)

I (Sj ;W1,W2) ≤ δ, j = 1, 2 (strong secrecy) (27)
1

n
log |Wj | = sRw,j+δ, j = 1, 2 (storage) (28)

I(W1;W2) ≤ δ (storage ind.). (29)

The multi-enrollment key-leakage-storage regions sCgs,J=2

for the GS model and sCcs,J=2 for the CS model are
the closures of the set of all achievable rate tuples
( sRs,1, sRs,2, sR`, sRw,1, sRw,2).

We characterize in Theorem 2 inner and outer bounds for
sCgs,J=2 and sCcs,J=2. The proofs of Theorem 2 are given
in Section VI, where the reason for the necessity of the
secrecy-leakage constraint in (27) that is less stringent than the
joint secrecy-leakage constraint in (9) is given in Remark 2.
Similarly, the reason for the necessity of the strong helper
data (storage) independence constraint in (29) is discussed in
Remark 4. We remark that the equalities in (25), (26), and (28)
are required in the outer bounds in Theorem 2 to provide both
upper and lower bounds on sR` and sRw,j in terms of Shannon
entropy terms.

Denote

j′ = 3− j, j = 1, 2. (30)
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Theorem 2. (Inner Bounds for Multi-enrollment GS and CS
Models): An achievable multi-enrollment key-leakage-storage
region ĎRgs,J=2 is the union over all PU1|X̃1

and PU2|X̃2
of

the rate tuples such that sRs,j ≥ 0 for j = 1, 2 and

sRs,j ≤ I(Uj ;Yj), j = 1, 2 (31)

sR` ≥
2∑

j=1

(
I(Uj ;X)−I(Uj ;Yj)

)
, (32)

sR` ≤
2∑

j=1

(
I(Uj ;X)−I(Uj ; X̃j)+ sRw,j

)
, (33)

sRw,j≥I(Uj ; X̃j)− I(Uj ;Yj), j = 1, 2 (34)
sRs,j + sRw,j ≤ H(Uj), j = 1, 2 (35)
sRs,j + sRw,j + sRw,j′ ≤ H(Uj , Uj′), j = 1, 2. (36)

An achievable multi-enrollment key-leakage-storage region
ĎRcs,J=2 is the union over all PU1|X̃1

and PU2|X̃2
of the rate

tuples such that sRs,j ≥ 0 for j = 1, 2, (31)-(33), and

sRw,j≥I(Uj ; X̃j), j = 1, 2 (37)
sRw,j ≤ H(Uj), j = 1, 2 (38)
sRw,j+ sRw,j′≤H(Uj , Uj′)+ sRs,j′ , j = 1, 2. (39)

For both achievable rate regions ĎRgs,J=2 and ĎRcs,J=2, we
have

PU1U2X̃1X̃2XY1Y2
(u1, u2, x̃1, x̃2, x, y1, y2)

= PU1|X̃1
(u1|x̃1)PU2|X̃2

(u2|x̃2)PX̃|X(x̃1|x)PX̃|X(x̃2|x)
× PX̃|X(y1|x)PX̃|X(y2|x)PX(x). (40)

(Outer Bounds for Multi-enrollment GS and CS Models)
An outer bound for sCgs,J=2 is the union over all PU1|X̃1

and
PU2|X̃2

of the rate tuples such that sRs,j ≥ 0, (31) - (36), and
Uj−X̃j−X−Yj form a Markov chain for j = 1, 2. An outer
bound for sCcs,J=2 is the union over all PU1|X̃1

and PU2|X̃2

of the rate tuples such that sRs,j ≥ 0, (31) - (33), (37) - (39),
and Uj − X̃j −X − Yj form a Markov chain for j = 1, 2.

The inner and outer bounds differ because the outer bounds
define rate regions for the Markov chains U1 − X̃1 −X − Y1
and U2− X̃2−X −Y2, which are larger than the rate regions
defined by the inner bounds that satisfy (40). For instance, in
the achievability proof of Theorem 2, we apply the properties
of the Markov chain U2 − X̃2 − U1 in (86)(b), which does
not form a Markov chain for the choice of U1 and U2 in the
outer bounds. Therefore, inner and outer bounds do not match
in general.

Corollary 2. Choosing U1 = X̃1 and U2 = X̃2, it is straight-
forward to show that inner and outer bounds in Theorem 2
match if we do not impose any storage or privacy constraints,
i.e., impose only (24), (25), and (27). This result improves on
the secret-key capacity region given in [18, Theorem 1] for a
weak secrecy constraint.

Example 1. Consider the RO PUF model from [25, Section
4.1] where a transform-coding method is applied to conser-
vatively model the measurement channels PY |X = PX̃|X
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Fig. 2. Privacy-leakage vs. secret-key rate projection of the boundary tuples
of the single- and two-enrollment RO PUF models with BSCs(pA = 0.06).

as independent BSCs with the same crossover probability
of pA and where the hidden source output is Bern( 12 ). We
therefore can apply the achievability results from Theorem 2
to this RO PUF model. Using [12, Theorem 3] to evaluate the
boundary tuples of ĎRgs,J=2, it suffices to consider probability
distributions PUj |X̃j

for j = 1, 2 such that PX̃j |Uj
are BSCs

with crossover probabilities

x̃j =
H−1b (H(X|Uj))− pA

1− 2pA
. (41)

Consider the projection of the boundary tuples of ĎRgs,J=2 onto
key-leakage plane, i.e., (31) and (32). We plot in Fig. 2 single-
enrollment results where the privacy-leakage rate is measured
with respect to single helper data and two-enrollment results
for the sum rate of the two keys, both for pA = 0.06 [25].
To achieve a total secret-key rate of I(X̃1;Y1) = I(X̃2;Y2),
the privacy-leakage rate for the two-enrollment model is
approximately 13.5% less than the privacy-leakage rate for
the single-enrollment model for RO PUFs. The reason for this
gain is the information bottleneck problem that arises from
(31) and (32) to find the boundary tuples.

Example 2. Consider uniform binary antipodal measurements
over an additive white Gaussian noise (AWGN) channel.
Define the signal power as PS and the noise power as PN,

so we have a signal-to-noise ratio (SNR) of SNR =
PS

PN
. If

a matched filter, which maximizes the SNR at the sampling
instant for the AWGN channel, is applied at the encoder and
decoder, the bit error probability Pb is given by [31, pp. 96]

Pb = Q
(√

SNR
)
. (42)

The channel between input binary symbols and outputs of the
matched filter is a BISO channel. Using [12, Theorem 3], we
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Fig. 3. Privacy-leakage vs. secret-key rate projection of the boundary tuples
of the single- and two-enrollment RO PUF models with different SNRs.

have that PX̃j |Uj
for j = 1, 2 that are BSCs with crossover

probabilities given in (41) by replacing pA with Pb, suffice
to obtain the boundary tuples of ĎRgs,J=2. We remark that
pA = 0.06 used in Example 1 corresponds to an SNR of
approximately 3.83dB.

In Fig. 3, the privacy-leakage rate vs. secret-key rate bound-
ary tuples are depicted for two cases. First, a two-enrollment
model at SNR = 3.83dB with a sum rate for two secret keys is
depicted, where each enrollment has a signal power of Ps. For
comparison, we plot a single-enrollment model with the signal
power of 2Ps, i.e., we have an SNR of approximately 6.84dB.
Fig. 3 shows for the two cases with the same total signal
power of 2Ps, unlike in Example 1, that the single enrollment
boundary tuple can result in a gain of approximately 228.55%
at its top left corner point in terms of the secret-key rates
achieved for a given privacy-leakage rate. For such an AWGN
channel with a fixed total signal power; therefore, the single-
enrollment model can result in significant gains in terms of
achieved secret-key rates as compared to the two-enrollment
model for small sR` values.

V. PROOF OF THEOREM 1

We provide a proof that follows from the output statistics of
random binning (OSRB) method, proposed in [32] and further
extended in [33], by applying the steps in [34, Section 1.6].

A. Proof for the GS Model

Proof Sketch: Fix PU1|X̃1
, PU2|X̃2

, . . . , PUJ |X̃J
. Let

(Un
[1:J], X̃

n
[1:J], X

n,Yn
[1:J]) be i.i.d. according to (18). Assign

three random bin indices (Sj ,Wj , Cj) to each realization unj
for all j ∈ [1 : J ], where Sj represents the secret key, Wj

the helper data, and Cj a public index referring to a random

encoder-decoder pair fixed below. Assume Sj ∈ [1 : 2nRs,j ],
Wj ∈ [1 : 2nRw,j ], and Cj ∈ [1 : 2nRc,j ] such that
Rs,j , Rw,j , Rc,j ≥ 0 for all j ∈ [1 : J ].

Apply the union bound to the reliability constraint in (5) to
obtain the sum of J error probabilities. This sum vanishes for
any finite number J when n → ∞ by using a Slepian-Wolf
(SW) [35] decoder to estimate Un

j from (Cj ,Wj , Y
n
j ) if [32,

Lemma 1]

Rc,j +Rw,j > H(Uj |Yj), ∀j ∈ [1 : J ]. (43)

The key uniformity (6), mutual and strong key independence
(7), and strong secrecy (9) constraints are satisfied if [32,
Theorem 1]

Rs,j+Rw,j+Rc,j < H(Uj | U[1:J]\{j}), ∀j ∈ [1 : J ] (44)

since (44) ensures that the three random indices
(Sj ,Wj , Cj) are almost mutually independent and
uniformly distributed, and they are almost independent
of U[1:J]\{j}. Therefore, (Sj ,Wj , Cj) are almost independent
of
(
S[1:J]\{j},W[1:J]\{j}, C[1:J]\{j}

)
because Un

k determines
(Sk,Wk, Ck) for all k ∈ [1 : J ].

Similarly, the public randomness Cj is almost independent
of X̃n

j , so it is almost independent of (X̃n
[1:J], X

n,Yn
[1:J]), if

we have [32, Theorem 1]

Rc,j < H(Uj |X̃j), ∀j ∈ [1 : J ]. (45)

Thus, the public indices C[1:J] can be fixed and shared with
all parties by generating them uniformly at random. The
j-th encoder can generate Un

j according to PUn
j |X̃n

j Cj
ob-

tained from the binning scheme above to compute the bins
(Sj ,Wj) from Un

j for all j ∈ [1 : J ]. This procedure
induces a joint probability distribution that is almost equal
to PU[1:J]X̃[1:J]XY[1:J]

fixed in (18) [34, Section 1.6].
Applying the Fourier Motzkin elimination [36] using the

software available in [37] to (43)-(45) for each j ∈ [1 : J ]
separately, we obtain the inequalities

Rw,j > I(Uj ; X̃j)− I(Uj ;Yj) (46)
Rs,j < I(Uj ;Yj)− I(Uj ;U[1:J]\{j}) (47)
Rw,j +Rs,j < H(Uj |U[1:J]\{j}) (48)

for all j ∈ [1 : J ].
To satisfy the constraints (46)-(48), we can fix the rates to

Rs,j = I(Uj ;Yj)−I(Uj ;U[1:J]\{j})−2ε, ∀j ∈ [1 : J ] (49)

Rw,j = I(Uj ; X̃j)− I(Uj ;Yj) + 2ε, ∀j ∈ [1 : J ] (50)

Rc,j = H(Uj |X̃j)− ε, ∀j ∈ [1 : J ] (51)

for some ε > 0 such that ε→ 0 when n→∞.
Consider the privacy leakage. Since C[1:J] are public, we
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can bound the privacy leakage as follows.

I(Xn;W[1:J], C[1:J])
≤ H(W[1:J])−H(W[1:J], C[1:J]|Xn) +H(C[1:J])

(a)
= H(W[1:J])−

J∑
j=1

H(Wj , Cj |Xn) +H(C[1:J])

≤
J∑

j=1

(
H(Wj)+H(Cj)−H(Wj , Cj |Xn)

)
(52)

where (a) follows because (Wj , Cj) − Xn −
(W[1:j−1], C[1:j−1]) form a Markov chain for all j ∈ [2 : J ].

Consider two cases for the privacy leakage analysis.
Case 1: Suppose for any j ∈ [1 : J ] that we have

Rc,j +Rw,j < H(Uj |X) (53)

i.e., H(Uj |X) > H(Uj |Yj), so (Wj , Cj , X
n) are almost

mutually independent [32, Theorem 1]. Therefore, we have

H(Wj)+H(Cj)−H(Wj , Cj |Xn)

≤ H(Wj)+H(Cj)−(H(Wj) +H(Cj)− ε′n) = ε′n (54)

for some ε′n > 0 such that ε′n → 0 when n→∞. Combining
(52) and (54) proves strong privacy.

Case 2: Suppose for any j ∈ [1 : J ] that we have

Rc,j +Rw,j ≥ H(Uj |X) (55)

i.e., H(Uj |X) ≤ H(Uj |Yj), so (Wj , Cj , X
n) can reliably

estimate Un
j [32, Lemma 1]. Therefore, we have

H(Wj)+H(Cj)−H(Wj , Cj |Xn)

(a)

≤ H(Wj)+H(Cj)−nH(Uj |X) + nε′′n
(b)

≤ n(I(Uj ;X)− I(Uj ;Yj) + ε+ ε′′n) (56)

where (a) follows because Un
j determines (Wj , Cj),

(Wj , Cj , X
n) can realiably estimate Un for some ε′′n > 0

such that ε′′n → 0 when n→∞, and (Un
j , X

n) are i.i.d., and
(b) follows by (50) and (51).

Combining (52) and (56), we obtain

I(Xn;W[1:J], C[1:J])

≤
J∑

j=1
j:

H(Uj |X)≤H(Uj |Yj)

n(I(Uj ;X)−I(Uj ;Yj)+ε+ε
′′
n). (57)

Using the selection lemma [38, Lemma 2.2], these prove
the achievability of the rate region Rgs.

B. Proof for the CS Model

We use the achievability proof for the GS model. Suppose
the key S′j , generated as in the GS model together with the
helper data W ′j and public index C ′j , have the same cardinality
as the corresponding embedded secret key Sj , i.e., |S ′j | =
|Sj | for all j ∈ [1 : J ]. The chosen key Sj is uniformly
distributed and independent of (Xn, X̃n

[1:J],Y
n
[1:J],S[1:J]\{j})

for all j ∈ [1 : J ]. Consider the j-th encoder fcs,j(·, ·) with

inputs (X̃n
j , Sj) and output Wj = (S′j +Sj ,W

′
j), and the j-th

decoder gj(·, ·) with inputs (Y n
j ,Wj) and output Ŝj = S′j +

Sj − Ŝ′j . All addition and subtraction operations are modulo-
|Sj | for all j ∈ [1 : J ]. The j-th decoder of the GS model is
used to obtain Ŝ′j for all j ∈ [1 : J ].

We have the error probability

Pr

 ⋃
j∈[1:J]

{Sj 6= Ŝj}

 = Pr

 ⋃
j∈[1:J]

{S′j 6= Ŝ′j}

 (58)

which is small due to the proof of achievability for the GS
model.

Using (49) and (50), and from the one-time padding oper-
ation applied above, we can achieve a storage rate of

Rw,j ≥ I(Uj ; X̃j)− I(Uj ;U[1:J]\{j}), ∀j ∈ [1 : J ] (59)

for the CS model.
We have the secrecy leakage of

I(S[1:J];W[1:J], C′[1:J])
(a)
= I(S[1:J];W[1:J]|C′[1:J])

=I(S[1:J];W ′[1:J]|C
′
[1:J])+I(S[1:J]; (S

′+S)[1:J]|W
′
[1:J], C

′
[1:J])

(b)
= H((S ′+S)[1:J]|W

′
[1:J], C

′
[1:J])−H(S ′[1:J]|W

′
[1:J], C

′
[1:J])

(c)

≤ n
( J∑

j=1

Rs,j

)
−H(S ′[1:J]|C

′
[1:J]) + I(S ′[1:J];W

′
[1:J]|C

′
[1:J])

(d)

≤ n
( J∑

j=1

Rs,j

)
−
(
n
( J∑

j=1

Rs,j

)
− ε′′′n

)
+ I(S ′[1:J];W

′
[1:J]|C

′
[1:J])

(e)

≤ ε′′′n + ε(4)n (60)

where (a) follows since S[1:J] are chosen independently of
the public indices C[1:J], (b) follows because S[1:J] are chosen
independently of (W ′[1:J], C

′
[1:J],S

′
[1:J]), (c) follows because

|S ′j | = |Sj | for all j ∈ [1 : J ], (d) follows because S ′[1:J] and
C′[1:J] are almost mutually independent and each S′j is almost
uniformly distributed due to (44) for some ε′′′n > 0 such that
ε′′′n → 0 when n→∞, and (e) follows because the GS model
satisfies the strong secrecy constraint (9) due to (44) for some
ε
(4)
n > 0 such that ε(4)n → 0 when n→∞.

Consider the privacy leakage:

I(Xn;W[1:J], C′[1:J])
≤ I(Xn;W ′[1:J], C

′
[1:J]) +H((S + S ′)[1:J]|W ′[1:J], C

′
[1:J])

−H((S + S ′)[1:J]|Xn,W ′[1:J], C
′
[1:J],S

′
[1:J])

(a)

≤ I(Xn;W ′[1:J], C
′
[1:J])+

( J∑
j=1

log(|Sj |)
)
−H(S[1:J])

(b)
= I(Xn;W ′[1:J], C

′
[1:J]) (61)

where (a) follows because S[1:J] are chosen independently of
(Xn,W ′[1:J],S

′
[1:J], C

′
[1:J]) and |S ′j | = |Sj | for all j ∈ [1 : J ]

and (b) follows from the uniformity and mutual independence
of S[1:J].

Using the selection lemma, these prove the achievability of
the rate region Rcs.
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VI. PROOF OF THOREM 2

We use the OSRB method steps in [34, Section 1.6].

A. Achievability Proof for the GS Model

Fix

PU1|X̃1
= PU2|X̃2

= PU |X̃ . (62)

Let (Un
1 , U

n
2 , X̃

n
1 , X̃

n
2 , X

n, Y n
1 , Y

n
2 ) be i.i.d. according to

(40). Assign three random bin indices (Sj ,Wj , Cj) to each
realization unj for all j = 1, 2. Assume Sj ∈ [1 : 2n

ĎRs,j ],
Wj ∈ [1 : 2n

ĎRw,j ], and Cj ∈ [1 : 2n
ĎRc,j ] such that

sRs,j , sRw,j , sRc,j ≥ 0 for j = 1, 2.
Apply the union bound to the reliability constraint in (24),

which vanishes when n → ∞ by using an SW decoder to
estimate Un

j from (Cj ,Wj , Y
n
j ) if [32, Lemma 1]

sRc,j + sRw,j > H(Uj |Yj), j = 1, 2. (63)

The key uniformity (25) constraint is satisfied if [32, The-
orem 1]

sRs,j+ sRw,j+ sRc,j < H(Uj), j = 1, 2 (64)

since (64) ensures that the three random indices (Sj ,Wj , Cj)
are almost mutually independent and uniformly distributed.

Suppose a virtual joint encoder assigns six indices
(S1,W1, C1, S2,W2, C2) to each realization pair (un1 , u

n
2 ).

This virtual encoder is an operational dual of the virtual
decoder used in the proof of [18, Theorem 1]. Using the virtual
joint encoder, the strong secrecy constraint in (27) and the
strong helper data independence constraint in (29) are satisfied
if [32, Theorem 1]

sRs,1+ sRw,1+ sRc,1+ sRw,2+ sRc,2 < H(U1, U2) (65)

and

sRs,2+ sRw,2+ sRc,2+ sRw,1+ sRc,1 < H(U1, U2) (66)

because (65) ensures that (S1,W1, C1,W2, C2) are al-
most mutually independent; whereas, (66) ensures that
(S2,W2, C2,W1, C1) are almost mutually independent.

Remark 2. The set of equations considered in (64)-(66)
cannot be imposed for the joint secrecy-leakage constraint in
(9) for general probability distributions PX̃1X̃2XY1Y2

, since to
impose (9) one would replace (65) and (66) with

sRs,1+ sRw,1+ sRc,1+ sRs,2 + sRw,2+ sRc,2 < H(U1, U2) (67)

which would also imply the mutual independence of secret
keys in (7). However, the inequalities in (64) and (67) cannot
be satisfied simultaneously in general as H(U1) + H(U2) ≥
H(U1, U2). This problem is avoided in the proof of Theorem 1
by imposing the inequality in (44) rather than (64).

The public randomness Cj is almost independent of X̃n
j ,

so it is almost independent of (X̃n
1 , X̃

n
2 , X

n, Y n
1 , Y

n
2 ), if we

have [32, Theorem 1]

sRc,j < H(Uj |X̃j), j = 1, 2. (68)

Thus, the public indices (C1, C2) can be fixed and shared
publicly by generating them uniformly at random. Un

j can be
generated according to PUn

j |X̃n
j Cj

for j = 1, 2 obtained from
the binning scheme above to compute the bins (Sj ,Wj) from
Un
j for j = 1, 2. This procedure induces a joint probability

distribution that is almost equal to PU1U2X̃1X̃2XY1Y2
that is

fixed in (40) [34, Section 1.6].
Applying the Fourier Motzkin elimination to (63)-(66) and

(68), we obtain the inequalities

sRw,1 > H(U1|Y1)−H(U1|X̃1) (69)
sRw,2 > H(U2|Y2)−H(U2|X̃2) (70)
sRs,1 < I(U1;Y1) (71)
sRs,2 < I(U2;Y2) (72)
sRs,1 < −H(U1|Y1)−H(U2|Y2) +H(U1, U2) (73)
sRs,2 < −H(U1|Y1)−H(U2|Y2) +H(U1, U2) (74)
sRs,1 + sRw,2 < −H(U1|Y1) +H(U1, U2) (75)
sRs,1 + sRw,1 < H(U1) (76)
sRs,1 + sRw,1 < −H(U2|Y2) +H(U1, U2) (77)
sRs,1 + sRw,1 + sRw,2 < H(U1, U2) (78)
sRs,2 + sRw,2 < −H(U1|Y1) +H(U1, U2) (79)
sRs,2 + sRw,2 < H(U2) (80)
sRs,2 + sRw,1 < −H(U2|Y2) +H(U1, U2) (81)
sRs,2 + sRw,2 + sRw,1 < H(U1, U2). (82)

Observe that we have

H(U1|X̃2) = H(U1|Y1) = H(U2|X̃1) = H(U2|Y2) (83)

H(U1|X̃1) = H(U2|X̃2) (84)
H(U1) = H(U2) (85)

due to (23) and (62). We therefore obtain

H(U1, U2)−H(U1|Y1)
(a)
= H(U2)+H(U1|U2)−H(U1|X̃2)

(b)

≥ H(U2) (86)

where (a) follows by (83) and (b) follows from the Markov
chain U2−X̃2−U1. A similar result can be shown by swaping
the indices. Therefore, the constraints in (77) and (79) are
inactive due to the constraints, respectively, in (76) and (80).
Similarly, the constraints in (73) and (74) are inactive due to
the constraints, respectively, in (71) and (72).

Replace the inequalities in (75) and (81), respectively, with

2 sRs,1 + sRw,1 + sRw,2 < I(U1;Y1) +H(U1, U2) (87)
2 sRs,2 + sRw,2 + sRw,1 < I(U2;Y2) +H(U1, U2). (88)

Then, (87) is inactive because (71) and (78) imply (87),
and (88) is inactive because (72) and (82) imply (88). We
remark that the rate region represented by (69)-(82) is the
same as the region represented by replacing (75) and (81)
with (87) and (88) because the corner points (i.e., the points
that asymptotically achieve equalities in the given inequalities
for fixed PU1|X̃1

= PU2|X̃2
) of the two rate regions are the

same. Therefore, the inequalities in (75) and (81) are inactive.
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To satisfy the constraints (69)-(82), we can fix the rates to

sRs,j = I(Uj ;Yj)−5ε, j = 1, 2 (89)
sRw,j = I(Uj ; X̃j)− I(Uj ;Yj) + 2ε, j = 1, 2 (90)
sRc,j = H(Uj |X̃j)− ε, j = 1, 2 (91)

for some ε > 0 such that ε→ 0 when n→∞ due to (83)-(86).
Since C1 and C2 are public, we can bound the privacy

leakage as follows.

I(Xn;W1,W2, C1, C2)

(a)

≤ H(W1,W2)−H(W1, C1|Xn)−H(W2, C2|Xn)

+H(C1, C2)

(b)

≤ H(W1) +H(W2)−H(Un
1 |Xn)−H(Un

2 |Xn) + 2nε′′n

+H(C1) +H(C2) (92)
(c)

≤ n(I(U1;X)− I(U1;Y1) + I(U2;X)− I(U2;Y2))

+ 2nε′′n + 2nε (93)

where (a) follows because (W1, C1) −Xn − (W2, C2) form
a Markov chain, (b) follows for some ε′′n > 0 such that
ε′′n → 0 when n → ∞ because for the two-enrollment
model considered, (55) is satisfied due to the Markov chain
Uj −X − Yj for j = 1, 2, and (c) follows by (90) and (91),
and because (Un

1 , U
n
2 , X

n) are i.i.d.
Using (92) for general rate tuples that satisfy the constraints

(69)-(82), i.e., not only (89)-(91), we can bound the privacy
leakage alternatively as

I(Xn;W1,W2, C1, C2)

(a)

≤ n sRw,1 + n sRw,2 + nI(U1;X)− nI(U1; X̃1)

+ nI(U2;X)− nI(U2; X̃2) + 2nε′′n (94)

where (a) follows by (91) and because (Un
1 , U

n
2 , X

n) are i.i.d.
Using the selection lemma, these prove the achievability of

the key-leakage-storage region ĎRgs,J=2.

B. Achievability Proof for the CS Model

The achievability proof for the CS model follows by apply-
ing the one-time padding step used in Section V-B.

C. Outer Bound Proofs for the Multi-enrollment Models

Suppose for some δn>0 and n, there is a pair of encoders
and decoders such that (24)-(29) are satisfied by some key-
leakage-storage tuple ( sRs,1, sRs,2, sR`, sRw,1, sRw,2). Using (24)
and Fano’s inequality, we obtain

H(Sj |Wj , Y
n
j )

(a)

≤ H(Sj |Ŝj)≤nεn, j = 1, 2 (95)

where (a) permits randomized decoding, εn =
δn max{ sRs,1, sRs,2}+Hb(δn)/n such that εn→0 if δn→0.

Let Uj,i , (Sj ,Wj , X
i−1), which satisfies the Markov

chain Uj,i − X̃j,i −Xi − Yj,i for all i ∈ [1 : n] and j = 1, 2.

Remark 3. For the choice of Uj,i = (Sj ,Wj , X
i−1) (and

similarly for Uj,i = (Sj ,Wj , Y
i−1
j )) for j=1, 2, U1,i−X̃1,i−

U2,i do not form a Markov chain for all i ∈ [1 : n] although
for the inner bound we use this Markov chain. This is the
reason why inner and outer bounds do not match in general.

Proof for (31): We obtain for the multi-enrollment GS and
CS models for j = 1, 2 that

n( sRs,j − δn)
(a)

≤ H(Sj)−H(Sj |Wj , Y
n
j ) + nεn

(b)

≤ I(Sj ;Y
n
j |Wj) + nεn + δn

≤
n∑

i=1

[
I(Sj ,Wj , Y

i−1
j ;Yj,i) + εn +

δn
n

]
(c)

≤
n∑

i=1

[
I(Sj ,Wj , X

i−1;Yj,i) + εn +
δn
n

]
(d)
=

n∑
i=1

[
I(Uj,i;Yj,i) + εn +

δn
n

]
(96)

(a) follows by (25) and (95), (b) follows by (27), (c) follows
by applying the data-processing inequality to the Markov chain

Y i−1
j − (Wj , Sj , X

i−1)− Yj,i, j = 1, 2, ∀i ∈ [1 :n] (97)

and (d) follows from the definition of Uj,i.
Proof for (32): Observe for the multi-enrollment models that

n( sR` + δn)
(a)
= H(W1,W2)−H(W1|Xn)−H(W2|Xn)

(b)
= H(W1|Y n

1 )−H(W1|Xn) +H(W2|Y n
2 )−H(W2|Xn)

+ I(W1; X̃
n
2 ) + I(W2;Y

n
2 )− I(W1;W2)

(c)

≥
2∑

j=1

[
H(Wj |Y n

j )−H(Wj |Xn)
]

≥
2∑

j=1

[
H(Sj ,Wj , Y

n
j )−H(Sj |Wj , Y

n
j )−H(Y n

j )

−H(Sj ,Wj |Xn)
]

(d)

≥
2∑

j=1

[
I(Sj ,Wj ;X

n)− I(Sj ,Wj ;Y
n
j )− nεn

]
(e)

≥
2∑

j=1

n∑
i=1

[
I(Sj ,Wj , X

i−1;Xi)−I(Sj ,Wj , X
i−1;Yj,i)−εn

]
(f)
=

2∑
j=1

n∑
i=1

[
I(Uj,i;Xi)− I(Uj,i;Yj,i)− εn

]
(98)

where (a) follows by (26) and from the Markov chain W1 −
Xn −W2, (b) follows because I(W1;Y

n
1 ) = I(W1; X̃

n
2 ) due

to (23), (c) follows from the Markov chain W1−X̃n
2 −W2, (d)

follows by (95), (e) follows because the channel and source
are memoryless and from the Markov chain in (97), and (f)
follows from the definition of Uj,i.

Proof for (33): Observe for the multi-enrollment models that

n( sR` + δn)
(a)

≤ H(W1)+H(W2)−H(W1|Xn)−H(W2|Xn)

(b)

≤
2∑

j=1

[
n sRw,j +H(Sj ,Wj |X̃n

j )−H(Sj ,Wj |Xn) + nεn

]
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(c)
=

2∑
j=1

[
n sRw,j +

n∑
i=1

I(Sj ,Wj , X
i−1;Xi)

−
n∑

i=1

I(Sj ,Wj , X̃
i−1
j ; X̃j,i) + nεn

]
(d)

≤
2∑

j=1

[
n sRw,j +

n∑
i=1

I(Sj ,Wj , X
i−1;Xi)

−
n∑

i=1

I(Sj ,Wj , X
i−1; X̃j,i) + nεn

]
(e)

≤
2∑

j=1

[
n sRw,j +

n∑
i=1

(I(Uj,i;Xi)− I(Uj,i; X̃j,i))

+ nεn

]
(99)

where (a) follows by (26) and from the Markov chain W1 −
Xn−W2, (b) follows by (95) and from the Markov chain Sj−
(Wj , X

n)− Y n for j = 1, 2, (c) follows because the channel
and source are memoryless, (d) follows from the Markov chain

Xi−1−(Wj , Sj , X̃
i−1
j )−X̃j,i, j = 1, 2, ∀i ∈ [1 :n] (100)

and (e) follows from the definition of Uj,i.
Proof for (34): Observe for the multi-enrollment GS model

for j = 1, 2 that

n( sRw,j + δn)
(a)

≥ H(Wj |Y n
j ) + I(Wj ;Y

n
j )

(b)

≥ H(Sj ,Wj , Y
n
j )−H(Y n

j )−H(Sj |Wj , Y
n
j )

−H(Sj ,Wj |X̃n
j ) + I(Wj ;Y

n
j )

(c)

≥ I(Sj ,Wj ; X̃
n
j )− I(Sj ,Wj ;Y

n
j )− nεn

(d)
=

n∑
i=1

[I(Sj ,Wj , X̃
i−1
j ; X̃j,i)−I(Sj ,Wj , Y

i−1
j ;Yj,i)−nεn]

(e)

≥
n∑

i=1

[I(Sj ,Wj , X
i−1; X̃j,i)−I(Sj ,Wj , X

i−1;Yj,i)−nεn]

(f)
=

n∑
i=1

[I(Uj,i; X̃j,i)−I(Uj,i;Yj,i)−nεn] (101)

where (a) follows by (28), (b) follows from the encoding
steps, (c) follows by (95), (d) follows because the source and
channel are memoryless, (e) follows from the data-processing
inequality applied to the Markov chains in (97) and (100), and
(f) follows from the definition of Uj,i.

Proof for (37): Observe for the multi-enrollment CS model
for j = 1, 2 that

n( sRw,j+δn)
(a)

≥ I(Sj ,Wj ; X̃
n
j )−H(Sj |Wj)+H(Sj ,Wj |X̃n

j )

(b)

≥ I(Sj ,Wj ; X̃
n
j ) + I(Sj ;Wj)

(c)

≥
n∑

i=1

I(Sj ,Wj , X̃
i−1
j ; X̃j,i)

(d)

≥
n∑

i=1

I(Sj ,Wj , X
i−1; X̃j,i)

(e)
=

n∑
i=1

I(Uj,i; X̃j,i) (102)

where (a) follows by (28), (b) follows because X̃n is indepen-
dent of Sj and from the encoding step, (c) follows because the

source and channel are memoryless, (d) follows by applying
the data-processing inequality to the Markov chain in (100),
and (e) follows from the definition of Uj,i.

Proof for (35): We have for the multi-enrollment GS model
for j = 1, 2 that

n( sRs,j + sRw,j)
(a)
= H(Sj ,Wj) + I(Sj ;Wj) + nδn

(b)

≤
n∑

i=1

[
H(Sj ,Wj , X

i−1) +
δn
n

+ δn
]

(c)
=

n∑
i=1

[
H(Uj,i) +

δn
n

+ δn
]

(103)

where (a) follows by (25), (b) follows by (27), and (c) follows
from the definition of Uj,i.

Proof for (38): Similarly, we have for the multi-enrollment
CS model for j = 1, 2 that

n sRw,j ≤
n∑

i=1

H(Sj ,Wj , X
i−1)

(a)
=

n∑
i=1

H(Uj,i) (104)

where (a) follows from the definition of Uj,i.
Proof for (36): We obtain for the multi-enrollment GS model

for j = 1, 2 and j′ as defined in (30) that

n( sRs,j + sRw,j + sRw,j′)

(a)
= H(Sj ,Wj ,Wj′) + I(Sj ;Wj ,Wj′) + I(Wj ;Wj′) + nδn
(b)

≤
n∑

i=1

[
H(Sj ,Wj ,Wj′ , Sj′ , X

i−1) +
2δn
n

+ δn

]
(105)

(c)
=

n∑
i=1

[
H(Uj,i, Uj′,i) +

2δn
n

+ δn

]
(106)

where (a) follows by (25), (b) follows by (27) and (29), and
(c) follows from the definitions of Uj,i and Uj′,i.

Proof for (39): We have for the multi-enrollment CS model
for j = 1, 2 and j′ as defined in (30) that

n( sRw,j+ sRw,j′)

≤
n∑

i=1

H(Wj ,Wj′ , Sj , Sj′ , X
i−1) + I(Wj ;Wj′) + n sRs,j′

(a)

≤
n∑

i=1

[
H(Wj ,Wj′ , Sj , Sj′ , X

i−1) +
δn
n

+ sRs,j′

]
(107)

(b)
=

n∑
i=1

[
H(Uj,i, Uj′,i) +

δn
n

+ sRs,j′

]
(108)

where (a) follows by (29) and (b) follows from the definitions
of Uj,i and Uj′,i.

Remark 4. (105) and (107) are the only places we use the
constraint in (29) and it does not seem straightforward to
obtain the inequalities in (105) and (107) without (29).

Introduce a uniformly distributed time-sharing random vari-
able Q ∼ Unif[1 : n] independent of other random variables.
Define X=XQ, X̃j=X̃j,Q, Yj=Yj,Q, and Uj=(Uj,Q,Q) so
that Uj−X̃j−X−Yj form a Markov chain for j = 1, 2. The
outer bound for the GS model follows by using the introduced
random variables in (96), (98), (99), (101), (103), and (106),
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and letting δn → 0. Similarly, the outer bound for the CS
model follows by using the introduced random variables in
(96), (98), (99), (102), (104), and (108), and letting δn → 0.

VII. CONCLUSION

We derived inner bounds for the multi-entity key-leakage-
storage regions for GS and CS models with strong secrecy,
a hidden identifier source, and correlated noise components
at the encoder and decoder measurements that are modeled
as BCs. The inner bounds are valid for any finite number
of entities that use the same hidden source to agree on a
secret key. We argued that the mutual key independence
constraint we impose makes the proposed multi-entity key
agreement problem a proper multi-user extension of the classic
single-enrollment key agreement problem, unlike the multi-
enrollment key agreement problem considered in the literature.
A set of degraded and less-noisy BCs was shown to provide
strong privacy without a need for a common randomness. We
also established inner and outer bounds for the key-lekage-
storage regions for a two-enrollment model with measurement
channels that are valid for SRAM and RO PUFs. Inner and
outer bounds were shown to differ only in the Markov chains
imposed and they match if the storage and privacy-leakage
rate constraints are removed. Two examples illustrated that
depending on the constraints of the practical scenario, a single
or multiple enrollments might perform better in terms of the
secret-key vs. privacy-leakage rate ratio. In future work, we
will find a set of symmetric probability distributions for which
the strong helper data independence constraint in the two-
enrollment model can be eliminated.
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[3] O. Günlü, “Key agreement with physical unclonable functions and
biometric identifiers,” Ph.D. dissertation, TU Munich, Germany, Nov.
2018, published by Dr. Hut Verlag in Feb. 2019.

[4] A. D. Wyner, “The wire-tap channel,” Bell Labs Tech. J., vol. 54, no. 8,
pp. 1355–1387, Oct. 1975.

[5] P. W. Cuff, H. H. Permuter, and T. M. Cover, “Coordination capacity,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4181–4206, Sep. 2010.

[6] G. Cervia, L. Luzzi, M. L. Treust, and M. R. Bloch, “Strong coordi-
nation of signals and actions over noisy channels with two-sided state
information,” Mar. 2018, [Online]. Available: arxiv.org/abs/1801.10543.

[7] R. Ahlswede and I. Csiszár, “Common randomness in information theory
and cryptography - Part I: Secret sharing,” IEEE Trans. Inf. Theory,
vol. 39, no. 4, pp. 1121–1132, July 1993.

[8] U. M. Maurer, “Secret key agreement by public discussion from common
information,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 2733–2742,
May 1993.

[9] T. Ignatenko and F. M. J. Willems, “Biometric systems: Privacy and
secrecy aspects,” IEEE Trans. Inf. Forensics Security, vol. 4, no. 4, pp.
956–973, Dec. 2009.

[10] L. Lai, S.-W. Ho, and H. V. Poor, “Privacy-security trade-offs in
biometric security systems - Part I: Single use case,” IEEE Trans. Inf.
Forensics Security, vol. 6, no. 1, pp. 122–139, Mar. 2011.

[11] I. Csiszár and P. Narayan, “Common randomness and secret key
generation with a helper,” IEEE Trans. Inf. Theory, vol. 46, no. 2, pp.
344–366, Mar. 2000.
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