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Abstract—This paper aims to propose a quantitative 
tuning method for active disturbance rejection control 
(ADRC) that controls the K/(Ts+1)n-type high-order 
processes. An asymptote in the Nyquist curve has been 
observed for the first time and its mathematical expression 
has been deduced. An asymptote condtion is provided in 
order to derive a parameter tuning rule under the 
sensitivity constraint. Although this proposed tuning rule 
is originally designed for a certain type of high-order 
processes, it can be extended to other types processes 
that can be approximated into the form of K/(Ts+1)n. 
Comparisons with different PID control strategies have 
been conducted for a range of cases to demonstrate the 
efficiency of the proposed tuning method. Finally, the 
effectiveness of the proposed tuning rule is experimentally 
verified on water tank system that exhibits high-order 
dynamics. Field tests on the superheater steam 
temperature control of a circulating fluidized bed (CFB) 
power plant further demonstrate its potential for 
applications in complex industrial processes.  

 
Index Terms—Active Disturbance Rejection Control, 

high-order processes, parameter tuning, steam 
temperature control, maximum sensitivity. 

I. INTRODUCTION 

igh-order systems represent a common feature existing in 

many industrial processes, such as the superheater steam 

temperature and main steam pressure control in power 

plants[1][2][3]. In fact, many complex industrial processes with 

nonlinear dynamics are inherently of high-order [4]. Transfer 

function approximation for a distributed parameter system 

often results in a high-order model representation [5]. However, 

designing high-order controllers for high-order processes 

brings complexities in control analysis, control algorithm 

implementation and parameter tuning. Therefore, in industrial 

practice, lower order controllers are usually preferred. For 

instance, it is reported that more than 94% of the controllers 

configured in power plant in Guangdong province, China, are 

lower order PI controllers [6]. When the low order controller is 
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used, higher-order dynamics are often considered as a part of 

the internal disturbances. Besides, various external 

disturbances and uncertainties are inevitable in industrial 

processes, such as variation in fuel quality, load change, 

environmental temperature and pressure changes. Conventional 

PI/PID controllers are found inadequate in dealing with all kind 

of disturbances in many cases, thus efficient anti-disturbance 

techniques need to be applied in industrial control [7]. 

Active disturbance rejection control (ADRC) is one of the 

notable disturbance/uncertainty estimation and attenuation 

techniques [8]. ADRC is firstly proposed by Han [9] to serve as 

an alternative control to the classical PID [10]. The extended 

state observer (ESO), the core part of ADRC, estimates the 

internal uncertainties (the un-modeled dynamics, the 

higher-order dynamics, and parameter errors) and the external 

disturbances as a lumped term called the total disturbance, 

which is then compensated via control actions in real time. 

During the last two decades, ADRC has been extensively 

investigated and applied by many researchers in different 

countries and in different industrial sectors [11]. The theoretical 

analysis of ADRC with regard to convergence and stability 

proof have been studied in [12][13]. Performance and 

properties of ADRC have been analyzed in frequency domain 

[14]. Improved ADRC have been proposed to address the 

challenges caused by large time-delays [15], non-minimum 

phase [16], and multi-variable coupling [17][18]. ADRC were 

initially studied via simulations and experiments and then 

extended to industrial applications with the range from motion 

control [19], electronic and mechanical systems [20] to process 

control [21].  

Control parameter tuning is a key factor for ADRC’s 

successful implementation in real industrial processes. 

However, there are no well-established quantitative tuning 

rules for ADRC parameters, especially for high-order processes. 

Most of the tuning work is performed manually, although the 

process of trial and error is tedious, and in some cases, 

frustrating. There are successful attempts using heuristic 

algorithms to optimize parameters [2][22], but the tuning 

process is time-consuming and not convenient enough for 

industrial sectors to adopt. An important progress was made by 

Gao [23] in 2006. The bandwidth-parameterization in [23] had 

greatly simplified the tuning process by reducing six tuning 

parameters to three. Chen [24] graphically presented the stable 

region of second-order ADRC parameters and refined the 

tuning process in the sight of closed loop desired dynamics. 

Wang [25] proposed a particular ADRC tuning method for 

time-delay systems. However, those studies on parameter 
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tuning gave little attention to high-order processes with no 

consideration to the sensitivity constraint, such as the 

maximum sensitivity Ms, which is a dominant robustness index 

in control design. 

To address the challenges in ADRC parameter tuning, in this 

work, an asymptote condition is used to constrain the maximum 

sensitivity of the control system. Based on the asymptote 

condition, a new quantitative one-parameter-tuning rule is 

proposed for ADRC used in high-order processes. The 

proposed tuning method has demonstrated the following 

advantages: 1) the explicit tuning formulas are simple and easy 

to use; 2) there is a tuning parameter to trade-off between 

performance and robustness; 3) the proposed method can be 

easily extended to other types of processes. 

The rest of this paper is organized as follows. The problem is 

formulated in Section II. Section III describes the derivation of 

the tuning rule. In Section IV, comparative simulations are 

performed on various types of processes. Laboratory 

experiments of a water tank system and field tests in a 

circulating fluidized bed (CFB) power plant are carried out to 

verify the effectiveness of this tuning methods in section V. 

Conclusions are given in Section VI.   

II. PROBLEM FORMULATION  

For derivation of tuning rules, the process is assumed to be in 

the form of high-order,  1
n

K Ts  . Model parameter , ,K T

and n will be incorporated in the derivation of the tuning rule.  

The second-order ADRC is used as an example to show how 

the low-order ADRC controls high-order process. The tuning 

rules of first-order ADRC can be easily derived based the 

method introduced. Due to page limit, the stability analysis of 

the second-order ADRC controlling high-order process is 

presented in Supplementary materials. The schematic diagram 

is shown in Fig. 1, from which the second-order ADRC is 

formulated by the state feedback control, the extended state 

observer (ESO), and the real time disturbance compensation. 
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Fig.  1. The schematic diagram of second-order linear ADRC 

For the second-order ADRC, the process can be formulated 

into the canonical form of two cascaded integrators, with the 

external disturbance d , noise w , nonlinear and high-order 

dynamics lumped in the total disturbance f .  
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The ESO is designed based on the above canonical form, so 

the mathematical expression of the ESO is presented in (2), 

where
1 2,   and 

3  are the observer gains and
0b is the input 

gain. 
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The ESO states
1z and

2z are used for feedback control. 
pk

and
dk are the feedback control parameters. 

  0 1 2p du k r z k z     (3) 

State
3z is the estimated total disturbance, and it is 

compensated in real time by 

  0 3 0 .u u z b    (4) 

The second-order ADRC has six parameters
0 1 2, , , ,p dk k b  

and
3 . The bandwidth-parameterization [23] has greatly 

simplified the tuning process. It makes ,p dk k as a function of 

the desired closed-loop bandwidth
c and

1 2 3, ,   as a 

function of ESO bandwidth
o . 

 
2 2 3

1 2 3, 2 , 3 , 3 ,p c d c o o ok k              (5) 

It leaves three parameters ,c o  and
0b to tune. However, it is 

still not easy to find three proper values for ,c o  and
0b . 

Therefore, there is a demand for developing an efficient ADRC 

tuning rule that can reduce the workload of manual tuning. 

III. DESIGN PROCEDURE  

A. The sensitivity constraint  

In process control design, the models used for controller 

design are often imprecise, and the process parameters and 

dynamics change with time and also operating conditions. 

Therefore, it is desired that the control system should be 

insensitive to the process variations and disturbances. The 

maximum sensitivity
sM and Maximum complementary 

sensitivity
tM are typical measures of sensitivity to process 

variation [26]. This paper uses maximum sensitivity
sM

constraint to develop a parameter tuning method for ADRC 

controlled high-order processes. The
sM is defined as 

     max 1 1      , ,s lM G i


        (6) 

where  lG i is the frequency characteristic of open loop 

transfer function.  

The open loop transfer function  lG s can be deducted by 

looking at the two degree of freedom (2-DOF) structure of the 

second-order ADRC control system. 
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Fig.  2. 2-DOF configuration of ADRC 

In Fig. 2, the transfer functions of three blocks are 
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 (7) 

Then, the open loop transfer function  lG s  and closed loop 

transfer function  clG s can be obtained.  
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 (9) 

Thus, the frequency characteristic of the open loop transfer 
function..is 
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 (10) 

Figure 3 shows the Nyquist diagram of  lG i . Combined with 

equation (6), the definition of the maximum sensitivity sM  can 

be graphically interpreted: sM equals to the inverse of the 

shortest distance between the Nyquist curve of  lG i and the 

critical point (-1,0i). 

 1,0i

1 scM

Circle of sensitivity

Re

0 

  

 1 1,0scM i

Im
0 

1 sM

 
Fig.  3. Graphical interpretation of maximum sensitivity Ms 

Given a certain maximum sensitivity constraint scM , a circle 

of sensitivity, centered at (-1,0i) with the radius1 scM , can be 

constructed. Then the actual value of the maximum sensitivity

s
M is guaranteed to be not higher than scM , provided that the 

Nyquist curve of  lG i  does not enter into the circle of 

sensitivity. This important principle will be used in next 

subsection to derive ADRC parameters tuning rules. 

B. Derivation of ADRC tuning rule 

As it is mentioned in Section II, 
c

 is called the desired 

closed-loop bandwidth, also, the desired closed-loop system 

poles. When the observer gains are properly chosen so that the 

ESO states
1 2
,z z  and

3
z track ,y y and f well, combining 

equations (3), (4), the second equation in (1) can be rewritten as 

 
 

 0

0

.
p d

p d

k r y k y f
y f b k r y k y

b

    
       (11) 

Therefore, the transfer function from the reference r  to the 

output y  can be approximated into 

  
 

   

2

2 2
.

p c

yr

d p c

kR s
G s

Y s s k s k s




  

  
  (12) 

The choice of
c

  mainly influences the set-point tracking 

performance. In [24], it is recommended that *10
c s

t  , where
*

s
t is the desired settling time. The choice of the desired settling 

time *

s
t can incorporate the information of the process model. In 

this study, the controlled process,  1
n

K Ts  , can be seen as n 

first-order processes  1 1Ts  being cascaded connecting 

together. Since parameters n and T influence the transient time 

of the process most, it is natural to assume that *

s
t  is 

proportional to nT . Therefore, 
c

 is decided as  

 10 ,c knT    (13) 

where k is the desired settling time factor and it is the only 

tuning parameter in this proposed tuning method. 

Bandwidth
o

 is the ESO pole. In general, a larger
o

 value 

can speed up the total disturbance being estimated and rejected, 

so a large
o

 is usually preferred. However, in practice, the 

sampling rate limits the upper bound of
o

 . In general, it is 

recommended that [23] 

 10 .o c    (14) 

The tuning equation of 
c

 is derived from the perspective of 

the desired set-point tracking, and the choice of
o

 considers the 

disturbance rejection speed. Now, the design of
0

b will consider 

the closed-loop system robustness, that is, sensitivity constraint 

will be applied in determination of
0

b . 

Using the bandwidth-parameterization (5) and equation (14), 

the frequency characteristics of the open loop system transfer 

function  lG i , equation (10), can be rewritten as 

  
 

   

2 3 3

2 2
0

1.63 2.3 101
.

32 361 1

c c c

l n

c c

i K
G i

bi T i
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

    

 
 
   

 (15) 

When come to derive PID control parameters under the 

sensitivity constraints, previous studies [26][27] have made 

effort on solving the nonlinear equations related to the 

definition of maximum sensitivity and the open loop transfer 

function. It is possible to yield explicit solutions for PID design, 

although derivation operation and numerical calculation are 

often involved, making it not easy for control engineers to 

execute the solving procedure. For the ADRC control system 

studied in this work, it is very difficult to directly solve the 

sensitivity constraint from equations (6) and (15). It is highly 

nonlinear because of the absolute operation. In addition, it is at 

least 5th-degree, which means it almost impossible to obtain an 

explicit solution. 

 Instead of strictly solving the sensitivity constraint, an 

alternative asymptote constraint is used to determine b0 in this 

study. The asymptote is vertical to the real axis in the Nyquist 

plot of  lG i  (see Fig. 3). Considering the relationship 

between the asymptote and the circle of sensitivity, an 

asymptote condition is further proposed below:  

Provided that the vertical asymptote of Nyquist curve

 lG i  is located at the right side of the circle of sensitivity, 

and the Nyquist curve of  lG i does not enter into the circle 

of sensitivity, then the actual maximum sensitivity sM is 

guaranteed to be smaller than scM . 

The asymptote function of Nyquist curve  lG i  needs to be 

found. Let x , y  denote the real axis and imagine axis 

respectively, so      lG i x y i    . The line x a  is a 

vertical asymptote of the plot of  lG i , when there exists a 

*  so that  
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Observed from Fig. 3, the imaginary coordinate of the 

Nyquist curve tends to infinity when → ±0, so the limiting 

values of the real and imaginary part of  lG i are concerned 

when → ±0. Let 

   1 21 ,
n

T i p p i     (17) 

then 
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Therefore, we have 
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Then, 
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When →0-,
1

1p  , 
2

p nT , and  
2

2 2

1 2
1 1 1

n

p p T i    , in 

the expressions of   Re
l

G i  and   Im
l

G i , the terms in the 

form of multiplying diminish to 0, while the terms which are 

divided by tend to ∞. Thus, we have 
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As previously, when →0+, 
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Equations (22) and (23) show that there exists * 0  satisfying 

the definition in (16), so the function of the asymptote is 

  2 3

06.1256 2.77 .c cx nT K b     (24) 

As it is shown in the Fig. 3, the right endpoint of the circle of 

sensitivity locates at  1 1,0scM i . Applying the asymptote 

condition, 

  2 3

06.1256 2.77 1 1,c c scnT K b M      (25) 

and solving (25) for 0b , we have 

    2

0 2.77 6.1256 1c c sc scb nT K M M      (26) 

Since increasing
0

b can reduce the maximum sensitivity sM , 

for a conservative design, let
0

b be m times the lower limit. Then, 

the parameter
0

b  can be determined by  

    2

0 2.77 6.1256 1 .c c sc scb m nT K M M      (27) 

Coefficient m and scM can be chosen according to 

engineering experience. In this study, we choose 1.4m  , and 

the maximum sensitivity constraint scM is chosen as the 

maximum of the allowable value, 2.5, thus (27) becomes 

   2

0 6.4541 14.2726 .c cb nT K     (28) 

In summary, the tuning rules for the second-order linear 

ADRC controlling high-order processes  1
n

K Ts   are as 

follow: 
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Similarly, the tuning rules for the first-order linear ADRC 

can also be derived.  
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Remark: Applying the proposed second-order ADRC tuning 

method to the high-order process, two interesting conclusions 

can be further inferred. 

1) The asymptotes for the different controlled systems are the 

same. Substitute the expression of
0

b , equation (28), into 

the asymptote function (24), then we get x = -0.429. 

It shows the real axis value of the asymptote remains 

constant, which can be verified in the Fig. 4(b). Different 

Nyquist curves of  lG i converge to the same asymptote. 

2) Complementary maximum sensitivity 1tM  . 

Complementary maximum sensitivity tM  is also an 

important indicator for measuring robustness. It implies 

the sensitivity of the closed-loop system to the large 

process dynamic variations. tM is defined as 

       =max 1    , .t l lM G i G i


        (31) 

Since      lG i x y i    , 
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if   0.5x    , 1tM  . The proposed ADRC tuning 

method gives asymptote function 0.429x   . Under the 

proposed tuning method, the Nyquist curve of  lG i can 

be tuned to be located at the right side of the asymptote line, 

that is,  x  is not smaller than -0.429. Therefore, 1tM 

is achieved. This conclusion indicates that the proposed 

ADRC tuning method derived under sM constraint can lead 

to satisfactory tM . 

C. Tuning parameter 

The effect of the tuning parameter k  should be clear to users. 

According to [28], to ensure the closed loop system stability, 

0
b and the process gain K must share the same sign. Then, the 

upper limit of the desired settling time factor k can be deducted 

from (28), 0 4.5k  . In order to avoid unstable or oscillatory 
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output response caused by nearing the critical values, the range 

of the tuning parameter k can be further narrowed. In 

engineering practice, the range of 1.0 ~ 4.0k   is suitable for 

most high-order process. However, the adjustment of k is still 

necessary to achieve a certain robustness level. Consider a 

cascaded fifth-order process 

  
5

1 8 1 .pG s    (33) 

The model parameter 5n  , 8T  , and 1K  can be directly 

used to calculate the ADRC parameters by (29). The control 

results and robustness indices under the different tuning 

parameter k are shown in Fig. 4. In general, increasing k results 

in faster tracking response and better disturbance rejection 

performance, but higher maximum sensitivity sM . This 

influence pattern can be used as a crude guideline to adjust k to 

a certain maximum sensitivity sM . 

(a) (b)

 
Fig.  4. Performance and robustness under different tuning parameter k. 
(a) tracking response (t=0-200 s) and disturbance rejection (t=200-400 s) 

of Gp; (b) Nyquist diagram and robustness indices of Gp. 

Although this study provides a simple straightforward tuning 

method for ADRC parameters, sometimes it is better to give the 

values of parameters in the form of limitations. If a range of the 

tuning parameter k is decided, then the ADRC parameters can 

be presented in the form of limitations. For example, if an 

appropriate range of k is tuned for a certain process,
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Theorem 1: Assuming the process is modelled by

 1
n

K Ts  , and the second-order ADRC is given by (2)~(4). 

ADRC parameters ,c o  and
0b are controller parameters that 

need to be determined. Then, we have the following results: 

i) There exists an asymptote of the Nyquist curve of the 

open-loop transfer function (8), which can be described by 

(24).  

ii) If the asymptote is located at the right side of the circle of 

sensitivity, which is constructed by maximum sensitivity 

constraint scM . Then
0b satisfies the inequality (26) and

0b

can be m times the lower limit, i.e.,
0b can be given by the 

equality (27). 

iii) ADRC parameters ,c o  are given by (13) and (14), where 

the only tuning parameter k satisfies 0 4.5k  , so that 

ADRC can be tuned to achieve satisfactory performance 

and robustness. 

Remark 1: m and scM in the Theorem can be determined by 

engineering experience. In this study, we choose 1.4m  , 

2.5scM  , then ,c o  and
0b can be given by (29). 

Remark 2:Similarly, when the controller is first-order 

ADRC, the controller parameters ,c o  and
0b can be given by 

(30), where the only tuning parameter k satisfies 0 8.6k  . 

Remark 3: For self-regulatory processes which can be 

approximated into  1
n

K Ts  , the ADRC tuning equations 

(29) and (30) can also be applied. 

IV. ILLUSTRATIVE EXAMPLES 

In order to demonstrate the efficacy of the proposed ADRC 

tuning method, comparative simulation studies have been 

carried out for different types of processes.  

A. Approximation method 

Although the proposed ADRC tuning method is originally 

designed for the certain type of high-order processes, 

 1
n

K Ts  , the proposed ADRC tuning method can also be 

applied to other types of processes, which can be approximated 

into the form of  1
n

K Ts  . The empirical two-point method 

is used for model approximation or process identification [29]. 

The principle of the two-point approximation is illustrated in 

Fig. 5 and (35). If the open-loop system step response indicates 

that the process is self-regulating, find the time coordinates t1, t2 

corresponding to 0.4y(∞) and 0.8y(∞). When
1 2 0.46t t  the 

process can be approximated to the high order process . 

Applying the empirical formulas (35), the model parameters

,n T and K can therefore be determined. It should be pointed 

out that the order n should be rounded to an integer in the 

calculation. 
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 y 
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1t 2t

u

t  
Fig.  5. Two-point approximation method 

B. Simulation examples 

Example 1: 100th-order process 

  
100

1 1 1pG s    (36) 

This is an extreme case of a standard  1
n

K Ts  - type 

high-order process. The model parameters n=100, T=1, and 

K=1 can be directly used for ADRC parameters calculation. 

The well-known Skogestad IMC (SIMC) [30] and the 

Ms-constrained integral gain optimization (MIGO) [26] design 

methods are also applied to the process 1p
G for comparison. 

Since performance and robustness are a pair of ever-lasting 

paradox, for fair comparison, the maximum sensitivity sM is 

tuned to have the same value. Note that the MIGO method 
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instead of the simpler tuning rule AMIGO [31] is used in the 

simulations because the AMIGO does not have a tuning 

parameter to achieve a desired maximum sensitivity. Therefore, 

the tracking performance, disturbance rejection ability, and the 

control effort of different tuning methods can be compared 

under the same robustness level. The output responses with a 

unit load disturbance added to the system at 800 t s are 

depicted in Fig. 6(a). The simulation step size is 0.01h  . For 

the three simulations, white noises with a variance of 0.005 are 

added during the last one third of the simulation time span 
Et . 

The parameters setting and performance indices are 

summarized in Table 1, including robustness indices sM , tM , 

output performance settling time sT , overshoot , variance of 

control input noise
n , the integrated time-weighted absolute 

error (ITAE), and the control effort index total variation (TV) 

of the input. Indices ITAE and TV are defined in (37). They 

should be as small as possible [30]. 

    
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      (37) 

It can be seen from the comparative results that under the 

same robustness level 1.51sM  , the proposed ADRC tuning 

rule provides smooth and non-overshoot tracking, meanwhile, 

gives better performance in disturbance rejection among these 

three control design methods. Moreover, it handles 

measurement well without additional filer. This 100th-order 

process behaves like systems with large time-delay. The 

success of controlling this model implies the possibility of 

applying this tuning method to other delay-dominate processes. 

Example 2: Oscillatory high-order process 
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This is a non-  1
n

K Ts  -type high-order process. 2pG can 

be approximated to a fourth-order process by using equations 

(35) of the two-point approximation method. Although the 

approximated high-order process cannot capture the oscillatory 

feature of the original process, the ability of ADRC estimating 

and compensating the un-modelled dynamics enables 

high-order process based ADRC design to provide good control 

results on oscillatory process. The proposed tuning equations 

(29) can be used to decide ADRC parameters. For SIMC-PID 

tuning, process 2pG is approximated to a second-order plus 

time delay process,    0.34 0.72 1 0.14 1se s s   . ADRC, 

SIMC-PID and MIGO are tuned to have the same maximum 

sensitivity, which is 1.86sM  . The detailed parameter settings 

and the control results are show in Table I and Fig. 6(b).  

It can be seen from the Fig. 6(b) and Table 1 that the 

proposed ADRC tuning method provides least-oscillatory 

tracking performance with small overshoot, and the noise level 

under ADRC control is acceptable. 

(a) (c)(b)

 1pG s  2pG s  3pG s

(b)(a)

 
Fig.  6. Response comparison under different control strategies 

TABLE I 
CONTROLLER PARAMETERS AND PERFORMANCE INDICES FOR GP1(S), GP2(S), AND GP3(S) 

Models Method 
Tuning 
parameter 

Controller parameters Ms Mt 
Tracking 

Disturbance 
rejection ITAE TV σn 

Ts /s σ/% Ts /s σ/% 

Gp1(s) 

ADRC k =1.5 ɷc=0.067, ɷo=0.667, b0=0.128 1.51 1.00 349 0.24 415 98.6 206306 1.98 0.0003 

SIMC-PID τc =1.2θ Kp=0.833, Ki=0.333, Kd=0.500 1.51 1.00 413 1.23 520 101.4 302058 3.45 0.0076 

MIGO Ms =1.5 K=0.2406, Ki=0.204,b=1 1.51 1.00 496 0.25 578 99.9 239575 1.76 0.0003 

Gp2(s) 

ADRC k =3.34 ɷc=2.717, ɷo=27.17, b0=37.34 1.86 1.08 4.41 3.38 4.65 47.5 13.8 2.64 0.0021 

SIMC-PID τc =1.35θ Kp=1.069, Ki=1.242, Kd=0.124 1.86 1.03 5.83 6.43 4.88 53.3 15.5 15.0 1.0052 

MIGO Ms =1.86 K=0.456, Ki=1.414,b=0 1.86 1.29 6.13 22.0 5.16 64.5 19.9 3.58 0.0008 

Gp3(s) 

ADRC k =2.55 ɷc=0.509, ɷo=5.088, b0=2.86 1.80 1.00 19.3 0.11 21.6 90.2 651 2.12 0.0016 

SIMC-PID τc =0.6θ Kp=0.284, Ki=0.114, Kd=0.171 1.80 1.11 31.6 14.0 39.3 92.6 951 36.5 4.7022 

MIGO Ms =1.8 K=0.304, Ki=0.106,b=0 1.80 1.04 31.6 6.87 36.8 93.4 926 2.43 0.0005 
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Example 3: Process with time delay, non-minimum phase 

and high order 
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As previously, process 3p
G is approximated to a 13th-order 

process. Then, the proposed ADRC tuning method is applied 

and the SIMC-PID and MIGO are also performed for 

comparison. The comparative results in Fig. 6(c) and Table I 

show that the proposed ADRC tuning method delivers smooth 

and non-overshoot set-point tracking performance, better 

performance in disturbance rejection, while it requires least TV 

in control input.  

Three illustrative examples have shown that the proposed 

ADRC tuning method is capable of providing good 

performance for cascade high-order process, non-cascade 

high-order process, time-delay process and non-minimum 

phase process. More simulation results can be found in 

Supplementary materials.  

 

Discussion:  

The application scope of the proposed ADRC tuning method 

should be discussed. Generally speaking, the proposed tuning 

method is applicable to processes that can be modelled as or 

approximated to the form of  1
n

K Ts  . The process must be 

self-regulatory, so processes with unstable or integrating 

characteristics are beyond the scope of this study. Processes 

with delay, oscillatory and non-minimum phase characteristics 

are target processes for the proposed tuning method. To be 

more specific, based on extensive simulations, 

delay-dominated systems, whose delay-lag constant ratio 

1T  , are highly likely to be approximated to  1
n

K Ts  . 

Oscillatory systems with the damping ratio not smaller than 0.3, 

and non-minimum phase system with inverse overshoot not 

exceeding 30% of the steady-state gain are also recommended 

for this proposed tuning method. Since most of the industrial 

processes are self-regulatory, and many processes can be 

modelled into this high-order form, such as the steam 

temperature and pressure control, combustion control system in 

power plant, we believe that the proposed method is of certain 

generality and practical value. 

The proposed tuning method requires the value of model 

parameters , ,K n T , but this does not mean the proposed ADRC 

tuning laws depend on the exact modelling of the actual 

processes. Simulation examples of 2pG and 3pG show that a 

rough approximation to the original process is enough for 

ADRC design. In addition, when a process is identified or 

approximated to a  1
n

K Ts  -type model, different choices of 

the model order n do not influence the control results notably. 

For instance, when the 100th-order process 1pG , is modelled 

with different order n , such as 102,98,70n  , the control 

results based on these models with different n are very similar. 

This is because the ADRC has the ability of rejecting a total 

disturbance that includes the modelling errors. Besides, the 

ADRC tuning equations (29) and (30) do not solely depend on 

the model order n , instead, it depend on nT together. This 

implies that when a process is modelled with different n , the 

value nT may not change significantly, considering that a 

higher n usually results in a smaller T during identification, and 

vice versa. Thus, controller parameters and control results 

remain similar.  

The above simulations also show the influence of 

measurement noise on the control input for three different 

control strategies. For ADRC control system, no additional 

filter is added but the variance of the noise on control input is 

still at acceptable level. This can be explained by analysing the 

transfer function from the noises n to the control input u, Gun(s). 
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 (40) 

The Gun(s) is strictly proper, implying that  lim 0
un

G i





 . 

Therefore, the high-frequency component of the measurement 

noise will decay and make limited influence on the control 

input. For MIGO tuning, the derivative term is not used, so the 

noise has little influence on the control input. While for PID 

control system, Gun,PID(s) is not proper, so the high frequency 

component of the noise will be magnified. Additional filter is 

necessary when high-frequency noise exists. 

V. EXPERIMENTAL VERIFICATION AND FIELD TEST 

D. Experimental tests on water tank 

To validate the proposed ADRC tuning method, a laboratory 

test is performed on a water tank system. Fig. 7 shows the 

experiment setup. The water tank control system, developed by 

©Feedback Instruments Ltd, consists of water tanks, pumps, 

sensors, a controller, and a monitor. In this experiment, water 

tanks 1 and 2 connected by a water tube are used. Water level y 

of Tank 2 is the process variable (PV), and the voltage of the 

pump u is the manipulated variable (MV). 

 
Fig.  7. The water tank experiment setup 

 
Fig.  8. Open loop step experimental data vs. Identified model 
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response 

A step input is added in the open loop control system at the 

working point y =9 cm, as shown in Fig. 8. Noted that the water 

level y is slightly oscillatory before a step input is added, but 

this does not influence the design of control system because the 

proposed ADRC tuning does not relay on accurate modelling. 

A rough high-order model is identified from the open loop 

system response data by using the empirical equations (35). 
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For comparison purpose, PID algorithm is also implemented 

on the water tank. PID controller is tuned by the SIMC method 

due to its simplicity in use. The choice of
c  leads to the 

maximum sensitivity 1.4sM  and the PID controller 

parameters are 0.1458,pK  0.0021,iK  2.4249dK  . The 

tuning parameter of ADRC, the desired settling factor 4.17k  , 

is manually tuned to achieve the same maximum sensitivity of 

SIMC-PID, which gives the controller parameters 0.0278,c 

0.2775,o  0 0.0246b  . 

These two controllers were tested by changing the water 

level set point from 9 cm to 11 cm first, then an input step 

disturbance d=1V is artificially added in the system at time t 

=1000 s. Fig. 9 shows the real time control results. It can be 

seen that the proposed ADRC tuning results in slightly slower 

response during the set-point tracking, t= 500-1000 s, but 

ADRC has much better performance in disturbance rejection. 

Moreover, the MV chattering under ADRC algorithm is less 

severe than SIMC-PID. Note that the calculated ADRC 

parameters are directly used on the plant without retuning. The 

experimental results demonstrate the reliability and 

effectiveness of the proposed ADRC tuning method.  

 
Fig.  9. Experiment results under SIMC-PID and proposed ADRC tuning 

parameters 

Although it is expected that ADRC behaves better than 

SIMC-PID in terms of disturbance rejection, the ADRC results 

of the water tank experiment show much better disturbance 

rejection than the simulated situation. A possible reason is that 

the working condition has varied, such as water level change of 

the water reserve, change of pump characteristic, to the 

direction that is beneficial to ADRC control.  
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Fig.  10. The schematic diagram of the superheater steam temperature control system in CFB power plant 

E. Field tests on a power plant 

Encouraged by the positive results from simulation examples 

and water tank experiment, the proposed ADRC tuning method 

is further applied to the superheater steam temperature (SST) 

control in a 330 MW in-service CFB unit in Shanxi, China. The 

SST control system, which is one of the most important control 

systems in the power plant, is a typical high-order process. The 

SST has to be controlled within a certain range, so that the 

temperature will not exceed the upper limit that is set for safe 

operation of the steam turbine. At the meantime, the 

temperature will not drop out of the lower limit that ensures the 

efficiency of the whole power plant. For this CFB unit, the 

allowable SST temperature fluctuation range is ±5°C. The 

steam that comes from the drum is heated by the fuel gas 

through three sets of superheaters as show in Fig. 10. Two sets 

of desuperheaters are deployed to control the steam 

temperature. Since the control of the 2nd desuperheater directly 

influence the SST, ADRC control algorithm and the proposed 

tuning method are implemented on the 2nd desuperheater. 

For the purpose of controller design, the SST models are 

identified from the open-loop data. As shown in Fig. 11, it is 

not a standard open-loop step test, because there is a spike in 

the control input signal and the control input changes before the 

temperature reaches steady state due to the operation limit. 

Therefore, the superheater models are identified by using 

optimization method instead of the empirical formulas 

presented in (35). The dynamic from the spray water valve to 

the desuperheater outlet temperature 1T is denoted as model

 1
G s , and the dynamic from the desuperheater outlet 

temperature 1T  to the SST 2T  is denoted as model  2G s .  
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Fig.  11. Identification results of the superheater steam temperature 

control system 

The model identification process is accomplished by 

MATLAB Simulink parameter estimation tool. The chosen 

optimization method is pattern search. The model order n is 

decided by choosing the identified model with the lowest cost 

function value. The identification results are shown in Fig. 11 

and the identified transfer functions are 

  
 

 
 

1 22 4

1.6165 1.5528
     .

19.363 1 28.234 1
G s G s

s s


 

 
  (42) 

For the simplicity of implementing the control algorithm and 

relevant protective logics in the distributed control system 

(DCS), the first-order ADRC control algorithm is chosen to 

enhance the control performance of the SST control system. 

Compared to the outer loop process model  2G s , the inner 

loop process model  1G s is relatively fast response, and 

usually the PI controller or even the P controller is enough to 

eliminate the disturbances in the inner loop. Therefore, the 

inner PI controller remains unchanged and the first-order 

ADRC is implemented as outer loop controller in parallel with 

the original outer loop PID controller (see Fig. 12). 

ADRC
-

up
PI

-
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r

Desuperheater 

valve position

SST Reference

 2G s
T2

 1G s
T1

PI u-

Desuperheater 

outlet tempreture
SST

 G s

 
Fig.  12. Cascade control system of the superheater steam temperature 

The tuning of the outer loop controller is based on the 

equivalent model  G s for the combined inner controlled 

system and the model  2G s , as shown in Fig. 12. The inner PI 

controller parameters are
2 1,pK   2 1 40iK   , so the 

equivalent model for outer loop controller is 

  
   

   
 

 

, 1

2 5

, 1

1.5528
.

1 27.4259 1

c inner

c inner

G s G s
G s G s

G s G s s
 

 
 (43) 

The outer loop PI is tuned by the experienced field engineer, 

and the PI parameters are
1 1 3,pK  1 1 240,iK   which results 

in a robustness level of 1.5sM  . ADRC controller parameters 

are calculated by using (30). The desired settling time factor is 

manually tuned as 3.9k  to achieve a similar maximum 

sensitivity of SIMC-PI tuning, which gives ADRC control 

parameters 00.0187, 0.187, 0.4554c o b    .  

Two sets of field test results are shown in Fig. 13 and Fig. 14. 

Fig. 13 shows the SST control result when the outer loop 

controller switches between PI and ADRC. Fig. 14 compares 

the control results under reference step change. It should be 

mentioned that the artificial input disturbance is not allowed for 

the commercial operation of the power plant, thus the strict 

disturbance rejection tests are not performed. 

 
Fig.  13. Field test 1: switch between PI and ADRC with the SST 

set-point of 537°C (date of test: 15th of March, 2017) 

 
Fig.  14. Field test 2: SST set-point step from 538°C to 536°C (Time 

span of PI test: 14th of March, 2017 07:00-09:30; time span of ADRC test: 
16th of March, 2017 11:00-13:30) 

In addition, control performance indices such as peak 

positive error e
, peak negative error e

, standard deviation , 

integral absolute error (IAE) and the TV of control input, are 

summarized in Table II. 
TABLE II  

PERFORMANCE INDICES FOR THE SST CONTROL TESTS 

Test Controller e+/°C e-/°C σ IAE TV 

Test 1 
PID 4.20 -4.34 1.82 8519 44.4 

ADRC 2.08 -2.59 1.05 4645 37.1 

Test 2 
PID 4.20 -5.63 1.93 9836 66.6 

ADRC 2.18 -2.25 1.38 6757 53.5 

It can be found that the proposed ADRC tuning method 

reduced the peak error and standard deviation  by about 50%. 

The IAE is reduced by more than 30%. The TV of the control 

input is decreased by about 20%, which means less overall tear 

and wear of valves, so the lifetime of valves can be prolonged 

and the maintenance cost is therefore reduced. 

The field test results show that the proposed ADRC tuning 

can reduce the SST fluctuation to a large extent. Since the SST 

is one of the main concerns when the power plant changes its 

load, the reduced SST fluctuation range indicates the possibility 

of large-scale load-varying operation, thus also indicates the 

potential of flexible operation of power plants to integrate more 

renewables into grid. 
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VI. CONCLUSION 

This paper describes the derivation of a quantitative tuning 

rule for low-order ADRC controller. In order to derive 

parameters under sensitivity constraint, an asymptote condition 

is propounded. Rooted from the high-order process system 

control, the proposed tuning rule has been expanded to other 

types of process applications. Comparative simulation studies, 

laboratory experiments and field tests have shown the 

efficiency of this tuning method. Future research will be 

continued on the ADRC parameters tuning toward 

multivariable processes. 
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