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Robust Sliding Mode Control for Discrete
Stochastic Systems with Mixed Time-delays,

Randomly Occurring Uncertainties and
Nonlinearities
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Abstract—This paper investigates the robust sliding mode
control (SMC) problem for a class of uncertain nonlinear
stochastic systems with mixed time-delays. Both the sector-like
nonlinearities and the norm-bounded uncertainties enter into
the system in randomly ways, and such randomly occurring
uncertainties (ROUs) and randomly occurring nonlinearities
(RONs) obey certain mutually uncorrelated Bernoulli distributed
white noise sequences. The mixed time-delays consist of both the
discrete and the distributed delays. The time-varying delays are
allowed in state. By employing the idea of delay-fractioning and
constructing a new Lyapunov-Krasovskii functional, sufficient
conditions are established to ensure the stability of the system
dynamics in the specified sliding surface by solving certain
semidefinite programming problem. A full-state feedback SMC
law is designed to guarantee the reaching condition. A simulation
example is given to demonstrate the effectiveness of the proposed
SMC scheme.

Index Terms—Sliding mode control, randomly occurring un-
certainties (ROUs), randomly occurring nonlinearities (RONs),
discrete time-delays, infinite distributed delays.

I. INTRODUCTION

IN the past two decades, SMC has become one of the
most active branches of control theory that has found

successful applications in a variety of engineering systems
such as robot manipulators, aircrafts, electrical motors and
automotive engines [4], [6], [14], [16]. Also, considerable
research attention has been devoted to the theoretical research
on SMC problems for different systems. For example, the
concept of SMC has been widely employed for uncertain
systems [2], [8], [23], stochastic systems [7], [15], [19] as well
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as fuzzy systems [12], [22]. It should be pointed out that most
results mentioned above have been concerned with continuous-
time systems. Recently, many important results have been
reported on the SMC problem for discrete-time systems, see
[1], [5], [10], [20], [21]. In [5], a discrete-time sliding mode
reaching condition and the concept of quasi-sliding mode have
been thoroughly investigated, which have later been applied in
[20], [21] to address the SMC problems for a class of uncertain
time-delay systems.

It is well known that time-delays are frequently encountered
in many engineering systems. The existence of time delays
may cause undesirable dynamic behaviors such as oscillation
and instability. According to the occurrence way of time-
delays, they can be generally classified into two types: discrete
delays and distributed delays. Over the past decades, much
effort has been made to address the SMC problem for time-
delay systems, see e.g. [11], [20], [21]. It is worth mentioning
that most of results are applicable to continuous systems only,
and the relevant results for discrete systems with mixed delays
(i.e., both discrete and distributed) have been very few. Note
that the distributed delays in the discrete-time setting is an
emerging concept that has been proposed in [18] for complex
networks. Such a situation gives us the initial motivation
for establishing a unified framework in order to handle the
mixed time-delays for discrete-time systems by using the SMC
scheme.

Nonlinearities and uncertainties serve as two important
kinds of complexities for system modeling. In the networked
world nowadays, the nonlinear disturbances and the parameter
uncertainties may be subject to random changes in environ-
mental circumstances, for instance, network-induced random
failures and repairs of components, sudden environmental
disturbances etc. Therefore, both the nonlinearities and the
uncertainties may occur in a probabilistic way with certain
types and intensity, which is particularly true in a networked
environment. Very recently, in [18], the concept of RONs has
been introduced to model the randomly occurring nonlinear
functions for complex networks, but ROUs have not yet
received adequate research attention. It is, therefore, our aim
in this paper to shorten such a gap by applying the delay-
fractioning approach (see e.g. [13]), for handling the SMC
problem with ROUs, RONs and mixed time-delays.

Motivated by the above discussion, we deal with the robust
SMC problem for a class of discrete stochastic systems with
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ROUs, RONs and mixed time-delays. By using the delay-
fractioning approach, a sufficient condition is presented to
ensure the stability of the sliding mode dynamics by means of
the feasibility of a certain semidefinite programming problem
with an equality constraint. A computational algorithm is used
to convert the original nonconvex problem into a minimization
problem, and an SMC law is synthesized. The main contri-
butions of this paper can be highlighted as follows: (i) the
concepts of ROUs, RONs and mixed time-delays are, for the
first time, introduced together for the SMC problem in order to
reflect a more realistic environment; (ii) the delay-fractioning
approach as well as a new Lyapunov-Krasovskii functional is
applied, for the first time, to design the SMC law with hope to
reduce the possible conservatism caused by the time-delays;
and (iii) intensive stochastic analysis is carried out to account
for the random nature of the appearance of the uncertainties
and nonlinearities.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following class of uncertain nonlinear stochas-
tic systems:




xk+1 = (A + αk∆A)xk + (Ad + βk∆Ad)xk−dk

+ B(uk + f(xk)) + C

+∞∑
p=1

µpxk−p

+
d∑

i=1

γi
kDgi(xk) + Eσ(xk, xk−dk

)ωk

xk = ϕk, ∀ k ∈ Z−

(1)

where xk ∈ Rn is the state vector, uk ∈ Rq is the control
input, f(xk) denotes the unknown nonlinear function that is
bounded in terms of Euclidean norm, i.e., there exists a known
scalar function ρf (xk) such that ‖f(xk)‖ ≤ ρf (xk), and ωk is
a one-dimensional, zero-mean Gaussian white noise sequence
on a probability space (Ω,F ,P) with E{ω2

k} = 1. A, B, Ad,
C, D and E are known matrices, and ϕk is a given initial
condition.

The nonlinear function σ(·, ·) satisfies

σT (x, y)σ(x, y) ≤ ρ1x
T x + ρ2y

T y, ∀ x, y ∈ Rn (2)

where ρ1 > 0 and ρ2 > 0 are known scalars.
The real-valued matrices ∆A and ∆Ad represent the norm-

bounded parameter uncertainties of the following structure

[∆A ∆Ad] = [HaF HdF ]N, (3)

where Ha, Hd and N are known constant matrices, and F is
an unknown matrix function satisfying FT F ≤ I .

The stochastic variables αk ∈ R and βk ∈ R are Bernoulli
distributed white sequences taking values on either 0 or 1 with

Prob{αk = 1} = α, Prob{αk = 0} = 1− α,

Prob{βk = 1} = β, Prob{βk = 0} = 1− β, (4)

where α ∈ [0, 1] and β ∈ [0, 1] are known constants.
For each 1 ≤ i ≤ d, the nonlinear function gi : Rn → Rn

stands for the mismatched external nonlinearity that satisfies
the following sector-bounded condition:

[gi(x)− F1ix]T [gi(x)− F2ix] ≤ 0, ∀x ∈ Rn (5)

where F1i and F2i are known real constant matrices, and Fi =
F1i − F2i is symmetric positive definite matrix.

The stochastic variables γi
k ∈ R (1 ≤ i ≤ d), which account

for the phenomena of multiple RONs, are another series of
Bernoulli distributed white sequences taking values on 0 or 1
with

Prob{γi
k = 1} = γi, Prob{γi

k = 0} = 1− γi, (6)

where γi ∈ [0, 1] are known constants. Furthermore, the
constant µp ≥ 0 (p = 1, 2, . . .) satisfies the following
convergence condition

µ̄ =
∞∑

p=1

µp ≤
∞∑

p=1

pµp < +∞. (7)

Remark 1: The random variables αk and βk are introduced
to characterize the phenomenon of the ROUs. Such a descrip-
tion is more suitable for reflecting parameter variations of a
random nature especially in the network transmission. On the
other hand, it is customary that the sector-like description of
the nonlinearity gi in (5) is said to belong to sectors [F1i, F2i]
[9], which is more general than the usually used Lipschitz-
type functions, see e.g. [17], [18]. By employing such a
description, it would be possible to reduce the conservatism
of the results caused by quantifying the nonlinearities via the
convex optimization technique.

Remark 2: In this paper, the random variables γi
k (i =

1, 2, . . . , d) are used to model the probability distribution of
the nonlinear functions in system (1). Together with condition
(5), each gi enters into the system in a random way according
to an individual Bernoulli distribution. This description can
reflect the fact that the multiple RONs can appear or disappear
in a probabilistic way due to unpredictable changes of the
environmental circumstances.

Before proceeding, we make the following assumptions.
Assumption 1: The parameter uncertainties ∆A and ∆Ad

are bounded in terms of Euclidean norm.
Assumption 2: The positive integer dk describes the dis-

crete time-varying delay that satisfies:

dm ≤ dk ≤ dM (8)

where dm and dM are known positive integers representing
the lower and upper bounds of the time-delay, respectively.
The lower bound of delay dm can always be described by
dm = τm, where τ and m are integers.

Assumption 3: a) The stochastic variables αk, βk and γi
k

are mutually uncorrelated random variables which are also
unrelated with ωk. b) The stochastic variables αk, βk and γi

k

(i = 1, 2, . . . , d) are independent of F .

III. DESIGN OF SMC

In this section, a sufficient condition is presented to ensure
the stability of sliding mode dynamics, and an SMC law is
synthesized to drive the state trajectories of system (1) onto
the pre-specified sliding surface.
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A. Sliding surface

Firstly, a discrete-time switching function is constructed as
follows:

sk = Gxk −GAxk−1 (9)

where G is to be designed such that GB is nonsingular and
GB = 0, where B =

[
C D E

]
. In this paper, we choose

G = BT P with P > 0 to confirm the nonsingularity of GB,
and B is assumed to be of full column rank.

When the state trajectories of the system (1) enter into
the ideal quasi-sliding mode sk+1 = sk = 0, the equivalent
control law of the sliding motion can be obtained,

ueq
k = −(GB)−1GAk − f(xk) (10)

where Ak = α∆Axk + (Ad + β∆Ad)xk−dk
.

Substituting (10) as uk into (1), we obtain the sliding mode
dynamics as follows:





xk+1 = Ak −B(GB)−1GAk + (αk − α)∆Axk

+ (βk − β)∆Adxk−dk
+ C

+∞∑
p=1

µpxk−p

+
d∑

i=1

γi
kDgi(xk) + Eσ(xk, xk−dk

)ωk,

(11)

where Ak = (A + α∆A)xk + (Ad + β∆Ad)xk−dk
.

B. Performance of the sliding motion

Before proceeding, we introduce the following lemmas.
Lemma 1: For any real vectors a, b and matrix P > 0 of

appropriate dimensions, the following inequality holds

aT b + bT a ≤ aT Pa + bT P−1b. (12)

Lemma 2: Let Q = QT , N and H be real matrices of
compatible dimensions with F satisfying FT F ≤ I . Then
Q+NFH+HT FT NT < 0 if and only if there exists a scalar
ε > 0 such that Q + εNNT + ε−1HT H < 0 or, equivalently




Q εN HT

∗ −εI 0
∗ ∗ −εI


 < 0. (13)

The following theorem gives a sufficient condition to guar-
antee the robustly asymptotic mean-square stability of the
sliding mode dynamics (11).

Theorem 1: Consider the system (11) and the sliding sur-
face described by (9). For a given scalar % ∈ (0, 1), the sliding
mode dynamics (11) is robustly asymptotically mean-square
stable if there exist matrices P > 0, Q > 0, R > 0, S1 > 0,
S2 > 0, T > 0, real matrices X , Y , Z , and scalars λ∗ > 0,
ε > 0, ϕ > 0 satisfying




Φ11 Φ12 ϑ1X ϑ2Y Φ15 εΦT
16

∗ Φ22 0 0 Φ25 0
∗ ∗ −%P 0 0 0
∗ ∗ ∗ −%P 0 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI




< 0, (14)




Φ11 Φ12 ϑ1X ϑ2Z Φ15 εΦT
16

∗ Φ22 0 0 Φ25 0
∗ ∗ −%P 0 0 0
∗ ∗ ∗ −%P 0 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI




< 0, (15)

ET PE ≤ λ∗I, (16)
BT PB = 0, (17)

where

Φ11 = sym(Π1 + ĥ2
d∑

i=1

riΞT
1 PDΞgi + ĥ2ΞT

1 PCΞgµ)

+ Π2 + Π3,

Φ12 =
[ √

2ĥΞT
1 P 2ĥΞT

2 PB 0 0
]
,

Φ22 = diag{−P,−BT PB,−P,−P},
ΦT

15 =
[

0 r1ĥ
2αHT

a PD r2ĥ
2αHT

a PD . . .

0 r1ĥ
2βHT

d PD r2ĥ
2βHT

d PD . . .

rdĥ
2αHT

a PD ĥ2αHT
a PC

rdĥ
2βHT

d PD ĥ2βHT
d PC

]
,

Φ16 =
[

N 0nN×mn 0nN×n 0nN×(d+2)n

0nN×n 0nN×mn N 0nN×(d+2)n

]
,

ΦT
25 =

[
X11 X12

]
,

X11 =
[ √

2ĥαHT
a P 2ĥαHT

a PB√
2ĥβHT

d P 2ĥβHT
d PB

]
,

X12 =

[ √
ᾱĥHT

a P 0
0

√
β̄ĥHT

d P

]
,

Ξ1 =
[

A 0n×mn Ad 0n×(d+2)n

]
,

Ξ2 =
[

0n×(m+1)n Ad 0n×(d+2)n

]
,

Ξgi =
[

0n×(m+i+2)n In×n 0n×(d−i)n 0n×n

]
,

Ξgµ =
[

0n×(m+d+3)n In×n

]
,

Π1 =
[ X Y Z ]

×




In×n 0n×(m+1)n −In×n 0n×(d+1)n

0n×mn In×n −In×n 0n×(d+2)n

0n×(m+1)n In×n −In×n 0n×(d+1)n


 ,

Π2 = WT
RRWR, R = diag{R,−R}, Π3 = WT

Θ ΘWΘ,

WΘ =




In×n 0n×(m+d+3)n

0n×mn In×n 0n×(d+3)n

0n×(m+1)n In×n 0n×(d+2)n

0n×(m+2)n In×n 0n×(d+1)n

0dn×(m+3)n Idn×dn 0dn×n

0n×(m+d+3)n In×n




,

WR =
[

Imn×mn 0mn×(d+4)n

0mn×n Imn×mn 0mn×(d+3)n

]
,

Θ =
[ ℵ11 ℵ12

∗ ℵ22

]
,

ℵ11 = diag{Θ11,−S1, ĥ
2λ∗ρ2I −Q,−S2},

ℵT
12 =

[
ΘT

15 0 0 0
0 0 0 0

]
,
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ℵ22 =

[
Θ55 ĥ2Θ56

∗ 2ĥ2CT PC − 1
µ̄T

]
,

Θ11 = (2%~− 1)P + ĥ2λ∗ρ1I + (dM − dm + 1)Q

+ S1 + S2 + µ̄T − ϕ

d∑

i=1

F̃i,

Θ15 =
[

ϕF̄1 ϕF̄2 · · · ϕF̄d

]
,

Θ55 =
[

Θ(ij)
55

]
, (i, j = 1, 2, . . . , d)

Θ(ii)
55 = ĥ2((γi)2 + γi)DT PD − 2ϕI,

Θ(ij)
55 = 2γiγj ĥ

2DT PD, (i 6= j)
ΘT

56 =
[

r1I r2I . . . rdI
]
CT PD,

F̃i = FT
1iF2i + FT

2iF1i, F̄i = FT
1i + FT

2i ,

~ = 2dM − dm, ĥ =
√

1 + 2%~, ϑ1 =
√

dM ,

ϑ2 =
√

dM − dm, ᾱ = α(1− α), β̄ = β(1− β)

and nN is the number of row in matrix N . sym(=) represents
=+ =T .

Proof: Choose the following Lyapunov-Krasovskii func-
tional candidate for system (11):

Vk =
6∑

i=1

V i
k (18)

where

V 1
k = xT

k Pxk

V 2
k =

k−1∑

l=k−dk

xT
l Qxl +

−τm∑

j=−dM+1

k−1∑

l=k+j

xT
l Qxl

V 3
k =

k−1∑

l=k−dm

xT (l)Slxl +
k−1∑

l=k−dM

xT
l S2xl

V 4
k =

k−1∑

l=k−τ

ΓT
l RΓl

V 5
k = %

0∑

j=−dM+1

k−1∑

l=k−1+j

ηT
l Pηl + %

−τm∑

j=−dM+1

k−1∑

l=k−1+j

ηT
l Pηl

V 6
k =

+∞∑
p=1

µp

k−1∑

l=k−p

xT
l Txl

ηl = xl+1 − xl, Γl = col{xl, xl−τ , . . . , xl−(m−1)τ}

with P > 0, Q > 0, R > 0, S1 > 0, S2 > 0, T > 0 being
matrices to be determined. Here, col{· · · } denotes a vector
column with blocks given by the vectors in {· · · }.

By using Lemma 1 and noting Assumption 3, we have

E{∆V 1
k }

≤ E
{

ξT
k

[
2Ξ̂T

1 P Ξ̂1 + 2Ξ̂T
1 PCΞgµ + 2

d∑

i=1

riΞ̂T
1 PDΞgi

+4Ξ̂T
2 GT (GB)−1GΞ̂2 + 2ΞT

gµCT PCΞgµ

+2
d∑

i=1

riΞT
gµCT PDΞgi + ᾱΞ̂T

3 P Ξ̂3 + β̄Ξ̂T
4 P Ξ̂4

]
ξk

+2
[ d∑

i=1

γiDgi(xk)
]T

P

[ d∑

i=1

γiDgi(xk)
]

+
d∑

i=1

γi(1− γi)gT
i (xk)DT PDgi(xk)

+σT (xk, xk−dk
)ET PEσ(xk, xk−dk

)− xT
k Pxk

}
(19)

where

ξT
k =

[
ΓT

k xT
k−dm

xT
k−dk

xT
k−dM

gT (xk)
+∞∑
p=1

µpx
T
k−p

]
,

g(xk) =
[

gT
1 (xk) gT

2 (xk) · · · gT
d (xk)

]T
,

Ξ̂1 =
[

A + α∆A 0n×mn Ad + β∆Ad 0n×(d+2)n

]
,

Ξ̂2 =
[

α∆A 0n×mn Ad + β∆Ad 0n×(d+2)n

]
,

Ξ̂3 =
[

∆A 0n×(m+d+3)n

]
,

Ξ̂4 =
[

0n×(m+1)n ∆Ad 0n×(d+2)n

]
,

and ᾱ, β̄, Ξgµ, Ξgi are defined in Theorem 1 (below (17)).
On the other hand, it can be derived that

6∑

i=2

E{∆V i
k}

≤ E
{

xT
k ((dM − dm + 1)Q + S1 + S2 + µ̄T )xk

−xT
k−dk

Qxk−dk
− xT

k−dm
S1xk−dm

− xT
k−dM

S2xk−dM

+ΓT
k RΓk − ΓT

k−τRΓk−τ + 2%~xT
k+1Pxk+1

+2%~xT
k Pxk −

k−1∑

l=k−dM

ηT
l %Pηl −

k−τm−1∑

l=k−dk

ηT
l %Pηl

−
k−dk−1∑

l=k−dM

ηT
l %Pηl − 1

µ̄

[ +∞∑
p=1

µpxk−p

]T

×T

[ +∞∑
p=1

µpxk−p

]}
(20)

It follows from (2) and (16) that

σT (xk, xk−dk
)ET PEσ(xk, xk−dk

)
≤ λ∗(ρ1x

T
k xk + ρ2x

T
k−dk

xk−dk
). (21)

For each 1 ≤ i ≤ d, (5) is equivalent to

[
xk

gi(xk)

]T [ −F̃i F̄i

∗ −2I

] [
xk

gi(xk)

]
≥ 0, (22)

where matrices F̃i and F̄i are defined in Theorem 1 (below
(17)). Furthermore, according to the definition of ηl, for any
matrices X ,Y,Z with appropriate dimensions, the following
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equations always hold:

0 = 2ξT
k X

[
xk − xk−dM

−
k−1∑

l=k−dM

ηl

]
, (23)

0 = 2ξT
k Y

[
xk−τm − xk−dk

−
k−τm−1∑

l=k−dk

ηl

]
, (24)

0 = 2ξT
k Z

[
xk−dk

− xk−dM
−

k−dk−1∑

l=k−dM

ηl

]
. (25)

Noting (19)-(25), we have

E{∆Vk}
≤ E

{
ξT
k

[(
dk − dm

dM − dm

)(
Π1 + ΠT

1 + Π2 + Π3

+2ĥ2Ξ̂T
1 P Ξ̂1 + 2ĥ2

d∑

i=1

riΞ̂T
1 PDΞgi + 2ĥ2Ξ̂T

1 PCΞgµ

+4ĥ2Ξ̂T
2 GT (GB)−1GΞ̂2 + ᾱĥ2Ξ̂T

3 P Ξ̂3 + β̄ĥ2Ξ̂T
4 P Ξ̂4

+dMX (%P )−1X T + (dM − dm)Y(%P )−1YT

)

+
(

dM − dk

dM − dm

)(
Π1 + ΠT

1 + Π2 + Π3 + 2ĥ2Ξ̂T
1 P Ξ̂1

+2ĥ2
d∑

i=1

riΞ̂T
1 PDΞgi + 2ĥ2Ξ̂T

1 PCΞgµ + 4ĥ2Ξ̂T
2 GT

×(GB)−1GΞ̂2 + ᾱĥ2Ξ̂T
3 P Ξ̂3 + β̄ĥ2Ξ̂T

4 P Ξ̂4

+dMX (%P )−1X T + (dM − dm)Z(%P )−1ZT

)]
ξk

}
,

(26)

where

Σ1 =
[
%Pηl + X T ξk

]T

(%P )−1

[
%Pηl + X T ξk

]

Σ2 =
[
%Pηl + YT ξk

]T

(%P )−1

[
%Pηl + YT ξk

]

Σ3 =
[
%Pηl + ZT ξk

]T

(%P )−1

[
%Pηl + ZT ξk

]

and Π1, Π2 and Π3 are defined in Theorem 1 (below (17)).
By using Lemma 2 and applying Schur complement, it

follows from (14) and (15) that E{∆Vk} < 0 holds, and
therefore the mean-square asymptotic stability of the sliding
mode dynamics (11) can be confirmed. This completes the
proof.

Remark 3: Comparing with the conventional Lyapunov-
Krasovskii functional for delay systems, (18) exhibits two
extra terms, V 4

k and V 5
k , both of which exists for particular rea-

sons. Specifically, V 4
k is adjusted to reduce the conservatism in

response to the need of delay-fractioning for discrete systems,
and V 5

k is there to fit the SMC framework where a so-called
“weighting” scalar parameter % ∈ (0, 1) is enforced. Such
a parameter is exploited to reflect both the delay-fractioning
approach and parameter uncertainties, and its value can be
determined a priori to help the feasibility study of (14)-(17)
in Theorem 1.

C. Computational Algorithm

Note that there exists an equality constraint condition (17)
BT PB = 0 in Theorem 1. Based on the algorithm presented
in [11], this constraint can be equivalently converted into
tr[(BT PB)T BT PB] = 0. By introducing an inequality
(BT PB)T BT PB ≤ γI (γ > 0 is a sufficiently small scalar)
and using Schur Complement, we have

[ −γI BT PB
BT PB −I

]
≤ 0. (27)

Hence, the original nonconvex feasibility problem is now
converted into a problem of finding the global solution to the
following minimization problem:

min γ

subject to (14)-(16) and (27). (28)

D. Reachability Analysis

In this part, an SMC law is proposed and the reachability
analysis of the specified sliding surface is conducted.

By considering the inequality reaching condition in [5],
{

∆sk ≤ −κUsgn[sk]− κV sk, if sk > 0
∆sk ≥ −κUsgn[sk]− κV sk, if sk < 0

(29)

where κ denotes the sampling period, U = diag{µ1, µ2, . . . ,
µq} ∈ Rq×q, V = diag{ν1, ν2, . . . , νq} ∈ Rq×q, and µi > 0,
νi > 0 are properly chosen constants satisfying 0 < 1−κνi <
1 (i = 1, 2, . . . , q).

Notice that ∆A, ∆Ad and f(xk) are all bounded in terms of
Euclidean norm, let ∆a(k) := αkG∆Axk, ∆d(k) := G(Ad +
βk∆Ad)xk−dk

and ∆f (k) := GBf(xk), then there exist δi
a,

δ
i

a, δi
d, δ

i

d, δi
f and δ

i

f (i = 1, 2, · · · , q) satisfying

δi
a ≤ δi

a(k) ≤ δ
i

a, δi
d ≤ δi

d(k) ≤ δ
i

d, δi
f ≤ δi

f (k) ≤ δ
i

f (30)

where δi
a(k), δi

d(k) and δi
f (k) are the ith elements in ∆a(k),

∆d(k) and ∆f (k), respectively. Then, by defining

∆̂a =
[

δ̂1
a δ̂2

a · · · δ̂q
a

]T

, δ̂i
a =

δ
i

a + δi
a

2
,

∆̃a = diag
{

δ̃1
a, δ̃2

a, . . . , δ̃q
a

}
, δ̃i

a =
δ

i

a − δi
a

2
,

∆̂d =
[

δ̂1
d δ̂2

d · · · δ̂q
d

]T

, δ̂i
d =

δ
i

d + δi
d

2
,

∆̃d = diag
{

δ̃1
d, δ̃2

d, . . . , δ̃q
d

}
, δ̃i

d =
δ

i

d − δi
d

2
,

∆̂f =
[

δ̂1
f δ̂2

f · · · δ̂q
f

]T

, δ̂i
f =

δ
i

f + δi
f

2
,

∆̃f = diag
{

δ̃1
f , δ̃2

f , . . . , δ̃q
f

}
, δ̃i

f =
δ

i

f − δi
f

2
, (31)

we are now ready to present the design scheme of the robust
SMC law.

Theorem 2: Assume that the minimization problem (28) is
solvable. For the system (1) with sliding surface (9), where
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G = BT P and P is the solution of (28), if the SMC law is
given as follows

u (k) = − (GB)−1 (κUsgn[sk] + κV sk − sk + (∆̂a

+∆̂d + ∆̂f ) + (∆̃a + ∆̃d + ∆̃f )sgn[sk]), (32)

then the discrete-time sliding mode reaching condition of
system (1) with specified sliding surface (9) is satisfied.

Proof: Together with (32) and (9), we have

∆sk = −κUsgn[sk]− κV sk + ∆a(k)− (∆̂a + ∆̃asgn[sk])

+∆d(k)− (∆̂d + ∆̃dsgn[sk])

+∆f (k)− (∆̂f + ∆̃f sgn[sk]). (33)

It follows easily from (31) that (29) holds, and then proof of
this theorem is complete.

Remark 4: In the stochastic model presented in this paper,
there are four main aspects that complicate the design of SMC,
i.e., ROUs, RONs, infinite distributed delays as well as the
delay-fractioning approach. In our main results, all these four
aspects have been explicitly reflected, where the occurrence
probabilities α and β are there for the ROUs, the occurrence
probabilities γi (i = 1, 2, . . . , d) and constant matrices Fij

(i = 1, 2; j = 1, 2, . . . , d) quantify the multiple randomly
occurring sector-like nonlinearities, the constant µ̄ accounts for
infinite distributed delays, and the new Lyapunov-Krasovskii
functional (18) stems from the discrete-time delay-fractioning
idea.

IV. AN ILLUSTRATIVE EXAMPLE

Following [3], [17], we consider the SMC problem for
an F-404 aircraft engine system. Setting the sampling time
T = 1.2s, we obtain the following discretized nominal system
matrix

A =




0.2504 0 0.3919
0.0570 0.6188 −0.0616
0.0502 0 0.1262


 .

In the F-404 aircraft engine model, x1
k and x2

k represent the
horizontal position and x3

k is the altitude of the aircraft. The
control inputs u1

k and u2
k are the engine thrust and flight path

angle, respectively. The movement of the aircraft is affected
by the wind that acts as a stochastic disturbance ωk. To this
end, other parameters are given as:

Ad =




0.03 0 −0.01
0.02 0.03 0
0.04 0.05 −0.01


 , B =




0.1817 0.4286
0.1597 0.793
0.1138 0.0581


 ,

C =




0.03 0.015 −0.01
0.02 0.03 0
0.02 0.025 −0.01


 , H =




0.01
0.02
0.005


 ,

D =




0.025 0.01 0
0 −0.03 0

0.04 0.035 −0.01


 , Hd =




0.02
0.03
0


 ,

E =




0.015 0 −0.01
0.01 0.015 0
0.02 0.025 −0.01


 , NT =




0.2
0.1
0


 .
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Fig. 1. The trajectory of state xk (m)

Let

F = sin(0.6k),

f(xk) =
[

0.4 sin(x1
kx3

k) 0.3 sin(x2
k)

]T
,

σ(xk, xk−dk
) = 0.5xk + 0.5xk−dk

,

g1(xk) = 0.5(F11 + F21)xk + 0.5(F21 − F11) sin(xk)xk,

g2(xk) = 0.5(F12 + F22)xk + 0.5(F22 − F12) cos(xk)xk,

where

sin(xk) := diag{sin(x1
k), sin(x2

k), sin(x3
k)},

cos(xk) := diag{cos(x1
k), cos(x2

k), cos(x3
k)},

F11 = F12 = diag{0.4, 0.5, 0.8},
F21 = F22 = diag{0.3, 0.2, 0.6}.

Set α = 0.75, β = 0.78, γ1 = 0.86 and γ2 = 0.82. Assume
that the time-varying delay dk satisfies 3 ≤ dk ≤ 5. Moreover,
choosing the constants µp = 2−3−p, we can easily see that the
convergence condition (7) holds.

Setting m = 1 and % = 1.2× 10−4 in (18) and solving the
minimization problem (28), we obtain

P =




0.4676 −0.0765 −0.1145
−0.0765 0.1880 −0.0459
−0.1145 −0.0459 0.3346


 ,

and γ = 6.9607 × 10−5 (hence the equality constraint in
Eq. (17) is considered to be achieved). It follows from Theo-
rem 2 that the desired SMC controller (32) can be described
by all known parameters. The simulation results are shown in
Figs. 1-3. Among them, Fig. 1 shows the response of system
state by taking µj = νj = 0.001 (j = 1, 2). The responses
of sliding surface sk and control input uk are shown in
Figs. 2-3, respectively. The simulation results have confirmed
our theoretical results. It would be interesting to look into
the possibility of carrying out real-time experiments on flight
control systems with actual engines in the future.

V. CONCLUSIONS

The robust SMC problem for a class of discrete mixed
time-delays stochastic system with ROUs and RONs has been
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considered in this paper. By making use of delay-fractioning
approach and constructing a new Lyapunov-Krasovskii func-
tional, a sufficient condition has been derived to ensure the
stability of the sliding mode dynamics, and an SMC law has
been designed such that the state trajectory of the system
starting from any initial state is globally driven onto the
specified sliding surface. Further research topics include the
SMC problem for networked control system with plant output
delays and input delays.
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