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Bearing Damage Detection via Wavelet Packet
Decomposition of the Stator Current

Levent Eren, Member, IEEE, and Michael J. Devaney, Member, IEEE

Abstract—Bearing faults are one of the major causes of motor
failures. The bearing defects induce vibration, resulting in the
modulation of the stator current. In this paper, the stator current
is analyzed via wavelet packet decomposition to detect bearing
defects. The proposed method enables the analysis of frequency
bands that can accommodate the rotational speed dependence of
the bearing defect frequencies. The wavelet packet decomposition
also provides a better treatment of nonstationary stator current
than currently used Fourier techniques.

Index Terms—Bearing fault detection, condition monitoring, in-
duction motors, motor current signature analysis (MCSA).

I. INTRODUCTION

I NDUCTION machines are used widely in industrial manu-
facturing plants. The industry’s heavy reliance on these ma-

chines in critical applications makes catastrophic motor failures
very expensive. Therefore, a significant amount of research ef-
fort is focused on the preventive maintenance of motors. Motor
current signature analysis (MCSA) provides a nonintrusive way
to assess the health of a machine. The steady-state current of
an induction motor is analyzed via the discrete wavelet packet
transform to detect faulty bearings in this study.

The bearing-related information is obtained by determining
the current spectral frequencies induced by the characteristic
vibration frequencies. The relationship of bearing vibration to
stator current spectrum results from the fact that any air gap ec-
centricity produces anomalies in the air gap flux density [1].
The characteristic vibration frequencies due to bearing defects
can be calculated from the rotor speed and the bearing geom-
etry. The typical rolling element bearing geometry is displayed
in Fig. 1. The characteristic vibration frequencies, can be cal-
culated using (1)–(4) [2].

The outer race defect frequency, , the ball passing fre-
quency on the outer race, is given by

(1)

where is the contact angle, is the pitch diameter, is the
ball diameter, is the number of balls, and is the rotational
speed.
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Fig. 1. Rolling element bearing geometry.

The inner race defect frequency, , the ball passing fre-
quency on the inner race, is given by

(2)

The ball defect frequency, , the ball spin frequency, is
given by

(3)

The train defect frequency, , caused by an irregularity in
the train, is given by

(4)

The characteristic current frequencies, , due to the
bearing characteristic vibration frequencies, , are calculated
by [1]

(5)

where 1, 2, 3, and is the power line frequency. This
latter equation represents an amplitude modulation of the stator
current by the bearing vibrations.

Equations (1)–(5) can be used to calculate the current spectral
components due to faulty bearings. In traditional MCSA, the
Fourier transform is utilized to determine the current spectrum.
Then, the bearing defect induced frequencies are identified and
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Fig. 2. Linear frequency separation.

Fig. 3. Analysis part of wavelet packet filter bank.

Fig. 4. Frequency roll-off characteristics of various FIR filters.

compared with initial measurements to detect any deterioration
in bearing health. The shortcoming of this approach is that the
Fourier analysis is limited to stationary signals and the stator
current is nonstationary by nature.

In this study, the wavelet packet decomposition of the motor
current signal is proposed as an alternate approach. The wavelet
packet transform provides better analysis for nonstationary sig-
nals and permits tailoring of the frequency bands to cover the
range of bearing-defect induced frequencies resulting from rotor
speed variations. In this approach, the rms values for defect fre-
quency bands are compared with baseline readings to determine
any degradation in bearing health.

The discrete wavelet transform has been successfully applied
to the analysis of both transient and steady-state power system
signals [3], [4]. Recently, the wavelet packet decomposition was
also utilized to detect induction motor mechanical faults such
as broken rotor bars and air gap eccentricity from its current
signature [5].

Fig. 5. Analysis process algorithm.

Fig. 6. Outer race defect.

II. PROPOSED METHOD

Today, the wavelet theory represents a collection of work
done largely independently in various fields such as math-
ematics, physics, and engineering. Wavelets, filter banks,
and multiresolution signal analysis, which have been used
independently in the fields of mathematics, signal processing,
and computer vision, respectively, have recently converged to
form a single theory [6]. The wavelet transform (WT) provides
an alternative to the short-time Fourier transform (STFT) in
nonstationary signal processing. In contrast to the fixed analysis
window size in the STFT, the WT uses longer windows for
low frequencies and shorter windows for higher frequencies.
Finer frequency resolution may be achieved via the wavelet
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Fig. 7. WPC plots for race defect and no defect.

packet transform (WPT). Wavelet transform and multirate
filter banks are closely related. Multirate filter banks give the
structures required to generate important cases of wavelets and
the wavelet transform [7].

Subband decomposition of signals using two-band filter
banks can be implemented efficiently and conveniently [8].
Daubechies also showed that the following equations can be
used to numerically obtain wavelet and scaling coefficients

(6)

The wavelet coefficients for level can be obtained from
scaling coefficients from level 1 using

(7)

(8)

The scaling coefficients for level can be obtained from the
scaling coefficients for level 1 using

(9)

(10)

Where and are high-pass and low-pass filters, respectively.
The procedure can start by calculating and
from using (8) and (10), respectively. Then, the same
procedure is used until the level is reached.

Wavelet analysis provided improved signal processing for
transient signal analysis. It results in better time localization in
higher frequencies in return for poorer frequency resolution.
Coifman, Meyer, and Wickerhauser introduced wavelet packet
analysis to improve the poor frequency resolution at high
frequencies [9]. They basically generalized the link between
multiresolution and wavelets. Wavelet packet analysis offers
a more efficient decomposition for signals containing both

TABLE I
RMS VALUES CALCULATED FOR HEALTHY AND

FAULTY BEARINGS FOR OUTER RACE DEFECT

transient and stationary components. The frequency separation
obtained by wavelet packet decomposition is depicted in Fig. 2.
It is very similar to that of the STFT. Here, the wavelet bases

are decomposed into approximation spaces and
. The wavelet filter bank structure to accomplish such

decomposition is depicted in Fig. 3.
The wavelet packet coefficients can be used to calculate

the rms value of any node

(11)

where

(12)

and

(13)

can be used repeatedly to obtain all the wavelet packet coeffi-
cients.

The filter selection for the wavelet packet filter-bank is
important since it determines the frequency separation and
computational complexity of the filter-bank structure. Here,
the Vaidyanathan FIR filter [10] was selected after reviewing
the performance of various FIR filters. It provides better fre-
quency separation than both Daubechies and Beylkin filters.
Although the Beylkin filter requires less computational effort,
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Fig. 8. WPC plots for cage defect and no defect.

the Vaidyanathan filter is selected to minimize the leakage from
the adjacent frequency bands. The frequency roll-off character-
istics of some popular FIR filters are depicted in Fig. 4.

The wavelet packet decomposition of the motor current signal
is the proposed method of signature analysis in this study. For
a four-pole machine at 60 Hz, the first harmonics for the vibra-
tions for all the bearing defects listed previously will result in
characteristic current frequency components in 0–240 Hz fre-
quency band. Therefore, the current signal can be decomposed
linearly within the 0–240 Hz band and decomposed logarithmi-
cally for higher frequency bands to minimize the computational
effort.

The major steps of the data analysis procedure are shown in
Fig. 5. First, the stator current data is sampled at 32 points per
cycle for 15 s at 60 Hz. The sampled current signal contains the
power system fundamental and third harmonic components. The
bearing defect induced current spectrum components are signif-
icantly smaller than the power system harmonics in magnitude,
therefore, some preprocessing of the signal is required to sup-
press the power system harmonics before the current signal is
analyzed via wavelet packet analysis. The fundamental and third
power frequency harmonics are both notch filtered to minimize
the error due to their leakage. If the bearing induced frequen-
cies at certain loading level are very close to the power system
harmonics, the analysis may be performed at other load levels.

In the next stage, the current signal is decomposed into
7.5-Hz wavelet packets for the 0–240 Hz frequency band using a
Vaidyanathan FIR filter-bank structure. After the wavelet packet
coefficients are obtained, the node rms values are computed
using the wavelet packet coefficients. Due to the computational
complexity involved in such decomposition, the algorithm may
be implemented in a circuit monitor to perform the analysis at
certain time intervals. Bearing health deteriorates over a long
period of time; therefore, real-time monitoring is not needed.

The linear decomposition of the signal for 0–240 Hz band can
be obtained by the analysis filter-bank depicted in Fig. 3. Here,

and are the low-pass and high-pass filters, respectively.

TABLE II
RMS VALUES CALCULATED FOR HEALTHY

AND FAULTY BEARINGS FOR CAGE DEFECT

It should be noted that and are reversed in the figure.
This is due to the natural, or Paley, order produced by the al-
gorithm. The algorithm may be easily modified to produce a
sequence ordered wavelet packet analysis [9]. The linear de-
composition obtained from wavelet packet decomposition is de-
picted in Fig. 2. In this figure, is the frequency bandwidth
required for the analysis. In our case, the frequency range of
0–240 Hz is decomposed into 7.5-Hz bands.

In the proposed approach, the signal rms values for defect fre-
quency bands are recorded for a healthy set of bearings to serve
as baseline data. Then, the new readings are compared with
previous readings to determine any degradation in the bearing
health. Readings that are two standard deviations higher than
the baseline readings may be flagged as defective.

III. TESTING AND RESULTS

A three-phase, 1 hp, 200 V, 60 Hz, 1750 rpm, four-pole in-
duction motor was used in this study (US Motors Frame 143T).
The shaft end ball bearing is a 6205–2Z-J/C3 (nine balls) and
the opposite end ball bearing is a 6203–2Z-J/C3 (seven balls).
Two types of bearing faults were studied in the evaluation: outer
race defects and cage defects.

In testing, the steady state motor current data were captured,
at 32 points per cycle for 15 s, using a Square D series 4000
Circuit Monitor with the machine at no load before and after
the fault was introduced. The captured signals were first notch
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Fig. 9. Fourier spectrums of stationary and nonstationary currents.

filtered to remove power system harmonics. Then, the data were
analyzed using the wavelet packet transform. Finally wavelet
packet coefficients were used to calculate the rms values.

In the first test, the outer race defect was explored. A one mm
diameter hole was drilled on the outer race to simulate an outer
race defect. The bearing outer race defect characteristic vibra-
tion frequency at no load speed (1798 r/min) is 108 Hz. The cor-
responding current spectrum components are at 48 and 168 Hz,
respectively. The 168-Hz frequency component was selected for
analysis since it is further away from the power system funda-
mental harmonic and rotor speed eccentricity fundamental com-
ponents (60 ). The bearing with the outer race defect is de-
picted in Fig. 6.

Nodes 22 and 23 were selected for the analysis. These two
nodes contain 157.5–165-Hz and 165–172.5-Hz frequency
bands, respectively. The wavelet packet coefficients for tests
with a healthy and a faulty shaft-end bearing are plotted in
Fig. 7.

The wavelet coefficients for nodes 22 and 23 are used to cal-
culate the rms values for the frequency bands of interest. The
mean and standard deviation for the specified nodes were cal-
culated from eight healthy bearing trials. The mean values are
0.0074 and 0.0099 for nodes 22 and 23, respectively. The corre-
sponding standard deviation values are 0.0025 and 0.0052. The
mean and standard deviation for the specified nodes were cal-
culated from three faulty bearing trials. The mean values are
0.0235 and 0.0119 for nodes 22 and 23, respectively. The cor-
responding standard deviation values are 0.0008 and 0.0024.

The resulting mean and standard deviation values for both
cases are given in Table I. The data indicates an increase in rms
values for nodes 22 and 23 for the faulty bearings of 217.7%
and 20.9%, respectively. In the second test, the cage defect
was explored. The cage was dented to simulate a cage defect.
The bearing cage defect characteristic vibration frequency at
no load speed (1798 r/min) is 12 Hz. Corresponding current
spectrum components are at 48 and 72 Hz, respectively. In this
case, either component can be selected since they are equally

separated from the power system fundamental harmonic. The
48-Hz component was selected for the analysis. As a result,
nodes 5 and 7 were selected. These two nodes contain the
37.5–45-Hz and 45–52.5-Hz frequency bands, respectively.
The wavelet packet coefficients for tests with a healthy and a
faulty shaft-end bearing are plotted in Fig. 8.

The wavelet coefficients for nodes 5 and 7 are used to calcu-
late the rms values for the specified frequency bands. The mean
and standard deviation for the specified nodes were calculated
using eight trials for the healthy baseline data. The mean values
are 0.0396 and 0.0275 for nodes 5 and 7, respectively. The corre-
sponding standard deviation values are 0.0097 and 0.0084. The
mean and standard deviation for the specified nodes were also
calculated from eight faulty bearing trials. The mean values are
0.1099 and 0.1635 for nodes 5 and 7, respectively. The corre-
sponding standard deviation values are 0.0030 and 0.0307.

The resulting mean and standard deviation values for both
cases are given in Table II. The data indicates that rms values
for both nodes 5 and 7 are elevated for the faulty bearings by
177.6% and 494.5%, respectively.

When pre-fault and post-fault bearing current signals are
compared under the steady state conditions, significant energy
increase is detected in node 22 and node 7 for outer race and
cage defects, respectively. In both cases, the results are more
than two standard deviations higher than the baseline data
indicating the fault conditions.

In a final test, stationary and nonstationary current waveforms
for a healthy bearing set are also analyzed by both FFT and
wavelet packet decomposition techniques. The results of the
FFT analysis are depicted in Fig. 9. The upper plot displays
the spectrum of the nonstationary waveform, whereas the lower
plot displays the spectrum of the stationary waveform. It is ob-
vious from the figure that the nonstationary waveform caused by
speed variations may result in a healthy bearing to be flagged as
faulty (cage fault). In the case of the wavelet packet decompo-
sition, the rms levels do not increase as much; therefore, there
is a smaller possibility of misdetection.
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IV. CONCLUSION

Multifunction circuit monitors are finding increased use
in monitoring individual motor loads. The current data that
they provide can be regularly evaluated for a useful predictive
maintenance bearing diagnostic when analyzed by the discrete
wavelet packet transform. The application of wavelet packet
analysis to the motor stator current is shown to provide a useful
diagnostic for incipient bearing fault detection. This continuous
monitoring is achieved in a noninvasive manner and without
the expense and inconvenience of additional transducers or
specialized bearing diagnostic instruments.

The proposed method has several advantages over Fourier
analysis tools currently used in motor current signature analysis.
Due to the nonstationary nature of the stator current, the wavelet
packet transform provides better analysis under varying load
conditions. The wavelet packet transform also permits the tai-
loring of the frequency bands to cover the range of bearing-de-
fect induced frequencies resulting from rotor speed variations.
Tailored frequency bands in turn mean a decreased number of
inputs and lower complexity for fault detection algorithms such
as neural networks. The use of such bands in defect detection
is more tolerant of the fact that the actual bearing-defect in-
duced vibration frequencies may vary slightly from the pre-
dicted values due to slippage that occurs within the bearing.
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