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Baba is Y’all 2.0:
Design and Investigation of a

Collaborative Mixed-Initiative System
M Charity, Isha Dave, Ahmed Khalifa, and Julian Togelius

Abstract—This paper describes a new version of the mixed-
initiative collaborative level designing system: Baba is Y’all,
as well as the results of a user study on the system. Baba is
Y’all is a prototype for AI-assisted game design in collaboration
with others. The updated version includes a more user-friendly
interface, a better level-evolver and recommendation system, and
extended site features. The system was evaluated via a user study
where participants were required to play a previously submitted
level from the site and then create their own levels using the
editor. They reported on their individual process creating the
level and their overall experience interacting with the site. The
results have shown both the benefits and limitations of this mixed-
initiative system and how it can help with creating a diversity of
‘Baba is You’ levels that are both human and AI designed while
maintaining their quality.

Index Terms—Mixed-Initiative, Level Design, PCG, Collabo-
ration, AI, Crowd Sourcing, Baba is You

I. INTRODUCTION

Level editors in games are relatively few in number but
incredibly powerful. A game with a built-in level editor
allows their players to continue the story and invites them to
extend the game’s system to new frontiers. As noted by Anna
Anthropy, both hobbyist creators who are unfamiliar with
coding and experienced coding wizards can use level editors
to design new levels using game engines they are already
familiar with [1]. Some games have level editors as part of
a bonus feature for their games, such as Doom, the Tony
Hawk series, and Halo 3, while other games are built with their
entire gameplay focus on community submitted levels such as
the Super Mario Maker series (Nintendo, 2015), Free Rider
(Kano Games, 2006), and LittleBigPlanet (Media Molecule,
2008). With these tools, both the player and the game designers
can explore what’s possible given the constraints of the game
engine’s available mechanics. Not only this, but a creative
process unfolds that can inspire future game designers to make
levels with a diversity of mechanics used in interesting and
original ways.

Artificially intelligent systems and agents have also been
used in games to give unique experiences for each player.
These systems typically work either during gameplay in the
back-end as procedural content generators - creating new
weapons (Borderlands 2), levels (Spelunky), or entire terrain
environments (Minecraft). Artificial agents also help as collab-
orative companions in game to help the player complete the
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level - as either a puzzle solving partner (Shrek 2: The Video
Game), an assistant fighter (the Pokemon Mystery Dungeon
series), or simply as a guiding voice for the player (The
Legend of Zelda: Ocarina of Time). However, there are very
few AI systems or agents in games that collaborate with
player creatively to help design levels. Mixed-initiative and
collaborative PCG AI systems allow for a collaborative AI-
user design loop to bridge this gap and allow both parties a
chance to create content together, with the AI helping to guide
the user towards specific design goals, adding new features, or
testing for quality control. Both parties have their own design
goals in mind, and both try to facilitate a two-way interaction
in order to meet these goals and learn from each other in order
to improve their designing abilities in ways that neither could
achieve individually.

This paper presents a system that seeks to combine human
design and AI-driven design to enable mixed-initiative collab-
orative game level creation. Users can choose to start from
a blank slate with their work while adding their own edits
then have an AI back-end evolve their work towards a pre-
defined objective. This objective function can be defined by
minimalism in design, maximization of game mechanic cover-
age, overall quality, or any other feature that could contribute
to the quality of the level. Alternatively, users may select from
a variety of AI suggestions and pre-generated samples to begin
their work and then make changes as necessary. This design
process is not limited to the initializing step of the level; the
user and AI system can switch their roles as designers at any
point in the creation process. Concurrently, the AI system will
look at what its previous users have created and submitted,
and ask new users to design levels that complement what’s
already there. With this design process, the mechanic space
of a game can be fully explored and every combination of
mechanics can be represented by a level. With a human-based
rating system, the automated system can learn to design levels
with better quality and the human users can design levels that
are missing from this mechanic combination space.

This project demonstrates the mixed-initiative collaborative
process through level design for the independent, Sokoban-
like game ‘Baba is You’ - a game whose mechanics are
defined and modified by the level design itself and the player’s
interaction with it. These ever changing mechanics expand
the potential for levels with complex solutions and aesthetic
designs and therefore offer a myriad of levels with a diverse
array of mechanic combinations. Levels can be made either
by users, AI, or a mixed combination of both and uploaded
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to the level database to be used for future creations and to
improve the quality of the AI’s objective function. The purpose
of this system was to facilitate a collaborative interaction
between an online community of level designers and PCG and
recommendation AI system where both the user and the system
can improve over time with increased interaction. Ideally, this
could also encourage the development of more mixed-initiative
HCI systems in the field of game design and the level editing
games community as a whole.

This system was built on concepts from three different areas
of content creation:

• Crowdsourcing: a model used by different systems that
allows a large set of users to contribute toward a common
goal provided by the system [2]. For example, Wikipedia
users participate to fill in missing information for partic-
ular content.

• User content creation: allows players to create levels
for a game/system and upload them online to the level
database for other players to play and enjoy.

• Quality diversity: the underlying technique behind our
system. It ensures that the levels made from combining
the first 2 concepts are of both good quality and diverse in
terms of the feature space they are established in [3]. For
this system, the feature space is defined as the potential
game mechanics implemented in each level.

A. Baba is Y’all v1 (prototype)

Fig. 1. Baba is Y’all Version 1 Main Screen (from April 2020)

The first version of Baba is Y’all (BiY v1) was released
officially in March 29th, 2020, and promoted chiefly on
Twitter. This version served as a prototype and proof-of-
concept system for mixed-initiative AI-assisted game content
collaboration specifically for designing levels in the game
‘Baba is You’ (Arvi ’Hempuli’ Teikari, 2017).

The Baba is Y’all website (as shown in figure 1) was a
prototype example of a mixed-initiative collaborative level
designing system. However, the site was limited by the steep
learning curve required to interact with the system [4]. Fea-
tures of the site were overwhelming to use and lack cohesion
in navigating the site.

Fig. 2. Baba is Y’all Version 2 Main Screen (as of September 2021)

B. Baba is Y’all v2 (updated release)

The second version of Baba is Y’all1 (BiY v2) was released
on May 27th, 2021 and designed to have a more user-friendly
setup. Figure 2 shows the starting page of the home screen.
It was similarly promoted via Twitter and on mailing lists.
This version includes a cleaner, more compact, and more fluid
user interface for the entire website and consolidated many of
the separate features from the BiY v1 site onto fewer pages
for easier access. Three main webpages were created for this
updated system.

In addition to updating the features and collecting more data
about the levels created, we conducted a formal user study
with 76 participants to gather information about which features
they chose to use for their level creation process and their
subjective opinion on using the site overall. This user study,
as well as the general level statistics collected from the site’s
database, showed that our new interface better facilitated the
user-AI collaborative experience to create more diverse levels.
We included this user study in order to better understand how
users would approach our system and the artificially intelligent
collaborative AI. With a formal survey and instructions for
participants, we could examine how users choose to interact
with the system to facilitate their creative goals and make
inferences for how helpful the collaborative system actually is
for the Baba is You level designing community.

II. BACKGROUND AND RELATED WORK

The Baba is Y’all system uses the following methods
in the collaborative level design process: procedural content
generation to create new levels from the AI backend, quality
diversity to maintain the different kinds of levels produced
from the system and show the coverage of game mechanics
across each level, crowdsourcing so the AI may learn to
create new levels from previously submitted “valid” levels -
either those made exclusively by users, the system itself, or a
combination of both, and finally mixed-initiative AI so that the
user and evolutionary algorithm can develop the level together.
Each method is described as the following:

1http://equius.gil.engineering.nyu.edu/
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A. Procedural Content Generation

Procedural content generation (PCG) is defined as the
process of using a computer program to create content that
with limited or indirect user input [5]. Such methods can make
an automated, quicker, and more efficient content creation pro-
cess, and also enable aesthetics based on generation. PCG has
been used in games from the 1980’s Rogue to its descendent
genre of the Rogue-likes used in games such as Spelunky
(Mossmouth, LLC, 2008) and Hades (Supergiant Games,
2020), as well as games that revolve around level and world
generation such as Minecraft (Mojang, 2011) and No Man’s
Sky (Hello Games, 2016). PCG can be used to build levels
such as The Binding of Isaac (Edmund McMillen, 2011),
enemy encounters such as Phoenix HD (Firi Games, 2011),
or item or weapon generation such as Borderlands (Gearbox
Software, 2009). In academia, PCG has been explored in many
different game facets for generating assets [6], [7], mechanics
[8], [9], levels [10], [11], boss fights [12], tutorials [13], [14],
or even other generators [15], [16].

A plethora of AI methods underpin successful PCG ap-
proaches, including evolutionary search [17], supervised and
unsupervised learning [18], [19], and reinforcement learning
[20]. The results of these implementations have led to PCG
processes being able to generate higher quality, more general-
izable, and more diverse content. PCG is used in the Baba is
Y’all system to allow the mutator module to create new ‘Baba
is You’ levels.

B. Quality Diversity

Quality-diversity (QD) search based methods are increasing
in usage for both game researchers and AI researchers [3],
[21]. Quality-diversity techniques are search based techniques
that try to generate a set of diverse solutions while maintaining
high level of quality for each solution. A well-known and
popular example is MAP-Elites, an evolutionary algorithm that
uses a multi-dimensional map instead of a population to store
its solutions [22]. This map is constructed by dividing the
solution space into a group of cells based on a pre-defined
behavior characteristics. Any new solution found will not only
be evaluated for fitness but also for its defined characteristics
then placed in the correct cell in the MAP-Elites map. If the
cell is not empty, both solutions compete and only the fitter
solution survives. Because of the map maintenance and the
cell competition, MAP-Elites can guarantee a map of diverse
and high quality solutions, after a finite number of iterations
through the generated population. For this project, we use the
Constrained MAP-Elites algorithm [13], [23] to maintain a
diverse population of ‘Baba is You’ levels where the behavior
characteristic space of the matrix is defined by the starting and
ending rules of a level when it is submitted.

C. Crowdsourcing data and content

Some, but relatively few, games allow users to submit their
own custom creations using the game’s engine as most games
do not have their source code available or even partially
accessible for modifications to add more content in the context

of the game. Whether through a built-in level editing system
seen in games like Super Mario Maker (Nintendo, 2015),
LittleBigPlanet (MediaMolecule, 2008), or LineRider (inXile
Entertainment, 2006) or through a modding community that
alter the source code for notable games such as Skyrim
(Bethesda, 2011) Minecraft (Mojang, 2011,) or Friday Night
Funkin’ (Ninjamuffin99, 2020), players can create their own
content to enhance their experience and/or share with others.
While a modding system is an indirect and unfacilitated
product of a game, both the modding community and the
level editor community look to improve or expand on the
base gameplay to create unique and interesting experiences for
players while keeping to the original domain that the original
designers may not have foreseen.

In crowdsourcing, many users contribute data that can be
used for a common goal. Some systems like Wikipedia rely
entirely on content submitted by their user base in order to pro-
vide information to others on a given subject. Other systems
like Amazon’s MechanicalTurk crowdsource data collection,
such as research experiments [24], by outsourcing small tasks
to multiple users for a small wage. An example of a game
generator based on crowdsourced data is Barros et al.’s DATA
Agent [25], which uses crowd-sourced data such as Wikipedia
to create a point-click adventure game sourced from a large
corpus of open data to generate interesting adventure games.

What differentiates the Baba is Y’all system from other level
editing systems or interactive PCG systems is that the Baba is
Y’all site has a central goal: populate the MAP-Elites matrix
with levels that cover all possible rule combinations. With this
system, users may freely create the levels they want, but they
may also work towards completing the global goal of making
levels with a behavior characteristic that has not been made
before. Participation in this task is encouraged by the AI back-
end system that keeps track of missing cells in the MAP-Elites
matrix.

D. Mixed-Initiative AI
Mixed-initiative AI systems involve a co-creation of content

between a human user and an artificially intelligent sys-
tem [26]. Previous mixed-initiative systems include selecting
from and evolving a population of generated images [27],
composing music [28], [29], and creating game levels through
suggestive feedback [30]. Mixed-initiative and collaborative
AI level editors for game systems have thoroughly been
explored in the field as well through direct and indirect
interaction with the AI backend system [31]–[38]. Compton’s
definition of casual creation tools and survey of existing
systems also strongly fit for the objective of mixed-initiative
systems, where the end goal may not just involve creating a
productive output, but facilitating a creative experience [39].

Since the release of the first Baba is Y’all prototype and
paper [4], the implementation of mixed-initiative systems have
grown in the game and AI research field. Bhaumik imple-
mented an AI constrained system with their Lode Encoder
level editing tool that only allowed users to edit a level from a
set of levels generated by a variational autoencoder - forcing
users to only edit from a palette provided by the AI back-
end tool [36]. Delarosa used a reinforcement learning agent



4

in a mixed-initiative web app to collaboratively suggest edits
to Sokoban levels [38]. Zhou used levels generated with the
AI-assisted level editor Morai Maker (a Super Mario level
editor) to apply transfer learning for level editing to Zelda
[35]. These recent developments look more into how the
human users are affected through their relationship with col-
laborating with these AI systems and how it can be improved
through examining the dimensionality of the QD algorithm, the
evolutionary process, or the human-system interaction itself
[40]. We look to incorporate these new perspectives into this
updated iteration of Baba is Y’all and evaluate the effects
through a user study.

III. SYSTEM DESCRIPTION

Fig. 3. A system’s diagram of the updated Baba is Y’all website.

While acting as a great prototype, the first version of the
Baba is Y’all site was arguably overwhelming to use - as
it showed most of the features and data all at once and
required the user to navigate through various pages and inputs
to use the system. There was also a lack of documentation or
tutorialization to help users acclimate to the site. Users had
to switch between two pages in order to manually edit their
levels and to have the back-end AI system evolve their levels.
The levels shown on the main screen were also unorganized
and randomly shown to the user, with the published levels and
unmade rule combination levels added together on the same
visual grid. We developed a new Baba is Y’all interface and
system shown in a system diagram in Figure 3. The updated
Baba is Y’all site’s features were condensed into 2 main pages
to make navigation and level editing much easier and intuitive:

• The Home Screen: contains the level matrix Map Mod-
ule, the search page, the Rating Module page, and the
User Profile page. From here, users can also change the
visuals of the site from light to dark mode, view the
tutorial section or the site stats page by clicking on the
Baba and Keke sprites respectively at the top of the page,
and create a new level from scratch by clicking on various
’Create New Level’ buttons placed on various subpages.

• The Level Editor Screen: contains both the Editor
Module and the Mutator Module. Users can also test their

levels with themselves or with the Keke solver by clicking
on the Baba and Keke icons at the bottom of the canvas.
Figure 5 shows the starting page of the level editor screen.

Unlike the previous version, which showed all of the
mechanic combination levels (both from the database and
unmade) in random order, the updated level selection page
adds level tabs that separates levels by recently added (New),
highest rated (Top), and levels with rules that had not been
made yet (Unmade.) A carousel scrolling feature shows 9
levels at a time to not overwhelm the player with choices (as
shown in figure 2). The level rating system is also included
on the main page as a tab, as well as the search feature. The
personal level selection tab allows users to see their previously
submitted levels and login to their account to submit levels
with their username as the author or co-author.

The updated level editing page consolidates both the user
editing with the PCG level evolution onto one page. Users can
easily switch between manually editing the level themselves
and allowing the PCG back-end system to edit the level while
pausing in between. Users can also select rule objectives
for the system to evolve towards implementing. To fight the
problem of blank canvas paralysis, users can start from a set of
different types of levels (both PCG and user-made) [41]. Once
a level is successfully solved, users may name the level upon
submission - further personalizing the levels and assigning
authorship.

A slideshow tutorial is provided for the users and de-
scribes every feature and function of the site instead of
the walkthrough video that was featured on BiY v1. Users
can also play a demo version of the ‘Baba is You’ (Arvi
’Hempuli’ Teikari, 2017) game to familiarize themselves with
the game mechanics/rule space and how they interact with
each other (game dynamics). For quick assistance, a helper
tool is provided on the level editing page as a refresher on
how to use the editing tool.

In the following subsections, we are going to explain the
different modules that constitutes these two main screens. Each
of the following modules are either being used in the home
screen, the level editor screen, or both.

A. Baba is You

‘Baba is You’ (Arvi “Hempuli” Teikari, 2019) is a puzzle
game where players can manipulate the rules of a level and
properties of the game objects through Sokoban-like move-
ments of pushing word blocks found on the map. These dy-
namically changing rules create interesting exploration spaces
for both procedurally generating the levels and solving them -
thus making it a viably complex domain for a mixed-initiative
level editor system. The different combinations of rules can
also lead to a large diversity of level types that can be made
in this space.

The general rules for the ‘Baba is You’ game can be referred
to from our previous paper [4]. To reiterate, there are three
types of rule formats in the game:

• X-IS-(KEYWORD) a property rule stating that the game
object class ‘X’ has a certain property such as ‘WIN’,
‘YOU’, ‘MOVE’, etc.
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• X-IS-X a reflexive rule stating that the game object class
‘X’ cannot be changed to another game object class.

• X-IS-Y a transformative rule changing all game objects
of class ‘X’ into game objects of class ‘Y’.

Fig. 4. Example of an ascii representation of a level to a render of the level.

The game sprites are divided into two main different classes:
the object class and the keyword class. Sprites in the object
class represent the interactable objects in the map as well as
the literal word representation for the object. Sprites in the
keyword class represent the rules of the level that manipulate
the properties of the objects. For example, figure 4 shows four
different object class sprites [BABA (object and corresponding
word) and FLAG (object and corresponding word)] and three
different keyword class sprites [IS (x2), YOU, and WIN]. The
keyword class sprites are arranged in two rules: ‘BABA-IS-
YOU’ allowing the player to control all the Baba objects and
‘FLAG-IS-WIN’ indicating that reaching any flag object will
make the player win the level. The system has a total of 32
different sprites: 11 object class sprites and 21 keyword class
sprites. Because the game allows rule manipulation, object
classes are arbitrary in the game as they serve only to provide a
variety of objects for rules to affect and for aesthetic pleasure.

B. Game Module

The game module is responsible for simulating a ‘Baba is
You’ level. It also allows users to test the playability of levels
either by directly playing through the level themselves or by
allowing a solver agent to attempt to solve it. This component
is used on the home screen when a user selects a level to play
and the editor screen for a user to test their created level.

Because the game rules are dynamic and can be altered by
the player at any stage in the solution, the system keeps track
of all the active rules at every state. Once the win condition has
been met, the game module records the current solution, the
active rules at the start of the level, and the active rules when
the solution has been reached. These properties are saved to
be used and interpreted by the Map module (section III-G).
The activated rules are used as the level’s characteristic feature
representation and saved as a chromosome to the MAP-Elites
matrix.

The game module provides an AI solver called ’KEKE’
(based on one of the characters traditionally used as an
autonomous ’NPC’ in the game). This solver was provided to
give users the choice to quickly test their levels for solvability
and for complexity of solutions. KEKE uses a greedy best-first

tree search algorithm that tries to solve the input level. The
branching space is based on the five possible inputs a player
can do within the game: move left, move right, move up, move
down, and do nothing. The algorithm uses a heuristic function
based on a weighted average of the Manhattan distance to
the centroid distance for 3 different groups: keyword objects,
objects associated with the ‘WIN’ rule, and objects associated
with the ‘PUSH’ rule. These were chosen based on their
critical importance for the user solving the level - as winning
objects are required to complete the level, keyword objects
allow for manipulation of active rules, and pushable objects
can directly and indirectly affect the layout of a level map and
therefore the accessibility of player objects to reach winning
objects. The heuristic function is represented by the following
equation:

h = (n+ w + p)/3 (1)

where h is the final heuristic value for placement in the priority
queue, n is the minimum Manhatttan distance from any player
object to the nearest winnable object, w is the minimum
Manhatttan distance from any player object to the nearest word
sprite, and p is the minimum Manhatttan distance from any
player object to the nearest pushable object.

As an update for this version of the system, the agent
can run for a maximum of 10000 iterations (10 times more
iterations than previous the previous solver to allow for more
searching) and can be stopped at any time by the user. After
stopping, a user may also attempt to solve part of the level
themselves and the KEKE solver can pick up where the
user left off to attempt to solve the remainder of the level.
This creates a mixed-initiative approach to solving the levels
in addition to editing the levels. However, even with this
collaborative approach, the system still has limitations and
difficulty solving levels with complex solutions - specifically
solutions that require back-tracking across the level after a rule
has been changed. The solver runs on the client side of the
site and is limited by the capacity of the user’s computational
resources. Future work will look into improving the solver
system to reduce computational resource. We will also look
for better solving algorithms to improve the utility of the solver
such as Monte Carlo Tree Search (MCTS) with reversibility
compression [42].

C. Editor Module

The editor module of the system allows human users to
create their own ‘Baba is You’ levels in the same vain of
Super Mario Maker (Nintendo, 2015). Figure 5 shows the
editor window that is available for the user. The user can
place and erase any game sprite or keyword at any location
on the map using the provided tools. As a basis, the user
can start modifying either a blank map, a basic map (a map
with X-IS-YOU and Y-IS-WIN rules already placed with X
and Y objects), a randomly generated map, or an elite level
provided by the Map Module. Similar to Super Mario Maker
(Nintendo, 2015), the created levels can only be submitted
after they are tested by the human player or the AI agent to
check for solvability. For testing the level, the editor module
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Fig. 5. A screenshot of the level editor screen

sends the level information to the game module to allow the
user to test it.

This updated version of the site also includes an undo and
redo feature so that users may erase any changes they make. A
selection and lasso feature is also available so users can select
specific areas of the level and move them to another location.
Unlike the previous version, all tiles are available to the user
on the same screen and the user may seamlessly transition
from the editor module to the mutator module and vice versa
for ease of access and better interactivity and collaboration
between the AI system and the user. We included all of the
tiles on the same screen along with the new tools to allow for a
more seamless design process and to make the manual editing
more intuitive for users - with the interface design intended
to resemble familiar computer art programs such as MSPaint,
GIMP, PaintTool SAI, or Photoshop.

D. Mutator Module

Fig. 6. A screenshot of the level evolver page

The Mutator module is a procedural content level gen-
erator. More specifically, the Baba is Y’all system uses an
evolutionary level generator that defines a fitness function
based on a version of tile-pattern Kullback-Liebler Divergence

(ETPKLDiv2) algorithm [43]. The mutator module creates
an “algorithm-centric” approach to creating levels, where the
levels are generated towards a fitness value and can then edited
by the user later. Within the level map population, the mutator
modifies the ascii-representation of the level itself by replacing
sprites and tiles. Figure 6 shows the updated interface used by
the evolver. As mentioned before in the previous subsection,
this version of the mutator module can interface seamlessly
with the other modules to allow the user more ease of access
between manual editing and evolutionary editing. The user
can easily transfer the level from the editor module to the
mutator module and vice versa. When switching between the
editor module and the mutator module, the level loses its pure
procedurally generated or pure human-designed quality and
becomes a hybrid of the two - thus mixed-initiative interaction
between the algorithm and the user.

The interface screen provides the user with multiple cus-
tomizations such as the initialization method, stopping criteria,
evolution pausing, and an application of a mutation function
allowing manual user control. With these features, the user is
not directly changing the evolution process itself, but instead
guiding and limiting the algorithm towards generating the level
they want. We designed this interface with the intention to
make the evolutionary process as transparent as possible for
more advanced users so that they can adjust the mutator’s
editing abilities to their own criteria and standards while
keeping it simple and general for more intermediate users who
were unfamiliar with PCG or collaborative design systems.

The ETPKLDiv algorithm uses a 1+1 evolution strategy,
also known as a hillclimber, to improve the similarity be-
tween the current evolved levels and a reference level. The
algorithm uses a sliding window of a fixed size to calculate
the probability of each tile configuration (called tile patterns)
in both the reference level and the evolved level and tries
to minimize the Kullback-Liebler Divergence between both
probability distributions.

Like Lucas and Volz, we use a window size of 3x3 for
the tile selection. This was to maximize the probability of
generating initial rules for a level, since rules in ‘Baba is You’
are made up of 3 tiles. However, in our project, we used 2+2
evolution strategy instead of 1+1 used to allow slightly more
diversity in the population [43]. We also modified the fitness
function to allow it to compare with more than one level. The
fitness value also includes the potential solvability of the level
(p), the ratio of empty tiles (s), and the ratio of useless sprites
(u). The final fitness equation for a level is as follows:

fitnessnew = min(fitnessold) + u+ p+ 0.1 · s (2)

where fitnessold is the Kullback-Lievler Divergence fitness
function from the Lucas and Volz work [43] compared to a
reference level. The minimum operator is added as we are
using multiple reference levels instead of one and we want to
pick the fitness of the most similar reference level.

In the updated version of Baba is Y’all, we recalculate
the ratio of useless objects (u) used in the original version’s
equation. The value u is defined as the combined percentage

2https://github.com/amidos2006/ETPKLDiv
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of unnecessary object and word sprites in the level. This is
broken up into 2 variables o and w for the objects and words
respectively. The o value corresponds to the ratio of objects in
the initial state of the level that are not required or predicted to
act as a constraint or solution. The value for o can be calculated
as follows:

o =
i

j
(3)

where i is the number of objects sprites initialized in the
level without a related object-word sprite and j is the total
number of object sprites initialized in the level. While the w
value corresponds to the ratio of word sprites that have no
associated object in the map to all of the word sprites in level
(this does not apply to keyword class words such as “KILL”
or “MOVE”.) The value for w can be calculated as follows:

w =
k

l
(4)

where k is the number of word sprites initialized in the level
without a related object-word sprite and l is the total number of
word sprites initialized in the level. To combine both variables
o and w into the one variable u a constant ratio is applied. In
the system, 0.85 is applied to the o variable and 0.15 to w. This
is to more weight on reducing the number of useless object
sprites as opposed to useless word sprites, as word sprites can
be used to modify the properties of objects or transform other
object sprites.

The u value is implemented in order to prevent noise within
the level due to having object tiles that cannot be manipulated
in any way or have relevancy to the level. A human-made level
may include these “useless” tiles for aesthetic purposes or to
give the level a theme - similar to the original ‘Baba is You’
levels. However, the PCG algorithm optimizes towards effi-
ciency and minimalist levels, therefore ignoring the subjective
aspect of a level’s quality (which can be added later by the
user).

The playability of the level (p) is a binary constraint value
that determines whether a level is potentially winnable or not.
The value can be calculated as follows:

p =

{
0, has [‘X-IS-YOU’ rule, ‘WIN’ keyword]
1, otherwise

(5)

This is to ensure any levels that are absolutely impossible to
play or win are penalized in the population and less likely to
be mutated and evolved from in future generations. We used
a simple playability constraint check instead of checking for
playability using the solver because the solver take time to
check for playability. Also, all playable levels by the solver
usually end up being easy levels due to the limited search
space we are given for the best first algorithm.

The ratio of empty tiles (s) is the ratio of empty space tiles
to all of the tiles in the level. The equation can be calculated
as follows:

s =
e

t
(6)

where e is the number of empty spaces in the level and t is
the total number of tiles found in the level. The value s is
multiplied with a value of 0.1 in equation 2 to avoid heavy

penalization for having any empty spaces in a level and to
prevent encouragement for levels to mutate towards populating
the level with an overabundance of similar tiles in order to
eliminate any empty space.

Fig. 7. A sample population selecting a map with the best fitness value from
after multiple iterations of evolution.

Figure 7 demonstrates an example of the selection process
from the evolutionary algorithm’s population using the fitness
function defined. For this example, the selected objective rules
the user wants the level to evolve towards is to contain or
potentially contain the rules ’X-is-STOP’ and ’X-is-MOVE.’
The values at the top of the maps represent each map’s
fitness value. The first map from the left has a bad fitness
value from having too many irrelevant sprites, not fitting
the objective criteria, and is definitively unsolvable, since no
’WIN’ sprite tile or ’YOU’ sprite tile exists. The middle map
is substantially better and fits the objective criteria, but has
many unreferenced tiles (as no word sprite block for ’GRASS’,
’LAVA’, or ’LOVE’ exists on the map.) The evolver is intended
to maximize towards minimalism, so it would likely try to
remove these sprites. However, these tiles could arguably serve
as decoration instead and make the level more aesthetically
pleasing and a user could edit them manually back into the
level if they wanted. The two levels on the far right are also
lower in quality and fitness from not including the word blocks
necessary to match the objective request and from having too
much empty space. Therefore, the second map from the left
will be selected to be shown to the user during the evolutionary
process and selected as the most viable map for the user.

The Mutator module is not run as a back-end process to
find more levels, instead it has to be done manually by the
user. This is done due to the fact that some generated levels
cannot be solved without human input. One might wonder why
not generate a huge corpus of levels and ask the users later
to test them for the system. This could result in the system
generating a multitude of levels that are either impossible
to solve or are solvable but not subjectively “good” levels
- levels the user would not find pleasing or enjoyable. This
overabundance of “garbage” levels could lead to a waste
of memory and a waste human resources. By allowing the
user direct control over which levels are submitted from the
generation algorithm, it still guarantees that the levels are
solvable and with sufficient quality and promote using the
tool in a mixed-initiative approach. Future work will explore
implementing a fully autonomous generator and associated
solver to expand the archive of levels without human input.

E. Objective Module
In conjunction with the Mutator module (section III-D),

an Objective Module has been implemented to help guide
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Fig. 8. A screenshot of the rule objective screen

the evolver towards generating levels that match selected
objectives - or rules - set by either the Map Module or the
user. Like the original Baba is Y’all website, each level has
can have a set of starting and ending rules - the objective
module allows users to select which rules they would like to
be present (or potentially be present) in the level. The evolver
module will then use this rule selection in order to optimize
evolving maps that could accomplish the rule objectives by
adding more word sprites or combined word groups related to
the objectives that a player could either have at the beginning
of the level or use for the solution of the level. Like before
this will nudge both the user and the evolver back-end towards
creating levels with mechanic combinations that have not been
made in the site database. This module was implemented with
the AI back-end to place more focus on designing diverse
levels that have not previously been made or saved to the site
database and therefore expand the mechanic space of the levels
overall.

Users can select from the table of mechanics (shown in
Figure 8) which sets of rules to include in the level - whether
initially at the start of the level, at the solution, or either. Initial
rules can be found automatically when the user or evolver edits
the level, final rules can only be determined at the end of the
level - when the solution has been found. Active rules are
highlighted with a green backlight in the table and change
accordingly when a rule is created or removed.

The evolver also prioritizes levels that match as many of the
selected rules as possible. A cascading function is used to rank
the generated levels from the chromosome population. The
evolver first evaluates how well a generated level corresponds
to the selected objectives then looks at the fitness function.
With this, the evolver becomes more involved with expanding
the level database for the site and actively tries to help the
user fill these missing levels.

F. Rating Module

Like the original system, a rating for a single level is
determined by comparison to another level within the site
database. The user must determine the better level based
on two qualities: level of challenge and quality of aesthetic
design. A level that is considered ‘more challenging’ could

Fig. 9. A screenshot of the rating screen with 2 levels shown

indicate that the solution search space for the level takes longer
to arrive at or is not as intuitive or straightforward. A level that
is considered to have ‘better design’ represents that the level is
more visually pleasing and elegant with its map representation
- a quality that is hard to generate automatically with AI.
Users can select between the two levels for each feature by
shifting a slider towards one level or the other. The rating
system is implemented to teach the AI back-end system which
levels have higher “quality” and to use within the ranking and
recommendation of the editor and mutator modules. Figure 9
shows a screenshot of the rating page on the site that allows
user to change the sliding bar value between two compared
levels to evaluate for challenge level and aesthetic design.

G. Map Module

Fig. 10. A screenshot of the map selection screen

The Map module functions as both storing all of the levels
in the site database as well as recommending specific levels
to the user to use for their own level creation process. The
Map module is the core module of the system. To maintain
distinguish-ability between quality and diverse levels, we
implemented the MAP-Elites algorithm for this module.

When a level is submitted to be archived, the system uses
the list of active rules at the start and the end of the level
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TABLE I
CHROMOSOME RULE REPRESENTATION

Rule Type Definition
X-IS-X objects of class X cannot be changed to another class
X-IS-Y objects of class X will transform to class Y
X-IS-PUSH X can be pushed
X-IS-MOVE X will autonomously move
X-IS-STOP X will prevent the player from passing through it
X-IS-KILL X will kill the player on contact
X-IS-SINK X will destroy any object on contact
X-IS-[PAIR] both rules ’X-IS-HOT’ and ’X-IS-MELT’ are present
X,Y-IS-YOU two distinct objects classes are controlled by the player

as behavior characteristic for the input level to determine its
location in the map. Because there are an infinite number of
rules can be created or broken in between the starting state and
the win state, we decide to only focus on the rules present
at the start of the level and the rules present at the end to
constrain the scope of the potential levels that can be made,
but also allow a freedom of solution spaces and objectives
for a given starting level. There are 9 different rules checked
for in each level - based on the possible rule mechanics that
can be made in the Game module system. Table I shows the
full list of possible rules. Since these rules can be active at
the beginning or at the end, it makes the number of behavior
characteristics equal to 18 instead of 9 which provide us with
a map of 218 cells.

The Map Module can recommend levels to start from
when designing a new level. Like the Mutator Module (sec-
tion III-D), it also takes the Objective Module (section III-E)
into consideration when selecting its recommendations. The
Map Module can provide levels that most similarly match
the objectives chosen and provide either other levels the
user has previously made or high rated (and intuitively high
quality) “elite” levels. Figure 10 shows a screenshot of the
map selection screen on the level editor page of the site where
users can select from suggested levels high quality previously
submitted to the site that best match a particular objective
designated by the user.

In this project we are using a multi population per each cell
of the Map-Elites similar to the constrained Map-Elites [44].
Levels can only be submitted to the site database and placed
in the matrix if and only if they are also solvable. The quality
of the level is determined by user ratings - performed by the
Rating Module. By separating the levels into different cells
based on the behavior characteristic of the rules present at
the start and end of the level solution, we can find a large
diversity of levels of varying complexity and aesthetic design.
This matrix will allow a larger selection of editing and design
for both the site’s community and the collaborative AI system.
The MAP-Elites matrix is also intended to show users what
kinds of levels with particular rulespaces are missing from
the database overall and guide users towards filling in these
gaps while improving the quality of the levels already placed
in the archive cells. This global guiding objective for the site
is what makes Baba is Y’all distinct from other level editing
communities - as there is a central goal for completion and
improvement of the levels defined by this rulespace.

H. User Profiles

Fig. 11. A screenshot of the user profile screen for the user ’Milk’

The user profiles feature is the newest addition to the Baba
is Y’all site. Figure 11 shows a screenshot of the user profile
screen with the user’s authored levels. Like the original system,
if a user creates a profile through the site’s login system and
submits a level, they get authorship attributed to the submitted
level. Users can also find their previously made levels on the
profile page - called “My Levels” - and replay them, edit them,
or view the level’s mechanic combination. A user’s personal
stats for their level submissions can also be viewed on the
page including the number of levels submitted, number of
rule combinations contributed, and their top rated level. This
feature was implemented to provide more user agency and
personalization on the site and give users better access to their
own submitted levels.

Through the search page, players can search for specific
levels by username or by level name. This creates a sense of
authorship over each of the levels, even if the level wasn’t
designed with any human input (i.e. a level with PCG.js as
the author) and encourages the collaborative nature of the site
between AI and human. Users may also share links to site
levels via the game page.

IV. USER STUDY RESULTS

To evaluate the second version of Baba is Y’all website for
usability and analyze how users interact with the system as a
whole, we decided to conduct a formal user study experiment.
This study differs from the informal study conducted in the
first version, where the results were collected exclusively from
the website’s level statistic data. This study gives users explicit
instructions and tasks to complete and asks participants to
recount a detailed report about their experience using the
site, including recounting how and if they used particular
features in the site, which levels they made, and their general
demographic information and prior experience to using the
site. This allows us to paint a better picture of what users
would want from the system and how we can improve the
Baba is Y’all site and design better mixed-initiative systems
in the future.
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The following results were extracted from a Google Form
survey given to the experiment participants. Users were in-
structed to play a level already made on the site, create a new
level using the level editor, test it, and finally submit it to the
site. They were also given the option to go through the tutorial
of the site if they were unfamiliar with the ‘Baba is You’
game or needed assistance with interacting with the level editor
tool. The Google Form survey included questions asking about
which features they chose to use or try to create their level
(or levels) as well as some general demographic information
asking about their experience with puzzle games and Sokoban-
like games overall, level editors, and AI-assisted tools. This
was so we could understand the general impression of what
users chose to interact with and how enticing they would be
to a particular designer. We also wanted to understand the
familiarity and potential learning curve of a general population
of people who choose to interact with level editors and AI
assisting tools when designing for game levels. Those who
participated in the user study were given pre-made usernames
in order to verify the levels they submitted from their responses
and to protect their identities. These users only had to provide
an email address to register for both the site and the survey.
The first 100 participants were compensated with a $10
Amazon gift card if they accurately followed the instructions
and completed the survey. Participants were invited via mailing
lists and Twitter posts promoting the user study.

We received a total of 173 responses, however, only 76 of
these responses were valid. These responses were evaluated
based on cross-validation and verification between the saved
level on the website and the level ID they submitted via
the survey that they claimed they authored. Many of these
invalid responses contained levels that either did not exist in
the database or were claimed to be authored by another user
already. This big difference in the numbers is due to releasing
the system online with no security measures. This attracted
a lot of bots that created multiple accounts so they could fill
out the user survey via the link provided and therefore put
random numbers as the level they submitted instead of the
real levels a human user would have helped to design. The
following results are taken from the self-reported subjective
survey returned from those valid 76 users.

A. Demographic Data

Fig. 12. A. Frequency for playing games; B. Frequency for designing levels
for games

Half of the users who completed the survey answered that
they frequently played video games (more than 10 hours a
week) with around 80% of the users stating they play for
at least 2 hours a week (figure 12). Conversely, only 28.9%
of users responded that they spend 2 or more hours a week

Fig. 13. Preference for solving or making puzzles

designing levels for games with 40.8% of users stating they
never design levels at all (figure 13). When asked if they prefer
to solve or make puzzles, 50% of participants responded that
they prefer to solve puzzles, while only 6.6% preferred the
latter. 40.8% of users were split on the preference for designing
and solving puzzles.

Fig. 14. A. Experience playing Sokoban; B. Experience with ’Baba is You’;
C. Experience with AI-assisted level editing tools

We asked participants if they had ever played the original
game ‘Baba is You’ by Hempuli (either the jam version or
the Steam release as both contain the rules used in the Baba
is Y’all site), played a Sokoban-like game (puzzle games
with pushing block mechanics), and have experience with AI-
assisted level editing tools. Figure 14 shows the distribution
of the users’ answers for these questions. Only 30% of
participants had played the game before, meanwhile 22% had
heard of it but had never played it. For the rest, this study
would be their first experience with the game. Interestingly
enough, 96% of the participants stated they had played a
Sokoban-like game so we can infer that the learning curve
would not be too harsh for the new players. Concerning AI-
Assisted level editing tools, 75% of users had never used them
before, with 5.3% stating they were unsure if they had ever
used one - thus the learning curve for AI-collaboration would
be much higher and new to participants.

B. Self-Reported Site Interactions

Figure 15 shows the full list of features that participants
interacted with on the site. Users were given the optional
task to go through the tutorial section of the Baba is Y’all
site to familiarize themselves with both the mechanics of the
original ‘Baba is You’ game, the AI assisted tools available
to them through the level editor, and the site layout and
navigation itself. 81.6% of users went through this tutorial
(whether fully or partially was not recorded.) The second task
for users was to play a level that was previously submitted to
the website database. 100% of users were able to solve a level
by themselves, however 72.4% of users reported choosing to
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Fig. 15. Survey results for users’ reports on the features they used

watch the Keke AI solver complete the submitted level as well.
The third and final task for the participants was to submit their
own ‘Baba is You’ level using the level editor. Here, users were
asked the most about their involvement with the AI system.
Some users chose to create more than one level, so they may
have multiple experiences and their design choices may not
be mutually exclusive (i.e. using a blank level and also using
an AI-suggested level.)

For the initial creation of the level, 88.2% of users chose
to start with a blank map. 9.2% of users started with a level
that had already been submitted to the level database - either
a level that had been ranked as an elite level or a level created
by the user themselves (in the case that they submitted more
than one level during this study.) 6.6% of users started with
a level that was suggested from the ’Unmade’ page - ideally
with the intent to make a level with a rule combination that
had not been made yet - thus expanding the MAP-Elites rule
combination matrix in the database. Unfortunately, we forgot
to ask users in the survey if they started with the random level
option that was also provided by the AI assistance tool - so
we lack data to report on this statistic.

For editing the level, 81.6% of users reported editing a level
completely by hand without any AI assistance. 27.6% of users
edited the level with help from either the evolver algorithm or
the mutator functions provided by the AI assistance back-end.
19.7% of users reported using the objective table to aid the
evolver tool in creating the level. We think this low percentage
is attributed the fact that a large population of users were
unfamiliar with the system or ‘Baba is You’ game overall.
This - as well as the lack of selection for level comparison
from the previously submitted levels in the database - made
using the evolver tool towards certain goals too steep of a task
to accomplish and learn. Finally, when testing the level, 59.2%
of users reported using the Keke solver AI when testing their
levels and 72.4% of users named their levels.

While not required in the tasks given, we also asked
participants about any extra site features they chose to explore.
23.7% of users reported submitting a level rating from the
’Rate’ page. 51.3% of users reported using the ’Search’ tool
to search for specific levels (what their search criteria was we
did not ask.) Finally, 19.7% of users reported using the ’Share
Level’ to share a submitted level link with others online.

The least used interactions - ’Started with a database-saved
map in the level editor’, ’Started with a level suggestion from
the Unmade page’, and ’Used the objectives table to evolve
levels’ - were also all related to the AI mixed-initiation of the
system. The first could be attributed to a lack of overall levels
in the database (at the start of the experiment there were only
around 40 available levels) therefore leading to a lack of viable
options for the user to choose from. However, the lack of usage
for the other two features could be attributed to the opposite
problem of having too many options to choose from - again
due to lack of levels available to choose from in the database.
Trying to make a level with constrained parameters may have
also been too steep of a task to accomplish for someone who
was totally unfamiliar with the system or even the ‘Baba is
You’ game overall. There was also no incentive for a player to
create a level suggested by the system as opposed to making
a level from scratch. We also didn’t explicitly instruct users to
make a level from the suggested set, and instead allowed them
to make whatever level they wanted with the editor - whether
with the prompted ruleset or from their own ideas.

V. WEBSITE LEVEL STATISTICS

The following results reflect the statistics of the levels
submitted to the Baba is Y’all website by the 76 valid users
from the user study and do not include all of the levels
submitted to the site. These results also do not include the
levels submitted by users outside of the study. The current
full data breakdown of the levels submitted to the entire site
can be found on the stats page of the Baba is Y’all website3.

A. Authorship

We looked into all the levels created by the valid 76 users
and we divided them based on how the mixed-initiative tool
was used to author them. We divided them into three main
categories (as shown in figure 16):

• User-Only levels: were created from a blank map exclu-
sively by the human user without any AI assistance.

• PCG-only levels: were created solely by the AI tool
without any human input aside from choosing which tool
to use and when.

• Mixed-author levels: involved both the human user as
well as the AI tool in the creation process of the level.

The majority of the levels submitted were user only
(70.96%), however over a quarter (26.88%) of the levels
submitted had mixed-authorship. This is a lower percentage of
mixed-authorship levels than the first version of the Baba is
You system - which was reported in the previous paper to have
had a mixed-authorship percentage of 35/58 of the submitted
levels, or 60.3% of the levels submitted. This is a disappointing
finding considering how much focus we dedicated to making
a more seamless AI-human collaboration environment and
trying to improve the system overall. We will have to conduct
further analysis and a more in-depth study to understand why
users prefer to author their levels manually using this system
rather than with any assistance from the agent.

3urlhttp://equius.gil.engineering.nyu.edu/stats about.php
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Fig. 16. Sample levels generated for the system. The left column is user
generated levels, the middle column is evolver module levels, and the right
column is mixed-initiative user and evolver levels

B. Rule Distribution

Fig. 17. Site results for the rule distribution across levels submitted

From the 96 submitted levels by the study participants, we
found only 57 different cells in the MAP-Elites matrix were
covered. This is less than 1% of the whole number of possible
rule combinations (218 possible combinations); however it is
worth noting that more than half of these submitted levels
covered a distinct cell in the matrix. Figure 17 shows the rule
distributions over all of the levels submitted. The X-is-KILL
rule was used the most in over half of the levels submitted
and the X-is-STOP rule was used the second-most at 45.83%.
This may be because these rules create hazards for the player
and add more depth to the level and solution. Meanwhile, the
X-is-Y rule was used the least in only 10.50% of the levels
submitted. Its counterpart rule, X-is-X, which prevents sprites
from changing form, was also used the second least amount.
This rule could also have been considered the least intuitive

of the rules as well - as they require an understanding of the
relationship between sprite transformations.

Author Type # Rules Sol. Length Map Size (# tiles)
User-only 2.54 ± 2.24 28.33 ± 26.34 116.75 ± 45.47
PCG-only 1.5 ± 0.5 32.5 ± 14.5 100 ± 0

Mixed-author 2.76 ± 2.43 28.12 ± 22.21 122.52 ± 46.48

TABLE II
AVERAGED ATTRIBUTES FOR DIFFERENT TYPES OF CREATED LEVELS

Fig. 18. Rule distributions across the different authored levels

The relation between rules and the different type of authors
can be shown in table II. Some levels may use no rules at all
and only contain the required X-is-YOU and X-is-WIN rules.
The mixed-author levels has the highest number of average
rules per level (2.833), while PCG-only levels have the lowest
average (1). The rule distributions for each author type are
shown in Figure 18. For 7/9 of the possible rule combinations,
the Mixed-author levels had the most levels associated with for
each rule - and therefore more variability overall. This could
have been because of the back-end AI system trying to create
more variety with rule combinations in the levels and therefore
adding more level variants to the site’s dataset. It is also worth
noting that 24% of the levels authored only by Users and 24%
of the levels with the Mixed-authorship had none of the 9 rules
in the level. Mixed-author levels also had the highest average
level size, but a close second for the solution length - just
behind User-authored levels.

VI. QUESTIONNAIRE AND LEVEL DATA CORRELATION

We merged the two datasets between the level data sub-
mitted to the website and the responses from the user study
questionnaire to further analyze any correlations between
answers and types of levels submitted. Table III shows the
raw results from 3 selected questionnaire response groups.

For the question determining the familiarity of users with
the game Baba is You, of the 36 users who had never played
or heard of ’Baba is You’ 77% chose to make a level that was
exclusively user-authored. For the other two groups, those who
had heard of the game but never played it and those who had
played the game before, 62.5% and 56% of users respectively
chose to make user-only levels. 41% of the mixed-authorship
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Baba is You? Puzzle Level Preference AI-Assisted Level Editors?
Yes Maybe No Solve Design Both Yes Unsure No

# Mixed Levels 9 6 7 12 2 8 3 0 19
# User Levels 14 10 28 25 5 22 11 4 37
# PCG Levels 0 1 1 1 0 1 1 0 1
Avg # Rules 1.96 1.53 1.67 1.63 0.57 2.10 1.53 3.75 1.63
Avg Sol. Len 30.87 30.65 28.47 32.08 25.14 27.77 24.00 43.50 30.21

TABLE III
LEVEL STATISTIC BETWEEN SELECTED QUESTIONNAIRE RESPONSES AND

SUBMITTED LEVELS

levels submitted from the participants of the study came from
the group who had played Baba is You before. From this we
can infer that those who were more familiar with the game
environment were more likely to use the AI assisting tool to
design their levels. Users who had played the game before
also had the highest average for number of rule combinations
in their levels at 1.96.

We also observed some correlations between level submis-
sions and preference for designing or solving puzzle levels.
60% of the participants who answered that they preferred
to solve puzzle levels submitted user-only authored levels
- however this group also held the majority for number of
mixed-authorship levels submitted at 54.5%. This group also
had the highest solution length average of the 3 groups at an
average of 32.08 steps. 28.5% of participants who answered
that they prefer to design levels submitted mixed-authorship
levels to the site - the highest percentage of the 3 groups.

An interesting correlation was found from users who never
had experience with AI assisted level editors before. Of the
57 users, 74% chose to submit a user-only authored level.
However, 86.3% of the mixed-authored levels submitted from
the study also came from this group. Only 20% of users from
the group who had experience with AI-assisted level editing
tools chose to submit mixed-authorship levels. From this we
can infer that users with little experience in AI-assisted tools
are more willing to experiment with them and try to design
with them.

VII. DISCUSSION

A. Data Analysis

It is clear from both the submitted level statistics of the
site and the self-reported user survey that mixed-authorship
is not the preference for users when designing levels. Many
users would still prefer to have total control over their level
design process from start to finish. For future work, we can
look to limit user control and encourage more AI-assistance
with the design process similar to the work done by Bhaumik
et al. [36].

The limitations of the AI back-end (both the evolver and
solver) may be at fault for the lack of AI interaction. The
mutator and evolver system are dependent on previously
submitted levels and level ratings in order to “learn” how to
effectively evolve levels towards high quality design. As a
result, the map module’s ranking system is always updating
its evaluation for what makes a “good” level based on these
incoming ratings. If there is a lack of available data for the
tool to learn from, the AI will be unable to create quality
levels - causing the user to less likely submit mixed-initiative
co-created levels, and causing a negative feedback loop.

The fitness function defined for the evolver and mutator
tool may be inadequate for level designing. It could produce
a level that is deemed “optimal” in quality by its internal
definition, but may actually be sub-par in quality for a human
user. Another flaw in the AI-collaboration system, could be
that the users lacked direct control on the evolver and mutator
and attempting to use them in middle of creation might
have been more problematic as it could destroy some of the
level structures that the users were working on. Future work
could remedy this problem by giving users various mutation
“options” similar to the AI selections in RLBrush [38] and
Pitako. [30] Finally, the ‘Keke’ AI solver was also lacking in
performance as a few participants mentioned that the solver
was unable to solve their prototype levels that they themselves
could end up solving in just a couple of moves. An improved
AI solver would help with the level creation efficiency.

B. User Comments and Feedback

We gave the participants opportunities to provide open
feedback about their experience using the site in order to
gather more subjective data about their experience as well as
collect suggestions for potential new features.

Almost no users experienced any technical difficulties or
bugs that prevented them from using the site. The few that
did mentioned formatting issues with site caused by their
browser (i.e. icons too close together, loading the helper gifs,
font colors.) However, one user reported that this issue may
have been because they were using the site from their phone
(we unfortunately did not provide users with instructions to
complete the study on a desktop or laptop.) In the future, we
will be sure to exhaustively test the site on as many browsers
as possible - both desktop-based and mobile - to be more
accessible.

Some users were confused by the tutorial and the amount
of information it conveyed for the entire site citing it as “in-
timidating”, “overwhelming”, and “a bit complex”. However,
other users reported the lack of information saying it was “not
detailed”, or had “sufficient information [...] but could have
been delivered in a more comprehensible way.” To make the
game more accessible, we will most likely try to make the
tutorial section less intimidating to new users by limiting the
amount of information shown (possibly through a “table of
contents” as suggested by one participant) while still being
comprehensible enough to understand the level editor and
tools.

For feature suggestions, many users wished for larger maps
and vocabulary - like those found in the Steam-release ‘Baba
is You’ game. Users also wished for a save feature that would
allow them to make “drafts” of their level to come back later
to edit. Many users also suggested a co-operative multiplayer
feature for level editing and level solving - we can assume
with another human and not an AI agent.

While the results of the statistics on the levels submitted
were disappointing for involvement of the AI assisting tool, we
also asked users how likely they would continue using the site
after the experiment. 38.2% of users said they would continue
to use the site, while 55.3% said they would maybe use the
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Fig. 19. User feedback for likelihood to return using the site after the
experiment

site (figure 19). Many users were optimistic and encouraging
with the concept of incorporating AI and PCG technologies
with level design - citing the project as a “cool project”, “a
very unique experience”, a “lovely game and experiment”, and
“very fun.” At the time of writing, a few users did return, as
their ’Keke’ assigned usernames were shown as authors on the
New page, long after the study was completed. Most notably,
the Keke subject user Keke978 who took up the username
’Jme7’ and contributed 28 more levels to the site after the
study was concluded and currently holds the title for most
levels submitted and most rule combinations on the site.

Many users also provided us with constructive feedback
for feature implementation, site usability, and suggestions for
improvement with how to further incorporate the AI back-
end interactivity. As shown in figure 14, 70% of users who
played with the system had never played the game ‘Baba is
You’ and 75% of people had never used an AI-assisted level
editor tool before this experiment. Based on this information
and retainability of users to complete the survey and provide
the constructive feedback, we can extrapolate 2 conclusions:
1. the game stands alone, independent of ‘Baba is You’, as an
entertainment system; and 2. for people with even limited AI-
gaming experience, as long as they are not completely foreign
to gaming, this project has the ability to grasp their attention
long enough to understand it, tinker around, and then give
constructive feedback.

VIII. CONCLUSION AND FUTURE WORK

The results from the user study have demonstrated both the
benefits and limitations of a crowd-sourced mixed-initiative
collaborative AI system. Currently, users still prefer to edit
most of the content themselves, with minimal AI input - due
to the lack of submitted content and ratings for the AI to
learn from. Pretraining the AI system before incorporating it
into the full system would be recommended to create more
intelligent systems that can effectively collaborate with their
human partners for designing and editing content. This would
lead to more helpful suggestions on the evolver’s end as well
as better designed levels overall. This project is the start of
a much longer and bigger investigation into the concept of
crowd-sourced mixed initiative systems that can use quality
diversity methods to produce content and we have many more
ideas to improve upon the Baba is Y’all system.

As suggested by many participants in the user study, we
would like to incorporate level design collaborations between
multiple users and multiple types of evolutionary algorithms
all at once to create levels. Our system would take inspiration
from collaboration tools such as LodeEncoder [36], RLBrush
[38], and Roblox (Roblox Corporation, 2006). This would

broaden the scope and possibilities of level design and devel-
opment even further to allow more creativity and evolutionary
progress within the system. This collaboration setting will
open multitude of interesting problems to investigate such as
authorship.

Outside of the ‘Baba is You’ game, we would like to pro-
pose the development of an open-source framework to allow
mixed-initiative crowd-sourcing level design for any game or
game clone. Such games could include Zelda, Pacman, Final
Fantasy, Kirby, or any other game as long as we have a way to
differentiate between levels mechanically and we can measure
minimum viable quality of levels. Adding more games to
the mixed-initiative framework would allow an easier barrier
of entry to players who may have been unfamiliar with the
independent game ‘Baba is You’ but is very familiar with
triple-A games produced by companies such as Nintendo.

We would like to also propose a competition for the online
‘Keke’ solver algorithm for the challenging levels. In this
competition, users would submit their own agent that can solve
the user-made and artificially created ‘Baba is You’ levels.
Ideally, this improve the solver of the ‘Baba is Y’all’ system
but also introduce a novel agent capable of solving levels with
dynamically changing content and rules - an area that has not
been previously explored in the field. Development for this
framework for this competition has already begun at the time
of writing this paper.

Finally, we would like to propose the creation of a fully
autonomous level generator and solver that can act as a user
to our system. This generator-solver pair would work parallel
to the current system’s mixed-initiative approach, but with
a focus on coverage to exhaustively find and create levels
for every combination of mechanics. With a redefined fitness
function and updated solver (possibly from the Keke Solver
Competition,) this could be more efficient than having users
manually submit the levels, while still using content created
by human users to maintain the mixed-initiative approach.

The second version of the Baba is Y’all system paired
with the user study we conducted gave us many insights
into designing a mixed-initiative creative collaboration system.
First, we believe that the system is not quite at the point where
an AI could match a user in terms of creative design to the
point where a user would see the system as its creative equal
and be willing to share control - as noted by the majority
of user-exclusively authored levels submitted to the database.
Second, we would like to find more ways to encourage users
to want to work with the AI tool, so that the system can
learn and improve to reach the point of creative equality.
Thirdly, we would want to design a system that is both more
transparent about what processes and decisions the AI makes
when helping to design content while preventing a user’s
creative vision from being lost to the AI’s edits and design
choices. Finally, while the user study was helpful in observing
what kinds of interactions a user might partake when designing
within the space of this system, a more extensive study could
be done to discover where the limitations and failings of the
mixed-initiative collaborative system exist and how to improve
on them; potentially by conducting a study over a longer
period of time. There are many new directions we can take
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the Baba is Y’all system and the concept of crowd-sourced
collaborative mixed-initiative level design as a whole and this
project will hopefully serve as a stepping stone into the area
and provide insight on how AI and users can work together in
a crowd-sourced website to generate new and creative content.
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