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Abstract—Residue Number Systems (RNS) are proven to be effective in speeding up computations involving additions and products.
For these representations, there exists efficient modular reduction algorithms that can be used in the context of arithmetic over finite
fields or modulo large numbers, especially when used in the context of cryptographic engineering. Their independence allows random
draws of bases, which also makes it possible to protect against side-channel attacks, or even to detect them using redundancy. These
systems are easily scalable, however the existence of large bases for some specific uses remains a difficult question. In this paper, we
present four techniques to extract RNS bases from specific sets of integers, giving better performance and flexibility to previous works
in the litterature. While our techniques do not allow to solve efficiently every possible case, we provide techniques to provably and
efficiently find the largest possible available RNS bases in several cases, improving the state-of-the-art on various works of the recent
literature.

Index Terms—Residue Number Systems, Setwise Coprime, Modular Arithmetic, Cryptography.
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1 INTRODUCTION

Scientifc Context: Unconventional arithmetic offers
original and effective approaches in various domains of
application [1]. The use of Residue Number System (RNS)
appeared in the 1950s as arithmetic [2], [3]. This representa-
tion is directly inspired by the Chinese remainder theorem
[4], [5]. The main interest lies in the speed of the addi-
tion and multiplication operations which are distributed
on small values that are the modular remainders on a set
of pairwise coprime numbers named RNS base. Despite a
conversion cost which in the worst case is quadratic in the
size of the base, calculations involving additions and prod-
ucts become extremely profitable (i.e. the inner product,
convolution products, operations on large numbers, etc.).
However, division and comparison remain costly operations
in RNS, recent works propose interesting approaches [6], [7],
[8]. The three main areas of application are signal processing
[9], [10], [11], cryptography but also in theoretical computer
science to reach complexity bounds [12], [13]. The work in
this paper is relevant for all applications on large numbers
including cryptography since the 90’s [14] with RSA, DH,
ECC [15], [16], pairing [17], Euclidean lattices, homomorphic
protocols [18], [19], etc.

In a domain such as cryptography, arithmetic operations
are performed modulo large numbers that are often prime,
the use of RNS becomes more complicate as modular reduc-
tion requires a conversion of RNS bases [20], [21], [22], [23].
This last point has generated a rich literature, in particular
around the choice of bases for efficient implementations
[15], [24], [25], [26]. RNS are also particularly interesting for
countering attacks by faults, as the addition of redundancy
elements at the base level makes it possible to set up fault
detection [27]. Finally, the random drawing of bases ensures
that the same calculation produces different patterns at each
evaluation, making learning possible leakage of information
more difficult [28].

Implementations are constrained by the limitations of
the architectures we deals with. The question we are faced
with is what sizes can be reached. This is very dependent on
the operators of the target architecture which limit the size
of the elements of the RNS base. Finding the largest possible
base with this constraint on its elements thus becomes a
major issue [29], [30]. In order to answer this challenge, an
approach proposes after a filtering to build a co-primality
graph and to perform a brute force search of maximal
cliques [29]. This problem is known to be NP-complete [31],
[32].

In order to achieve larger RNS base sizes, considering
the cost of finding a maximal clique, filtering to reduce the
graph size becomes crucial.

Main results: In this paper, we introduce four filtering
methods that reduce the size of the graph. Our approach
significantly improves the one of [29]. The RNS bases we are
able to build are larger than those proposed in the literature
by maintaining the same constraints. One can find in [26] a
large overview of RNS bases with their advantages. The first
algorithm is targeted towards intervals. The second algo-
rithm is targeted towards random sets. The third algorithm
is an adaptation of the first algorithm for “non-interval semi-
random” sets. The fourth one is a heuristic approach, aimed
to accelerate computations.

In the literature: Different approaches found in the
literature deal with obtaining an easy reduction for each
modulo and an efficient RNS base extension. Most of them
use classical pseudo-Mersenne or Solinas moduli. We men-
tion here some particular approaches that condition the
moduli. In the Cox-Rover algorithm [21] authors suggest
to use pseudo-Mersenne coprimes with an interdependence
between the number of moduli, their pseudo-Mersenne
form and the truncation error of the computation. This could
reduce significantly the possibilities depending on the target



2

architecture. With the double Montgomery approach [29],
the authors use a Montgomery reduction at the modulo
level, they relax the constraints which allows to significantly
increase the number of moduli. Then quadratic RNS [26]
offers an efficient bases exchange but adding a quadratic
property of the moduli. Finally, a recent approach suggest
friendly Montgomery numbers [33] to increase the number
of coprimes while keeping an efficient base extension. We
will illustrate how our methods allow to build large RNS
bases for each case.

Organization of the paper: After introducing some use-
ful background for the understanding of this article, we
introduce in Section 3 four filtering approaches. We present
two basic alternatives to [29] for intervals and random sets,
then specialize those basic alternatives to propose another
two alternatives to deal with specialized sets for a total of
four filtering techniques. Then, we propose new bases for
the most relevant cases of families of moduli used in the
state of the art of RNS optimization [26].

2 BACKGROUND

2.1 Residue Number Systems and notations

Definition 1 (RNS). A Residue Number System is defined by
a set of pairwise coprime integers M = {m1, ..,md} ∈ (N∗)d
named RNS base of size d. We denote M =

∏
mi the product

size. For x ∈ Z, we denote 〈x〉M = 〈x1, ..., xd〉 the RNS
representation of x, where xi = x mod mi and call the set of xi
the residues of x inM.

The Chinese remainder theorem (CRT) ensures that there
is an isomorphism between

∏d
i=1 Zmi

to ZM . Thus, for each
x ∈ Z, 〈x〉M is unique and corresponds to xM = x mod M .
Sometimes the same notation is used for both M and M .
Note that the search for a large RNS base, i.e. reaching large
sizes for M , often means increasing d, as the elements of an
RNS base are limited in size depending on the architectures
used. If the machine words are of a given size n in binary,
then each element of the database is smaller than 2n. In
practice, we would like to have the same size for all residues,
in order to balance the load between all computing units.

We start by introducing some specific notations.

Notation 1. We note P the set of prime numbers. For any set
I , we note Imin its smallest element, Imax its largest element.
We note IP the set of primes that can divide at least one non-
zero element of I (e.g. to simplify in some algorithms, IP can be
replaced by the set of primes smaller than Imax).

Notation 2 (Sets of maximum possible pairwise coprimes).
We denote Φ(S, I) the set of all sets of pairwise coprime numbers
of maximal size containing elements of S ∪ I .
I is the initial set of numbers considered, and S is a set of filtered
values. Almost all the values of S are pairwise coprimes.

Example 1. Let S = {} and I = {2, 3, 4, 11, 17, 121}:

• M1 = {121, 17, 2, 3} ∈ Φ(S, I)
• M2 = {11, 17, 4, 3, 2} /∈ Φ(S, I) as gcd(2, 4) 6= 1
• M3 = {11, 17, 3} /∈ Φ(S, I): |M3| < |M1|
• M4 = {11, 17, 2, 3} ∈ Φ(S, I)
• M5 = {11, 17, 4, 3} ∈ Φ(S, I)

• M6 = {121, 17, 4, 3} ∈ Φ(S, I)

By bruteforce, we can easily see that {M1,M4,M5,M6} =
Φ(S, I).

The goal of this paper is to find at least one element of
Φ({}, I) for specific I . Thus, we try to reduce the problem
by finding smaller sets S′ ⊆ I and I ′ ⊆ I such that
Φ(S′, I ′) ⊆ Φ({}, I). In the previous example, If S′ = {121}
and I ′ = {2, 3, 4, 17} then Φ(S′, I ′) = {M1,M6} ⊆
Φ({}, I). At the end of the process of filtering we could
obtain S = {2, 3, 4, 17, 121} and I = {}. The work of [29]
proposed a solution when I is an interval.

2.2 Maximum RNS bases are maximum cliques
In [29], methods were proposed to find a maximum size
RNS base within an interval of consecutive numbers. The
authors of [29] saw the problem of finding an element of
Φ({}, I) as a graph problem. The approach is the following:

1) ∀a ∈ I , create a node tagged with a.
2) ∀a1, a2 ∈ I s.t gcd(a1, a2) = 1, add an edge (a1, a2).
3) A maximum size RNS base from I is a clique from

the resulting graph.

Example 2. Let I = [2, 13] be a set of 12 consecutive numbers.
On the left is the graph constructed as per the above described
process, and on the right is a maximum clique of the left graph,
i.e., a subgraph of the largest possible size where every node is
connected: it is also a graph that can be constructed from an
element of Φ({}, I).
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Note that the solution is not unique: for example, node 2 can be
replaced by node 4 or 8 and 3 by 9, thus Φ({}, I) has at least six
elements. Φ({2, 3}, I) however, is a singleton. A clique, maximal
or not, will always represent a set of pairwise coprime numbers in
this model.

As also pointed by [29], one issue with this initial ap-
proach is that the maximum clique problem is known to be
NP-complete, thus before tackling the graph problem, [29]
proposes to simplify the search space by ”filtering” Φ(∅, I)
into a smaller set. It is very clear from the above examples,
that given a set I , we have Φ(I∩P, I) ⊆ Φ(∅, I), thus part of
the problem in finding an element of Φ(∅, I) can be reduced
to find an element of Φ(I ∩ P, I), the difficulty comes from
filtering Φ(I ∩ P, I) even further. Thus, they propose some
solutions to ease the computations. Their main observation
is the following lemma:

Lemma 1 ( [29]’s maximality preprocessing).
Let I = [Imin, Imax] and δ = Imax − Imin > 0. Given

S = {akb ∈ I s.t a ≤ δ, b > δ or b = 1, {a, b} ⊂ P ∪ {1}}
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we have Φ(S, I) ⊆ Φ({}, I) and Φ(S, I) 6= ∅.

In other words, [29] can construct a subset where there
is at least one maximum RNS base containing this set S,
reducing the search space. After constructing S, the search
space can be even further simplified: one only needs to
replace I with the set IS = {x ∈ I|∀m ∈ S, gcd(m,x) = 1}
i.e the elements of I coprime to S. we thus have Φ(S, IS) =
Φ(S, I) ⊆ Φ({}, I), and finding an element of Φ(S, IS) is
computationally much easier.

As pointed by [29] the set S is easily computable. In
fact, for some small parameters, [29] reduce IS to an empty
set, outputting S ∈ Φ({}, I) as a solution. The approach
however can have some limitations after computing S:

• For large I , IS can be too large to be reasonably pro-
cessed and a clique algorithm might still be required.

• For large I , IS can be itself expensive to compute.
• If I is not an interval, the approach cannot be used.

To alleviate the first issue, [29] propose to heuristically prune
the graph: constructing S was essentially pruning the graph
from elements containing only one or two distinct primes,
thus their suggestion was to continue further by pruning
combinations of 3 distinct prime factors, then 4, etc... How-
ever, as they also pointed out, this heuristic pruning method
beyond S does no longer guarantee a maximal size RNS
base.

In our work, we propose upgraded pruning methods
to help alleviate all three issues. Those methods, while
not proven to be able to avoid the resolution of an NP-
complete problem, are sure to provide an optimal solution.
We also provide a highly efficient greedy version of our
methods which do not guarantee optionality, even if often
achieved. They do simplify the computations by essentially
giving a graph of a much lower size as an input to the
maximum clique algorithm. Interestingly, in many of our
applications, our methods transform our original input into
a graph already corresponding to a clique, thus avoiding
the necessity to call a maximum clique algorithm in the first
place.

3 TWO NOVEL BASIC FILTERING TECHNIQUES

Here we propose two alternatives filtering techniques, ini-
tially proposed at [34], that directly improve over the
theoretical work of [29]. Similarly to [29], the aim is to
minimize the size of the set we give as an input to a graph
algorithm, while relying on a same principle of picking a
provably optimal choice at each iteration to guarantee the
maximality of the output.

The first method modifies [29] in a way such that com-
puting gcd is never necessary, and that the initial set I is
never stored, only prime numbers are (i.e. IP). This number
of primes can be significantly smaller than the size of the
initial set I . The second method is not a direct improvement
of [29] but rather an alternative method to deal with sets that
were not intervals: Lemma 1 can only applies if the initial
set given as an entry is an interval. It is also more efficient
than the other methods for sets of small size, even intervals,
as it does not require any knowledge of the prime numbers.

Important note: These filtering techniques give at least
one RNS base with the maximum number of moduli ex-
tracted from an initial set, they do not select the best base
according to particular criteria (for example the size of the
product of the moduli), among the, potentialy numerous,
bases with the maximum number of moduli.

3.1 First method: filtering by factors recomposition

Constructing coprime moduli sets within an interval by
analyzing their factorization was the core idea of [29]. Their
method call a clique algorithm over all remaining possible
numbers, constructing S and IS beforehand. Our first im-
provement over [29] is the following: when dealing with an
interval, there is no need to store the interval at all. We just
need the list of any prime number that can be found in a
decomposition of an integer within the interval. Prime lists
and code to compute them can be found in various places on
the internet ( [35], [36], [37]) if primes required are not overly
large (i.e beyond 264), and checking whether an integer is
within an interval can be done with the help of only two
values: Imin and Imax.

Here, the first method we present is essentially the fol-
lowing: we thin the leftover primes, thus lowering the pos-
sible combinations, accelerating the process. This algorithm
can ensure a maximum RNS base after a call to a clique
algorithm to leftover conflicting combinations, similarly to
[29]. In [29], their core observation is that any integer prime
p > δ (with δ = Imax − Imin) can only appear once in
the decomposition of integers of I . We add a generalized
observation, which severely limits the amount of prime
numbers we have to consider.

Knowing that any prime p >
√
Imax cannot be powered

in a said decomposition, we can further limit the amount of
primes to consider. Let us denote β = max(δ,

√
Imax). We

explain below our method to compute E1 the set of prime
powers within I with the algorithm FirstStep, keeping
information about the primes not being used for E1 as those
are necessary later.

Algorithm 1 FirstStep
Input: P all the primes smaller than β

E1 ← P ∩ I
for p ∈ P do

if there is a k ≥ 1, such that pk ∈ I then
Put the largest pk into E1

Eliminate p from P

Output: E1, P .

Example 3. If I = [216 − 28, 216] then

1 P = {2, 3, 5, ..., 251} and E1 = {65287, ..., 65521}
2 216 ∈ I , so eliminate 2 from P and add 216 to E1

3 P = {3, 5, ..., 251} and E1 = {65287, ..., 65521, 216}
4 No other p ∈ P can be transferred and eliminated

End |P | = 53 and |E1| = 22

Here we reduced the problem to Φ(E1, I
′) ⊆ Φ({}, I), where I ′

is I minus all the primes or power of primes. Note that we do not
store I nor I ′, this is one of the main advantage compared to the
approach of [29].
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After FirstStep, if E1 is not a solution by itself (most
often not), then we can continue our process using the
leftover primes within P to find candidates to expand E1.

In a SecondStep, we then construct E2 the set of prod-
ucts of two distinct primes taking one prime factor as large
as possible, and fill in a set RES product of two integers
that lie outside [29]’s proof (lemma 1), but we wish to keep
information on the primes we pick for E2 and those we
will not pick as those represent the necessary information
to complete the missing elements of a RNS base of maximal
size. When a product of two primes does not satisfy lemma
1, if this product belongs to I then we store it in a set RES,
and if one of this two primes could appear in a product of
three primes, which belongs to I , we store them in a set R.
RES and R are used in the ThirdStep.

Construction of E2, R,RES is done with Algorithm Sec-
ondStep. Note that in the case δ =

√
Imax, RES is empty at

the end of SecondStep.

Algorithm 2 SecondStep
Input: the remaining primes P , output of FirstStep

while P 6= ∅ do
a← min(P ) and b← PreviousPrime(d Imax

a e)
if ab ∈ I and a ≤ δ and b > δ then . (lemma 1)

puts ab into E2

Remove a, b from P (if b ∈ P )
else s← a2 and break. . s the smallest product of

two primes, is used for selecting elements for R
while P 6= ∅ do

a← min(P ) and b← PreviousPrime(d Imax

a e)
Remove a, b from P (if b ∈ P )
if ab ∈ I and a ≤ δ and b > δ then . (lemma 1)

puts ab into E2

else
if ab ∈ I and a < b then store ab in RES
if as ≤ Imax then store a in R
if bs ≤ Imax then store b in R

Output: E2, R,RES

Example 4. For I = [210 − 46, 210], P = {3, 5, . . . , 41, 43}
and E1 = {983, 991, 997, 1009, 1013, 1019, 1021, 1024}. We
find E2 = {(979 = 11 ∗ 89), (995 = 5 ∗ 199), (1003 =
17 ∗ 59), (1011 = 3 ∗ 337)} with R = {7, 13, 19} and
RES = {(989 = 23 ∗ 43)}. The break has occurred for a = 7
where we passed in the second while loop. When P is finally
empty, |E2| has 4 elements, R has 3 elements and RES one.
We have now simplified the problem to Φ(E1 ∪ E2, I) ⊆
Φ({}, I), and the only elements we need to check are now
combinations of elements of R and elements of RES.

After SecondStep we have constructed E2 such that
Φ(E1 ∪ E2, I) ⊆ Φ(E1, I) ⊆ Φ({}, I). However, we still
need to further process the remaining candidates in the case
RES and/or R are not empty. We basically reconstruct IS by
bruteforce for S = E1 ∪ E2 in order to reduce the search to
Φ(E1 ∪ E2, I) = Φ(S, IS) where IS is essentially composed
of the integers within I coprime to S which should be
exactly RES and the missing combinations involving primes
in R. Constructing IS , if not proven to be empty, is done
by algorithm ThirdStep, which stores in RES any possible

product combination of the powers of the remaining primes
within R fitting I .

Algorithm 3 ThirdStep
Input: Imin, Imax, k, R,RES

if k ≤ Imax then
if k ≥ Imin then RES = RES ∪ {k}
else

if R 6= ∅ then
p← min(R)
R← R\{p}
while k ≤ Imax do

RES ←ThirdStep(Imin, Imax, k, R,RES)
k ← k ∗ p

Output: RES

ThirdStep can have a very large complexity for large
R. However, the recursion falls short when the elements of
R are large: the level of recursion excluding calls to K =
1 is bounded by dlogr(Imax)e for r = min(R). Thus it is
very important that previous steps eliminate as many small
primes as possible before ThirdStep.

Note that the output of ThirdStep does not theoretically
guarantee a set of pairwise coprime integers since given
primes p, q, x, w, integers a = p × q × z and b = p × x × w
could be valid integers within I . While this scenario has
never occurred in our tests, we do not have any proof show-
ing its impossibility. Thus, in theory, a maximum clique
algorithm could still be needed.

Example 5. With the example for I = [216−28, 216], Algorithm
SecondStep gives R = {29, 37, 47, 53, 61, 71, 73} and RES =
∅. Luckily here, only one combination within elements of R can
fit within I , giving 29× 37× 61 = 65453. The maximum clique
from a singleton is itself, thus we have actually our maximum
clique and E1 ∪ E2 ∪ {65453} ∈ Φ({}, I).

The entire process is thus the concatenation of the three
above algorithms, described in Algorithm 4 FactorFilter. Do
note that at the end of Algorithm SecondStep, if both R and
RES are empty, then C is a maximum clique and ThirdStep
would actually do nothing as there is nothing to search
within, as E1 and E2 have been constructed using only
”proven picks” that do not reduce the size of an optimal
solution.

Algorithm 4 FactorFilter
Input: Imin, Imax the interval range.
Output: C a set of pairwise coprime numbers, RES poten-

tial additions to grow C
1: E1, P ← FirstStep(Imin, Imax)
2: E2, R,RES← SecondStep(Imin, Imax, P )
3: C ← E1 ∪ E2

4: RES← ThirdStep(Imin, Imax, R, 1,RES)
5: return C,RES . If RES is empty, then C is maximal

During the whole process, not a single gcd has been
computed, nor was any value of I beyond its extremities
needed. The remainder set IS can also be emptied early i.e
not constructed at all. Also note that the function Previous-
Prime, while expensive in theory for arbitrary numbers in
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arbitrary applications, can be very efficiently called in our
case if we already have access to the list of all necessary
primes: we will never need a prime larger than Imin beyond
the construction of E1.

3.2 Second method: generalizing filtering for any set
This second proposed method works for any set, and is
better than the first method on intervals anytime the set of
integers I we need to manage is lower than the set of primes
IP we have to manage. To the best of our knowledge, there
is no other comparable preexisting technique besides the
direct clique method.

This second method relies on the following lemma:

Lemma 2 (Divisor pick for general sets).

If ∃y = ab ∈ I and {gcd(y, x), x ∈ S} = {1},
s.t ∃a > 1, ∀x ∈ I , a| gcd(x, y) or gcd(x, y) = 1.

Then Φ(S ∪ {y}, I) ⊆ Φ(S, I)

This lemma can be understood by seeing that if such y
exists, then for any element M ∈ Φ(S,A), either there is
an element divisible by a which can then be replaced by
y without changing pairwise coprimality relations, either
there is not and thusM is not maximal as you could include
y (a contradiction). The method to find an element of Φ(S, I)
is then the following:

1) Scan elements of I until such y is found. If no such
y exists quit, else go to step 2

2) S ← S ∪ {y} and I ← {m ∈ I s.t gcd(y,m) = 1},
return to step 1.

The full process is described by Algorithm 5. Note that this
filter can also be applied after the previous filter since the
output of ThirdStep is also a set, thus our two algorithms
are not mutually exclusive. After this filtering algorithm
over I , to further increase the set size of S, we would need
to call a maximum clique algorithm over the leftover IS :
however, in our experiments, IS is often empty, leaving
S as the final base. Unlike algorithm 4, algorithm 5 has a
straightforward update of Φ(S, I) ← Φ(S′, I ′) after each
loop iteration.

Example 6. Let us select integers step-by-step: first let us set
I = [968, 972, 3328, 1701, 875, 1445, 2873, 539, 493, 1573].

1) The first integer, 968 has gcd 4 with 3328 and 11 with
539. Since gcd(4, 11) = 1, we cannot select 968.

2) The same goes on for every integer up to 539: their
possible gcd cannot be reduced to powers of a same prime.

3) We can however pick 493: it shares 17 as gcd with
1445 and 2873, and 1 with other integers. With
this information, we update to S = {493}, I =
[968, 972, 3328, 1701, 875, 539, 1573].

4) We retry from 968 to 1701 with no success.
5) 875 has gcd 7 with both 1701 and 539, but 1 with others.

With this information we can set S = {493, 875} and
I = [968, 972, 3328, 1573].

6) We ignore 968 again, but pick 972, its gcd is 4 with
968 and 3328 but 1 with others. We update to S =
{493, 875, 972} and I = [1573].

7) We finish with S = {493, 875, 972, 1573} and I = ∅,
which completes the search.

Algorithm 5 Generic Filtering
Input: I = {mi} a set of integers
Output: S ⊂ I an RNS base, and leftovers IS

1: S ← {}
2: IS ← I
3: while IS decreases in size do
4: for m ∈ IS do
5: f ← m . Initial common divisors
6: for m′ ∈ IS\m do
7: d← gcd(m,m′)
8: if d 6= 1 then . Test divisor unicity
9: f ← gcd(d, f)

10: if f = 1 then Break . #divisors ≥ 2

11: if f 6= 1 then . #divisors < 2
12: S ← S ∪ {m}
13: IS ← {m′ ∈ IS |gcd(m,m′) = 1}
14: Break
15: return S, IS

4 FITERING NON-INTERVAL SPECIFIC SETS

We propose here another two filtering methods to comple-
ment those presented above, in case the target set is neither
an interval, nor is it a completely random set. First, one
called in this paper the third method, which introduces a
modification of the first method. This third method adapted
to work on any set of integers, which can replace the above
two methods for very large sets (but does not outperform
the previous methods otherwise). We will show that this
method also guarantees maximality of the result. The second
one, called fourth method, is a simpler, but distinct, method
for extracting a RNS base from any random set. This method
does not guarantee maximality of the result and therefore
cannot replace any of the algorithms we propose nor the
original work of [29]. However, the interesting part of this
technique is its efficiency and simplicity and the possibility
to prove ad-hoc maximality under certain conditions.

4.1 General Idea

Those new algorithms were designed to address some of
the shortcomings of the previous two algorithms: one is
effective for any given small set, the other starts to be
effective for any given large interval but when the bounds
have a similar binary size. Both algorithms do not give
satisfactory results when the bounds of the interval have
a different size, or when the set is a large combination of
disjoint intervals. Note, that solving the problem efficiently
under any set is difficult: any “maximum clique problem”
can be transformed into an equivalent instance of a “largest
pairwise coprime subset problem” in polynomial time, thus
an efficient algorithm for any set is an efficient algorithm
for a general NP-hard problem. However, we present here
adapted algorithms when the entry sets are neither intervals
nor completely random. Thus those supplementary algo-
rithms are designed following two observations:

• The efficiency of the first method is limited when the
small factors have many possibilities, failing to pick
a choice and resorts to exhaustive search in the final
steps of the algorithm.
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• The efficiency of the second algorithm is limited by
the fact that processing the factorization of each ele-
ment of the entry set has to be done, thus limiting the
size of the sets that can be reasonably be processed.

Thus we alleviate those issues with the following:

• Instead of just iterating on small factors, it might
be better to also start with the largest factors, which
are guaranteed to have very limited choices no matter
how wide are the bounds. Choosing large factors first
will also eliminate some small factors that could have
had many solutions.

• If we have a low-cost function (in memory and
speed) which determines whether an integer is part
of the initial set or not, we could recompose by
factors and use that function without ever storing
the set. Whenever this is possible, we can achieve an
efficiency gain on any large structured set over the
generic method.

4.2 Third method: generalizing the recomposition tech-
nique
The third method reuses the philosophy of the interval-
based algorithm. However as some properties on intervals
might no longer hold on generic sets we have to make some
generalizations.

4.2.1 Properties to justify maximality
As we are managing more diverse sets, we also need more
general properties to justify our algorithms will still output
a maximum size RNS.

Property 1 (Prime powers can always included).
Let a ∈ P, ∀x ∈ S gcd(a, x) = 1, and ∃k ≥ 1, ak ∈ I .
Then ∀k ≥ 1 such that ak ∈ I ,
Φ(S ∪ {ak}, I\{x, gcd(x, a) > 1}) ⊆ Φ(S, I).
Consequently, ∀M ∈ Φ(S, I), ∃m ∈M such that a|m.

The above property while obvious is necessary when
filtering. The property below is a generalization of this and
the lemma 1 of [29]:

Property 2 (Primes with limited representations).
Let a, b ∈ P, (∀x ∈ S, gcd(ab, x) = 1),
k, k′ ≥ 1 s.t akbk

′ ∈ I and (∀m ∈ I, a|m =⇒ b|m).
Then Φ(S ∪ {akbk′}, I\{x s.t gcd(x, ab) > 1}) ⊆ Φ(S, I)

Property 2 does not make any size arguments nor does
it require unicity of a representation: in a sense it is also a
specialization of lemma 2 for prime recompositions.

The two above properties does not make use of the
strongest feature of the first method which is being able to
exclude primes per size argument. However, we can have a
close version of it since any finite set has a lower and upper
bound. Let

P = {p1, ..., ps} where p1 < ... < ps

be the remaining primes factors we can use to construct new
elements of I that are coprime to our previously selected
integers. Then

Property 3 (Excluding large elements).
ps can be excluded whenever:

• p1ps > Imax

• ∀i ∈ [1, s], pips /∈ I and p21ps > Imax

• Let X3 = {m = pipjps s.t ∀i, j ∈ [1, s], m < p41}.
If ∃m ∈ X3 s.t m > Imax and
∀m′ ∈ X3, m′ < m =⇒ m′ /∈ I

Intuitively, if we note Xk the set of combinations of k
primes of R that are lower that pk+1

1 , we can generalize the
property even further as: if for all k′ < k elements of Xk′

are not in I and Xk is as above then ps can be excluded.
However, computing those sets Xk is not trivial: for X3,
we only know that p21 < p1p2 ≤ pipj for i 6= j but we
cannot compare p1p3 and p22 without actually computing
their values. To avoid bruteforcing, we do not rely on the
full property or its generalization.

4.2.2 Crafting the algorithm parts
The algorithm we craft here will roughly follow the same
principles as the three-step method of recomposing by fac-
tors, with some slight modifications:

• First step gather all possible primes.
• Second step eliminate both largest and smallest

primes simultaneously, iterating pincer-wise.
• Third step reconstruct all remaining candidates in I .

Let fI be a function that outputs TRUE for an entry x if and
only if x ∈ I . Note that Imin, Imax the integral range can
be used to construct fI , even when I is not an interval: any
finite set of numbers have a minimal and maximal value. We
do not specify any fI to keep a general algorithm, but keep
in mind that this whole section relies on such a function to
test whether an element is part of any given set I .

Instead of managing all the primes from [2, I{max}] ∩ P,
we should only consider the primes in IP. For example, if
I requires every factor to be 1 mod 8 or to be quadratic
residues modulo some big prime, we can eliminate a lot
of prime factors as preprocessing. However, for random
generic sets, IP is not always easily available and we can
choose to take P ∩ [2, Imax] instead: the algorithm will be
less efficient, but the end result will still allow to find a
M ∈ Φ(∅, I).

The reasoning used in previous algorithms are still valid
and useful for optimization. Instead of storing all the primes
into one set, we will split the storage into two sets for
efficiency consideration: PL will contain all the primes
within [2,

√
Imax[, and PH will contain all the primes within

[
√
Imax, Imax]. In practice, if we had a complete description

of IP, we can possibly reduce those sets. For a, b ∈ PH , we
have ab /∈ I : to create an element of I from a ∈ PH , either
a ∈ I or one has to multiply a by elements of PL. The first
step is then as described in algorithm 6.

Example 7. Let us take the example of:
I = {a ∈ [216 − 28, 216],with c = 216 − a and hw(c) < 4}
where hw(c) is the number of 1 in the binary representation of c.
We obtain E1 = {65407, 65519, 65536} and the sets of primes
|PL| = 42 and |PH | = 56 whose numbers are smaller than
if we do not check the belonging to IP ( where |PL| = 53 and
|PH | = 169).

Before we explain the second step, we briefly explain the
quite simple exhaustive search for the undecided combina-
tions in algorithm 7.
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Algorithm 6 NewFirstStep, build initial primes
Input: IP, fI s.t fI(a) = TRUE ⇐⇒ a ∈ I
Output: Initial base E1 and unused primes PL, PH .

1: E1 ← {}, PL ← {}, PH ← {}
2: for a ∈ IP do
3: if ∃k ≥ 1 s.t fI(ak) then
4: E1 ← E1 ∪ {ak}
5: else if a <

√
Imax then

6: PL ← PL ∪ {a}
7: else
8: PH ← PH ∪ {a}
9: return E1,PL,PH

Algorithm 7 NewThirdStep, a recursive procedure
Input: Imax the set range, R a list of leftover primes and fI

a function to verify inclusion in I
Output: RES contains the remaining clique candidates.

1: R2 = {1}
2: for p ∈ R do
3: R3 = {}
4: for p2 ∈ R2 do
5: p3 ← p2
6: while p3 ≤ Imax do
7: R3 ← R3 ∪ {p3}
8: p3 ← p3p

9: R2 ← R2 ∪R3

10: RES = {}
11: for p ∈ R2 do
12: if fI(p) then RES← RES ∪ {p}
13: return RES

Before we describe the middle procedure we will name
NewSecondStep between NewFirstStep and NewThird-
Step, we need to explain how we plan to select the valid
combinations and when we can terminate NewSecondStep
and move on to NewThirdStep. Basically, we also proceed
by a step-by-step construct-or/and-reject using the above
properties:

1) If p1ps > Imax, use 3, discard ps and repeat.
2) If there is one unique i such that pips ∈ I and

p21ps > Imax, then we use property 2 and update
S ← S ∪ {pips}, discard p1, ps and repeat.

3) If ∀i, pips /∈ I and p21ps > Imax, then discard ps and
repeat (property 3).
If p21ps ∈ I and p1p2ps > Imax, then discard p1, ps
and update S ← S ∪ {p21ps} (property 2).

4) If there is at least 2 distinct values i, j with i < j < s
such that pips, pjps ∈ I , check if p21ps > Imax. If
it is not the case, we move to NewThirdStep. If it
is the case, we need to check if for all valid i at
least one of them can be easily computed to verify
property 21: we can then update with S ← S∪{pips}
and R ∪ R\{pi, ps} and repeat. If not (or there is
no easier way than bruteforce), then we move to
NewThirdStep.

1. i.e, among the remaining combinations m, if pi|m =⇒ ps|m.
Note that easy depends on the properties on the entry: for any generic
set there is no easy way.

Hence, NewSecondStep presented in Algorithm 8. Note
that this version does not make use of property 2, as we
are currently unaware of a way to use it generically. Now
that we have introduced in details all three core building
blocks, we can build by concatenation the general algorithm
GenericFactorFilter in algorithm 9.

Algorithm 8 NewSecondStep, build E2 and filter primes
Input: Imax, PL, PH two sets of primes, fI to verify inclu-

sion within I
Output: E2, PL, PH the leftover primes

1: E2 ← {}
2: while PL 6= ∅ and PH 6= ∅ do
3: a← min(PL), b← max(PH)
4: if |PL| > 1 and ab×min(PL\{a}) ≤ Imax then
5: Break . Too many choices to explore
6: else
7: S ← {s ∈ PL, fI(sb)}
8: if fI(a2b) and S ⊆ {a} then
9: E2 ← E2 ∪ {a2b}

10: PH ← PH\{b}, PL ← PL\{a}
11: else if |S| = 0 then
12: PH ← PH\{b}
13: else if fI(a2b) or |S| > 1 then
14: Break
15: else
16: s← min(S)
17: E2 ← E2 ∪ {sb}
18: PH ← PH\{b}, PL ← PL\{s}

return E2, PL, PH

Example 8. Let us take the example of:
I = {a ∈ [216 − 28, 216],with c = 216 − a and hw(c) < 4}
where hw(c) is the number of 1 in the binary representation of c.
We obtain with NewSecondStep
E2 = {65501 = 17 ∗ 3853, 65503 = 31 ∗ 2113, 65515 =
5 ∗ 13103, 65523 = 3 ∗ 21841, 65531 = 19 ∗ 3449} and the sets
of primes are now such |PL| = 37 and |PH | = 13.
Then we apply NewThirdStep with R = PL ∪ PH , and K = 1,
we obtain RES = {65471 = 7 ∗ 47 ∗ 199, 65527 = 7 ∗ 11 ∗
23 ∗ 37, 65533 = 13 ∗ 712}

Algorithm 9 GenericFactorFilter
Input: Imax, fI , IP
Output: C a set of pairwise coprime numbers, RES poten-

tial additions to grow C
1: E1, PL, PH ← NewFirstStep(IP, fI)
2: E2, PL, PH ← NewSecondStep(Imax, PL, PH , fI)
3: C ← E1 ∪ E2, R← PL ∪ PH , RES← {}
4: RES← NewThirdStep(Imax, R, 1,RES, fI)
5: return C,RES . If RES is empty, then C is maximal

4.3 Fourth method: pick first, prove later
The three previous methods relied on proving the maxi-
mality of the result on a step-by-step iteration. We present
here a new approach: we cannot prove that our intermediate
choice will leave an optimal result, but we can easily verify
in some cases that the final result is indeed optimal. In the
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last method, we chose to separate the remaining primes into
two sets PL, PH , afterE1 was constructed. Then we have the
simple yet very effective property

Property 4 (Ad-hoc proof of maximality).
Let E1, PL, PH be the result of NewFirstStep on some initial set
of numbers I . LetM⊂ I be a RNS base. Then

|M| = |E1|+ |PL| =⇒ M ∈ Φ({}, I)

We can trivially see that after NewFirstStep, only prod-
ucts of at least two distinct primes can form a valid element
of I . By construction, elements of PH cannot be powered or
combined within each other (as we would have an element
larger than Imax). Thus, the largest possible outcome is for
every other choice to be combining one element of PL and
one element of PH . We assume PL and PH have their ele-
ments sorted in increasing order: the largest element is at the
last position and the smallest element at the first position.
We then provide some heuristic completion algorithms that
do not guarantee optimality (but where some results can
be proven to be maximal). The philosophy here is simple:
construct couples ab ∈ I , regardless of whether or not a or b
have multiple possibilities, and giving priority to the largest
possible combinations. The algorithms can be constructed
by swapping NewSecondStep by GreedyMerge (algorithm
10) when needed.

Algorithm 10 GreedyMerge
Input: fI , PL, PH

Output: E2 pairwise coprimes, PL and PH leftover primes
1: E2 = {}
2: aPL = PL

3: while aPL 6= ∅ do
4: a← min(aPL)
5: aPH = PH

6: while aPH 6= ∅ do
7: b← max(aPH)
8: if fI(ab) then
9: E2 ← E2 ∪ {ab},

10: PL ← PL\{a}, PH ← PH\{b}
11: break
12: aPH ← aPH\{b}
13: aPL ← aPL\{a}
14: return E2, PL, PH

Example 9. Let us take the example of:
I = {a ∈ [216 − 28, 216],with c = 216 − a and hw(c) < 4}
where hw(c) is the number of 1 in the binary representation of c.
We obtain with GreedyMerge
E2 = {65501 = 17 ∗ 3853, 65503 = 31 ∗ 2113, 65515 =
5 ∗ 13103, 65523 = 3 ∗ 21841, 65531 = 19 ∗ 3449} and the sets
of primes are now such |PL| = 37 and |PH | = 51.
Then we apply NewThirdStep with R = PL ∪ PH , and K = 1,
we obtain RES = {65471 = 7 ∗ 47 ∗ 199, 65527 = 7 ∗ 11 ∗
23 ∗ 37, 65533 = 13 ∗ 712}

5 CONSTRUCTION OF ELEMENTARY RNS BASES

5.1 Base of Pseudo-Mersenne
In this section, we present the use of our basic alternative
filtering techniques on Pseudo-Mersenne Numbers. Pseudo-

Mersenne numbers are of the form 2n − c, where c is
a relatively small constant, and have been proposed for
practical use in [38]. We are continuing the work of [29]
for pseudo-Mersenne integers within an interval we denote
solely for this section In = [2n − c, 2n], for simplicity, we
keep n even to have a simple computation of c = 2n/2

for now and only attempt to find the size of a RNS base
M ∈ Φ(∅, In). We conduct experiments for n ∈ [16, 64].
Let Rn be the set R outputted by SecondStep when the
entry set is In and the primes given were already filtered
out by FirstStep. We list the number of primes within Rn

in Table 1. We can observe from Table 1 that the size of Rn

is low enough to make ThirdStep inexpensive. Note that
Rn = ∅ is the result of SecondStep and directly implies that
{E1 ∪ E2} ∈ Φ(E1 ∪ E2, In) ⊆ Φ(∅, In).

Table 1
Size of Rn, output of SecondStep

n 16 18 20 22 24 26 28 30 32 34 36 38 40 to 64
Rn 7 0 10 60 6 21 19 13 1 283 0 1 0

The only cases where ThirdStep did not output an empty
set are the following:

• I16: 65453 = 29× 37× 61
• I20: 1048207 = 73× 83× 173
• I22: 4193923 = 732 × 787 and 4193993 = 1092 × 353

In the above cases, calling a graph algorithm is clearly
unnecessary.

We could conjecture that for n ≥ 40 then Rn = ∅ in
such cases but as the density of prime numbers vanishes as
n grows we prefer not to.

We present some results for E1, E2 and d = |M| for
M∈ Φ(∅, In)

Table 2
Set size of E1, E2, and max RNS set size d for even n ∈ [16, 64]

n E1\{2n} E2 max size
16 21 25 48
24 251 198 450
32 2931 1851 4783
40 37798 19856 57655
48 504634 226507 731142
56 6920100 2724323 9644424
64 96798093 34267158 131065252

For c small, as c = 256, the amount of elements is
not larger than the number of primes to consider, thus
the Generic Filtering is a better choice. We present our
experimental results on c = 256 in Table 3, listing the
maximal size d = |M| forM∈ Φ(∅, [2n − 256, 2n]).

Table 3
Maximum set size d for mi ∈ [2n − 28, 2n] for even n ∈ [16, 64]

n 16 18 20 22 24 26 28 30 32 34 36 38 40
d 48 52 45 46 50 50 46 48 49 50 47 52 47
n 42 44 46 48 50 52 54 56 58 60 62 64
d 48 50 50 50 48 48 50 49 48 46 49 46
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5.2 Base of Solinas numbers

In this part we exhibit our results for the research of Solinas
numbers: while every number can be written as x =

∑
xi2

i

where xi ∈ {−1, 0, 1}, Solinas numbers are such that the
amount of xi 6= 0 is low, where w called the weight of
x is the number of non-zero xi. [39] exhibited how to use
those numbers efficiently: in particular, they showed how
one can avoid using multiplications using those numbers
and replace them by more efficient additions, shifts and
substractions. However, [39] only exhibited RNS bases with
6 integers.

We use the Generic Algorithm to determine dw the size
of the elements of Φ(∅, In,w) where In,w are the elements of
[2n − 2n/2, 2n] with weight w. Our experimental results are
presented in 4.

Table 4
Maximum sizes of d3, d4 ∈ In for even n ∈ [16, 1024]

n 16 32 48 64 128 256 512 1024
d3 11 20 29 30 62 81 180 281
d4 24 90 178 325 - - - -

6 CONSTRUCTION OF SPECIFIC RNS BASES

6.1 Base of Montgomery-friendly numbers

This section considers “Montgomery-friendly” numbers: in-
troduced in [40], [41], [42], they exhibit efficient proper-
ties whenever Montgomery reduction is involved within
the computations. [33] showcased that those numbers can
have comparable or better performance and scalability com-
pared to pseudo-Mersenne numbers, focusing on numbers
of n-bits of the form mi = 2n/2(2n/2 − ci) ± 1, where
0 < ci < 2n/2 (including ci = 0 for mi = 2n − 1).

We use the Generic Filtering to further improve their
results, showcasing that their approach has better scalability
than they previously showed, exhibiting the size d of the
elements of Φ(∅, I) while [33]’s found sizes |M| are some-
times two times smaller: see the comparison table in Table
5. Parameters n, k, t are taken straight of section 5.3 of [33].

Table 5
Maximum size of Montgomery-friendly RNS bases.
bold numbers show where we improve upon [33]

n 32 32 32 64 64 64 64 64 64
k 8 9 10 4 6 8 10 11 12
t 20 20 20 56 56 56 56 56 56

Found d 70 122 122 8 21 64 214 255 255
[33]’s |M| 68 - 89 8 20 62 127 - 127

n 16 16 32 32 32 64 64 64 64
k 4 4 4 6 8 10 12 13 14
t 10 7 24 24 24 48 48 48 48

Found d 8 8 7 22 70 214 705 1319 2401
[33]’s |M| 7 - 7 21 65 205 688 1295 2365

6.2 Base of quadratic residues

Previous examples focused on finding exact elements of
Φ(∅, I). In some cases, the problematic is different for

finding large RNS bases: coprimality is nothing more than
one condition rather than the sole condition for a base to
be valid. Such is the case of the RNS bases required by
[26]: they exhibited powerful algorithms, tested on FPGA,
which outperforms state-of-the-art algorithms at that time.
However, specific bases with further requirements were
necessary. While they managed to exhibit basis that were
large enough for some practical applications, the scalability
of their approach was relatively unknown: researching bet-
ter bases was left as an open question. [26] proposed two
algorithms: sQ-RNS and dQ-RNS, with two specific sets of
conditions. While we cannot prove to find optimal bases, we
show we can still improve the currently known results.

6.2.1 Q-RNS Definitions
The work of [26] relies on a bivariate function (close to the
Jacobi symbol), the QR function, which creates asymetric
relations between the moduli: it is the main reason simple
graph algorithms will not work.

Definition 2 (QR function).
Let a,m ∈ N∗ and gcd(a,m) = 1.
Then, QR(a,m) = 1 ⇐⇒ ∃x s.t. x2 = a mod m.
Otherwise, QR(a,m) = 0.

Elements of a basisM have to be of the formmi = 2n−c.
Previously, we either aimed to maximize the size d of M.
Here, we also aim to bound c to c < 2k if |M| = d is fixed.

6.2.2 sQ-RNS
sQ-RNS requires two distinct basesM = {m1, ...,md} and
M′ = {m′1, ...,m′d}, with M = m1..md and M ′ = m′1...m

′
d

such that∏
i6=j

QR(mj ,mi)QR(m′j ,m
′
i)
∏
∀i

QR(p,mi)
∏
∀i,j

QR(m′j ,mi)

is equal to 1. The prime p is usually fixed by the (cryp-
tographic) system we plan to use the base for. Since
QR(M ′,M)QR(p,M) = 1, we believe M should be gen-
erated first: p, which is fixed, influences M the same way M
influences M ′. Our strategy is then the following:

• CreateM s.t QR(p,M)
∏

i6=j QR(mi,M/mi) = 1
• ThenM′ s.t QR(M ′,M)

∏
i 6=j QR(m′i,M

′/m′i) = 1

First, we aim to constructM minimizing k given values
d, p fixed by the (crypto)system verifying:

1) ∀i, QR(p, 2n − ci) = 1, ci < 2k

2) ∀i 6= j, QR(2n − ci, 2n − cj) = 1
3) At least d different values

In order to do so, we increment k from k = 1 until
the process can successfully complete: first filter with p, k
to verify 1), then apply generic filtering to find moduli
verifying 2) and repeat until we have d moduli mi to verify
3).

Once a suitableM is found,M′ is constructed similarly
by incrementing from k′ = k given M until we can verify
the following conditions:

4) ∀i, QR(M, 2n − c′i) = 1, c′i < 2k
′

5) ∀i 6= j, QR(2n − c′i, 2n − c′j) = 1
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Table 6
Results for maximum size found for sQ-RNS bases

P
d = 4 d = 5 d = 6 d = 7

n k k′ n k k′ n k k′ n k k′

NIST P-192 50 4 10 40 6 11 34 7 12 - - -
NIST P-224 58 4 8 47 6 13 39 7 13 34 7 12
NIST P-256 65 6 7 52 6 12 44 6 13 38 8 11
NIST P-384 98 4 9 79 7 8 66 7 12 56 8 13
NIST P-521 132 6 7 106 6 8 88 7 12 76 8 15
Curve25519 65 5 8 52 7 11 44 7 11 38 8 15

P
d = 8 d = 9 d = 10 d = 11

n k k′ n k k′ n k k′ n k k′

NIST P-256 33 9 14 - - - - - - - - -
NIST P-384 49 9 15 44 10 18 - - - - - -
NIST P-521 66 8 16 59 9 16 53 9 20 48 10 22

Table 7
Values ci, c

′
i and their size k for sQ-RNS with d = 4 and same n. Our

work is in bold, [26] in ITALIC

P ci = 2n −mi c′i = 2n −m′i k k’

19
2 5 7 11 15 255 663 689 863 4 10

27 117 351 951 1153 2567 2855 8543 10 13

22
4 5 7 11 15 63 111 159 227 4 8

57 63 147 447 27 731 3807 7403 9 13

25
6 55 31 43 63 23 79 91 103 6 7

535 751 3219 8031 49 979 2191 11,335 13 14

38
4 5 7 11 15 35 135 215 447 4 9

51 855 4343 52,155 117 831 1571 1827 16 11

52
1 47 51 55 63 15 39 65 87 6 7

347 363 527 38,835 725 5547 11,535 38,679 16 16

* 3 9 19 23 31 85 211 231 5 8
535 2191 3219 8031 49 751 979 11,335 13 14

*: Curve25519

6) At least d different values

Once the process is finished, we have obtained valid sQ-
RNS bases M,M′. We cannot prove our result is optimal,
but experimentally we still improve the results given by
section 4.4 of [26]: table 6 shows larger sizes d can be found
given (n, k), and table 7 shows smaller k for fixed (n, d).

6.2.3 dQ-RNS
As far as we understood, dQ-RNS was conceived to make
base searching easier than sQ-RNS. The condition for dQ-
RNS was to obtain a single base M of size 2d such that
QR(p,M) = 1 with moduli mi being square numbers. In
that regard, our previous approach still works except we
ignore the construction ofM′ and focus on a largerM.

This simplification can lead to different approaches to
find dQ-RNS bases. For example, to research two RNS base
size of d for dQ-RNS within a set of pseudo-mersenne
numbers I (defined by (n, k)) given p, we could:

1) Remove all m ∈ I such that QR(p,m) 6= 1 from I .
2) Remove all m ∈ I such that m is not square from I .
3) Find, if possibleM′′ ∈ Φ(∅, I) with |M′′| ≥ 2d.
4) SplitM′′ intoM,M′ such that |M| = |M′| = d

Using our filtering methods on both techniques, we
should be able to improve the known scalability of [26]
through larger RNS bases. The work of [26] is non-trivial,
and obtaining provably maximal bases without an exhaustive
search seems to be a hard task at hand, and we leave this as
an interesting open question.

7 SUPPLEMENTARY APPLICATIONS

In this section we provide some examples applications
where the third and fourth method can extract RNS bases
more efficiently.

7.1 Large Interval of many possible bitsizes
It is known that for [2, p] the largest subset of pairwise
coprime numbers are basically all the primes until p. We
previously treated the cases [2n−2n/2, 2n], we are now con-
sidering the cases [2n−2, 2n]: experimentally, the final graph
given by the first method on those sets are not empty, simply
because unicity of representation cannot be guaranteed in
intermediate steps. In particular, we can show in those spe-
cific examples that NewFirstStep+GreedyMerge outperforms
NewFirstStep+NewSecondStep, while proving maximality of
the result using property 4 (i.e no need for further process-
ing).

Table 8
E2’s size within I = [2n−2, 2n] after NewFirstStep constructs E1

n 16 17 18 19 20 21 22 23 24
GreedyMerge 24 32 41 59 81 110 152 204 282

NewSecondStep 23 31 30 50 64 109 123 183 216

7.2 Large Intersection of many intervals
Let I = I1 ∩ ... ∩ Ik. If I is large, using the generic
filtering is not ideal, and the first method does not apply
whenever I is not an interval: we can imagine I being a
mix of Montgomery-friendly integers and pseudo-mersenne
integers of different sizes, or more exotic large sets. In this
case, we can take a simple arbitrary example where I is a
mix between pseudo-Mersenne numbers of various sizes:

I = {a ∈ [2k − c, 2k] | k ∈ [19, 21], c < 216}

It is very easy to verify whether or not an integer belongs
to I , and it also seems that on this example the heuristic at-
tempt using GreedyMerge also directly outputs an optimal
RNS basis giving E2 of size 210 for a total RNS base of 229
moduli (E1 has size 19). However, there is a limit to this
approach over the generic approach: the amount of primes
to manage can be much larger than |I|. If that is the case, the
Generic Filtering method (algorithm 5) could be preferred.

7.3 RNS base coprime with a very large smooth integer
This application is more interesting outside the field of
cryptography, where we attempt to compute ring operations
over a non-prime moduli that might be smooth. In cryp-
tography we usually have to deal with large primes, thus
we usually focus on constructing on RNS bases on small
moduli that are guaranteed to be coprime to the large prime
(to keep operations valid). Suppose for example we want
to simplify operations on random rings ZN using a RNS
approach where N ’s full factorization is unknown: we then
have to create novel RNS bases on the fly for every new N
given. We can reuse our algorithms by preselecting primes,
excluding small prime numbers that are not coprime with
N . If a largest base is not needed but rather a base with a
total bitsize of 2 log2(N), finding good RNS basis on the fly
could be done more efficiently than with previous methods.
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Table 9
Time Comparison

Set Factors (Alg 9) Generic (Alg 5) Filtering [29] Clique [29] New Greedy (Alg 10) Greedy [26], [33]
[29, 210] <0.01s 0.06s < 0.01s > 1h < 0.01s (< 0.01s)
[210, 211] <0.01s 0.11s 86s - < 0.01s (< 0.01s)
[211, 212] <0.01s 0.34s 2612 - 0.12s (0.01s)
[213, 214] 0.01s 30s - - 0.12s (0.01s)
[214, 215] 8.76s 141s - - 0.02s (0.44s)

[224 − 212, 224] 13.4s 0.26s 0.03s - (16.7s) (0.05s)
[228 − 212, 226] 1257s 0.36s 0.05s - (811s) (0.08s)
[252 − 212, 264] - 0.24s 156s - - (0.07s)

[2512 − 212, 2512] - 0.34s > 1h - - (0.07s)
10% of [218, 219] 0.5s 48s n/a - (0.21) (1.22s)
50% of [216, 217] 0.52s 154s n/a - (0.05s) (1.7s)
80% of [215, 216] 4.9s 248s n/a - 0.02s (1.14s)

− is indicating when computational time was too long to be relevant
() is indicating when algorithm did not return optimal basis

bold is indicating the best algorithm for corresponding set

7.4 Comparison

We present in Table 9 computation time of state of the art
methods as well as our new proposals. Our test were per-
fromed on a i7− 8565 CPU based laptop and implemented
in MAGMA2. We perform our test on 3 types of set of
moduli.

• First, we simply grow the size of our set of moduli to
show the impact of the size of the initial set on each
algorithm.

• Secondly, we keep a fix size, but we increase the size
of the moduli themselves to show how it impacts
those methods.

• Finally, we change the density of moduli in a set,
once again to show its impact.

The first four algorithms (from left to right in the table)
guarantee an optimal basis, the last two do not. Note that
we do not test Alg 4 as some of the samples are not intervals,
but test instead Alg 9 as it is simply a slightly slower generic
version.

Table 9 clearly indicates that the best choice:

• when the size of the set is large, is to recompose by
factors when available

• when the size of elements is large, is to apply the
generic technique for random sets

We note also that our new greedy algorithm allows to
often obtain optimal bases in an efficient time if the set is
reasonably dense. Previous greedy solutions rarely give an
optimal basis, whatever is the type of sets studied.

8 CONCLUSION

This work expands the scope of possibilities over research
on the usage of RNS bases, their efficiency and security ap-
plications in two ways: firstly, by presenting more effective
methods to obtain larger bases over any set; and secondly,
by improving the bases exhibited in the recent literature
using the aforementioned methods.

In this extended version, we also presented two novel
algorithms, offering more adapted tools to situations the
previous works could not handle. One of those algorithms

2. http://magma.maths.usyd.edu.au/magma

is heuristic and can prove maximality only under certain
conditions, which differs from the previous approaches.
Those can also still be improved and provide applications
that can apply not just to cryptography but to practical
integer computer arithmetic in the broad sense, for example
computations under integral rings whenever the moduli are
random and extremely large.
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