
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Data-driven project planning: An integrated network
learning, process mining, and constraint relaxation
approach in favor of scheduling recurring projects

Izack Cohen

Abstract—Our focus is on projects, i.e., business processes,
which are emerging as the economic drivers of our times. Differ-
ently from day-to-day operational processes that do not require
detailed planning, a project requires planning and resource-
constrained scheduling for coordinating resources across sub- or
related projects and organizations. A planner in charge of project
planning has to select a set of activities to perform, determine
their precedence constraints, and schedule them according to
temporal project constraints. We suggest a data-driven project
planning approach for classes of projects such as infrastructure
building and information systems development projects. In such
projects, a significant portion of activities recurs within other
organizational projects, which may be similar, while each project
is unique in its realization. The first steps of the suggested ap-
proach include learning a project network from historical records
of similar projects. The discovered network relaxes temporal
constraints embedded in individual projects, thus uncovering
where planning and scheduling flexibility can be exploited for
greater benefit. Then, the network, which contains multiple
project plan variations, is enriched by identifying decision rules
and frequent paths in favor of selecting a specific variation as
the chosen project plan. The planner can rely on the suggested
approach for: 1) Decoding a project variation such that it forms
a new project plan and 2) applying resource-constrained project
scheduling procedures to determine the project’s schedule and
resource allocation. Using two real-world project datasets, we
show that the suggested approach may provide the planner with
significant flexibility (up to a 26% reduction of the critical path
of a real project) to adjust the project plan and schedule. We
believe that the proposed approach can play an important part
in supporting decision making toward automated data-driven
project planning.

Index Terms—Process mining, project planning, data-driven
planning, machine learning, constraint relaxation.

I. INTRODUCTION

Projects are replacing operations as the economic driver of
our times. In Germany, for example, projects accounted for
41% of the GDP in 2019. It is estimated that global project-
oriented economic activity will reach $20 trillion in 2027 with
88 million people working in project management-oriented
roles [1].

Differently from operational processes such as services
(e.g., banking, retail, medical services, call centers etc.), which
are performed by pools of organizational resources without

The author is from the Faculty of Engineering, Bar-Ilan University,
izack.cohen@biu.ac.il

The research was funded under ISF grant no. 226/21
Manuscript received April 19, 2021; revised August 16, 2021.

detailed planning [2], projects are constrained by contractual
obligations and demand significant time and cost investments.
They also have higher complexity and uncertainty levels than
operations [3] and thus require detailed planning, resource
allocation, scheduling, and control. Binding due dates and
milestones are typically associated with penalty/award mecha-
nisms that underscore the importance of detailed, high quality
project planning and execution.

This paper proposes a data-driven project planning approach
that learns from past projects, revealing activity patterns and
decision rules, and relaxing redundant constraints, all of which
can enhance the project modeler’s (i.e., a planner’s) capabili-
ties.

We focus on so-called non-unique projects such as con-
struction projects, aircraft refurbishment and maintenance
projects, and information systems development projects. In
such projects, a significant portion of activities recurs within
other similar organizational projects, yet each project is unique
in its realization. In other words, projects of the same type
(e.g., a 737-400 aircraft C-check) are likely to have many
similar activities although some activities, activity sequences,
and their durations may be different. Adler et al. [4] who
studied such projects stated that “...while projects are often
managed as unique configurations of tasks, in reality different
projects within a given organization often exhibit substantial
similarity in the flow of their constituent activities”. For more
information about characterizing non-unique projects, see [5].

The PMBOK Guide [6], the most popular project manage-
ment standard today, teaches that the preliminary steps before
scheduling a project are to define its activities and then to
sequence them, after which a project network that presents the
relationships between activities can be prepared. To this end,
the PMBOK Guide offers techniques such as acquiring expert
judgement, holding meetings, precedence diagramming, and
establishing a project management information system. These
techniques depend heavily on experience and time-consuming
manual labor. Indeed, due to the scale and complexity of
projects, which include dozens to hundreds of linked activities,
a planner would typically opt to create a new project plan
based on a plan from a similar previous project and modify it
to meet the new project’s requirements.

In fact, analogy-based planning was the common practice in
a large aerospace and defense organization in which the author
worked for many years since it was too complex and time-

0000–0000/00$00.00 © 2021 IEEE

This article has been accepted for publication in IEEE Transactions on Engineering Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEM.2024.3382727

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bar Ilan University. Downloaded on March 30,2024 at 09:14:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

consuming for planners to manually analyze multiple previous
projects.

We believe that the two main difficulties primarily associ-
ated with analogy-based planning approaches are: 1) Basing a
new project plan on a specific previous project ignores other
projects that may be a better starting point for the plan, and 2)
a previous plan and project schedule embed hidden, temporal
organizational constraints that would not necessarily be valid
for the next project. These redundant constraints may restrict
scheduling procedures from converging to optimal schedules.
Two examples of types of redundant constraints are: 1) When
an organization faces high demand, it might not have enough
resources to execute multiple project activities simultaneously.
This limitation forces sequential project planning rather than
performing activities in parallel. When, however, scheduling
a new project under different resource availability conditions,
we aim to identify and alleviate these constraints to enable
more concurrent activities, ultimately reducing project dura-
tions. 2) Specific project circumstances can introduce unique
constraints on activity sequencing that, if generalized to other
projects, might limit efficiency. For instance, in the case of
a crack in an aircraft wing, the necessity to ‘drain fuel from
the wing’ before conducting ‘lower wing maintenance’ might
prolong the overall duration of these two activities, even
though they could be carried out simultaneously in a shorter
timeframe when the wing is in tact.

The conclusion to be drawn from these two examples is that,
if not relaxed, such constraints unnecessarily limit the planning
of a future project and may lead to longer than necessary
durations and to sub-optimal resource allocations.

An additional difficulty derives from the fact that relying on
a previous project plan ‘hides’ other possible project variations
that may be more suitable for the new project.

The fourth industrial revolution [7], which spans our digital
and physical worlds, is generating an abundance of event data
that can be used for discovering, managing, and controlling
processes. Accordingly, we contend that today, almost 70
years after its inception, project management is increasingly
supported by information systems that facilitate project data
collection and analyses. The available data can be used to
solve some of the above-mentioned problems. Nevertheless,
basic planning procedures such as defining activities, their
precedence relations and schedules, still rely on manual work
and do not fully utilize the existing data.

In this work we harness the power of data and process
science to support project management – a combination that,
according to previous studies that mapped the integration of
data science techniques into project management as a knowl-
edge source [8], is sorely lacking. More specifically, we apply
a set of process mining [9] and machine learning techniques
to support the decisions made by a planner regarding the next
project’s plan.

The suggested data-driven approach automatically reviews
data from multiple previous projects to construct a project
network that can be used for planning and scheduling a new
project. For this, we model a project via Petri nets that include
constructs such as AND and XOR splits and joins, and se-
quences of activities. Some of these constructs, such as XOR,

which are not used in traditional project management models
(e.g., activity on node (AON) and activity on arc (AOA)
graphs), enable different project variations within a single
network to emerge and be expressed. The proposed approach
can save planning time and offer the planner flexibility in
choosing a project plan from likely project realization options.

The main contributions of this work to the literature about
project network planning and to decision makers are:

1) Theory and methodology: While there are mature tech-
niques for resource-constrained project scheduling of a
given project network, there is a gap in research about
automated, data-driven approaches to prepare the project
model (see [8]). This paper narrows this gap by suggest-
ing an approach that supports project decision making
and scheduling by harnessing the power of data science,
machine learning, and process mining.

By defining related process mining and project man-
agement concepts, tools from one domain can be used
in the other. For example, data from past projects will
be used to learn a project Petri net that serves to build a
relaxed project model for a current project. This model
can be analyzed easily using a linear mathematical pro-
gram to find the critical path – that is, the shortest project
duration without resource constraints, which is the basis
for resource-constrained project scheduling.

A Petri net, which captures multiple possible project
variations in conjunction with their frequencies, can be
used to distinguish between rare and frequent project
variations and make the project network explainable.
Differently from operational processes in which process
mining is used to measure compliance or for process
enhancement, here the focus is on process mining to assist
decision making vis-à-vis the new project’s plan and its
resource-constrained schedule (see [10] and [12]).
A high-level view of the suggested approach, its flow and
associated tools and techniques, is presented in Figure 1.

2) Practice: We formalize the proposed methodology via an
algorithm and demonstrate it, for the first time as far as
we know, in the context of project planning.

We illustrate possible benefits from the approach using
a running example and two real-life project datasets that
were collected and published in [9, 13]. We believe that
the proposed approach can be applied to project planning
using the suggested algorithm and available tools and
software.

The study is structured as follows: The next section presents
a running example that serves to motivate the approach and to
illustrate its steps. Section III reviews the relevant literature.
Then, Sections IV and V detail the steps of the proposed
approach and formalize them, respectively. Section VI presents
the experiments, and Section VII highlights theoretical and
managerial implications. The last section concludes the paper
and outlines future research directions.

II. MOTIVATING EXAMPLE

Consider a typical event log that stores information about
projects (e.g., apartment building projects, information systems

This article has been accepted for publication in IEEE Transactions on Engineering Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEM.2024.3382727

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bar Ilan University. Downloaded on March 30,2024 at 09:14:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Step 1: Learn a set
of project activities

[Methods:
Preprocessing

and data query]

Step 2: Learn
activity sequences

and project
variations

[Methods: Process
mining for

network discovery]

Step 3: Learn
decision rules

[Methods:
Machine learning]

Step 4: Planner
decisions and

fine-tuning of the
project network

[Methods: Filtering
and judgement]

Apply resource
constrained

project scheduling
techniques, e.g.,
[10], [11],[12]

Our focus

Figure 1. A diagram that provides a high-level view of the flow of the suggested approach and involved tools and techniques.

development projects etc.). Each record typically includes
a project-ID number, an activity/event name, a timestamp
(e.g., start time) and associated duration. In projects, the
data also include information about resources, costs, clients,
performances etc. Table I presents an excerpt from an event
log used for our running example after grouping by project-ID
and ordering the events chronologically by their timestamps.

Project-ID Event-ID Activity Timestamp Duration (h) Client
1 e1 a 13-01-2022T12:00 2:00 CO
1 e2 b 13-01-2022T14:55 4:00 CO
1 e3 c 14-01-2022T08:39 3:30 CO
1 e4 e 03-02-2022T11:47 5:00 CO
2 e1 a 12-09-2020T11:07 2:15 IZ
2 e2 d 20-09-2020T08:40 1:30 IZ
2 e3 e 20-09-2020T11:32 4:30 IZ
3 e1 a 10-12-2021T13:00 2:30 TA
3 e2 c 28-12-2021T10:40 3:00 TA
3 e3 b 10-01-2022T08:55 4:00 TA
3 e4 e 13-02-2022T09:47 3:30 TA
4 e1 a 10-11-2021T15:05 2:00 IZ
4 e2 d 03-02-2022T11:40 1:30 IZ
4 e3 e 05-02-2022T16:22 4:30 IZ
...

...
...

...
...

...

Table I
A SAMPLE EVENT LOG. EACH ORDERED PROJECT FORMS A TRACE.

Let us discuss the idea of learning from several projects
instead of selecting one as our template. Consider, for ex-
ample, a planner who selects Project 1 as a template for
the next project. While our illustration in Figure 2(a) is
intentionally simplistic, basing a new project on a template
of a previous one is a reasonable practice since projects
include dozens or hundreds of activities that make it almost
impossible to manually analyze them, retaining what might
be useful and discarding irrelevancies. The AON network
of Project 1 depicts a sequential project where the minimal
project duration (i.e., the critical path) can be found through
the mathematical program in Equation 1. The formulation
determines the activity start times, Si, ∀i ∈ {a, b, c, d, e} with
the aim of minimizing project duration, which is pa + pb +
pc + pe (pi denotes the duration of activity i) with start times
{Sa = 0, Sb = pa, Sc = pa + pb, Se = pa + pb + pc}.
The implicit assumption in Project 1, carried through to the
next project plan, is that activities should be performed in

succession because of, for example, physical constraints (e.g.,
a wall can be built only after the floor is finished) or resource
limitations for this project (e.g., there are only two resource
units available and each activity requires these two resource
units).

min
Si

Se + pe

s.t. Sb ≥ Sa + pa

Sc ≥ Sb + pb

Se ≥ Sc + pc

Sstart ≥ 0.

(1)

Assume that we reveal, by analyzing several other projects,
that activities b and c can actually be performed in par-
allel (e.g., there is no physical constraint between them).
Consequently, the project network can be formulated as in
Figure 2(b) and the minimal duration can be found using the
following mathematical program (in Section IV we provide
details regarding how to discover a relaxed project network):

min
Si

Se + pe

s.t. Sb ≥ Sa + pa

Sc ≥ Sa + pa

Se ≥ Sb + pb

Se ≥ Sc + pc

Sstart ≥ 0.

(2)

Equation 2 relaxes the precedence constraint between b
and c. Accordingly, the minimal duration of the relaxed
formulation in Equation 2 is pa + max{pb, pc} + pe; thus
time is saved and, moreover, the model can also offer the
flexibility to delay the start time of the activity associated with
min{pb, pc} by max{pb, pc} −min{pb, pc} without delaying
the project completion (denoted as slack in project scheduling).
The duration reduction from this relaxation can amount to
pb + pc − max{pb, pc} = min{pb, pc}, assuming enough
resources to schedule b and c in parallel.

Since the reduction in duration is monotonically non-
decreasing with the number of relaxed constraints, the planner

This article has been accepted for publication in IEEE Transactions on Engineering Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEM.2024.3382727

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bar Ilan University. Downloaded on March 30,2024 at 09:14:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

(a) (b)

Figure 2. Two AON networks that accommodate (a) Project 1 [⟨a, b, c, e⟩] and (b) Projects 1 and 3 [⟨a, b, c, e⟩, ⟨a, c, b, e⟩].

can enjoy increasing flexibility in generating project sched-
ules. For example, consider sorting activities 1, . . . , n in a
decreasing order of duration, i.e., p1 = max{p1, . . . , pn}.
The potential duration reduction from modeling the activities
in parallel compared to a sequential model is

∑n
i=2 pi (in

Section VI, we present the potential duration reduction of
a real-world project). To prepare the new project schedule,
the planner has to take into account resource constraints (e.g.,
workers, cash flow, etc.) and use resource-constrained project
scheduling techniques. We note that resource constraints are
typically temporal, affected by the overall amount of organiza-
tional resources and the amount committed to other ventures
during the new project planning horizon.

III. LITERATURE REVIEW

The mainstream literature about planning a project network
relies on time-consuming manual work that involves defining
activities and sequencing them, typically done by experts
(see [6]). The abundance of data recorded in information
and project systems provides an opportunity to revolutionize
project management as noted in [14]. Indeed, recent studies
encourage using data-driven methods for project management.
For example, Erfani et al. [15] use natural language processing
techniques to identify risks in transportation projects.

This paper agrees with Bakici et al.’s [14] recommendation
to enrich common project network planning practices by using
data-driven methods. Accordingly, this is the focus of the liter-
ature review. Table II lists several data-driven methods that can
be used in project management. Differently from other project
management approaches, the suggested approach allows for
the automatic discovery of a project network that takes into
account previous project variations, relaxes project constraints
to reduce the project duration, and identifies decision rules that
can explain project variations.

Ref Resource Relaxation Decision Rules Model Discovery Real Data
Erfani et al.,2023 – – – +

Joe et al.,2016 – – + –
Zebro and Timinger,2022 – – + –

Vavpotič et al.,2022 – – – +
Kouzari et al.,2023 – – + +

Urrea-Contreras et al.,2022 – – + +
This paper + + + +

Table II
A HIGH-LEVEL VIEW OF RELATED DATA-DRIVEN APPROACHES FOR

PROJECTS WITH RESPECT TO THE SUGGESTED APPROACH’S FEATURES.

Researchers agree that knowledge about how to integrate
process mining techniques into project management is lacking
(see the 2021 review by [8]). Some studies, such as [21],

discuss information systems from which project data can be
extracted without providing examples for the uses of such
data. Despite the increasing importance of projects and the
fundamentally different approach for their planning and man-
agement compared to operational processes, we found only
a few articles that combine project management and process
mining. We review them below.

In 2016, [16] suggested that data from previous recurring
projects can be used to reveal insights about a project type
using the heuristic miner [22], an idea that we follow. Never-
theless, that study and others that followed (e.g., [17]) did
not highlight the aspects that we tackle such as relaxing
resource constraints, revealing decision rules that can guide
the selection of an appropriate project variation, and the added
flexibility and potential improvement in project scheduling and
resource allocation procedures. They likewise did not provide
examples based on real project data.

One stream of research (see [19], [20]) investigated software
development projects by applying process mining techniques
using data from bug closure and issue tracking systems such as
JIRA (e.g., [18]) and version control systems. These systems,
however, cover only the problem solving and version control
aspects of a project. Thus, they cannot be utilized to improve
the project planning aspects on which we focus such as con-
straint relaxation in favor of resource allocation and duration
optimization.

In summary, the current state-of-art in data-driven ap-
proaches for projects is mainly focused on model discovery.
The contribution of this paper includes improving project plan-
ning and scheduling by discovering possible project variations,
their associated decision rules, and constraint relaxation that
may enable shorter project durations and efficient scheduling–
features that are absent from the previous related research.

IV. MODELING APPROACH

A. Preliminaries

We denote a set of events and activities grouped by a
project-ID as a trace – a chronologically-ordered sequence of
events and activities e1, e2, . . . such that t(ej) ≥ t(ei),∀j > i,
where t(ej) is the timestamp (typically, the start time) for
activity j. Each trace represents a chronologically-ordered
project realization (hereafter, we use the term project realiza-
tion). Table I includes three types of project realizations for
the four projects that compose the event log:
L = [⟨a, b, c, e⟩, ⟨a, c, b, e⟩, ⟨a, d, e⟩2], where A is a finite set
of activities such that {a, b, c, d, e} ∈ A. τ denotes a dummy
activity that is not recorded in the log (e.g., when a project

This article has been accepted for publication in IEEE Transactions on Engineering Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEM.2024.3382727

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bar Ilan University. Downloaded on March 30,2024 at 09:14:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

part is not recorded or a dummy activity is needed). Thus, the
full set of activities is A∪ τ . The project realizations in Table
I could be categorized into the three different sequences that
appear in event log L.

In real-world settings, event logs include dozens of projects,
each of which has dozens of activities, making manual network
design hard. Accordingly, we propose an approach for auto-
matically extracting a project model that compactly captures
past realizations and includes information that can help a
planner developing the next project’s network.

B. Modeling Languages

Project networks are typically modeled via precedence
graphs such as AOA or AON. These graphs include activity
sequences and AND splits and joins. Absent constructs such
as exclusive choice (XOR) and inclusive choice (OR) mean
that AOA and AON networks cannot be used for compactly
capturing several project realizations within a single network.
These can be captured, on the other hand, using Petri nets [23]
and process tree representations [9].

A Petri net is a directed bipartite graph consisting of two
types of nodes: places and transitions. Places are depicted as
white circles, while transitions are represented by rectangles.
The nodes are connected via directed arcs; connections be-
tween two nodes of the same type are not allowed. Places may
contain zero or more tokens, which are depicted as black dots.
The distribution of tokens over places describes the state of
the Petri net. A place p is called an input place of a transition
t if there exists a directed arc from p to t. Similarly, p is called
an output place of t if there exists a directed arc from t to p.

Since our main target is to automatically learn and enrich
a network from previous project realizations, we use process
trees and Petri nets for which there are specialized learning
algorithms.

Petri nets, by nature, do not support time and data, have
non-deterministic transition firing, and transitions fire as soon
as possible, which can limit our project planning approach. We
deal with some of these limitations by using a timed Petri net
model, which extends the standard Petri net, and by handling
the data perspectives of projects via machine learning. Other
limitations, which are less relevant for the domain of project
network planning, are eclipsed by the advantages that Petri
nets and associated process mining techniques provide for
learning from previous projects. The mathematical foundations
of Petri nets enable us to formally check network properties
such as correctness and soundness that may be important in
the context of project planning. For example, these checks
enable the planner to verify that a project can be completed,
that there are no dead parts within the network, etc.

We begin by defining a Petri net and a project tree.

Definition 1 (Petri net; see [9] Definition 3.2). A Petri net is
a triplet N = (P, T, F) where P is a finite set of places, T
is a finite set of transitions (activities) such that P ∩ T = ∅,
and F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called
the flow relations. A marked Petri net is a pair (N,M), where
N = (P, T, F) is a Petri net and M ∈ B(P) is a multi-set of

tokens over P denoting the marking of the net. The set of all
marked Petri nets is denoted N .

As an example, the Petri net equivalents of the AONs in
Figure 2(a) and 2(b) are presented in Figure 3(a) and 3(b),
respectively. The two Petri nets are marked – the black token
indicates that the projects are in their start states.

In projects in which transitions typically correspond to ac-
tivities, it is more appropriate to use timed Petri nets [24, 25].
A timed Petri net, in our case, extends the standard Petri net
by associating places or transitions with time to reflect activity
durations. Thus, tokens have an age, representing the time
since their creation. When a timed transition fires, it increases
the age of each token by a specific real number. Essentially,
the definition of a timed Petri net (which is excluded for
compactness) is based on a marked Petri net as defined in
Definition IV-B with a firing time function that assigns a
positive rational number to each transition. As in a standard
Petri net, a transition must be enabled to start and then takes
a positive amount of time to be performed. This reflects
project dynamics – to start execution, an activity’s precedence
relations have to be satisfied, and upon its start, an activity is
processed according to its duration.

Petri nets can be transformed into project trees and vice
versa and each model has its related network discovery algo-
rithms. Thus we define a project tree as follows.

Definition 2 (Project (process) tree; see [9] Definition 3.13).
Let A ⊆ A be a finite set of activities with τ /∈ A.
⊕ = {→,×,∧,⟲} is the set of project tree operators.

• If a ∈ A ∪ {τ}, then Q = a is a project tree,
• if n ≥ 1, Q1, Q2, . . . , Qn are project trees, and
⊕ = {→,×,∧}, then Q = ⊕(Q1, Q2, . . . , Qn) is a
project tree, and

• if n ≥ 2 and Q1, Q2, . . . , Qn are project trees, then
Q =⟲ (Q1, Q2, . . . , Qn) is a project tree.

A project tree includes four types of operators:
⊕ = {→,×,∧,⟲}, where → marks sequential composition,
× denotes exclusive choice, ∧ is a parallel composition, and
⟲ is a redo loop for repetitions of project parts.

Using definitions IV-B, and IV-B, Figure 3 presents three
logs, with their related AONs, and Petri nets. Figure 4 presents
a project tree for the running example (Section IV-C explains
how to discover the process tree from the log). For our simple
running example, one can see that the Petri net in Figure 3(c)
and the project tree in Figure 4 accommodate all three project
variations (realization patterns) while an AON model is more
limited and cannot capture the set of all three types of
projects from Table I. The former models are associated with
algorithms that facilitate automatic learning from an event log,
which makes them especially suitable for our needs. In the next
section we present one such learning approach.

C. Learning a Project Model

We aim to learn a project model from an event log of past
projects. Process mining offers several model learning algo-
rithms such as inductive mining (IM), fuzzy miner, heuristic
miner, ILP-based algorithms, genetic miner and more (see [9]).

This article has been accepted for publication in IEEE Transactions on Engineering Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEM.2024.3382727

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bar Ilan University. Downloaded on March 30,2024 at 09:14:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

(a) (b) (c)

Figure 3. AON, Petri net and project tree models (from top down, respectively) for three project realization logs: (a) L = [⟨a, b, c, e⟩], (b)
L = [⟨a, b, c, e⟩, ⟨a, c, b, e⟩], and (c) L = [⟨a, b, c, e⟩, ⟨a, c, b, e⟩, ⟨a, d, e⟩]. Note that an AON model cannot model the log.

Figure 4. The project tree for the running example.

In this paper, we use the IM algorithm since it can handle large
logs while ensuring formal properties such as correctness and
the ability to rediscover the source model. Some of the listed
weaknesses of IM such as its generalization ability, reliance on
directly-follows graphs (DFGs), and frequency-based relations
are actually a benefit in the context of project planning, as
we will elaborate on later in this paper. We acknowledge that
alternative discovery algorithms are available but exploring
them is outside the scope of this paper (for a review of
contemporary discovery methods refer to [26]). Next, we
present the main principles of the IM algorithm [27, 28] and
illustrate them using the running example.

IM discovers a tree that can be transformed easily into a
Petri net model and vice versa. Petri nets form mathematically
sound, rich network representations and include constructs
such as AND, exclusive choice (XOR), loops, and execution
semantics that enable model verification. IM is used to learn
a project model from historical realizations, which makes it
qualify as a major component within the proposed automatic
data-driven project planning approach.

IM recursively splits a log L into smaller and smaller sub-
logs by applying four types of cuts that represent the operators
{→,×,∧,⟲}: → sequence, × exclusive choice, ∧ parallel
composition, and ⟲ redo loop. Each sub-log, which includes
a set of sub-traces, is split again until each sub-trace includes
a single activity.

The first step identifies links between activity couples that
directly follow each other in the different traces in favor

of constructing the DFG for the project log. We note that
observing a project in which one activity directly follows
another activity is a necessary but not sufficient criterion to
establish a predecessor–successor relationship between them
since the two activities may be concurrent; for example, in
the running example of Table I in Project 1, b → c but
this observation does not constitute a predecessor–successor
relationship since in Project 3, b→ c.

First, let us define a DFG.

Definition 3 (Directly-follows graph). A DFG is a pair G =
(A,F) where A ⊆ A is a finite set of activities, ▶,■ /∈ A are
dummy start and end nodes, respectively, and F ∈ (A×A)∪
(▶×A) ∪ (A×■) ∪ (▶×■)) is a multi-set of arcs.

Figure 5 presents the DFG for the event log in Table I –
L = [⟨a, b, c, e⟩, ⟨a, c, b, e⟩, ⟨a, d, e⟩2].

Figure 5. DFG of L = [⟨a, b, c, e⟩, ⟨a, c, b, e⟩, ⟨a, d, e⟩2]. Numbers denote
frequencies.

Let us mathematically define the cuts applied on a DFG that
was constructed based on event log L (e.g., [27]). We illustrate
some of the cuts using our running example.

Definition 4 (Cuts of DFG). Given a DFG for event log L,
G(L) = (A,F), an n-degree cut (n ≥ 1) partitions L into
n disjoint sets of activities A1, A2, . . . , An such that AL =
∪i∈{1,...,n}Ai and Ai ∩Aj = ∅ ∀i ̸= j.

There are four types of cuts, each of which corresponds
to one project tree operator ⊕ = {→,×,∧,⟲}, where →
marks sequence composition, × denotes exclusive choice, ∧
is a parallel composition, and ⟲ is a redo loop for repetitions
of project parts. The conditions for defining each cut of G(L)
are:

• A sequence cut, denoted by (→, A1, A2, . . . , An), satis-
fies ∀i, j ∈ {1, . . . , n} ∀a ∈ Ai ∀b ∈ Aj i < j ⇒ a 7→+

This article has been accepted for publication in IEEE Transactions on Engineering Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEM.2024.3382727

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bar Ilan University. Downloaded on March 30,2024 at 09:14:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

(a) (b) (c)

Figure 6. Three cuts made by the IM algorithm performed on respective DFGs of the running example: (a) A sequence cut → on log
[⟨a, b, c, e⟩, ⟨a, c, b, e⟩, ⟨a, d, e⟩2], (b) an exclusive-choice cut × on the sub-log [⟨b, c⟩, ⟨c, b⟩, ⟨d⟩2], and (c) an AND cut ∧ on sub-log [⟨b, c⟩, ⟨c, b⟩].

b∧b ̸7→+ a, where a 7→+ b denotes that the DFG includes
a non-empty path from a to b.

• An exclusive-choice cut, denoted by (×, A1, A2, . . . , An),
satisfies ∀i, j ∈ {1, . . . , n} ∀a ∈ Ai ∀b ∈ Aj i ̸= j ⇒
a ̸→ b.

• A parallel cut, denoted by (∧, A1, A2, . . . , An), satisfies:
– ∀i ∈ {1, . . . , n}Ai∩Astart ̸= ∅∧Ai∩Aend ̸= ∅, where
Astart, Aend are the sets of start and end activities in
L, respectively, and

– ∀i, j ∈ {1, . . . , n} ∀a ∈ Ai ∀b ∈ Aj i ̸= j ⇒ a→ b.
• A redo loop cut, denoted by (⟲, A1, A2, . . . , An), satis-

fies:
– n ≥ 2,
– Astart ∪Aend ⊆ A1,
– {a ∈ A1|∃i ∈ {2, . . . , n}∃b ∈ Ai a→ b} ⊆ Aend,
– {a ∈ A1|∃i ∈ {2, . . . , n}∃b ∈ Ai b→ a} ⊆ Astart,
– ∀i, j ∈ {2, . . . , n} ∀a ∈ Ai ∀b ∈ Aj i ̸= j ⇒ a ̸→ b,
– ∀i ∈ {2, ..., n} ∀b ∈ Ai∃a ∈ Aend a → b ⇒ ∀a′ ∈
Aend a′ → b, and,

– ∀i ∈ {2, ..., n} ∀b ∈ Ai∃a ∈ Astart b → a ⇒ ∀a′ ∈
Astart b→ a′.

A cut (⊕, A1, A2, . . . , An) of G(L) is maximal if there
is no other cut (⊕, A1, A2, . . . , Am) with m > n.

For the running example, the first cut, illustrated in Fig-
ure 6(a), is the sequence cut (→) that splits the log into three
sub-logs [⟨a⟩4], [⟨b, c⟩, ⟨c, b⟩, ⟨d⟩2], and [⟨e⟩4]. Two of the sub-
logs are singletons and cannot be split further.

The next IM cut for sub-log [⟨b, c⟩, ⟨c, b⟩, ⟨d⟩2] is the
exclusive-choice cut (×), as can be seen in Figure 6(b). The
resulting sub-logs are [⟨a⟩4], [⟨b, c⟩, ⟨c, b⟩], [⟨d⟩2] and [⟨e⟩4].
Again, two of the sub-logs are singletons and cannot be split
further.

The final cut splits the sub-log [⟨b, c⟩, ⟨c, b⟩] using the AND
(∧) cut as presented in Figure 6(c). At this point, all sub-
logs are singletons. The resulting process tree is presented in
Figure 4. Note we can use the frequencies of the sub-logs
that are marked as superscripts (e.g., [⟨e⟩4] indicates that e
happened four times) to enrich the project tree with additional
information. In Section IV-D we show how a planner can
use these frequencies to filter out rare project variations. The
enriched project tree in Figure 4 can easily be represented as
an enriched Petri net.

D. Deciding on the Project Model

The output of Section IV-C is a project tree or a Petri net that
accommodates a variety of possible project realizations. In our

running example, the project tree in Figure 4 represents three
possible realizations: ⟨a, b, c, e⟩, ⟨a, c, b, e⟩, which represent
the same type of project in which a precedes b and c that can
be done in parallel, and ⟨a, d, e⟩. Differently than operational
process that are not explicitly scheduled, when planning a
project a specific variation (a model path) must be selected
as the project plan, which is used for allocating resources,
deciding on a schedule linked to payment milestones etc. To
help the planner in choosing a project variation, we augment
the model with decision rules at exclusive-choice splits and
joins, and by filtering out rare project variations based on their
frequency.

1) Filtering by Frequencies: Simplifying a project model
by filtering can be done in several ways such as not considering
less frequent project activities, less frequent project varia-
tions (activity sequences) or arcs in the DFG. Distinguishing
between less and more probable network paths has been
studied in the context of project management (see [5],[29])
and in the context of process mining ([28],[30],[31],[32]).
The approach we take is to construct a model based on the
complete event log and then filter out paths with a ‘slower’
flow according to a specified threshold. In other words, the
planner eliminates project variations that are considered rare.
We illustrate the idea using the running example. Assume that
the complete event log in Table I includes 100 projects that can
be represented as L = [⟨a, b, c, e⟩45, ⟨a, c, b, e⟩53, ⟨a, d, e⟩2].

As noted in Section IV-C, it is easy to uncover a project tree
annotated with frequencies and represent it as a Petri net. For
illustration, in Figure 7(a)), we present the frequency-enriched
Petri net that was learned from the running example. Assuming
that a planner wants to eliminate rare project variations by
using a filter of 5% of the cases, we get the reduced model
presented in Figure 7(b)), which does not contain activity d.
For realistic models, the number of variations can be high;
thus, filtering can enable the planner to focus on project
variations deemed more important.

2) Explaining the Model: Project datasets include much
more than the basic details needed for learning a network.
Typically, there are project-level features such as the client’s
name, budget details, and manager’s name, and activity-level
features such as durations, start and completion dates, cash
inflows and outflows, the types and amounts of the required
resources, and more. A project can be presented as a feature
vector and machine-learning techniques such as regression,
decision trees and deep learning networks can be used to
explain a selected label and to generate predictions of values
of interest.

This article has been accepted for publication in IEEE Transactions on Engineering Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEM.2024.3382727

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bar Ilan University. Downloaded on March 30,2024 at 09:14:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

(a) (b)

Figure 7. Petri nets for L = [⟨a, b, c, e⟩45, ⟨a, c, b, e⟩53, ⟨a, d, e⟩2] (a) A model with frequencies, and (b) a reduced model with a 5% filter. Places are
labeled start, p1, p2, p3, p4, end.

Project-ID Feature-1 Feature-2 · · · {b, c}
1 CO $ 50,000 · · · TRUE
2 IZ $ 10,000 · · · FALSE
3 TA $ 85,000 · · · TRUE
4 IZ $ 10,000 · · · FALSE
...

...
...

...
...

...
...

Table III
EXAMPLE DATA FOR PREDICTING WHETHER THE CLASS LABEL IS {b, c}.

Explainable models is an active research area in machine
learning (see the paper by Singer and Cohen [33] on explain-
able decision trees). This idea was denoted in process mining
as decision mining [34] or revealing guards [35]. Guards are
decision rules that determine if, in a given process state,
the data variables will allow a transition to become enabled.
Contrary to the standard way in which decision rules are used
in processes to determine the next process branch from several
alternatives (e.g., a XOR split), in the present paper they
function as an aid for planners for selecting a single alternative
branch at XOR splits (and joins) to include in the network
configuration of a new project.

We illustrate the idea using the running example. Table I
includes supervised data that can be used for learning the Petri
net in Figure 7(a) and for training and validation of a machine-
learning model that learns decision rules. For the running
example, places p1 and p2, each of which has two exclusive
output branches, constitute a decision point. Learning the
decision point is equivalent to identifying the conditions under
which either the set of activities {b, c} or activity d would
be realized. The key idea is to re-arrange the data such that
the predicted class label would be either the set {b, c} or {d}
after activity a, and the independent variables are selected data
features. We illustrate such a data arrangement in Table III.
For the running example, it is easy to see that if client=“IZ”,
then d and otherwise {b, c}. Most cases are more involved
but nonetheless it is simple to apply standard classification or
regression machine-learning models to identify decision rules.
Tagging a model as shown in Figure 8 can help the planner
decide on the new project’s configuration.

V. FORMALIZATION OF THE APPROACH

Algorithm 1 formalizes the suggested planning framework.
The algorithm’s input is a dataset D that contains execution
data about a class of organizational projects. Examples of
project classes include Boeing 767 aircraft passenger-to-cargo
conversion projects or apartment building project, among

Figure 8. The Petri net of the running example with decision rule information.
Places are labeled start, p1, p2, p3, p4, end.

various others. There are several hyperparameters that can
be set to a value or iteratively altered by the planner. The
frequency threshold parameter, γ, controls how much noise
is filtered. Choosing a value of 0.2, for example, will result
in keeping only project paths in which more than 20% of
the traffic flows. Higher γ values amount to keeping only the
most frequent project variations. Another parameter that the
planner can choose is whether to extract decision rules – done
by setting d to 1. The dataset, D, is initialized to an event log
structure – that is, to a multi-set of chronologically-ordered
project executions. Then, a learning algorithm is applied to L
to learn a project tree Q (Line 1) that can be represented as
a Petri net model N (Line 2), which is the starting point for
further analyses. We note that we learn project models using
IM. It is, however, worth mentioning that planners have the
flexibility to choose alternative learning models.

A model refinement procedure is defined in Lines 3–14
for a planner who wants to refine N and see its highways
(γ > 0). The model’s flow relations are scanned (Line 4) and
each flow is annotated with its corresponding frequency f(e)
(Line 5) – how to extract the corresponding frequencies easily
is explained in the last paragraph of Section IV-C. Essentially,
the threshold is translated into traffic conditions (Line 6) and
flow relations that do not meet the threshold are filtered out
(Line 7).

Removal of flow relations may create unconnected activities
that need to be removed. We denote unconnected activities
as those that have empty sets of input and output places •t
and t•, respectively, and remove them in Line 10. Likewise,
we remove unconnected places (Line 11). Finally, the refined
project model is returned (Line 13).

The algorithm is designed to use the filtered model (for
γ > 0) for decision rule learning, when d = 1 (Line 15), but
it can also use the unfiltered model. Decision rules are stored
in a set, Rules, of tuples (r, dr), where r is a decision point
and dr is its respective decision rule. First, Rules is set to an
empty set (Line 16). Next, decision points, which are exclusive

This article has been accepted for publication in IEEE Transactions on Engineering Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEM.2024.3382727

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bar Ilan University. Downloaded on March 30,2024 at 09:14:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

choice points (places) with two or more output activities, are
mapped into set R (Line 17). R may include many decision
points; thus, a planner may prefer to learn only a sub-set, R

′
,

of decision points that they deem more important (Line 18).
For each selected decision point (Line 19), D is arranged to
facilitate the use of a machine-learning algorithm with selected
features (see Table III and Line 20). In Lines 21–22, a rule
is learned and added to the set of rules. Lastly, the project
network and the set of rules are returned.

Algorithm 1 Data-driven project planning
input : project dataset D, the number of recorded

projects n, hyperparameters: a frequency
threshold γ ∈ [0, 1) (0 means no filtering),
decision rule learning d ∈ {0, 1} (0 for not
considering decision rules)

output : a filtered project Petri net N , a set of tuples
(r, dr), where r ∈ R

′
is a set of selected

decision points, dr is the decision rule for r
and their rules Rules

initialization: represents dataset D as an event log L.

1 learn a project tree Q that corresponds to L
// apply the inductive miner (see
Section IV-C)

2 represent the project tree as a Petri net N = (P, T, F)
3 if γ > 0 then

// filtering, see Section IV-D1
4 for each flow relation e ∈ F do
5 annotate e ∈ F with its frequency f(e) ∈ N
6 if f(e) < ⌈n · γ⌉ then
7 F ← F \ e // filter out
8 end
9 end

10 T ← {t| • t ∧ t• ≠ ∅} // remove unconnected
activities

11 P ← {p| • p ∧ p• ̸= ∅} // remove unconnected
places

1313 return Petri net N = (P, T, F)
14 end
15 if d = 1 then

// learning decision rules, see Section
IV-D2

16 Rules = ∅ // set of tuples of decision
points and decision rules (r, dr)

17 R = {p ∈ P | |p • | > 1} // places with two or
more outgoing flow relations

18 select a subset of relevant decision points R
′ ⊆ R

19 for each decision point r ∈ R
′

do
20 arrange D as a vector with selected features
21 learn r and produce dr
22 Rules← (r, dr)
23 end
24 return Petri net N = (P, T, F) and Rules
25 end

The planner now has an enriched model that captures
activities, which can be performed in parallel, relevant project

variations, and decision rules. This model is the starting point
for performing resource-constrained project scheduling.

Figure 9. A Petri net of apartment finishing projects with 16 possible
variations. Black transitions indicate τ activity – that is, no activity or a
dummy activity.

VI. EXPERIMENTS

Datasets of real-world recurring projects record sensitive
commercial and procedural information, which is why such
datasets are typically not publicly available. We demonstrate
the suggested approach by using the only publicly available
real-world database, to the best of our knowledge, of recurring
projects that has the required information (see Batselier and
Vanhoucke [13] and Vanhoucke et al. [36]). This database is
an ongoing initiative led by Prof. Mario Vanhoucke et al.,
continuously expanding with the addition of new projects.

A. Data and Preprocessing

We used the finishing projects dataset to illustrate model
construction, constraint relaxation, and making the model
explainable. Then, we used data about residential homes to
demonstrate a more complex project type and the magnitude
of possible flexibility gains, in terms of possible duration
reductions. These two datasets include a collection of apart-
ments being finished and residential home building projects
that were performed between 2015–2017. Each dataset details
many project attributes such as activity names, start dates
and durations, costs and resources. Preprocessing included
standardizing activity labels such that a similar activity will
have the same label across projects and arranging the dataset
into an event log format. Once this was done, we applied IM
for learning a project network and a classification decision tree
for revealing decision rules. For our experiments, we used an
Altair software tool – the RapidMiner, and Python with the
Pm4py package.

B. Discussion of Analyses and Results

The apartment finishing project model, revealed by applying
the IM algorithm, is structured in the sense that the projects are
relatively serial with a small amount of concurrency. Overall,
the learned Petri net accommodates 16 possible project varia-
tions, as can be seen in Figure 9.

Next, we applied a classification decision tree to make the
model explainable by learning exclusive choices that can guide
the planner in selecting a specific project variation for the next
planned project. For example, the exclusive choice between the
‘floor infills’ and ‘sprayed PU insulation’ activities is decided
by whether the apartment under work is on the ground floor
or not. The Petri net in Figure 9 presents the learned decision

This article has been accepted for publication in IEEE Transactions on Engineering Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEM.2024.3382727

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bar Ilan University. Downloaded on March 30,2024 at 09:14:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

Figure 10. The learned Petri net of residential house construction projects. Black transitions indicate a τ activity – that is, no activity or a dummy activity.

rule on the arcs that lead to the activities. Obviously, such
decision rules can guide the selection of activities and their
sequencing – in this case, including a floor insulation activity
in ground floor apartments.

Next, we developed a model of residential house construc-
tion projects. The corresponding Petri net is depicted in Fig-
ure 10. The model relaxes multiple constraints, which cannot
be uncovered by inspecting an individual project, to show the
activities that can now be done in parallel. For example, the
baseline duration of project 2016 − 11, which is 241 days,
could be shortened to 178 days using the developed project
model when considering the same planned activity durations.
This consideration translates into a significant amount of
activity slack and thus to resource allocation flexibility and
potential shortening of a project’s duration. While the learned
project relaxed many constraints that were implemented in
individual project plans due to temporal constraints and even
though resource constraints should be considered when prepar-
ing the project schedule, the planner has much more flexibility
owing to the additional 63 days that were stripped from the
past project’s resource constraints.

VII. THEORETICAL AND MANAGERIAL IMPLICATIONS

This paper models non-unique projects as processes with
similar activity sequence patterns, and shared decision rules
and resources. Such a view enables marrying project planning,
process mining, and machine learning — a new paradigm
in project management. The suggested data-driven project
planning framework is a first step toward automated project
planning, offering a project planner enhanced capabilities by
automatically learning from past projects, revealing decision
rules, and relaxing resource constraints.

Managers can use this approach to improve the efficiency
and effectiveness of project planning and scheduling, which
can lead to better project outcomes and higher customer
satisfaction. The proposed approach can also help managers
identify potential risks and opportunities in the project plan
and schedule, which can lead to better decision making and
resource allocation.

The approach offers other benefits as well. The different
variations embedded in an enriched project network can assist
planners trying to determine or predict the next project vari-
ation. Moreover, discovering project shortening opportunities
can increase the competitiveness and the throughput rate of
projects.

Equally important, the approach can easily be implemented
using organizational information about previous projects and
standard process mining and machine learning tools. For ex-
ample, organizations can use the popular Python programming
language that includes process mining and machine learning
packages or other tools that do not require programming
knowledge (e.g., RapidMiner by Altair). Some of the high-
lighted ideas can be used in project planning practices even
before implementing the approach; for example, planners can
rely on several similar projects to plan the next project rather
than rely on a single previous project. Implementing the
approach for the first time can reveal significant improvement
opportunities. Nevertheless, as more data are accumulated, it
is worthwhile to rerun the approach to discover additional
improvement opportunities hidden in the new data.

VIII. CONCLUSIONS

We propose a data-driven project planning approach that
uses historical projects’ records in conjunction with process
mining and data science techniques. The approach combines
learning a project network from previous similar projects and
enriching the network with information about probable paths
and decision rules.

The approach, which examines and learns from multiple
similar projects, enables the relaxing of constraints imposed
on individual projects due to temporal resource constraints or
specific project circumstances that dictated activity sequences
in past projects. It also uncovers a variety of project configura-
tions from which one should be selected as the plan for a new
project. Relieving constraints necessarily shortens the critical
path (by 26% for a real project), thus enabling the planner
to shorten the project when applying resource-constrained
scheduling. This is the first time, to the best of our knowledge,
that a real-world project dataset is used to demonstrate data-
driven project network planning. The suggested approach
integrates project planning and data science techniques. As
a last stage, common resource-constrained project scheduling
approaches can be applied to the relaxed project network to
decide on the project schedule.

A limitation of the suggested approach is that it can be
implemented only in organizations in which project data
are available. The absence of publicly available datasets on
recurring projects restricts this research from estimating the
extent of flexibility gains across various projects from differ-

This article has been accepted for publication in IEEE Transactions on Engineering Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEM.2024.3382727

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bar Ilan University. Downloaded on March 30,2024 at 09:14:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

ent domains. Nevertheless, the constraint relaxation approach
ensures the realization of such gains.

As future research directions, we propose to: 1) Develop
additional real-world recurring project datasets from different
domains such as healthcare, engineering projects, pharmaceu-
tical drug development etc., 2) develop data-driven artificial
intelligence-based scheduling mechanisms, and 3) extend the
approach into project control to complement common project
control mechanisms such as the earned value model.

REFERENCES

[1] A. Nieto-Rodriguez, “The project economy has arrived
use these skills and tools to make the most of it,” Harvard
Business Review, vol. 99, no. 6, pp. 38–45, 2021.

[2] E. Chocron, I. Cohen, and P. Feigin, “Delay predic-
tion for managing multiclass service systems: An in-
vestigation of queueing theory and machine learning
approaches,” IEEE Transactions on Engineering Man-
agement, 2022.

[3] A. S. Bravo, D. R. Vieira, C. Bredillet, and R. Pin-
heiro, “Review of collaborative project management ap-
proaches in R&D projects,” Managing Collaborative
R&D Projects: Leveraging Open Innovation Knowledge-
Flows for Co-Creation, pp. 47–63, 2021.

[4] P. S. Adler, A. Mandelbaum, V. Nguyen, and E. Schw-
erer, “From project to process management: An
empirically-based framework for analyzing product de-
velopment time,” Management Science, vol. 41, no. 3,
pp. 458–484, 1995.

[5] I. Cohen, A. Mandelbaum, and A. Shtub, “Multi-project
scheduling and control: A process-based comparative
study of the critical chain methodology and some al-
ternatives,” Project Management Journal, vol. 35, no. 2,
pp. 39–50, 2004.

[6] Project Management Institute, A guide to the project
management body of knowledge (PMBOK Guide), 6th
ed. Project Management Institute, 2017.

[7] K. Schwab, The fourth industrial revolution. Currency,
2017.

[8] P. Zerbino, A. Stefanini, and D. Aloini, “Process science
in action: A literature review on process mining in
business management,” Technological Forecasting and
Social Change, vol. 172, p. 121021, 2021.

[9] W. M. Van der Aalst, Process mining: data science in
action. Springer, 2016.

[10] P. Brucker, A. Drexl, R. Möhring, K. Neumann
et al., “Resource-constrained project scheduling: No-
tation, classification, models, and methods,” European
Journal of Operational Research, vol. 112, no. 1, pp.
3–41, 1999.

[11] P. Lamas and E. Demeulemeester, “A purely proactive
scheduling procedure for the resource-constrained project
scheduling problem with stochastic activity durations,”
Journal of Scheduling, vol. 19, pp. 409–428, 2016.

[12] N. Balouka and I. Cohen, “A robust optimization ap-
proach for the multi-mode resource-constrained project
scheduling problem,” European Journal of Operational
Research, vol. 291, no. 2, pp. 457–470, 2021.

[13] J. Batselier and M. Vanhoucke, “Construction and eval-
uation framework for a real-life project database,” Inter-
national Journal of Project Management, vol. 33, no. 3,
pp. 697–710, 2015.

[14] T. Bakici, A. Nemeh, and Ö. Hazir, “Big data adoption in
project management: insights from french organizations,”
IEEE Transactions on Engineering Management, 2021.

[15] A. Erfani, Q. Cui, G. Baecher, and Y. H. Kwak, “Data-
driven approach to risk identification for major trans-
portation projects: A common risk breakdown structure,”
IEEE Transactions on Engineering Management, 2023.

[16] J. Joe, T. Emmatty, Y. Ballal, and S. Kulkarni, “Process
mining for project management,” in 2016 International
Conference on Data Mining and Advanced Computing
(SAPIENCE). IEEE, 2016, pp. 41–46.

[17] K. Zebro and H. Timinger, “Process mining in project
management for smart cities,” in 2022 IEEE European
Technology and Engineering Management Summit (E-
TEMS). IEEE, 2022, pp. 30–35.

[18] D. Vavpotič, S. Bala, J. Mendling, and T. Hovelja,
“Software process evaluation from user perceptions and
log data,” Journal of Software: Evolution and Process,
vol. 34, no. 4, p. e2438, 2022.

[19] E. Kouzari, L. Sotiriadis, and I. Stamelos, “Enterprise
information management systems development two cases
of mining for process conformance,” International Jour-
nal of Information Management Data Insights, vol. 3,
no. 1, p. 100141, 2023.

[20] S. J. Urrea-Contreras, B. L. Flores-Rios, F. F. González-
Navarro, M. A. Astorga-Vargas et al., “Process mining
model integrated with control flow, case, organizational
and time perspectives in a software development project,”
in 2022 10th International Conference in Software Engi-
neering Research and Innovation (CONISOFT). IEEE,
2022, pp. 92–101.

[21] J. De Weerdt and M. T. Wynn, “Foundations of process
event data,” Process Mining Handbook. LNBIP, vol. 448,
pp. 193–211, 2022.

[22] A. Weijters, W. M. van Der Aalst, and A. A.
De Medeiros, “Process mining with the heuristics miner-
algorithm,” Technische Universiteit Eindhoven, Tech.
Rep. WP, vol. 166, no. July 2017, pp. 1–34, 2006.

[23] C. A. Petri, “Communication with automata,” PhD Dis-
sertation, 1966.

[24] W. M. Zuberek, “Timed petri nets and preliminary per-
formance evaluation,” in Proceedings of the 7th annual
Symposium on Computer Architecture, 1980, pp. 88–96.

[25] W. M. van der Aalst, “Petri net based scheduling,”
Operations-Research-Spektrum, vol. 18, pp. 219–229,
1996.

[26] A. Augusto, J. Carmona, and E. Verbeek, “Advanced pro-
cess discovery techniques,” in Process mining handbook.
Springer, 2022, pp. 76–107.

[27] S. J. Leemans, D. Fahland, and W. M. Van Der Aalst,
“Discovering block-structured process models from event
logs-a constructive approach,” in International confer-
ence on applications and theory of Petri nets and con-
currency. Springer, 2013, pp. 311–329.

This article has been accepted for publication in IEEE Transactions on Engineering Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEM.2024.3382727

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bar Ilan University. Downloaded on March 30,2024 at 09:14:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[28] ——, “Discovering block-structured process models
from event logs containing infrequent behaviour,” in
International Conference on Business Process Manage-
ment. Springer, 2013, pp. 66–78.

[29] I. Cohen, B. Golany, and A. Shtub, “Managing stochastic,
finite capacity, multi-project systems through the cross-
entropy methodology,” Annals of Operations Research,
vol. 134, no. 1, pp. 183–199, 2005.

[30] S. J. Leemans, F. M. Maggi, and M. Montali, “Reasoning
on labelled petri nets and their dynamics in a stochastic
setting,” in International Conference on Business Process
Management. Springer, 2022, pp. 324–342.

[31] E. Bogdanov, I. Cohen, and A. Gal, “Conformance
checking over stochastically known logs,” in Interna-
tional Conference on Business Process Management.
Springer, 2022, pp. 105–119.

[32] ——, “Sktr: Trace recovery from stochastically known
logs,” in 2023 5th International Conference on Process
Mining (ICPM). IEEE, 2023, pp. 49–56.

[33] G. Singer and I. Cohen, “An objective-based entropy
approach for interpretable decision tree models in support
of human resource management: The case of absenteeism
at work,” Entropy, vol. 22, no. 8, p. 821, 2020.

[34] A. Rozinat and W. M. van der Aalst, “Decision min-
ing in prom,” in Business Process Management: 4th
International Conference, BPM 2006, Vienna, Austria,
September 5-7, 2006. Proceedings 4. Springer, 2006,
pp. 420–425.

[35] F. Mannhardt, M. De Leoni, H. A. Reijers, and W. M.
Van Der Aalst, “Balanced multi-perspective checking of
process conformance,” Computing, vol. 98, pp. 407–437,
2016.

[36] M. Vanhoucke, J. Coelho, and J. Batselier, “An overview
of project data for integrated project management and
control,” Journal of Modern Project Management, vol. 3,
no. 3, pp. 6–21, 2016.

Izack Cohen is a researcher (associate professor) in the Faculty of Engi-
neering at Bar-Ilan university. His academic education is from the Technion
– Israel Institute of Technology. Izack’s current research spans process
modeling, optimization, and data-driven decision-making.

This article has been accepted for publication in IEEE Transactions on Engineering Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEM.2024.3382727

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Bar Ilan University. Downloaded on March 30,2024 at 09:14:04 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Motivating Example
	Literature Review
	Modeling Approach
	Preliminaries
	Modeling Languages
	Learning a Project Model
	Deciding on the Project Model
	Filtering by Frequencies
	Explaining the Model

	Formalization of the Approach
	Experiments
	Data and Preprocessing
	Discussion of Analyses and Results

	Theoretical and Managerial Implications
	Conclusions
	Biographies
	Izack Cohen

