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Abstract

Optimal synthesis of reversible functions is a non-trigigdblem. One of the major limiting factors in computing
such circuits is the sheer number of reversible functiomenEestricting synthesis to 4-bit reversible functiorsites
in a huge search space (16!2** functions). The output of such a search alone, counting iva\space required to
list Toffoli gates for every function, would require over&erabytes of storage.

In this paper, we present two algorithms: one, that syrzlessin optimal circuit for any 4-bit reversible specifica-
tion, and another that synthesizes all optimal implemériat We employ several techniques to make the problem
tractable. We report results from several experimentdudtieg synthesis of all optimal 4-bit permutations, syn-
thesis of random 4-bit permutations, optimal synthesisllof-it linear reversible circuits, synthesis of existing
benchmark functions; we compose a list of the hardest patioas to synthesize, and show distribution of optimal
circuits. We further illustrate that our proposed approaety be extended to accommodate physical constraints via
reporting LNN-optimal reversible circuits. Our resultssedmportant implications in the design and optimization
of reversible and quantum circuits, testing circuit systhéeuristics, and performing experiments in the area of
guantum information processing.

1 Introduction

To the best of our knowledge, at present, physically rels&rdechnologies are found only in the quantum domain
[12]. However, “quantum” unites several technological@@ghes to information processing, including ion traps, op

tics, superconducting, spin-based and cavity-based tdopies [12]. Of those, trapped ions [5] and liquid state NMR

(Nuclear Magnetic Resonance) [13] are two of the most d@esl@uantum technologies targeted for computation
in the circuit model (as opposed to communication or adialzamputing). These technologies allow computations
over a set of 8 qubits and 12 qubits, correspondingly.

Reversible circuits are an important class of computatibatneed to be performed efficiently for the purpose
of efficient quantum computation. Multiple quantum aldomits contain arithmetic units such as adders, multipliers,
exponentiation, comparators, quantum register shiftspanchutations, that are best viewed as reversible circuits.
Moreover, reversible circuits are indispensable in quargtror correction [12]. Often, the efficiency of the revblsi
implementation is the bottleneck of a quantum algorithrg.(énteger factoring and discrete logaritimi[19]) or even
a class of quantum circuits (e.g., stabilizer circuiis .[1])

In this paper, we report algorithms that find optimal ciréaiplementations for 4-bit reversible functions. These
algorithms have a number of potential uses and implications

One major implication of this work is that it will help physsts with experimental design, since fore-knowledge
of the optimal circuit implementation aids in the controkouantum mechanical systems. The control of quan-
tum mechanical systems is very difficult, and as a result x@amtalists are always looking for the best possible
implementation. Having an optimal implementation helpsiiprove experiments or show that more control over a
physical system needs to be established before a certagmiment could be performed. To use our results in practice
requires defining minimization criteria (e.g., implemdiwa cost of gates VS depth VS architecture, etc.) dictated b
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a particular technology used, that may differ from one quamihformation processing approach to another. Conse-
guently, in this paper, we ignored such physical constsalmit concentrated on the minimization of the gate count.
This serves as a proof of principle, showing that the seargossible in any practical scenario. We further explain
how to modify our algorithms to account for more complex giteninimization criteria in Sectiohl6, and illustrate
one of such modifications in the Sectidn 7.

A second important contribution is due to the efficiency of imaplementation—00756 seconds per synthesis of
an optimal 4-bit reversible circuit. The algorithm coulgiabe integrated as part of peephole optimization, such as
the one presented in [1L6].

Furthermore, our implementation allows to develop a subkeptimal implementations that may be used to test
heuristic synthesis algorithms. Currently, similar tests performed by comparison to optimal 3-bit implementetio
[4.[6,[8]. The best heuristic solutions have very tiny ovexhethen compared to optimal implementations, making
such a test hard to improve. As such, it would help to replacetest with a more difficult one that allows more
room for improvement. We suggest that this test set shouldde known benchmarks, and a combination of other
functions—linear reversible, as well as, possibly, repnéatives from other classes, those with few gates and those
requiring a large number of gates, etc. We have not worketheudetails of such a test.

Finally, due to the effectiveness of our approach, we are abreport new optimal implementations for small
benchmark functions, calculaté4), the number of reversible gates required to implement aséile 4-bit function,
calculate the average number of gates required to implemdrlbit permutation, and show the distribution of the
number of permutations that may be implemented with theqdneeld number of gates.

An earlier version of this paper has been presented at the ZDAO conference.

2 Preliminaries

2.1 Quantum Computing

We start with a very short review of basic concepts in quantomputing. An in-depth coverage may be found in
[12].

The state of a single qubit is described by a linear comlinaiDirac notation)/column vectar|0) + B|1) =
(a,B)t, wherea and are complex numbers called the amplitudes, @ri#l+ |32 = 1. Real numbertx|? and|B|?
represent the probabilities of reading the logic sté#snd|1) upon (computational basis) measurement. The state
of a quantum system with qubits is described by an element of the tensor product o§ithgde state spaces and
can be represented as a normalized vector of lengticalled the state vector. Furthermore, quantum mechanics
allows evolution of the state vector through its multiptioa by 2" x 2" unitary matrices called the gates. These
gates may be applied to a quantum state sequentially—suaegs constitutes constructing a circuit—which is
equivalent to a series of proper matrix multiplications. illastrate the gate application, take the two qubit state
vector|11) = (0,0,0,1)' and apply a CNOT gate, defined as the matrix

1 00O
01 00
0 001
0 010

The result is the statel0) = (0,0,1,0)'. It may be observed that in the Dirac notation the CNOT gatg bea
described as follows: application of the CNOT gate flips thrig of the second qubit iff the value of the first qubit
is one. Dropping the bra-ket Dirac notation results in tHefang re-definition over Boolean valuesandb—gate
CNOT performs transformatioa,b — a,b@® a. This definition extends to vectors by the linearity, andstiginot
ambiguous. In particular, in the follow up sections we wilhsider reversible circuits (sometimes known as quantum
Boolean circuits)—those where the matrix entries arettriBoolean/integer, and for simplicity we will drop bra
and ket in the notations, leaving just the variable name® &t of reversible circuits forms a group, that is also a
subgroup of the set of all unitary transformations.

2.2 Reversible Circuits
In this paper, we consider circuits with NOT, CNOT, Toffdli®F), and Toffoli-4 (TOF4) gates defined as follows:
e NOT(a): a—adl;
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Figure 1: NOT, CNOT, Toffoli, and Toffoli-4 gates.

e CNOT(a,b): ab—abda;
e TOKa,b,c): a,b,c— ab,caab;
e TOF4(a,b,c,d): a,b,c,d— ab,c,d®abg

where® denotes the EXOR operation and concatenation is the Bo@\bii see Figuréll for illustration. These
gates are used widely in quantum circuit construction, at lbeen demonstrated experimentally in multiple quan-
tum information processing proposals [12]. In particul@NOT is a very popular gate among experimentalists,
frequently used to demonstrate control over a multipleiggdiantum mechanical system. Since quantum circuits
describe time evolution of a quantum mechanical system evimelividual “wires” represent physical instances, and
time propagates from left to right, this imposes restrizsi@n the circuit topology. In particular, quantum and re-
versible circuits are strings of gates. As a result, feecklfime wrap) is not allowed and there may be no fan-out
(mass/energy conservation).

In this paper, we are concerned with searching for circeitgiring a minimal number of gates. Our focus is on
the proof of principle, i.e., showing that any optimal 44g@tersible function may be synthesized efficiently, rather
than attempting to report optimal implementations for a hanof potentially plausible cost metrics. In fact, our
implementation allows other circuit cost metrics to be édeied, as discussed in Sectidn 6 and Sefion 7.

In related work, there have been a few attempts to synthegitimal reversible circuits with more than three
inputs. GroRet al. [3] employ SAT-based technique to synthesize provablynogiticircuits for some small parame-
ters. However, their implementation quickly runs out ofn@es. The longest optimal circuit they report contains 11
gates. The latter took 21,897.3 seconds to synthesize—fsanoiion that the implementation we report in this paper
synthesized in .000052 seconds, see Table 7. Petsald [16] used breadth first search to synthesize 26,000,000
optimal 4-bit reversible circuits with up to 6 gates in 152a@sds. We extend this search into finding all 16! optimal
circuits in 1,130,276 seconds. This is over 100 times fagter circuit) and 800,000 times more than reported in
[16]. Yanget al. [20] considered short optimal reversible 4-bit circuitsrgmsed with NOT, CNOT, and Perés [14]
gates. They were able to synthesize optimal circuits witliaup gates, and use those to optimally synthesize any
given even permutation requiring no more than 12 gates.Haravords, they can search a space of the size equal to
approximately one quarter of the number of all 4-bit revdesfunctions. Our algorithms and implementation allow
optimal synthesis adll 4-bit reversible functions anahy4-bit reversible function, and it is much faster.

2.3 Motivating Example

Consider the two reversible circuit implementations inUk@j2 of a 1-bit full adder. This elementary function/citcui
serves as a building block for constructing integer addins.famous Shor’s integer factoring algorithm is dominated
by adders like this. As such, the complexity of an elemenfabjt adder circuit largely affects the efficiency of
factoring an integer number with a quantum algorithm. Ihisstimportant to have a well-optimized implementation
of a 1-bit adder, as well as other similar small quantum ditouilding blocks.

In this paper, we consider the synthesis of optimal circuis, we provably find the best possible implementation.
Using optimal implementations of circuits potentially irases the efficiency of quantum algorithms and helps to
reduce the difficulty with controlling quantum experiments

3 FINDOPT: an Algorithm to Find an Optimal Circuit

We first outline our algorithm for finding an optimal circuitéthen discuss it in detail in the follow up subsections.
There areN = 2" reversiblen-variable functions. The most obvious approach to the ssishof all optimal
implementations is to compute all optimal circuits and sttdrem for later look-up. However, this is extremely
inefficient. This is because such an approach req@@$) space and, as a result, at le@§NN) time. These space
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Figure 2: (a) a suboptimal and (b) an optimal circuit for Lfbil adder.

and time estimates are lower bounds, because, for instatm@)g an optimal circuit requires more than a constant
number of bits, but for simplicity, let us assume these figue exact. Despite considering both figures for space
and time impractical, we use this simple idea as our stapaingt.

We first improve the space requirement by observing thatéfsymthesized all halves of all optimal circuits, then
it is possible to search through this set to find both halveanyf optimal circuit. It can be shown that the space
requirement for storing halves has a lower boun@¢¢/N). However, searching for two halves potentially requires
a runtime on the order of the square of the search sga¢ev/N)?) = Q(N), a figure for runtime that we deemed
inefficient. Our second improvement is thus to use a hask taldtore the optimal halves. This reduces the runtime
to soft Q(v/N). While this lower bound does not necessarily imply that tbka complexity is lower tha®(N),
this turns out to be the case, because the set of optimal$havadeed much smaller than the set of all optimal
circuits (an analytic estimate for the relative size of thefer set is hard to obtain, though). Cumulatively, these tw
improvements reduc®@(N) space and@2(N) time requirement t®(#halve$N)) space and sofd(#halvegN)) time
requirement. These reductions almost suffice to make threlspassible using modern computers.

Our last step, apart from careful coding, that made the bgawssible is the reduction of the space requirement
(with consequent improvement for runtime) by a constantlimfoat 48 via exploiting the following two features.
First, simultaneous input/output relabeling, of whichrthare at most 24 (=4!) different ones, does not change the
optimality of a circuit. And second, if an optimal circuitfieund for a functionf, an optimal circuit for the inverse
function, f~1, can be obtained by reversing the optimal circuit forThis allows to additionally “pack” up to twice
as many functions into one circuit. The cumulative improeatrresulting from these two observations, is by a factor
of almost 2x 24 = 48. Due to symmetries, the actual number is slightly lese. Téble 4 (column 2 versus column
3) for exact comparison.

3.1 The search-and-lookup algorithm

For brevity, let the size of a reversible function mean thaimal number of gates required to implement it. Using
breadth-first search, we can generate the smallest cifouitdl reversible functions of size at mdstfor a certain
value ofk. (This can be done in advance, on a larger machine, and n¢é&e nepeated for each reversible function.)

Assume that the given functiofn for which we need to synthesize a minimal circuit, has stza@st . We can
first check whethef is among the known functions of size at mé&sind, if so, output the corresponding minimal
circuit. If not, then the size of is betweerk+ 1 and X, inclusive, and there exist reversible functidrendg of size
k and at mosk, respectively, such thdt= hog. If we find suchg of the smallest size, then we can obtain the smallest
circuit for f by composing the circuits fagandh.

Multiplying the above equality by, we obtainf o g~! = h. Observe thag~! has the same size gsTherefore,
by trying all functiongy of size 12, ...,k until we find one such that o g has sizek, we can find & of the smallest
size.

The above algorithm involves sequential access to theifumeof size at mogt and their minimal circuits and a
membership test among functions of skzeSince the latter test must be fast and requires random nyeswoess, we
need to store all functions of siken the memory. Thus, the amount of available RAM imposes geupound ork.

In practice, we store a 4-bit reversible function using eb84vord, because this allows for an efficient implemen-
tation of functional composition, inversion, and other essary operations. On a typical PC with 4GB of RAM, we
can store all functions fdt = 6. This means that we can apply the above search algorithynt@filinctions of size
at most 12. Unfortunately, this will not cover all 4-bit resile functions. Therefore, further reduction of memory
usage is necessary.

3.2 Symmetries

A significant reduction of the search space can be achieviaking into account the following symmetries of circuits:



1. Simultaneous relabeling of inputs and outputs. Giverpimal circuitimplementing a 4-bit reversible function
f with inputsxo, X1, X2, X3 and outputspo, y1,Y2,ys and a permutatioo : {0,1,2,3} — {0,1,2,3}, we can con-
struct a new circuit by relabeling the inputs and outputs igto), Xs(1): X6(2): Xo(3) @NAY5(0)» Yo(1): Yo (2)» Yo (3)s
respectively. Then the new circuit will provide a minimalglementation of the corresponding reversible func-
tion fg. Indeed, if it is not minimal and there is an implementatiérf® by a circuit with a smaller number
of gates, we can relabel the inputs and outputs of this impieation witho~! and obtain a smaller circuit
implementing the original functiof. This contradicts the assumption that the original cirfaritf is optimal.

Givenf ando, a formula forfs can be easily obtained. Observe thatthe mapgir , X2, X3 — Xg(0), Xa(1)» Xo(2)
Xq(3) IS @ 4-bit reversible function, which we denoted®yThe mappings(o), Yo(1), Yo(2): Ya(3) F Yo, Y1, Y2, Y3 is
then given by the inversé& 1. Therefore, the four bit valueg, y1,Y»,y3 of f5 on a four-bit tuplexg, X1, X2, X3
can be obtained by applying firét then f, and finallyg—1. We obtainf; = 6 1o f 0 3. We call the set of
functionsf, theconjugacy classf f modulo simultaneous input/output relabelings.

Since there exist 24 permutations of 4 numbers, by choosffegeht permutations, we obtain 24 functions

of the above formf; for a fixed functionf. Some of these functions may be equal, whence the size of the
conjugacy class of may be smaller than 24. For example,fENOT(a), then there exist only 4 distinct
functions of the formfs (counting f itself). Our experiments show, however, that for the vasjonitst of
functions, the conjugacy classes are of size 24.

2. Inversion. As mentioned above, if we know a minimal impéertation forf, then we know one for its inverse
as well.

Note that conjugation and inversion commute:

(67 lofod) 1=61of10a.

For a functionf, consider the union of the two conjugacy classed @ind f~1. Call the elements of this union
equivalento f. It follows that equivalent functions have the same size rédduer, since gates are idempotent (i.e.,
equal to their own inverses) and their conjugacy classesisoof gates, if we know a minimal circuit fdr, we can
easily obtain one for any function in the equivalence cldsk ¢-ormally, if f = A 0...0A,, wherenis the size off
and); are gates, thefi=l =A,0...0Aq, and if f' =G 1o fod, thenf’ =N o...o\,, whereA] =G 1o)joG are
also gates. Our experiments show that a vast majority otimme have 48 distinct equivalent functions. This fact can
reduce the search space by almost a factor of 48 as follows.

For a functionf, define the canonical representative of its equivalenascla convenient canonical represen-
tative can be obtained by introducing the lexicographieo@h the set of 4-bit reversible functions, considered as
permutations 0f0,1,2,...,15} and encoded accordingly by the sequef@®), f(1),..., f(15), and choosing the
function whose corresponding sequence is lexicograghisalallest. Now, instead of storing all functions of size at
mostk, store the canonical representative for each equivaldass.cThis will reduce the storage size by almost a
factor of 48. Then, we use Algorithibh 1 to search for a mininidudt for a given reversible functiof.

The algorithm requires a hash table with canonical reptaieas of equivalence classes of size at nkpgigether
with the last gates of their minimal circuits, and lists dffgrmutations of size at mokt— k. We have pre-computed
the canonical representatives foe 9 using breadth-first search (see Algorithin 2). For efficjereasons, we store
the lastor the firstgate of a minimal circuit for each canonical representatilewever, this information is clearly
sufficient to reconstruct the entire circuit and, in pattécuthe last gate. Using this pre-computed data, the hédd ta
and the lists of all permutations of size at mbst k are formed at the start-up. An implementation storing ohéy t
hash table is possible. Such an implementation will regasse RAM memory, but it will be slower. We decided to
focus on higher speed, because Table 4 indicates that wetdwad to be able to search optimal circuits requiring
up to 18 & 9 x 2) gates, which we could do otherwise by storing only the habte.

The correctness of Algorithfd 1 is proved as follows. Supgdisethat the size of is at mostk. The canonical
representativé of its equivalence class will have the same sizé,a it will be found in the hash table. SinceA is
the last gate of a minimal circuit fdr, the size off oA is one less than the size bf The functionf oA (computed iff
is a conjugate of ) or the functiom o f (computed iff is a conjugate of ~1) is equivalent tof o A and therefore also
is of size one less than the sizefofTherefore, the recursive call on that function will teriati® and return a minimal
circuit, which we can compose with(at the proper side) to obtain a minimal circuit forThe depth of recursion is
equal to the size of, and at each call we do one hash table lookup, one computatibie canonical representative,
and one conjugation of a gate (the latter can be looked up inadl $able). Thus, this part of the algorithm requires
negligible time.



Algorithm 1 Minimal circuit (FINDOPT).
Require: Reversible functiorf of size at most.
Hash tableH containing canonical representatives of all equivalef@sses of functions of size at mdsand the
last gates of their minimal circuit&,> L /2.
ListsAj, 1 <i <L —k, of all functions of size.
Ensure: A minimal circuitc for f.
if f =IDENTITY then
return empty circuit
end if
Ef < equivalence class df
f < canonical representative Bf
if f € H then _
A < lastgate off
if f is a conjugate of then
letf=6"1ofod
A6 Llorod
¢ < minimal circuit for f o A
return coA
else _
letf=6"toftod
A5 Llorod
¢ < minimal circuit forA o f
return Aoc
end if
end if
fori=1toL—kdo
for ge A do
h<+gof
En < equivalence class df
h < canonical representative Bf,
if he H then
Cg <— minimal circuit forg
Ch < minimal circuit forh
return ¢z och
end if
end for
end for
return error: size off is greater thah

If the size of f is greater thark, but does not excedd then f = g¢ o h for someh of sizek andg; of sizei,
1<i<L-k Theng= gf’1 € Ai. Once the inner for-loop encounters thist will return the minimal circuit forf,
because both recursive calls are for functions of size at knd%r a functionf of sizes > k, the number of iterations
required to find the minimal circuit satisfies

s—1-k s—k
Y IAl<rs 3 Al

At each iteration, one canonical representative is contbatel looked up in the hash table. Since the sizéof
grows almost exponentially (see Table 4, left column), tharsh time will decrease almost exponentially, and the
storage will increase exponentially, kéncreases. The timings fdr= 8,9 measured on two different systems are
summarized in Tablel 1 (see Sectidn 5 for machine detailggadel note that size 15 circuits may be verified against
Tablel® and consequently the time to synthesize them, faraditical purposes, is zero. We marked relevant entries
in the Tabld L with an asterisk. The hash table loading andativeemory usage times were 191 seconds, 3.5GB
(k= 8) and 1667 seconds, 43.04GB= 9).

It follows from the above complexity analysis that the pemiance of the following key operations affect the
speed most:



Algorithm 2 Breadth-first search (BFS).
Require: k
Ensure: Lists A of canonical representatives of sizek;
Hash tableH with these canonical representatives and their first ogatds.
LetH be a hash table (keys are functions, values are gates)
H.insert(IDENTITY, HASNO_GATES)
Ao+ {IDENTITY}
for i from 1 tok do
for f e A_ju{al|acA_1}do
for all gates\ do
h« foA
En < equivalence class ¢f
h < canonical representative Bf,
if h¢ H then _
if his a conjugate ol then
leth=6"1ohod
H.inserth, 3 1oAod, ISLAST_GATE)
else .
leth= 6*_10h*106
H.inserth, 5 1o\ o0&, IS.FIRST.GATE)
endif
A .insertf)
end if
end for
end for
end for

e composition of two functionsf(o g) and inverse of a functionf('1),
e computation of the canonical representative of an equicaelass,
¢ hash table lookup.

In the next Subsection we discuss an efficient implemematichese operations.

3.3 Implementation details

As mentioned above, a 4-bit reversible function can be dtorex 64-bit word, by allocating 4 bits for each value
of f(0), f(1),...,f(15). Then the composition of two functions can be computed in 8hime instructions using
the algorithmcomposition and the inverse function can be computed in 59 machine tt&ins using algorithm
inverse.

In order to find the canonical representative in the equiaeclass of a functioh, we computef ~1, generate
all conjugates off and f~1, and choose the smallest among the resulting 48 functicinse ®very permutation of
{0,1,2,3} can be represented as a product of transposiiioriy, (1,2), and(2,3), the sequence of conjugates of
f by all 24 permutations can be obtained through conjugatibg these transpositions. These conjugations can be
performed in 14 machine instructions each as in funcion jugate01.

Two functions can be compared lexicographically using glsininsigned comparison of the corresponding two
words. Thus, the canonical representative can be compsted ane inversion, 28 2 = 46 conjugations by trans-
positions, and 47 comparisons, which totals to 750 macinistetictions.

For the fast membership test, we use a linear probing ha#h wath Thomas Wang’s hash function |21] (see
algorithmhashé64shift).

This function is well suited for our purposes: it is fast torquute and distributes the permutations uniformly over
the hash table. The parameters of the hash tables storirgtiomical representatives of equivalence classes of size
k, fork=7,8,9 are shown in Tablg 2.



Table 1: Average times of computing minimal circuits of sife15 (in seconds).

Size\ k 8 (LPTP) 8(CLSTR) 9(CLSTR
1 8.70x 107 525x10 ' 523x10°
2 1.26x10°% 832x107 833x107
3 1.66x10°% 114x10°% 115x10°°
4 2.07x10°% 147x10°% 147x10°
5 247x10°% 179%x10°% 1.79x10°
6 348x10°% 211x10°% 212x10°
7 422x106 246x10°6 246x10°°
8 449x106 281x10°6 280x10°°
9 1.07x10° 6.68x10°% 311x10°°
10 228x 104 9.31x10° 6.23x10°°
11 427x10°% 360x10°% 7.23x10°°
12 6.30x102 558x102 1.34x10°3
13 491x101 480x101 220x10°2
14 438x10° 450x10° 232x101
15 N/A*  6.14x 10  3.61x 10%

Table 2: Parameters of linear hash tables storing canamipetsentatives.

k 7 8 9
Size 225 228 %2
Memory Usage 256 MB 2GB 32GB
Load Factor 0.58 0.84 051
Average Chain Length| 3.14 9.18 2.63
Maximal Chain Length, 92 754 86




unsigned64 composition (unsignedé64 p,
unsigned64 q) {
p & 15) << 2;

unsigned64 d
r

(
unsigned64 = (g > p_i) & 15;
p >>= 2; d p & 60;
r |= ((g > d) & 15) << 4;
p >>= 4; d = p & 60;
r |= ((g > d) & 15) << 8;
p >>= 4; d = p & 60;
r |= ((g > d) & 15) << 16;
p >>= 4; d = p & 60;
r |= ((qg > d) & 15) << 60;

return r;

}

unsigned64 inverse (unsigned64 p) {

p >>= 2;

unsigned64 g = 1 << (p & 60);
p >>= 4; g |= 2 << (p & 60);
p >>=4; g |= 3 << (p & 60);
p>>=4; q |=15 << (p & 60);

return qg;

}

unsigned64 conjugatell (unsigned64 p) {
p = (p & OxFOOFFOOFFOOFFOOF) |
((p & 0OxO0FO000OFO000FO000F0) << 4) |
((p & OxOFO0O0OFO000FO000F00) >> 4);
return (p & 0xCCCCCCCCCCCCCCCC) |
((p & 0x1111111111111111) << 1)
((p & 0x2222222222222222) >> 1);

4 SEARCHALL: an Algorithm to Find all Optimal Circuits

We first outline our algorithm for finding all optimal circsiand then discuss it in detail in the follow up subsections.
We employ a breadth first search that consists of two stages:

e Optimal circuits with 0..9 gates are found with AlgorithirBES. This algorithm becomes inefficient for finding
optimal circuits with 10 or more gates.

e Optimal circuits with 10 and more gates are found by storimgj@dating the bit vector of canonical represen-
tatives of permutations requiring a certain number of gates

The SEARCHALL algorithm is used to find all reversible furoets of sizek for k = 10,11, ..., until we reach the
maximal size of a reversible function. Starting from the wneet of reversible functions of size 9, we consecutively
proceed to sizes 1Q1,.... The transitions from sizk to size(k+ 1) are carried out as follows (Subsecti¢ns 4.1 to
Z3).

First, we choose a compact representation for the set ofgible functions of sizek, based on the following
concept of an almost reduced function.

4.1 Almostreduced functions

Call a reversible function (permutatiop)almost reduced one of the following two conditions holds:

1. p(0) =0andp(15) € {1,3,7,15}



long hash64shift (long key) {

key = (Tkey) + (key << 21);

key = key ~ (key >>> 24);

key = (key + (key << 3)) + (key << 8);

key = key ° (key >>> 14);

key = (key + (key << 2)) + (key << 4);
)

key = key (key >>> 28
key = key + (key << 31);
return key;

2. (p(0), p~(0)) belongs to the following set

{ (1,1),(1,2),(1,19),(3,1),(3,3),(3,4),
(3,5),(3,12),(3,15),(7,1).(7.3),(7,7),
(7,8),(7,9),(7,11),(7,19),(15,15)  }

Lemma 1. For every permutation p, there is at least one equivalenbatmeduced reversible function.

Note that a reduced reversible function is not necessalihost reduced. This will hopefully not lead to a
confusion, since we are not going to deal with reduced fonstin this section.
An almost reduced permutatigncan be uniquely specified by the following data:

o Ay p(0)
e By p(15) if p(0) = 0, otherwisep~1(0)
e Qp: a permutation of 14 elements.

We call this data amdexable specificatioof the almost reduced permutatipn

The set of almost reduced reversible functions can be yotatlered by ordering their indexable specifications
(Ap,Bp,Qp) lexicographically. Thendexof an almost reduced reversible functipris defined as the number of
smaller almost reversible functions. In order to computeitidex of a functiorp, we first compute its indexable
specification(Ap, Bp, Qp). Then we computa(Qp), the number of 14-element permutations smaller ®@gnand
n(Ap,Bp), the number of pairgA,B) that are a valid part of an indexable specification and ariedgxaphically
smaller thar(Ap, Bp). Then the index op is given by

n(p) = 14In(Ap,Bp) +n(Qp).

Efficient conversions between reversible functions andt thdexable specifications are quite straightforward,
therefore we omit these algorithms here. Various efficitgar@thms for indexing permutations are also well-known.

Since almost reduced functions and their indexable speatiits are in a one-to-one correspondence, the total
number of almost reduced functions is 214! < 1.84 x 10'2. This is~ 11.43 times less than the total number
of reversible functions, yet about 4 times greater than tinaber of equivalence classes—i.e., different reduced
permutations. The main reason why we do not index equivelelasses directly (which would have further reduced
our memory requirements by about a factor of 4) is that wedtaot find an efficient algorithm for computing these
indices.

4.2 From sizek to sizek+1

We encode the set of reversible functions of $id®y a bit array of size 2% 14! bits (under 209GB), where hitis
set whenever the almost reduced functpnith n(p) = i has sizek and is the smallest almost reduced function in its
equivalence class.

We further split this array in 3 parts callstices by partitioning the set of pairgA, B) that are valid parts of an
indexable specification into 3 subsets. One third of the d@yaeasily fits in the memory of the machine we were
using for the experiments (and leaves enough extra spatiefeystem not to be tempted to turn on swapping during
the computation).

Suppose that the bit array for functions of skzis stored in an input file. We compute the bit array for funatio
of sizek+ 1 and store it in the output file via the following stages:
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1. Composition. Repeated for each target di(there are three of them). Allocate in memory a bit aaf size
21x 14!/3 bits. For every almost reduced functipmarked in the input bit array, generate all its conjugates
and inverses (thus we obtain all reversible functions of k)z Then for every functiorp’ in the equivalence
class ofp and every gatg, find an almost reduced representatiia the equivalence class of the composition
go p/, then compute its index(q). If n(q) is in slices, set then(q)-th bit in the bit arraya. At the end, output
the array in a new file and concatenate the three slices.

2. Canonization. Because an equivalence class can haveth@rene almost reduced element, the previous
stage may have marked more than one bit for some equivalésmseey o p. We scan the bit array output at
the previous stage and, for each permutatjonarked there, compute the smallest equivalent almost egluc
permutatiory’ and mark the corresponding bit in the array allocated in ngn®&ince the entire bit array does
not fit in memory, we again use three slices and at the end temai@ them.

3. Subtraction. The bit array produced by the previous stag¢ains all functions of sizk+ 1, as well as some
functions of sizek andk — 1. We therefore subtract the bit arrays corresponding ®séiandk — 1. The
resulting bit array satisfies the property: bis set whenever the almost reduced funcgpowith n(p) =i has
sizek+ 1 and is the smallest almost reduced function in its equicdelass.

4. (Optional stage) Counting. For each almost reduced fomdf sizek + 1, smallest in its equivalence class,
we generate the entire equivalence class and count itsneditgi As a result, we obtain the total number of
reversible functions of sizie+ 1.

4.3 Optimization

The hardest stage to optimize is Composition. Our initighlementation, which was quite literally following the
above description, with sormeal hocimprovements, was going to require months to compute thetifums of size 12.
We found the following shortcut, which speeds it up by aboiaichor of 24.

For every almost reduced functignmarked in the input bit array, we compute its equivalencescladowever,
we avoid computing the compositions of each element of thivatgnce class and each gate. Instead, we extract
the valuesp(0), p(15), p~%(0), p~1(15). Given these values and a gateone can determine which conjugation and
possibly inversion must be appliedgo p to obtain an almost reduced function. The table of theseugmtijons and
inversions is pre-computed in advance.

Then, suppose a given permutatipis conjugate to an almost reduced permutation, @& p go po ¢ for some
conjugationc is almost reduced. We rewrite this as'ocgococ™to poc. The conjugations of the 32 gates are
also pre-computed in advance and stored in a separate t8llee the conjugations gf have been computed at
the beginning of this step (indeed, we have computed theeeatjuivalence class @), we can just take one of its
elementgy’ and compose it with the gatg = ¢ 1o go c. The resulting permutatiogi o p’ is almost reduced.

If the almost reduced representative in the equivalenssdégo p is a conjugate of the inverggo p) 1, i.e.,
equalsc—to (go p)~toc, then we rewrite this as o p~togtoc=ctoptococtogoc (also using the fact
thatg—! = g for every gateg). Now we again observe that!o p~1oc has been pre-computed, so we only need
to compose it with the gatg = c 1ogoc. Note that compositions of functions with gates (on eithidelscan be
performed very efficiently.

Having implemented this optimization, we were able to cota@li reversible functions of size 10. However, the
computation of functions of size 12 would still take too losg we parallelized the algorithm.

4.4 Parallelization

Both composition and canonization stages are computdiydngensive. We parallelized them using the following
architecture implemented with MPI.

For composition, the master job reads the input bit vectdratks. Every block is sent to one of 16 workers,
which are chosen in a circular (round robin) order. Thesekersrdecode the bits in the blocks into permutations of
sizek, apply gates to them as described above, and compute tleesnafi the resulting almost reduced permutations.
These indices are stored in a temporary array, which istjpengid into 8 equal slices. Once all indices have been
computed by a worker, the slices are sent to the correspgi@d@ollector jobs. Each collector possesses its own bit
vector allocated in RAM. It receives arrays with indices délio be marked from the 16 workers in a round robin
order. Having received an array from a worker, it marks theesponding bits. At the end of a round, the collector
signals the master that a round has been completed. At tlyeewel; the collectors write their bit vectors to disk in
sequence.
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Table 3: Distribution of the number of gates required fol000,000 random 4-bit reversible functions.

Size | Functions
14 17,191
13| 2,371,039
12 | 5,110,943
11 | 2,051,507
10 392,108

9 50,861
8 5,269
7 455
6 24
5 3

The master makes sure that the collectors are no more thalo@lbehind it. If it continued to send the blocks
to the workers without waiting for the workers and collesttw finish processing them, the unprocessed blocks would
accumulate in the communication channels between the mastethe workers. This results in a memory leak,
which turned out to be faster than the system swapping méxrhaand therefore caused a deadlock. By allowing the
collectors to be only a certain number of blocks behind thsterawe restrict the amount of data in the communication
channels at any given moment and thus prevent the leak. #ieRiblito allow a non-zero lag though, for otherwise
the system becomes overly synchronized, which drasticaflyces the performance: the workers and collectors that
finish first end up waiting on the others most of the time. With lag, communication channels work as buffers, from
which the workers continue to draw data. The amount of da¢gaah particular channel at a given moment may vary,
depending on the speed at which the corresponding workeepses the previous blocks.

Exactly the same parallel architecture is used for cantiniza The master again reads the input bit vector in
blocks. The workers compute the minimal almost reducedvatprit permutation for each almost reduced permuta-
tion they receive from the master and send their indicesdatilectors. The collectors mark the corresponding bits
and write those bit vectors to disk at the end.

5 Performance and Results

We performed several tests using two computer systems, lBRAGRCLSTR. LPTP is a Sony VGN-NS190D laptop
with Intel Core Duo 2000 GHz processor, 4 GB RAM, and a 5400 REATA HDD running Linux. CLSTR is a
cluster [22] located at the Institute for Quantum Computiig used a single Sun X4600 node with 128 GB RAM
and 8 AMD Opteron quad-core CPUs for each run of the SEARCHAhH FINDOPT algorithm in CLSTR. The
following subsections summarize the tests and results.

5.1 Synthesis of Random Permutations

In this test, we generated 10,000,000 random uniformlyitligied permutations using the Mersenne twister random
number generator [10]. We next generated their optimaligsasing algorithm FINDOPT. The test was executed on
CLSTR. Ittook 7561312 seconds (about 21 hours) of user time and the maximal RAMangusage was 43.04GB.
Note that 1667 seconds (approximately 28 minutes) weretdpading previously computed optimal circuits with
up to 9 gates (see Subsection]5.2 for details) into RAM. Omaaes it took only 00756 seconds to synthesize an
optimal circuit for a permutation. The distribution of thiecuiit sizes is shown in Tabld 3.

Since there are no permutations requiring 16 or more gatelspaly a few permutations requiring 15 gates (see
Subsectioh5]3 for details), this implies that the seartNTFDPT may be easily modified to explicitly store all optimal
15-bit implementations in the cache, and search optimal@mentations with up to 14 gates. Such a search may be
executed using a computer capable of storing reduced optimplementations with up to 7 gates, i.e., a machine with
only 256M of available RAM. In other words, FINDOPT allowsrfigming optimal 4-bit circuit calculation even on
an older machine.
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Table 4: Number of 4-bit permutations requiring prescrihathber of gates.

Size Functions Reduced| Runtime
Functions
>16 0 0
15 144 5 66,782s
14 37,481,795,634 781,068,573 245,488s

13| 4,959,760,623,552 103,331,100,613 397,464s
12 | 10,690,104,057,901 222,714,352,278 238,589s
11| 4,298,462,792,398 89,554,073,333 103,595s
10 819,182,578,179 17,067,688,244 68,670s

9 105,984,823,653 2,208,511,226 8,836.36S

8 10,804,681,959 225,242,556 744.41s
7 932,651,938 19,466,575 95.574s
6 70,763,560 1,482,686 11.109s
5 4,807,552 101,983 0.816s
4 294,507 6,538 0.06s
3 16,204 425 0.004s
2 784 33 <0.001s
1 32 4 <0.001s
0 1 1 <0.001s

Total | 20,922,789,888,000 435,903,095,078 1,130,2765

Table 5: Permutations requiring 15 gates.

Function | # Symm. Implementation
[1,5,0,8,9,11,2,15,3,12,4,6,10,14,13,7] 24 CNOT(a,c) CNOT(c,d) CNOT(d,a) TOF(b,d,c) CNOT(a,b) TOH(b) TOF4(a,b,c,d)
CNOT(c,a) NOT(b) NOT(c) CNOT(a,d) TOF(b,d,c) TOF(b,c,&H{a,c,b) NOT(c)

[1,9,0,4,10,8,2,11,3,15,5,12,7,14,13,6] 24 NOT(d) CNOT(d,c) TOF4(a,c,d,b) TOF(a,d,c) TOF(b,d,a) TO#&b) TOF(b,c,d)

TOF(a,d,b) CNOT(a,d) NOT(a) NOT(b) NOT(c) TOF4(b,c,d,§@T(b,c) TOF(a,d,c)
48 | NOT(b) CNOT(b,a) TOF(a,b,c) TOF(a,d,b) CNOT(c,d) TOF4(®,a) TOF4(a,b,c,d
CNOT(a,c) CNOT(c,b) TOF(b,d,c) NOT(a) NOT(b) CNOT(c,d) ON(d,a) TOF(a,b,c)
[3,1,11,7,8,0,9,5,2,6,15,13,14,4,10,12] 24 | CNOT(c,b) CNOT(a,d) CNOT(d,a) TOF4(a,b,c,d) TOF(a,b,OF(b,c,a) TOF(a,d,b
CNOT(b,c) NOT(d) NOT(c) NOT(a) TOF(c,d,b) TOF(b,c,d) CN@Te) CNOT (a,c)
24 CNOT(c,b) TOF(b,d,a) CNOT(a,d) CNOT(d,c) TOF(b,C,a) TRE[®) TOF(a,d,c)
TOF(b,c,a) NOT(d) NOT(c) NOT(b) CNOT(d,a) TOF(b,c,d) CN@b) TOF(a,b,c)

[3,1,7,13,11,0,8,15,2,5,10,6,9,14,12 4

[3,5,11,1,8,0,9,7,2,6,14,13,10,4,12,15

5.2 Distribution of Optimal Implementations

Table[4 lists the distribution of the number of permutatitimst can be realized with optimal circuits requiring a
specified number of gates. We used CLSTR to run this testtaook 1,130,276 seconds (approximately 13 days) to
complete it. Circuits with up to 9 gates were synthesizedg8FS algorithm. For circuits with 10 gates and more

we used SEARCHALL.
We have calculated the average number of gates requireddmdam 4-bit reversible function, 193937.. ..

5.3 Most complex permutations

As follows from the previous subsection, there are only faduced permutations requiring the maximal number of
gates, 15. We list all five canonical representatives, toggawvith their optimal implementations, in Table 5. Columns
of this table report the function specification, the numifesyanmetries this specification generates, and an optimal
circuit found by our program, correspondingly. The remain139 & 144—5) permutations requiring 15 gates in
an optimal implementation may be found via reducing them tamonical representative through an input/output
relabeling and possible inversion. For example, [6,8,33,0,12,1,3,9,11,14,10,2,5,7] is a permutation rengifi5
gates in an optimal implementation. It may be obtained frioethird listed in the Tablg 5 via inversion and relabeling

(a,b,c,d) — (c,a,b,d).
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Table 6: Number of 4-bit linear reversible functions reqgr0..10 gates in an optimal implementation.
Size | Functions
10 138
13,555
84,225
118,424
72,062
26,182
6,589
1,206
162

16

1
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5.4 Optimal linear circuits

Linear reversible circuits are the most complex part of quisnerror correcting circuits [1]. Efficiency of these cir-
cuits defines the efficiency of quantum encoding and decaatimg correction operations. Linear reversible functions
are those whose positive polarity Reed-Muller polynoméa bnly linear terms. More simply, and equivalently, linear
reversible functions are those computable by circuits W@T and CNOT gates.

For example, the reversible mappiagy,c,d — b@ l,a®cd1l,d® 1,ais a linear reversible function. Inter-
estingly, this linear function is one of the 138 most comgiegar reversible functions—it requires 10 gates in an
optimal implementation. The optimal implementation ofthinction is given by the circuit CNOT(b,a) CNOT(c,d)
CNOT(d,b) NOT(d) CNOT(a,b) CNOT(d,c) CNOT(b,d) CNOT(dNpT(d) CNOT(c,b).

We synthesized optimal circuits for all 322,560 4-bit lineaversible functions using FINDOPT algorithm. This
process took under two seconds on LPTP. The distributiohe@humber of functions requiring a given number of
gates is shown in Tablé 6.

5.5 Synthesis of Benchmarks

In this subsection, we report optimal circuits for benchknfamctions that have been previously reported in the
literature. Tablél7 summarizes the results. The table desctheName of the benchmark function, its complete
Specification Size of theBestKnown Circuit (SBKC), the Sourceof this circuit, indicator of whether this circuit
has beerProvedOptimal (PO?), Size of anOptimal Circuit (SOC), the optimal implementation that our program
found, and the runtime our program takes to find this optimmdlémentation. We used the head node of CLSTR
for this test, and report the runtime it takes after hashetabth all optimal implementations with up to 9 gates is
loaded into RAM. Shorter runtimes were identified using fipldtruns of the search to achieve sufficient accuracy.
Please note that we introduce the functigh_primed_inc, which cannot be found in the previous literature. Also,
the 9-gate circuit for the functiomperkreported in[[15] requires some extra SWAP gates to propealy mputs into
their respective outputs, indicated by an asterisk.

6 Conclusions and Possible Extensions

In this paper, we described two algorithms: first, FINDOP¢$ an optimal circuit for any 4-bit reversible function,
and second, SEARCALL, finds all optimal 4-bit reversiblecaits. Our goal was to minimize the number of gates
required for function implementation. Our implementataffFINDOPT takes approximately 3 hours to calculate
all optimal implementations requiring up to 9 gates, andhthe average of about@756 seconds to search for
an optimal circuit of any 4-bit reversible function. Our ilementation of SEARCHALL requires about about 13
days, however, it needs to be completed only once to collectlavant statistics and data. Both calculations are
surprisingly fast given the size of the search space.

Using BFS, we demonstrated the synthesis of 117,798,0@0g4tmal circuits in 9,688 seconds, amounting to an
average speed of 12,168,356 circuits per second. This isTOuEmes faster and some 4,500 times more than the best
previously reported result (26 million circuits in 152 sads) [16]. Furthermore, using FINDALL, we demonstrated
the synthesis of 20,922,789,888,000 functions in 1,13s&tonds (18,511,222 circuits per second). This is over
100 times faster and over 800,000 times more than in [16].
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Table 7: Optimal implementations of benchmark functions.

Name Specification || SBKC | Source| PO? || SOC Our optimal circuit Runtime
4.49 [15,1,12,3,5,6,8,7, 12 @ | No 12 NOT(a) CNOT(c,a) CNOT(a,d) TOF(a,b,d) .000355s
0,10,13,9,2,4,14,11] CNOT(d,a) TOF(c,d,b) TOF(a,d,c) TOF(b,c,f)
TOF(a,b,d) NOT(a) CNOT(d,b) CNOT(d,c
4bit-7-8 | [0,1,2,3,4,5,6,8,7,9, 7 I | No 7 CNOT(d,b) CNOT(d,a) CNOT(c,d) TOF4(a,b,d,¢) .000002s
10,11,12,13,14,15] CNOT(c,d) CNOT(d,b) CNOT(d,a
decode42| [1,2,4,8,0,3,5,6,7.,9 11 B | No 10 CNOT(c,b) CNOT(d,a) CNOT(c,a) TOF(a,d,}) .000004s
10,11,12,13,14,15] CNOT(b,c) TOF4(a,b,c,d) TOF(b,d,q)
CNOT(c,a) CNOT(a,b) NOT(a
hwb4 | [0,2,4,12,8,5,9,11,1 11 I | Yes 11 CNOT(b,d) CNOT(d,a) CNOT(a,c) CNOT(c,d) .000052s
6,10,13,3,14,7,15] TOF(a,d,b) TOF(b,c,a) CNOT(d,c) CNOT(c,h)
TOF(a,c,b) CNOT(a,c) CNOT(b,d
imark [4,5,2,14,0,3,6,10, 7 [16] | No 7 TOF(c,d,a) TOF(a,b,d) CNOT(d,c) CNOT(b,¢) .000003s
11,8,15,1,12,13,7,9] CNOT(d,a) TOF(a,c,b) NOT(c
mperk [3,11,2,10,0,7,1,6, 9* [11], No 9 NOT(c) CNOT(d,c) TOF(c,d,b) TOF(a,c,d) .000003s
15,8,14,9,13,5,12,4] [15] CNOT(b,a) CNOT(d,a) CNOT(c,a) CNOT(a,h)
CNOT(b,c)
oc5 | [6,0,12,15,7,1,5,2,4 15 7] | No 11 TOF(b,d,c) TOF(c,d,b) TOF(a,b,c) NOT(d) .000158s
10,13,3,11,8,14,9] CNOT(d,b) CNOT(c,a) CNOT(a,c) TOF(a,b,d)
CNOT(c,a) CNOT(c,b) TOF4(a,b,d,q
oc6 [9,0,2,15,11,6,7,8, 14 71 | No 12 TOF4(a,b,c,d) TOF(b,d,c) CNOT(d,a) TOF(b,c,f) .000380s
14,3,4,13,5,1,12,10] CNOT(c,b) CNOT(b,c) TOF(a,d,c) TOF(b,c,a)
TOF(a,b,c) NOT(a) CNOT(d,b) CNOT(a,d)
oc7 | [6,15,9,5,13,12,3,7] 17 7] | No 13 [ CNOT(b,d) NOT(b) TOF(a,b,c) TOF(b,d,a) TOF(c,d,b) .0194s
2,10,1,11,0,14,4,8] CNOT(a,d) CNOT(a,c) CNOT(b,a) TOF4(a,b,c,d)
TOF(c,d,b) CNOT(c,a) NOT(a) CNOT(b,c
oc8 | [11,3,9,2,7,13,15,14 16 7] | No 12 CNOT(a,b) TOF(b,c,a) TOF(c,d,b) CNOT(d,&) .000725s
8,1,4,10,0,12,6,5] TOF4(a,b,d,c) TOF(a,b,d) NOT(b) TOF(a,d,b)
TOF(b,d,a) TOF(b,c,d) NOT(a) CNOT(a,d)
nthopri | [0,2,3,5,7,11,13,1,4]] N/A N/A | N/A 11 TOF(a,b,c) CNOT(d,b) TOF(a,c,b) TOF(b,d,¢) 0.000095s
me4inc 6,8,9,10,12,14,15] TOF(b,c,d) CNOT(a,b) TOF4(b,c,d,a) CNOT(c,b)
TOF4(a,b,d,c) CNOT(b,a) TOF(b,d,a)
rd32 | [0,7,6,9,4,11,10,13] 4 21 | Yes 4 TOF(a,b,d) CNOT(a,b) TOF(b,c,d) CNOT(b,¢) .000001s
8,15,14,1,12,3,2,5]
shift4 [1,2,3,4,5,6,7,8,9, 4 [11] Yes 4 TOF4(a,b,c,d) TOF(a,b,c) CNOT(a,b) NOT(a) .000002s
10,11,12,13,14,15,0

We also demonstrated that the search for any given optimgaiitcan be done very quickly-80756 seconds per a
random function. For example, if all optimal circuits wergtten into ahypotheticall00+TB 5400 RPM hard drive,
the average time to extract a random circuit from the drivelldidoe expected to take on the order odD— 0.02
seconds (typical access time for 5400 RPM hard drives). herotvords, it would take longer to read the answer
from ahypotheticahard drive than to compute it with our implementation. Farthore, the 3-hour calculation of
all optimal circuits with up to 9 gates could be reduced byistpits result (computed once for the entirety of the
described search and its follow up executions) on the hawd,dxs was done in Subsectlon|5.1. It took 1667 seconds,
i.e., under 28 minutes, to load optimal circuits with up to&es into RAM using CLSTR. Given that the media
transfer rate of modern hard drives is 1Gbit/s (=1GB in 8 sdspand higher, it may take no longer than 5 minutes
(= 300s> 296= 37x 8s) to load optimal implementations into RAM to initiate tearch on a different machine.

Minor modifications to the algorithm could be explored to @eds$ other optimization issues. For example, for
practicality, one may be interested in minimizing depthisThay be important if a faster circuit is preferred, andfor i
guantum noise has a stronger constituent with time, thamtivé disturbance introduced by multiple gate applications
It may also be important to account for the different implema¢ion costs of the gates used (generally, NOT is much
simpler than CNOT, which in turn, is simpler than Toffoli)o® modifications are possible, by making minor changes
to the first part of FINDOPT, and minor modifications of SEARAIH.. To optimize depth, one needs to consider a
different family of gates, where, for instance, sequencd pPCNOT(b,c) is counted as a single gate. To account
for different gate costs, one needs to search for smallitireia increasing cost by one (assuming costs are given as
natural numbers), as opposed to adding a gate to all maxir@abptimal circuits.

It is also possible to extend the search to find optimal impeletations in restricted architectures (see the Section
[7 for details). Finally, the search could be extended to fondes small optimal 5-bit circuits. A simple calculation
shows that 80log, (80)/5!/2 bits (the number of elementary transformations to the pakeepth, times space to
store a single gate, divided by the number of symmetriedicesfto store all optimal circuits containing up to 6 gates
for 5-bit permutations. Thus, a search of optimal impleragahs may be carried to compute optimal circuits with up
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to 12 gates. However, it is possible that a larger search ragelformed.

Finally, techniques reported in this paper may be appligti¢csynthesis of optimal stabilizer circuits. Coupled
with peep-hole optimization algorithm for circuit simpdition, these results may become a very useful tool in op-
timizing error correction circuits. This may be of a partamupractical interest since implementations of quantum
algorithms may be expected to be dominated by the errordsrecircuits.

7 Extension: LNN circuits

Of all possible extensions of the presented search algasittescribed in Sectidd 6, the most computationally dif-
ficult is the one where the underlying architecture is rettd. This is because the number of input/output labeling
symmetries that can be used to reduce the search is equal tumhber automorphisms of the unlabeled graph cor-
responding to the underlying architecture. For the corepdeaph on four bitsky, its number of automorphisms is
maximal, 4= 24. Since the number of automorphisms is maximized, thidhibfsed us to gain maximal advantage.
Of the connected graphs with four nodes, the chain, corretipg to the LNN (Linear Nearest Neighbor) architec-
ture, has the least number of automorphisms, being justliwthis section we will illustrate that our search may be
modified to find optimal circuits in the LNN architecture, itping that it is at least as efficient for the remaining four
possible architectures (the number of non-isomorphicheitd connected graphs on four nodes minus two, one for
the LNN and one foKy).

The restriction to the LNN architecture implies that theegset is limited to those gates operating on the subset
of qubits that is a continuous substring of the string of altiables,abcd For example, gates CNQ@4,b) and
TOF(b,d,c) are allowed, and gate TQ&b,d) is disallowed. Such restriction to the LNN architecture sloet
necessarily imply direct physical applications. In faadt only it is not certain that the underlying architecture is
LNN (and, it must be noted that local architecture may diffem global architecture), and not only do we not
account for the individual gate costs, but the restrictiself may not be physically grounded. Indeed, according
to [9], LNN-optimal NCV implementation of the TQR, c,b) requires 13 gates and depth 13; however, Ték; c)
requires only 9 gates and depth 9, and T&@B,d) may be implemented with 15 NCV gates and depth of only 12.
This means that TOR, b,d) is “faster” than TOFa,c,b), and of the two we have just disallowed T@b,d). In
other words, we suggest that our software is updated to\aktie results relevant to experiments once all physical
restrictions are known; however, the goal of this paper,thizdSection, in particular, is to illustrate that when negd
proper modifications are possible.

We have modified implementation of the FINDOPT algorithm ¢aaunt for restrictions imposed by the LNN
architecture. This required to change the definition of ti@walence class of a 4-bit reversible function. In pattcu
the newly defined LNN-equivalence class allows symmetrigsr@spect to the inversion, and one of the two possible
relabelings:(a,b,c,d) — (a,b,c,d) and(a,b,c,d) — (d,c,b,a). The remainder of code and algorithms remained
essentially the same.

We report the result of the optimal LNN synthesis in the failog three tables, Tablel 8, Tallé 9 and Table
[Id. The data contained is analogous to that reported in Bblable 4, and Tablel 7 correspondingly. It took the
total of 1,313,020.23 seconds to calculate 10,000,000 ldghimal reversible circuits reported in the Table 8. This
calculation has been performed on three cluster nodes all@lareducing physical time spent on this calculation by
a factor of three. The average time to calculate a singleaiarid\NN-optimal 4-bit reversible circuit is approximately
0.131 seconds. Based on the number and distribution ofitsrizuTabled™# anf@]9 we conjecture that there are no
LNN-optimal circuits requiring 21 gates, and as such it sefito have generated all optimal circuits with up to 10
gates to synthesize any LNN-optimal 4-bit reversible dtrcu
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Table 8: Distribution of the number of gates required for Lidptimal implementation of 10,000,000 random 4-bit
reversible functions.

Size | Functions
18 6
17 20,546
16 | 1,091,953
15 | 3,976,746
14 | 3,286,497
13| 1,244,670
12 308,993
11 59,289
10 9,693

9 1,387
8 189
7 26
6 5

Table 9: Number of 4-bit permutations requiring prescribathber of gates in the LNN architecture.

Size Functions Reduced Runtime
Functions
>11 Unknown Unknown
10 | 20,355,134,386 5,089,090,158 13,299.9s
9| 2,921,376,642 730,451,187, 1,642.72s
8 378,041,753 94,551,844 241.367s
7 44,754,539 11,201,218 68.192s
6 4,886,991 1,226,080 11.041s
5 493,788 124,628 1.28s
4 46,108 11,885 0.18s
3 3,947 1,083 0.02s
2 303 100 <0.001s
1 20 10 <0.001s
0 1 1 <0.001s
Total | 23,704,738,478 5,926,658,194 15,264.6929
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