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Abstract

Optimal synthesis of reversible functions is a non-trivialproblem. One of the major limiting factors in computing
such circuits is the sheer number of reversible functions. Even restricting synthesis to 4-bit reversible functions results
in a huge search space (16!≈ 244 functions). The output of such a search alone, counting onlythe space required to
list Toffoli gates for every function, would require over 100 terabytes of storage.

In this paper, we present two algorithms: one, that synthesizes an optimal circuit for any 4-bit reversible specifica-
tion, and another that synthesizes all optimal implementations. We employ several techniques to make the problem
tractable. We report results from several experiments, including synthesis of all optimal 4-bit permutations, syn-
thesis of random 4-bit permutations, optimal synthesis of all 4-bit linear reversible circuits, synthesis of existing
benchmark functions; we compose a list of the hardest permutations to synthesize, and show distribution of optimal
circuits. We further illustrate that our proposed approachmay be extended to accommodate physical constraints via
reporting LNN-optimal reversible circuits. Our results have important implications in the design and optimization
of reversible and quantum circuits, testing circuit synthesis heuristics, and performing experiments in the area of
quantum information processing.

1 Introduction

To the best of our knowledge, at present, physically reversible technologies are found only in the quantum domain
[12]. However, “quantum” unites several technological approaches to information processing, including ion traps, op-
tics, superconducting, spin-based and cavity-based technologies [12]. Of those, trapped ions [5] and liquid state NMR
(Nuclear Magnetic Resonance) [13] are two of the most developed quantum technologies targeted for computation
in the circuit model (as opposed to communication or adiabatic computing). These technologies allow computations
over a set of 8 qubits and 12 qubits, correspondingly.

Reversible circuits are an important class of computationsthat need to be performed efficiently for the purpose
of efficient quantum computation. Multiple quantum algorithms contain arithmetic units such as adders, multipliers,
exponentiation, comparators, quantum register shifts andpermutations, that are best viewed as reversible circuits.
Moreover, reversible circuits are indispensable in quantum error correction [12]. Often, the efficiency of the reversible
implementation is the bottleneck of a quantum algorithm (e.g., integer factoring and discrete logarithm [19]) or even
a class of quantum circuits (e.g., stabilizer circuits [1]).

In this paper, we report algorithms that find optimal circuitimplementations for 4-bit reversible functions. These
algorithms have a number of potential uses and implications.

One major implication of this work is that it will help physicists with experimental design, since fore-knowledge
of the optimal circuit implementation aids in the control over quantum mechanical systems. The control of quan-
tum mechanical systems is very difficult, and as a result experimentalists are always looking for the best possible
implementation. Having an optimal implementation helps toimprove experiments or show that more control over a
physical system needs to be established before a certain experiment could be performed. To use our results in practice
requires defining minimization criteria (e.g., implementation cost of gates VS depth VS architecture, etc.) dictated by
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a particular technology used, that may differ from one quantum information processing approach to another. Conse-
quently, in this paper, we ignored such physical constraints, but concentrated on the minimization of the gate count.
This serves as a proof of principle, showing that the search is possible in any practical scenario. We further explain
how to modify our algorithms to account for more complex circuit minimization criteria in Section 6, and illustrate
one of such modifications in the Section 7.

A second important contribution is due to the efficiency of our implementation—.00756 seconds per synthesis of
an optimal 4-bit reversible circuit. The algorithm could easily be integrated as part of peephole optimization, such as
the one presented in [16].

Furthermore, our implementation allows to develop a subsetof optimal implementations that may be used to test
heuristic synthesis algorithms. Currently, similar testsare performed by comparison to optimal 3-bit implementations
[4, 6, 8]. The best heuristic solutions have very tiny overhead when compared to optimal implementations, making
such a test hard to improve. As such, it would help to replace this test with a more difficult one that allows more
room for improvement. We suggest that this test set should include known benchmarks, and a combination of other
functions—linear reversible, as well as, possibly, representatives from other classes, those with few gates and those
requiring a large number of gates, etc. We have not worked outthe details of such a test.

Finally, due to the effectiveness of our approach, we are able to report new optimal implementations for small
benchmark functions, calculateL(4), the number of reversible gates required to implement a reversible 4-bit function,
calculate the average number of gates required to implementa 4-bit permutation, and show the distribution of the
number of permutations that may be implemented with the predefined number of gates.

An earlier version of this paper has been presented at the DAC’2010 conference.

2 Preliminaries

2.1 Quantum Computing

We start with a very short review of basic concepts in quantumcomputing. An in-depth coverage may be found in
[12].

The state of a single qubit is described by a linear combination (Dirac notation)/column vectorα|0〉+ β|1〉 =
(α,β)t , whereα andβ are complex numbers called the amplitudes, and|α|2+ |β|2 = 1. Real numbers|α|2 and|β|2
represent the probabilities of reading the logic states|0〉 and|1〉 upon (computational basis) measurement. The state
of a quantum system withn qubits is described by an element of the tensor product of thesingle state spaces and
can be represented as a normalized vector of length 2n, called the state vector. Furthermore, quantum mechanics
allows evolution of the state vector through its multiplication by 2n× 2n unitary matrices called the gates. These
gates may be applied to a quantum state sequentially—such process constitutes constructing a circuit—which is
equivalent to a series of proper matrix multiplications. Toillustrate the gate application, take the two qubit state
vector|11〉= (0,0,0,1)t and apply a CNOT gate, defined as the matrix









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









.

The result is the state|10〉 = (0,0,1,0)t . It may be observed that in the Dirac notation the CNOT gate may be
described as follows: application of the CNOT gate flips the value of the second qubit iff the value of the first qubit
is one. Dropping the bra-ket Dirac notation results in the following re-definition over Boolean valuesa andb—gate
CNOT performs transformationa,b 7→ a,b⊕ a. This definition extends to vectors by the linearity, and thus is not
ambiguous. In particular, in the follow up sections we will consider reversible circuits (sometimes known as quantum
Boolean circuits)—those where the matrix entries are strictly Boolean/integer, and for simplicity we will drop bra
and ket in the notations, leaving just the variable names. The set of reversible circuits forms a group, that is also a
subgroup of the set of all unitary transformations.

2.2 Reversible Circuits

In this paper, we consider circuits with NOT, CNOT, Toffoli (TOF), and Toffoli-4 (TOF4) gates defined as follows:

• NOT(a) : a 7→ a⊕1;

2



NOT CNOT Toffoli Toffoli-4

Figure 1: NOT, CNOT, Toffoli, and Toffoli-4 gates.

• CNOT(a,b) : a,b 7→ a,b⊕a;

• TOF(a,b,c) : a,b,c 7→ a,b,c⊕ab;

• TOF4(a,b,c,d) : a,b,c,d 7→ a,b,c,d⊕abc;

where⊕ denotes the EXOR operation and concatenation is the BooleanAND; see Figure 1 for illustration. These
gates are used widely in quantum circuit construction, and have been demonstrated experimentally in multiple quan-
tum information processing proposals [12]. In particular,CNOT is a very popular gate among experimentalists,
frequently used to demonstrate control over a multiple-qubit quantum mechanical system. Since quantum circuits
describe time evolution of a quantum mechanical system where individual “wires” represent physical instances, and
time propagates from left to right, this imposes restrictions on the circuit topology. In particular, quantum and re-
versible circuits are strings of gates. As a result, feed-back (time wrap) is not allowed and there may be no fan-out
(mass/energy conservation).

In this paper, we are concerned with searching for circuits requiring a minimal number of gates. Our focus is on
the proof of principle, i.e., showing that any optimal 4-bitreversible function may be synthesized efficiently, rather
than attempting to report optimal implementations for a number of potentially plausible cost metrics. In fact, our
implementation allows other circuit cost metrics to be considered, as discussed in Section 6 and Section 7.

In related work, there have been a few attempts to synthesizeoptimal reversible circuits with more than three
inputs. Großeet al. [3] employ SAT-based technique to synthesize provably optimal circuits for some small parame-
ters. However, their implementation quickly runs out of resources. The longest optimal circuit they report contains 11
gates. The latter took 21,897.3 seconds to synthesize—samefunction that the implementation we report in this paper
synthesized in .000052 seconds, see Table 7. Prasadet al. [16] used breadth first search to synthesize 26,000,000
optimal 4-bit reversible circuits with up to 6 gates in 152 seconds. We extend this search into finding all 16! optimal
circuits in 1,130,276 seconds. This is over 100 times faster(per circuit) and 800,000 times more than reported in
[16]. Yanget al. [20] considered short optimal reversible 4-bit circuits composed with NOT, CNOT, and Peres [14]
gates. They were able to synthesize optimal circuits with upto 6 gates, and use those to optimally synthesize any
given even permutation requiring no more than 12 gates. In other words, they can search a space of the size equal to
approximately one quarter of the number of all 4-bit reversible functions. Our algorithms and implementation allow
optimal synthesis ofall 4-bit reversible functions andany4-bit reversible function, and it is much faster.

2.3 Motivating Example

Consider the two reversible circuit implementations in Figure 2 of a 1-bit full adder. This elementary function/circuit
serves as a building block for constructing integer adders.The famous Shor’s integer factoring algorithm is dominated
by adders like this. As such, the complexity of an elementary1-bit adder circuit largely affects the efficiency of
factoring an integer number with a quantum algorithm. It is thus important to have a well-optimized implementation
of a 1-bit adder, as well as other similar small quantum circuit building blocks.

In this paper, we consider the synthesis of optimal circuits, i.e., we provably find the best possible implementation.
Using optimal implementations of circuits potentially increases the efficiency of quantum algorithms and helps to
reduce the difficulty with controlling quantum experiments.

3 FINDOPT: an Algorithm to Find an Optimal Circuit

We first outline our algorithm for finding an optimal circuit and then discuss it in detail in the follow up subsections.
There areN = 2n! reversiblen-variable functions. The most obvious approach to the synthesis of all optimal

implementations is to compute all optimal circuits and store them for later look-up. However, this is extremely
inefficient. This is because such an approach requiresΩ(N) space and, as a result, at leastΩ(N) time. These space
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Figure 2: (a) a suboptimal and (b) an optimal circuit for 1-bit full adder.

and time estimates are lower bounds, because, for instance,storing an optimal circuit requires more than a constant
number of bits, but for simplicity, let us assume these figures are exact. Despite considering both figures for space
and time impractical, we use this simple idea as our startingpoint.

We first improve the space requirement by observing that if one synthesized all halves of all optimal circuits, then
it is possible to search through this set to find both halves ofany optimal circuit. It can be shown that the space
requirement for storing halves has a lower bound ofΩ(

√
N). However, searching for two halves potentially requires

a runtime on the order of the square of the search space,Ω
(

(
√

N)2
)

= Ω(N), a figure for runtime that we deemed
inefficient. Our second improvement is thus to use a hash table to store the optimal halves. This reduces the runtime
to soft Ω(

√
N). While this lower bound does not necessarily imply that the actual complexity is lower thanO(N),

this turns out to be the case, because the set of optimal halves is indeed much smaller than the set of all optimal
circuits (an analytic estimate for the relative size of the former set is hard to obtain, though). Cumulatively, these two
improvements reduceΩ(N) space andΩ(N) time requirement toO(#halves(N)) space and softO(#halves(N)) time
requirement. These reductions almost suffice to make the search possible using modern computers.

Our last step, apart from careful coding, that made the search possible is the reduction of the space requirement
(with consequent improvement for runtime) by a constant of almost 48 via exploiting the following two features.
First, simultaneous input/output relabeling, of which there are at most 24 (=4!) different ones, does not change the
optimality of a circuit. And second, if an optimal circuit isfound for a functionf , an optimal circuit for the inverse
function, f−1, can be obtained by reversing the optimal circuit forf . This allows to additionally “pack” up to twice
as many functions into one circuit. The cumulative improvement resulting from these two observations, is by a factor
of almost 2×24= 48. Due to symmetries, the actual number is slightly less. See Table 4 (column 2 versus column
3) for exact comparison.

3.1 The search-and-lookup algorithm

For brevity, let the size of a reversible function mean the minimal number of gates required to implement it. Using
breadth-first search, we can generate the smallest circuitsfor all reversible functions of size at mostk, for a certain
value ofk. (This can be done in advance, on a larger machine, and need not be repeated for each reversible function.)

Assume that the given functionf , for which we need to synthesize a minimal circuit, has size at most 2k. We can
first check whetherf is among the known functions of size at mostk and, if so, output the corresponding minimal
circuit. If not, then the size off is betweenk+1 and 2k, inclusive, and there exist reversible functionsh andg of size
k and at mostk, respectively, such thatf = h◦g. If we find suchg of the smallest size, then we can obtain the smallest
circuit for f by composing the circuits forg andh.

Multiplying the above equality byg−1, we obtainf ◦g−1 = h. Observe thatg−1 has the same size asg. Therefore,
by trying all functionsg of size 1,2, . . . ,k until we find one such thatf ◦g has sizek, we can find ag of the smallest
size.

The above algorithm involves sequential access to the functions of size at mostk and their minimal circuits and a
membership test among functions of sizek. Since the latter test must be fast and requires random memory access, we
need to store all functions of sizek in the memory. Thus, the amount of available RAM imposes an upper bound onk.

In practice, we store a 4-bit reversible function using a 64-bit word, because this allows for an efficient implemen-
tation of functional composition, inversion, and other necessary operations. On a typical PC with 4GB of RAM, we
can store all functions fork = 6. This means that we can apply the above search algorithm only to functions of size
at most 12. Unfortunately, this will not cover all 4-bit reversible functions. Therefore, further reduction of memory
usage is necessary.

3.2 Symmetries

A significant reduction of the search space can be achieved bytaking into account the following symmetries of circuits:
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1. Simultaneous relabeling of inputs and outputs. Given an optimal circuit implementing a 4-bit reversible function
f with inputsx0,x1,x2,x3 and outputsy0,y1,y2,y3 and a permutationσ : {0,1,2,3}→ {0,1,2,3}, we can con-
struct a new circuit by relabeling the inputs and outputs into xσ(0),xσ(1),xσ(2),xσ(3) andyσ(0),yσ(1),yσ(2),yσ(3),
respectively. Then the new circuit will provide a minimal implementation of the corresponding reversible func-
tion fσ. Indeed, if it is not minimal and there is an implementation of fσ by a circuit with a smaller number
of gates, we can relabel the inputs and outputs of this implementation withσ−1 and obtain a smaller circuit
implementing the original functionf . This contradicts the assumption that the original circuitfor f is optimal.

Given f andσ, a formula forfσ can be easily obtained. Observe that the mappingx0,x1,x2,x3 7→ xσ(0),xσ(1),xσ(2),
xσ(3) is a 4-bit reversible function, which we denote byσ̃. The mappingyσ(0),yσ(1),yσ(2),yσ(3) 7→ y0,y1,y2,y3 is
then given by the inverse,σ̃−1. Therefore, the four bit valuesy0,y1,y2,y3 of fσ on a four-bit tuplex0,x1,x2,x3

can be obtained by applying firstσ̃, then f , and finallyσ̃−1. We obtain fσ = σ̃−1 ◦ f ◦ σ̃. We call the set of
functionsfσ theconjugacy classof f modulo simultaneous input/output relabelings.

Since there exist 24 permutations of 4 numbers, by choosing different permutationsσ, we obtain 24 functions
of the above formfσ for a fixed functionf . Some of these functions may be equal, whence the size of the
conjugacy class off may be smaller than 24. For example, iff =NOT(a), then there exist only 4 distinct
functions of the formfσ (counting f itself). Our experiments show, however, that for the vast majority of
functions, the conjugacy classes are of size 24.

2. Inversion. As mentioned above, if we know a minimal implementation forf , then we know one for its inverse
as well.

Note that conjugation and inversion commute:

(σ̃−1◦ f ◦ σ̃)−1 = σ̃−1◦ f−1◦ σ̃.

For a function f , consider the union of the two conjugacy classes off and f−1. Call the elements of this union
equivalentto f . It follows that equivalent functions have the same size. Moreover, since gates are idempotent (i.e.,
equal to their own inverses) and their conjugacy classes consist of gates, if we know a minimal circuit forf , we can
easily obtain one for any function in the equivalence class of f . Formally, if f = λ1◦ . . .◦λn, wheren is the size off
andλi are gates, thenf−1 = λn ◦ . . . ◦λ1, and if f ′ = σ̃−1 ◦ f ◦ σ̃, then f ′ = λ′1 ◦ . . . ◦λ′n, whereλ′i = σ̃−1 ◦λi ◦ σ̃ are
also gates. Our experiments show that a vast majority of functions have 48 distinct equivalent functions. This fact can
reduce the search space by almost a factor of 48 as follows.

For a functionf , define the canonical representative of its equivalence class. A convenient canonical represen-
tative can be obtained by introducing the lexicographic order on the set of 4-bit reversible functions, considered as
permutations of{0,1,2, . . . ,15} and encoded accordingly by the sequencef (0), f (1), . . . , f (15), and choosing the
function whose corresponding sequence is lexicographically smallest. Now, instead of storing all functions of size at
mostk, store the canonical representative for each equivalence class. This will reduce the storage size by almost a
factor of 48. Then, we use Algorithm 1 to search for a minimal circuit for a given reversible functionf .

The algorithm requires a hash table with canonical representatives of equivalence classes of size at mostk, together
with the last gates of their minimal circuits, and lists of all permutations of size at mostL−k. We have pre-computed
the canonical representatives fork= 9 using breadth-first search (see Algorithm 2). For efficiency reasons, we store
the lastor the firstgate of a minimal circuit for each canonical representative. However, this information is clearly
sufficient to reconstruct the entire circuit and, in particular, the last gate. Using this pre-computed data, the hash table
and the lists of all permutations of size at mostL− k are formed at the start-up. An implementation storing only the
hash table is possible. Such an implementation will requireless RAM memory, but it will be slower. We decided to
focus on higher speed, because Table 4 indicates that we do not need to be able to search optimal circuits requiring
up to 18 (= 9×2) gates, which we could do otherwise by storing only the hashtable.

The correctness of Algorithm 1 is proved as follows. Supposefirst that the size off is at mostk. The canonical
representativēf of its equivalence class will have the same size asf , so it will be found in the hash tableH. Sinceλ̄ is
the last gate of a minimal circuit for̄f , the size off̄ ◦ λ̄ is one less than the size of̄f . The functionf ◦λ (computed iff
is a conjugate of̄f ) or the functionλ◦ f (computed iff is a conjugate of̄f−1) is equivalent tof̄ ◦ λ̄ and therefore also
is of size one less than the size off̄ . Therefore, the recursive call on that function will terminate and return a minimal
circuit, which we can compose withλ (at the proper side) to obtain a minimal circuit forf . The depth of recursion is
equal to the size off , and at each call we do one hash table lookup, one computationof the canonical representative,
and one conjugation of a gate (the latter can be looked up in a small table). Thus, this part of the algorithm requires
negligible time.
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Algorithm 1 Minimal circuit (FINDOPT).
Require: Reversible functionf of size at mostL.

Hash tableH containing canonical representatives of all equivalence classes of functions of size at mostk and the
last gates of their minimal circuits,k≥ L/2.
ListsAi , 1≤ i ≤ L− k, of all functions of sizei.

Ensure: A minimal circuitc for f .
if f = IDENTITY then

return empty circuit
end if
Ef ← equivalence class off
f̄ ← canonical representative ofEf

if f̄ ∈H then
λ̄← last gate off̄
if f is a conjugate of̄f then

let f = σ̃−1◦ f̄ ◦ σ̃
λ← σ̃−1◦ λ̄◦ σ̃
c← minimal circuit for f ◦λ
return c◦λ

else
let f = σ̃−1◦ f̄−1◦ σ̃
λ← σ̃−1◦ λ̄◦ σ̃
c← minimal circuit forλ◦ f
return λ◦ c

end if
end if
for i = 1 to L− k do

for g∈ Ai do
h← g◦ f
Eh← equivalence class ofh
h̄← canonical representative ofEh

if h̄∈H then
cg← minimal circuit forg
ch← minimal circuit forh
return c−1

g ◦ ch

end if
end for

end for
return error: size of f is greater thanL

If the size of f is greater thank, but does not exceedL, then f = gf ◦h for someh of sizek andgf of size i,
1≤ i ≤ L− k. Theng= g−1

f ∈ Ai . Once the inner for-loop encounters thisg, it will return the minimal circuit forf ,
because both recursive calls are for functions of size at most k. For a functionf of sizes> k, the number of iterations
required to find the minimal circuit satisfies

s−1−k

∑
i=1

|Ai |< r ≤
s−k

∑
i=1

|Ai |.

At each iteration, one canonical representative is computed and looked up in the hash table. Since the size ofAi

grows almost exponentially (see Table 4, left column), the search time will decrease almost exponentially, and the
storage will increase exponentially, ask increases. The timings fork = 8,9 measured on two different systems are
summarized in Table 1 (see Section 5 for machine details). Please, note that size 15 circuits may be verified against
Table 5 and consequently the time to synthesize them, for allpractical purposes, is zero. We marked relevant entries
in the Table 1 with an asterisk. The hash table loading and overall memory usage times were 191 seconds, 3.5GB
(k= 8) and 1667 seconds, 43.04GB (k= 9).

It follows from the above complexity analysis that the performance of the following key operations affect the
speed most:
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Algorithm 2 Breadth-first search (BFS).
Require: k
Ensure: Lists Ai of canonical representatives of size≤ k;

Hash tableH with these canonical representatives and their first or lastgates.
Let H be a hash table (keys are functions, values are gates)
H.insert(IDENTITY, HASNO GATES)
A0← {IDENTITY}
for i from 1 tok do

for f ∈ Ai−1∪{a−1 | a∈ Ai−1} do
for all gatesλ do

h← f ◦λ
Eh← equivalence class ofh
h̄← canonical representative ofEh

if h̄ 6∈H then
if h is a conjugate of̄h then

let h= σ̃−1◦ h̄◦ σ̃
H.insert(̄h, σ̃−1◦λ◦ σ̃, IS LAST GATE)

else
let h= σ̃−1◦ h̄−1◦ σ̃
H.insert(̄h, σ̃−1◦λ◦ σ̃, IS FIRST GATE)

end if
Ai .insert(̄h)

end if
end for

end for
end for

• composition of two functions (f ◦g) and inverse of a function (f−1),

• computation of the canonical representative of an equivalence class,

• hash table lookup.

In the next Subsection we discuss an efficient implementation of these operations.

3.3 Implementation details

As mentioned above, a 4-bit reversible function can be stored in a 64-bit word, by allocating 4 bits for each value
of f (0), f (1), . . . , f (15). Then the composition of two functions can be computed in 94 machine instructions using
the algorithmcomposition and the inverse function can be computed in 59 machine instructions using algorithm
inverse.

In order to find the canonical representative in the equivalence class of a functionf , we computef−1, generate
all conjugates off and f−1, and choose the smallest among the resulting 48 functions. Since every permutation of
{0,1,2,3} can be represented as a product of transpositions(0,1), (1,2), and(2,3), the sequence of conjugates of
f by all 24 permutations can be obtained through conjugatingf by these transpositions. These conjugations can be
performed in 14 machine instructions each as in functionconjugate01.

Two functions can be compared lexicographically using a single unsigned comparison of the corresponding two
words. Thus, the canonical representative can be computed using one inversion, 23×2= 46 conjugations by trans-
positions, and 47 comparisons, which totals to 750 machine instructions.

For the fast membership test, we use a linear probing hash table with Thomas Wang’s hash function [21] (see
algorithmhash64shift).

This function is well suited for our purposes: it is fast to compute and distributes the permutations uniformly over
the hash table. The parameters of the hash tables storing thecanonical representatives of equivalence classes of size
k, for k= 7,8,9 are shown in Table 2.

7



Table 1: Average times of computing minimal circuits of sizes 0..15 (in seconds).
Size\ k 8 (LPTP) 8 (CLSTR) 9 (CLSTR)
1 8.70×10−7 5.25×10−7 5.23×10−7

2 1.26×10−6 8.32×10−7 8.33×10−7

3 1.66×10−6 1.14×10−6 1.15×10−6

4 2.07×10−6 1.47×10−6 1.47×10−6

5 2.47×10−6 1.79×10−6 1.79×10−6

6 3.48×10−6 2.11×10−6 2.12×10−6

7 4.22×10−6 2.46×10−6 2.46×10−6

8 4.49×10−6 2.81×10−6 2.80×10−6

9 1.07×10−5 6.68×10−6 3.11×10−6

10 2.28×10−4 9.31×10−5 6.23×10−6

11 4.27×10−3 3.60×10−3 7.23×10−5

12 6.30×10−2 5.58×10−2 1.34×10−3

13 4.91×10−1 4.80×10−1 2.20×10−2

14 4.38×100 4.50×100 2.32×10−1

15 N/A∗ 6.14×101∗ 3.61×100∗

Table 2: Parameters of linear hash tables storing canonicalrepresentatives.
k 7 8 9

Size 225 228 232

Memory Usage 256 MB 2 GB 32 GB
Load Factor 0.58 0.84 0.51
Average Chain Length 3.14 9.18 2.63
Maximal Chain Length 92 754 86
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unsigned64 composition(unsigned64 p,
unsigned64 q) {

unsigned64 d = (p & 15) << 2;
unsigned64 r = (q >> p_i) & 15;
p >>= 2; d = p & 60;
r |= ((q >> d) & 15) << 4;
p >>= 4; d = p & 60;
r |= ((q >> d) & 15) << 8;
p >>= 4; d = p & 60;
r |= ((q >> d) & 15) << 16;
...
p >>= 4; d = p & 60;
r |= ((q >> d) & 15) << 60;
return r;

}

unsigned64 inverse(unsigned64 p) {
p >>= 2;
unsigned64 q = 1 << (p & 60);
p >>= 4; q |= 2 << (p & 60);
p >>= 4; q |= 3 << (p & 60);
...
p >>= 4; q |= 15 << (p & 60);
return q;

}

unsigned64 conjugate01(unsigned64 p) {
p = (p & 0xF00FF00FF00FF00F) |

((p & 0x00F000F000F000F0) << 4) |
((p & 0x0F000F000F000F00) >> 4);

return (p & 0xCCCCCCCCCCCCCCCC) |
((p & 0x1111111111111111) << 1) |
((p & 0x2222222222222222) >> 1);

}

4 SEARCHALL: an Algorithm to Find all Optimal Circuits

We first outline our algorithm for finding all optimal circuits and then discuss it in detail in the follow up subsections.
We employ a breadth first search that consists of two stages:

• Optimal circuits with 0..9 gates are found with Algorithm 2,BFS. This algorithm becomes inefficient for finding
optimal circuits with 10 or more gates.

• Optimal circuits with 10 and more gates are found by storing and updating the bit vector of canonical represen-
tatives of permutations requiring a certain number of gates.

The SEARCHALL algorithm is used to find all reversible functions of sizek for k= 10,11, . . ., until we reach the
maximal size of a reversible function. Starting from the known set of reversible functions of size 9, we consecutively
proceed to sizes 10,11, . . .. The transitions from sizek to size(k+1) are carried out as follows (Subsections 4.1 to
4.4).

First, we choose a compact representation for the set of reversible functions of sizek, based on the following
concept of an almost reduced function.

4.1 Almost reduced functions

Call a reversible function (permutation)p almost reducedif one of the following two conditions holds:

1. p(0) = 0 andp(15) ∈ {1,3,7,15}
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long hash64shift(long key) {
key = (˜key) + (key << 21);
key = key ˆ (key >>> 24);
key = (key + (key << 3)) + (key << 8);
key = key ˆ (key >>> 14);
key = (key + (key << 2)) + (key << 4);
key = key ˆ (key >>> 28);
key = key + (key << 31);
return key;

}

2. (p(0), p−1(0)) belongs to the following set

{ (1,1),(1,2),(1,15),(3,1),(3,3),(3,4),
(3,5),(3,12),(3,15),(7,1),(7,3),(7,7),
(7,8),(7,9),(7,11),(7,15),(15,15) }

Lemma 1. For every permutation p, there is at least one equivalent almost reduced reversible function.

Note that a reduced reversible function is not necessarily almost reduced. This will hopefully not lead to a
confusion, since we are not going to deal with reduced functions in this section.

An almost reduced permutationp can be uniquely specified by the following data:

• Ap: p(0)

• Bp: p(15) if p(0) = 0, otherwisep−1(0)

• Qp: a permutation of 14 elements.

We call this data anindexable specificationof the almost reduced permutationp.
The set of almost reduced reversible functions can be totally ordered by ordering their indexable specifications

(Ap,Bp,Qp) lexicographically. Theindexof an almost reduced reversible functionp is defined as the number of
smaller almost reversible functions. In order to compute the index of a functionp, we first compute its indexable
specification(Ap,Bp,Qp). Then we computen(Qp), the number of 14-element permutations smaller thanQp, and
n(Ap,Bp), the number of pairs(A,B) that are a valid part of an indexable specification and are lexicographically
smaller than(Ap,Bp). Then the index ofp is given by

n(p) = 14!n(Ap,Bp)+n(Qp).

Efficient conversions between reversible functions and their indexable specifications are quite straightforward,
therefore we omit these algorithms here. Various efficient algorithms for indexing permutations are also well-known.

Since almost reduced functions and their indexable specifications are in a one-to-one correspondence, the total
number of almost reduced functions is 21∗ 14! < 1.84× 1012. This is≈ 11.43 times less than the total number
of reversible functions, yet about 4 times greater than the number of equivalence classes—i.e., different reduced
permutations. The main reason why we do not index equivalence classes directly (which would have further reduced
our memory requirements by about a factor of 4) is that we could not find an efficient algorithm for computing these
indices.

4.2 From sizek to sizek+1

We encode the set of reversible functions of sizek by a bit array of size 21×14! bits (under 209GB), where biti is
set whenever the almost reduced functionp with n(p) = i has sizek and is the smallest almost reduced function in its
equivalence class.

We further split this array in 3 parts calledslices, by partitioning the set of pairs(A,B) that are valid parts of an
indexable specification into 3 subsets. One third of the bit array easily fits in the memory of the machine we were
using for the experiments (and leaves enough extra space forthe system not to be tempted to turn on swapping during
the computation).

Suppose that the bit array for functions of sizek is stored in an input file. We compute the bit array for functions
of sizek+1 and store it in the output file via the following stages:
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1. Composition. Repeated for each target slices (there are three of them). Allocate in memory a bit arraya of size
21×14!/3 bits. For every almost reduced functionp marked in the input bit array, generate all its conjugates
and inverses (thus we obtain all reversible functions of size k). Then for every functionp′ in the equivalence
class ofp and every gateg, find an almost reduced representativeq in the equivalence class of the composition
g◦ p′, then compute its indexn(q). If n(q) is in slices, set then(q)-th bit in the bit arraya. At the end, output
the array in a new file and concatenate the three slices.

2. Canonization. Because an equivalence class can have morethan one almost reduced element, the previous
stage may have marked more than one bit for some equivalence classesg◦ p. We scan the bit array output at
the previous stage and, for each permutationq marked there, compute the smallest equivalent almost reduced
permutationq′ and mark the corresponding bit in the array allocated in memory. Since the entire bit array does
not fit in memory, we again use three slices and at the end concatenate them.

3. Subtraction. The bit array produced by the previous stagecontains all functions of sizek+1, as well as some
functions of sizek andk− 1. We therefore subtract the bit arrays corresponding to sizesk andk− 1. The
resulting bit array satisfies the property: biti is set whenever the almost reduced functionp with n(p) = i has
sizek+1 and is the smallest almost reduced function in its equivalence class.

4. (Optional stage) Counting. For each almost reduced function of sizek+ 1, smallest in its equivalence class,
we generate the entire equivalence class and count its cardinality. As a result, we obtain the total number of
reversible functions of sizek+1.

4.3 Optimization

The hardest stage to optimize is Composition. Our initial implementation, which was quite literally following the
above description, with somead hocimprovements, was going to require months to compute the functions of size 12.
We found the following shortcut, which speeds it up by about afactor of 24.

For every almost reduced functionp marked in the input bit array, we compute its equivalence class. However,
we avoid computing the compositions of each element of the equivalence class and each gate. Instead, we extract
the valuesp(0), p(15), p−1(0), p−1(15). Given these values and a gateg, one can determine which conjugation and
possibly inversion must be applied tog◦ p to obtain an almost reduced function. The table of these conjugations and
inversions is pre-computed in advance.

Then, suppose a given permutationp is conjugate to an almost reduced permutation, i.e.,c−1 ◦g◦ p◦ c for some
conjugationc is almost reduced. We rewrite this asc−1 ◦ g◦ c◦ c−1 ◦ p◦ c. The conjugations of the 32 gates are
also pre-computed in advance and stored in a separate table.Since the conjugations ofp have been computed at
the beginning of this step (indeed, we have computed the entire equivalence class ofp), we can just take one of its
elementsp′ and compose it with the gateg′ = c−1◦g◦ c. The resulting permutationg′ ◦ p′ is almost reduced.

If the almost reduced representative in the equivalence class ofg◦ p is a conjugate of the inverse(g◦ p)−1, i.e.,
equalsc−1 ◦ (g◦ p)−1 ◦ c, then we rewrite this asc−1 ◦ p−1 ◦g−1 ◦ c= c−1 ◦ p−1 ◦ c◦ c−1 ◦g◦ c (also using the fact
that g−1 = g for every gateg). Now we again observe thatc−1 ◦ p−1 ◦ c has been pre-computed, so we only need
to compose it with the gateg′ = c−1 ◦g◦ c. Note that compositions of functions with gates (on either side) can be
performed very efficiently.

Having implemented this optimization, we were able to compute all reversible functions of size 10. However, the
computation of functions of size 12 would still take too long, so we parallelized the algorithm.

4.4 Parallelization

Both composition and canonization stages are computationally intensive. We parallelized them using the following
architecture implemented with MPI.

For composition, the master job reads the input bit vector inblocks. Every block is sent to one of 16 workers,
which are chosen in a circular (round robin) order. These workers decode the bits in the blocks into permutations of
sizek, apply gates to them as described above, and compute the indices of the resulting almost reduced permutations.
These indices are stored in a temporary array, which is partitioned into 8 equal slices. Once all indices have been
computed by a worker, the slices are sent to the corresponding 8 collector jobs. Each collector possesses its own bit
vector allocated in RAM. It receives arrays with indices of bits to be marked from the 16 workers in a round robin
order. Having received an array from a worker, it marks the corresponding bits. At the end of a round, the collector
signals the master that a round has been completed. At the very end, the collectors write their bit vectors to disk in
sequence.
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Table 3: Distribution of the number of gates required for 10,000,000 random 4-bit reversible functions.
Size Functions

14 17,191
13 2,371,039
12 5,110,943
11 2,051,507
10 392,108
9 50,861
8 5,269
7 455
6 24
5 3

The master makes sure that the collectors are no more than 80 blocks behind it. If it continued to send the blocks
to the workers without waiting for the workers and collectors to finish processing them, the unprocessed blocks would
accumulate in the communication channels between the master and the workers. This results in a memory leak,
which turned out to be faster than the system swapping mechanism, and therefore caused a deadlock. By allowing the
collectors to be only a certain number of blocks behind the master, we restrict the amount of data in the communication
channels at any given moment and thus prevent the leak. It is useful to allow a non-zero lag though, for otherwise
the system becomes overly synchronized, which drasticallyreduces the performance: the workers and collectors that
finish first end up waiting on the others most of the time. With the lag, communication channels work as buffers, from
which the workers continue to draw data. The amount of data ineach particular channel at a given moment may vary,
depending on the speed at which the corresponding worker processes the previous blocks.

Exactly the same parallel architecture is used for canonization. The master again reads the input bit vector in
blocks. The workers compute the minimal almost reduced equivalent permutation for each almost reduced permuta-
tion they receive from the master and send their indices to the collectors. The collectors mark the corresponding bits
and write those bit vectors to disk at the end.

5 Performance and Results

We performed several tests using two computer systems, LPTPand CLSTR. LPTP is a Sony VGN-NS190D laptop
with Intel Core Duo 2000 GHz processor, 4 GB RAM, and a 5400 RPMSATA HDD running Linux. CLSTR is a
cluster [22] located at the Institute for Quantum Computing. We used a single Sun X4600 node with 128 GB RAM
and 8 AMD Opteron quad-core CPUs for each run of the SEARCHALLand FINDOPT algorithm in CLSTR. The
following subsections summarize the tests and results.

5.1 Synthesis of Random Permutations

In this test, we generated 10,000,000 random uniformly distributed permutations using the Mersenne twister random
number generator [10]. We next generated their optimal circuits using algorithm FINDOPT. The test was executed on
CLSTR. It took 75,613.12 seconds (about 21 hours) of user time and the maximal RAM memory usage was 43.04GB.
Note that 1667 seconds (approximately 28 minutes) were spent loading previously computed optimal circuits with
up to 9 gates (see Subsection 5.2 for details) into RAM. On average, it took only 0.00756 seconds to synthesize an
optimal circuit for a permutation. The distribution of the circuit sizes is shown in Table 3.

Since there are no permutations requiring 16 or more gates, and only a few permutations requiring 15 gates (see
Subsection 5.3 for details), this implies that the search FINDOPT may be easily modified to explicitly store all optimal
15-bit implementations in the cache, and search optimal implementations with up to 14 gates. Such a search may be
executed using a computer capable of storing reduced optimal implementations with up to 7 gates, i.e., a machine with
only 256M of available RAM. In other words, FINDOPT allows performing optimal 4-bit circuit calculation even on
an older machine.
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Table 4: Number of 4-bit permutations requiring prescribednumber of gates.
Size Functions Reduced Runtime

Functions
≥16 0 0

15 144 5 66,782s
14 37,481,795,636 781,068,573 245,488s
13 4,959,760,623,552 103,331,100,613 397,464s
12 10,690,104,057,901 222,714,352,278 238,589s
11 4,298,462,792,398 89,554,073,333 103,595s
10 819,182,578,179 17,067,688,249 68,670s
9 105,984,823,653 2,208,511,226 8,836.36s
8 10,804,681,959 225,242,556 744.41s
7 932,651,938 19,466,575 95.574s
6 70,763,560 1,482,686 11.109s
5 4,807,552 101,983 0.816s
4 294,507 6,538 0.06s
3 16,204 425 0.004s
2 784 33 <0.001s
1 32 4 <0.001s
0 1 1 <0.001s

Total 20,922,789,888,000 435,903,095,078 1,130,276s

Table 5: Permutations requiring 15 gates.
Function # Symm. Implementation

[1,5,0,8,9,11,2,15,3,12,4,6,10,14,13,7] 24 CNOT(a,c) CNOT(c,d) CNOT(d,a) TOF(b,d,c) CNOT(a,b) TOF(c,d,b) TOF4(a,b,c,d)
CNOT(c,a) NOT(b) NOT(c) CNOT(a,d) TOF(b,d,c) TOF(b,c,a) TOF(a,c,b) NOT(c)

[1,9,0,4,10,8,2,11,3,15,5,12,7,14,13,6] 24 NOT(d) CNOT(d,c) TOF4(a,c,d,b) TOF(a,d,c) TOF(b,d,a) TOF(c,d,b) TOF(b,c,d)
TOF(a,d,b) CNOT(a,d) NOT(a) NOT(b) NOT(c) TOF4(b,c,d,a) CNOT(b,c) TOF(a,d,c)

[3,1,7,13,11,0,8,15,2,5,10,6,9,14,12,4] 48 NOT(b) CNOT(b,a) TOF(a,b,c) TOF(a,d,b) CNOT(c,d) TOF4(b,c,d,a) TOF4(a,b,c,d)
CNOT(a,c) CNOT(c,b) TOF(b,d,c) NOT(a) NOT(b) CNOT(c,d) CNOT(d,a) TOF(a,b,c)

[3,1,11,7,8,0,9,5,2,6,15,13,14,4,10,12] 24 CNOT(c,b) CNOT(a,d) CNOT(d,a) TOF4(a,b,c,d) TOF(a,b,c) TOF(b,c,a) TOF(a,d,b)
CNOT(b,c) NOT(d) NOT(c) NOT(a) TOF(c,d,b) TOF(b,c,d) CNOT(d,c) CNOT(a,c)

[3,5,11,1,8,0,9,7,2,6,14,13,10,4,12,15] 24 CNOT(c,b) TOF(b,d,a) CNOT(a,d) CNOT(d,c) TOF(b,c,a) TOF(a,c,b) TOF(a,d,c)
TOF(b,c,a) NOT(d) NOT(c) NOT(b) CNOT(d,a) TOF(b,c,d) CNOT(d,b) TOF(a,b,c)

5.2 Distribution of Optimal Implementations

Table 4 lists the distribution of the number of permutationsthat can be realized with optimal circuits requiring a
specified number of gates. We used CLSTR to run this test, and it took 1,130,276 seconds (approximately 13 days) to
complete it. Circuits with up to 9 gates were synthesized using BFS algorithm. For circuits with 10 gates and more
we used SEARCHALL.

We have calculated the average number of gates required for arandom 4-bit reversible function, 11.93937. . ..

5.3 Most complex permutations

As follows from the previous subsection, there are only five reduced permutations requiring the maximal number of
gates, 15. We list all five canonical representatives, together with their optimal implementations, in Table 5. Columns
of this table report the function specification, the number of symmetries this specification generates, and an optimal
circuit found by our program, correspondingly. The remaining 139 (= 144−5) permutations requiring 15 gates in
an optimal implementation may be found via reducing them to acanonical representative through an input/output
relabeling and possible inversion. For example, [6,8,15,13,4,0,12,1,3,9,11,14,10,2,5,7] is a permutation requiring 15
gates in an optimal implementation. It may be obtained from the third listed in the Table 5 via inversion and relabeling
(a,b,c,d) 7→ (c,a,b,d).
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Table 6: Number of 4-bit linear reversible functions requiring 0..10 gates in an optimal implementation.
Size Functions

10 138
9 13,555
8 84,225
7 118,424
6 72,062
5 26,182
4 6,589
3 1,206
2 162
1 16
0 1

5.4 Optimal linear circuits

Linear reversible circuits are the most complex part of quantum error correcting circuits [1]. Efficiency of these cir-
cuits defines the efficiency of quantum encoding and decodingerror correction operations. Linear reversible functions
are those whose positive polarity Reed-Muller polynomial has only linear terms. More simply, and equivalently, linear
reversible functions are those computable by circuits withNOT and CNOT gates.

For example, the reversible mappinga,b,c,d 7→ b⊕ 1,a⊕ c⊕ 1,d⊕ 1,a is a linear reversible function. Inter-
estingly, this linear function is one of the 138 most complexlinear reversible functions—it requires 10 gates in an
optimal implementation. The optimal implementation of this function is given by the circuit CNOT(b,a) CNOT(c,d)
CNOT(d,b) NOT(d) CNOT(a,b) CNOT(d,c) CNOT(b,d) CNOT(d,a)NOT(d) CNOT(c,b).

We synthesized optimal circuits for all 322,560 4-bit linear reversible functions using FINDOPT algorithm. This
process took under two seconds on LPTP. The distribution of the number of functions requiring a given number of
gates is shown in Table 6.

5.5 Synthesis of Benchmarks

In this subsection, we report optimal circuits for benchmark functions that have been previously reported in the
literature. Table 7 summarizes the results. The table describes theName of the benchmark function, its complete
Specification, Size of theBestKnownCircuit (SBKC), theSourceof this circuit, indicator of whether this circuit
has beenProvedOptimal (PO?), Size of anOptimal Circuit (SOC), the optimal implementation that our program
found, and the runtime our program takes to find this optimal implementation. We used the head node of CLSTR
for this test, and report the runtime it takes after hash table with all optimal implementations with up to 9 gates is
loaded into RAM. Shorter runtimes were identified using multiple runs of the search to achieve sufficient accuracy.
Please note that we introduce the functionnth prime4 inc, which cannot be found in the previous literature. Also,
the 9-gate circuit for the functionmperkreported in [15] requires some extra SWAP gates to properly map inputs into
their respective outputs, indicated by an asterisk.

6 Conclusions and Possible Extensions

In this paper, we described two algorithms: first, FINDOPT, finds an optimal circuit for any 4-bit reversible function,
and second, SEARCALL, finds all optimal 4-bit reversible circuits. Our goal was to minimize the number of gates
required for function implementation. Our implementationof FINDOPT takes approximately 3 hours to calculate
all optimal implementations requiring up to 9 gates, and then an average of about 0.00756 seconds to search for
an optimal circuit of any 4-bit reversible function. Our implementation of SEARCHALL requires about about 13
days, however, it needs to be completed only once to collect all relevant statistics and data. Both calculations are
surprisingly fast given the size of the search space.

Using BFS, we demonstrated the synthesis of 117,798,040,190 optimal circuits in 9,688 seconds, amounting to an
average speed of 12,168,356 circuits per second. This is over 70 times faster and some 4,500 times more than the best
previously reported result (26 million circuits in 152 seconds) [16]. Furthermore, using FINDALL, we demonstrated
the synthesis of 20,922,789,888,000 functions in 1,130,276 seconds (18,511,222 circuits per second). This is over
100 times faster and over 800,000 times more than in [16].
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Table 7: Optimal implementations of benchmark functions.
Name Specification SBKC Source PO? SOC Our optimal circuit Runtime
4 49 [15,1,12,3,5,6,8,7, 12 [7] No 12 NOT(a) CNOT(c,a) CNOT(a,d) TOF(a,b,d) .000355s

0,10,13,9,2,4,14,11] CNOT(d,a) TOF(c,d,b) TOF(a,d,c) TOF(b,c,a)
TOF(a,b,d) NOT(a) CNOT(d,b) CNOT(d,c)

4bit-7-8 [0,1,2,3,4,5,6,8,7,9, 7 [11] No 7 CNOT(d,b) CNOT(d,a) CNOT(c,d) TOF4(a,b,d,c) .000002s
10,11,12,13,14,15] CNOT(c,d) CNOT(d,b) CNOT(d,a)

decode42 [1,2,4,8,0,3,5,6,7,9, 11 [4] No 10 CNOT(c,b) CNOT(d,a) CNOT(c,a) TOF(a,d,b) .000004s
10,11,12,13,14,15] CNOT(b,c) TOF4(a,b,c,d) TOF(b,d,c)

CNOT(c,a) CNOT(a,b) NOT(a)
hwb4 [0,2,4,12,8,5,9,11,1, 11 [7] Yes 11 CNOT(b,d) CNOT(d,a) CNOT(a,c) CNOT(c,d) .000052s

6,10,13,3,14,7,15] TOF(a,d,b) TOF(b,c,a) CNOT(d,c) CNOT(c,b)
TOF(a,c,b) CNOT(a,c) CNOT(b,d)

imark [4,5,2,14,0,3,6,10, 7 [16] No 7 TOF(c,d,a) TOF(a,b,d) CNOT(d,c) CNOT(b,c) .000003s
11,8,15,1,12,13,7,9] CNOT(d,a) TOF(a,c,b) NOT(c)

mperk [3,11,2,10,0,7,1,6, 9* [11], No 9 NOT(c) CNOT(d,c) TOF(c,d,b) TOF(a,c,d) .000003s
15,8,14,9,13,5,12,4] [15] CNOT(b,a) CNOT(d,a) CNOT(c,a) CNOT(a,b)

CNOT(b,c)
oc5 [6,0,12,15,7,1,5,2,4, 15 [17] No 11 TOF(b,d,c) TOF(c,d,b) TOF(a,b,c) NOT(a) .000158s

10,13,3,11,8,14,9] CNOT(d,b) CNOT(c,a) CNOT(a,c) TOF(a,b,d)
CNOT(c,a) CNOT(c,b) TOF4(a,b,d,c)

oc6 [9,0,2,15,11,6,7,8, 14 [17] No 12 TOF4(a,b,c,d) TOF(b,d,c) CNOT(d,a) TOF(b,c,d) .000380s
14,3,4,13,5,1,12,10] CNOT(c,b) CNOT(b,c) TOF(a,d,c) TOF(b,c,a)

TOF(a,b,c) NOT(a) CNOT(d,b) CNOT(a,d)
oc7 [6,15,9,5,13,12,3,7, 17 [17] No 13 CNOT(b,d) NOT(b) TOF(a,b,c) TOF(b,d,a) TOF(c,d,b) .0194s

2,10,1,11,0,14,4,8] CNOT(a,d) CNOT(a,c) CNOT(b,a) TOF4(a,b,c,d)
TOF(c,d,b) CNOT(c,a) NOT(a) CNOT(b,c)

oc8 [11,3,9,2,7,13,15,14, 16 [17] No 12 CNOT(a,b) TOF(b,c,a) TOF(c,d,b) CNOT(d,a) .000725s
8,1,4,10,0,12,6,5] TOF4(a,b,d,c) TOF(a,b,d) NOT(b) TOF(a,d,b)

TOF(b,d,a) TOF(b,c,d) NOT(a) CNOT(a,d)
nth pri [0,2,3,5,7,11,13,1,4, N/A N/A N/A 11 TOF(a,b,c) CNOT(d,b) TOF(a,c,b) TOF(b,d,c)0.000095s

me4 inc 6,8,9,10,12,14,15] TOF(b,c,d) CNOT(a,b) TOF4(b,c,d,a) CNOT(c,b)
TOF4(a,b,d,c) CNOT(b,a) TOF(b,d,a)

rd32 [0,7,6,9,4,11,10,13, 4 [2] Yes 4 TOF(a,b,d) CNOT(a,b) TOF(b,c,d) CNOT(b,c) .000001s
8,15,14,1,12,3,2,5]

shift4 [1,2,3,4,5,6,7,8,9, 4 [11] Yes 4 TOF4(a,b,c,d) TOF(a,b,c) CNOT(a,b) NOT(a) .000002s
10,11,12,13,14,15,0]

We also demonstrated that the search for any given optimal circuit can be done very quickly—.00756 seconds per a
random function. For example, if all optimal circuits were written into ahypothetical100+TB 5400 RPM hard drive,
the average time to extract a random circuit from the drive would be expected to take on the order of 0.01− 0.02
seconds (typical access time for 5400 RPM hard drives). In other words, it would take longer to read the answer
from ahypotheticalhard drive than to compute it with our implementation. Furthermore, the 3-hour calculation of
all optimal circuits with up to 9 gates could be reduced by storing its result (computed once for the entirety of the
described search and its follow up executions) on the hard drive, as was done in Subsection 5.1. It took 1667 seconds,
i.e., under 28 minutes, to load optimal circuits with up to 9 gates into RAM using CLSTR. Given that the media
transfer rate of modern hard drives is 1Gbit/s (=1GB in 8 seconds) and higher, it may take no longer than 5 minutes
(= 300s> 296= 37∗8s) to load optimal implementations into RAM to initiate thesearch on a different machine.

Minor modifications to the algorithm could be explored to address other optimization issues. For example, for
practicality, one may be interested in minimizing depth. This may be important if a faster circuit is preferred, and/or if
quantum noise has a stronger constituent with time, than with the disturbance introduced by multiple gate applications.
It may also be important to account for the different implementation costs of the gates used (generally, NOT is much
simpler than CNOT, which in turn, is simpler than Toffoli). Both modifications are possible, by making minor changes
to the first part of FINDOPT, and minor modifications of SEARCHALL. To optimize depth, one needs to consider a
different family of gates, where, for instance, sequence NOT(a) CNOT(b,c) is counted as a single gate. To account
for different gate costs, one needs to search for small circuits via increasing cost by one (assuming costs are given as
natural numbers), as opposed to adding a gate to all maximal size optimal circuits.

It is also possible to extend the search to find optimal implementations in restricted architectures (see the Section
7 for details). Finally, the search could be extended to find some small optimal 5-bit circuits. A simple calculation
shows that 806 log2 (80)/5!/2 bits (the number of elementary transformations to the power of depth, times space to
store a single gate, divided by the number of symmetries) suffices to store all optimal circuits containing up to 6 gates
for 5-bit permutations. Thus, a search of optimal implementations may be carried to compute optimal circuits with up
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to 12 gates. However, it is possible that a larger search may be performed.
Finally, techniques reported in this paper may be applied tothe synthesis of optimal stabilizer circuits. Coupled

with peep-hole optimization algorithm for circuit simplification, these results may become a very useful tool in op-
timizing error correction circuits. This may be of a particular practical interest since implementations of quantum
algorithms may be expected to be dominated by the error correction circuits.

7 Extension: LNN circuits

Of all possible extensions of the presented search algorithms described in Section 6, the most computationally dif-
ficult is the one where the underlying architecture is restricted. This is because the number of input/output labeling
symmetries that can be used to reduce the search is equal to the number automorphisms of the unlabeled graph cor-
responding to the underlying architecture. For the complete graph on four bits,K4, its number of automorphisms is
maximal, 4!= 24. Since the number of automorphisms is maximized, this hashelped us to gain maximal advantage.
Of the connected graphs with four nodes, the chain, corresponding to the LNN (Linear Nearest Neighbor) architec-
ture, has the least number of automorphisms, being just two.In this section we will illustrate that our search may be
modified to find optimal circuits in the LNN architecture, implying that it is at least as efficient for the remaining four
possible architectures (the number of non-isomorphic unlabeled connected graphs on four nodes minus two, one for
the LNN and one forK4).

The restriction to the LNN architecture implies that the gate set is limited to those gates operating on the subset
of qubits that is a continuous substring of the string of all variables,abcd. For example, gates CNOT(a,b) and
TOF(b,d,c) are allowed, and gate TOF(a,b,d) is disallowed. Such restriction to the LNN architecture does not
necessarily imply direct physical applications. In fact, not only it is not certain that the underlying architecture is
LNN (and, it must be noted that local architecture may differfrom global architecture), and not only do we not
account for the individual gate costs, but the restriction itself may not be physically grounded. Indeed, according
to [9], LNN-optimal NCV implementation of the TOF(a,c,b) requires 13 gates and depth 13; however, TOF(a,b,c)
requires only 9 gates and depth 9, and TOF(a,b,d) may be implemented with 15 NCV gates and depth of only 12.
This means that TOF(a,b,d) is “faster” than TOF(a,c,b), and of the two we have just disallowed TOF(a,b,d). In
other words, we suggest that our software is updated to achieve the results relevant to experiments once all physical
restrictions are known; however, the goal of this paper, andthis Section, in particular, is to illustrate that when needed
proper modifications are possible.

We have modified implementation of the FINDOPT algorithm to account for restrictions imposed by the LNN
architecture. This required to change the definition of the equivalence class of a 4-bit reversible function. In particular,
the newly defined LNN-equivalence class allows symmetries with respect to the inversion, and one of the two possible
relabelings:(a,b,c,d) 7→ (a,b,c,d) and(a,b,c,d) 7→ (d,c,b,a). The remainder of code and algorithms remained
essentially the same.

We report the result of the optimal LNN synthesis in the following three tables, Table 8, Table 9 and Table
10. The data contained is analogous to that reported in Table3, Table 4, and Table 7 correspondingly. It took the
total of 1,313,020.23 seconds to calculate 10,000,000 LNN-optimal reversible circuits reported in the Table 8. This
calculation has been performed on three cluster nodes in parallel, reducing physical time spent on this calculation by
a factor of three. The average time to calculate a single random LNN-optimal 4-bit reversible circuit is approximately
0.131 seconds. Based on the number and distribution of circuits in Tables 4 and 9 we conjecture that there are no
LNN-optimal circuits requiring 21 gates, and as such it suffices to have generated all optimal circuits with up to 10
gates to synthesize any LNN-optimal 4-bit reversible circuit.
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Table 8: Distribution of the number of gates required for LNN-optimal implementation of 10,000,000 random 4-bit
reversible functions.

Size Functions
18 6
17 20,546
16 1,091,953
15 3,976,746
14 3,286,497
13 1,244,670
12 308,993
11 59,289
10 9,693
9 1,387
8 189
7 26
6 5

Table 9: Number of 4-bit permutations requiring prescribednumber of gates in the LNN architecture.
Size Functions Reduced Runtime

Functions
≥11 Unknown Unknown

10 20,355,134,386 5,089,090,158 13,299.9s
9 2,921,376,642 730,451,187 1,642.72s
8 378,041,753 94,551,844 241.367s
7 44,754,539 11,201,218 68.192s
6 4,886,991 1,226,080 11.041s
5 493,788 124,628 1.28s
4 46,108 11,885 0.18s
3 3,947 1,083 0.02s
2 303 100 <0.001s
1 20 10 <0.001s
0 1 1 <0.001s

Total 23,704,738,478 5,926,658,194 15,264.692s
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