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Energy-Efficient Task Mapping for Data-driven

Sensor Network Macroprogramming

Animesh Pathak, Member, IEEE, and Viktor K. Prasanna, Fellow, IEEE.

Abstract

Data-driven macroprogramming of wireless sensor networks (WSNs) provides an easy to use high-

level task graph representation to the application developer. However, determining an energy-efficient

initial placement of these tasks onto the nodes of the target network poses a set of interesting problems.

We present a framework to model this task-mapping problem arising in WSN macroprogramming.

Our model can capture placement constraints in tasks, as well as multiple possible routes in the target

network. Using our framework, we provide mathematical formulations for the task-mapping problem for

two different metrics — energy balance and total energy spent. For both metrics, we address scenarios

where a) a single or b) multiple paths are possible between nodes. Due to the complex nature of the

problems, these formulations are not linear. We provide linearization heuristics for the same, resulting

in mixed-integer programming (MIP) formulations. We also provide efficient heuristics for the above.

Our experiments show that our heuristics give the same results as the MIP for real-world sensor network

macroprograms, and show a speedup of up to several orders of magnitude. We also provide worst-case

performance bounds of the heuristics.

Index Terms

Sensor Networks, Task-Mapping, Macroprogramming.

I. INTRODUCTION

Applications executing on parallel and distributed systems can often be represented as tasks

running on the constituent nodes of the system, interacting to produce the result. The efficient

mapping of these tasks to the system nodes is a well-studied problem in classical parallel and

distributed computing research. Wireless Sensor Networks (WSNs) are rapidly emerging as a

A. Pathak and V. K. Prasanna are with the University of Southern California.
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new class of distributed system, with features that are different from traditional systems. Various

high-level programming abstractions have been proposed to assist in application development

for WSNs. Data-driven macroprogramming [1] refers to the general technique of specifying the

WSN application from the point of view of data-flow. In sense-and-respond applications such as

traffic management [2], building environment management [3], target tracking [4] etc., the system

can be represented as a set of tasks running on the system’s nodes – producing, processing and

acting on data items or streams to achieve the system’s goals. The mapping of these tasks onto

the nodes of the underlying system (details of which are known at compile time) is an important

part of the compilation of the macroprogram, and optimizations can be performed at this stage

to make the resulting WSN more efficient.

We note that task mapping in this context differs from the traditional task-mapping problems

seen in parallel and distributed computing in several aspects:

1) The task graph here is constrained in the sense that some tasks have a one-to-one cor-

respondence with the nodes in a system, while the placement constraint of others may

not be as strict. For example, a temperature sampling task can be placed only on nodes

with temperature sensors attached to them, while the task that computes the average of

temperature readings in a room has much relaxed mapping constraints.

2) Often in the classical task-mapping scenarios, tasks are assumed to be independent of

each other and do not communicate. In cases where they do, a point-to-point link is

usually assumed between all nodes. In the case where routing is involved, the intermediate

nodes only introduce delays, but are not affected otherwise. On the other hand, the WSN

applications studied by us consist entirely of communicating tasks. This communication

of data between tasks on different nodes in a WSN affects other nodes in the system as

well, since the nodes involved in routing also spend energy in the process.

3) In cases where routing is involved, classical task-mapping algorithms either have full con-

trol over routing, or assume a specific routing. Since our goal is for the macroprogramming

framework to be modular, our techniques do not assume a certain routing protocol. Instead,

our modeling framework allows an interface for developer to specify certain facts about

the routing protocol being used.

4) While the most common constraint in traditional parallel and distributed systems is latency,

i.e., the time taken for the tasks to complete execution, most sensor networking applications
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are designed to sense-and-respond for long periods of time. On the other hand, metrics

such as system life time and energy spent at the node and system level are much more

important in WSNs. We focus on two measures of energy-efficiency in this paper.

Additionally, although the initial information (positions, energy levels) about the target nodes

is known, during the lifetime of the WSN, changing conditions, either external (variations in

the environment) or internal (nodes running out of energy) may change the circumstances. Our

algorithms do not address these unpredictable situations, and instead aim to provide a “good”

initial mapping of tasks. We assume that during the lifetime of the system, remapping of tasks

will occur to face these circumstances, for example, a distributed task-remapping algorithm can

be triggered when the energy at any node goes below a certain fraction of its initial energy level.

Our work attempts to utilize the global knowledge available at compile-time to obtain efficient

results.

We introduced the mathematical framework for solving such a task-mapping problem in [5],

and briefly summarized a mathematical formulation and some heuristics for the same. This paper

extends the work with a detailed description of our model and the techniques used to solve the

task-mapping problems, in addition to addressing the case when multiple routes are possible

between nodes. Overall, we make the following contributions:

• In Section II we provide a framework to model the problem of task-mapping for data-

driven sensor network applications, with tasks subject to placement constraints and channels

annotated with data-rates.

• In Section III we propose a mixed integer programming (MIP) formulation to obtain task

mappings in order to optimize for the energy balance and total-energy minimization goals,

both in the cases where a single route is available between each pair of nodes. Since the

formulation is non-linear, we provide substitution-based techniques to linearize the MIPs.

• Although the MIP formulations give optimal results, they may take inordinately large times

to terminate for large real-world scenarios. In Section IV, we provide greedy heuristics for

the two problem instances, along with their worst-case performance analysis.

• In Section V, we provide formulations of the above problem instances when there are

multiple routes available between each pair of nodes in the system. We provide (linearized)

MIP-based and greedy techniques to solve these generalized problems.
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Our experimental results, discussed in Section VI, show the performance comparison between

the techniques, using realistic applications and deployment scenarios. Our greedy heuristics are

shown to obtain the optimal solution for most of these scenarios, while gaining significant

speedups over the MIP technique. We discuss related work in Section VII and conclude in

Section VIII.

II. PROBLEM FORMULATION

A. Motivation

As an example of data-driven macroprogramming representation, consider the following (sim-

ple) application – A room is instrumented with six wireless nodes, with three nodes equipped

with temperature sensors, and two nodes connected to actuators for controlling the temperature

of the room. We need to periodically determine the average temperature in the room, compare

it with a threshold, and produce the corresponding actuation. One way of designing such an

application at a high-level using a data-driven approach is shown in the top part of Figure 1

(Note that the task graph for complex applications can be an arbitrary directed acyclic graphs).

Tasks T1, T2 and T3 are temperature sampling tasks, which fire at a rates of f1, f2, f3 and generate

ambient temperature readings of size s14, s24, s34. Task T4 calculates the average of these readings

and feeds it to T5, which determines the action to be taken. Tasks T6 and T7 act upon the data

generated by T5, and control the actuators. The system for which this application is being

designed is shown in the lower part of the same figure. The nodes equipped with temperature

sensors are marked with a T, while the ones equipped with actuators are marked with an A.

The mapping of tasks T1 through T7 onto the nodes of the target network is an instance of

the problem faced while compiling data-driven macroprograms for WSNs. The placement of the

sensing tasks (T1, T2, T3) and the actuating tasks(T6 and T7) are pre-determined to the nodes with

the relevant capabilities. This fact is shown using curved broken lines in the figure. However,

tasks T4 and T5 can be placed on any of the nodes in the floor, thus allowing for optimizations

in this process.

Our aim is to capture the following aspects of the problem in a mathematical formulation:

• The data flow between tasks

• The different firing rates of the tasks

• The placement constraints of tasks onto system nodes
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?
T1, f1T2, f2 T5, f5 T6, f6T7, f7T3, f3 s14s24s34 s56s57T4, f4 s45

T T A A T
Data-driven Task Graph

Target Network Description?
Fig. 1. Temperature management application - Task graph and target network description.

• The heterogeneity between the system nodes, both in terms of their initial energy capacities,

as well as their ability to host certain tasks

• The heterogeneity between the various network links in the target system, in terms of energy

spent per unit of data transmitted

• The energy spent at the nodes during sensing, computation, and communication.

B. Application and System Model

A Network Description N represents the target system of physical nodes where the WSN

application is to be deployed. Each node k (k = 1, . . . , n) has the following properties:

• its initial energy reserve e0k. We assume that the system operates in rounds, and denote the

energy remaining at node k after t rounds by etk. A round is defined as the least time-period

after which the system behavior repeats itself.

A Data-driven Task i represents the sensing, processing or actuation activity in a WSN, with

the following properties:

• its firing rate fi, denoting the number of times it is invoked in one round. For tasks that

are not necessarily invoked in a regular manner, developers can determine the firing rates

using probabilistic estimates.
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A Data-driven Task Graph D = (DT,DE) is a directed acyclic graph (DAG) consisting of

the following:

• A set DT = {1, . . . , i, . . . ,m} of data-driven tasks.

• A set DE ⊆ DT ×DT of edges. Each edge (i, j) is labeled with the size sij of the data

that task i produces for task j upon each invocation.

The Task Execution Energy Matrix T is an m×n matrix, where Tik denotes the energy spent

by node k per invocation of task i, if i is mapped onto node k. T can also be used to specify

placement constraints as in the figure above, by setting the value of Tik to ∞ in cases where

task i cannot be instantiated on node k.

The Routing Energy Cost Matrix R for N is a n × n × n matrix, with Rβγk denoting the

energy consumed per unit of data at node k while routing messages from node β to γ. Since

the task mapping algorithms do not control the routing of data between nodes, R provides an

estimate of the energy spent in routing.

The Task Mapping is a function M : DT → N , designating task i to be placed on node M(i).

C. Energy Costs

In a sensor network, the cost that developers are largely concerned with is the energy spent

by the nodes as the system operates. We therefore use the terms cost to mean the energy spent

at a node throughout this paper, unless otherwise stated. Using the model defined above, we

compute the following costs1.

Computation Cost: At each node k ∈ N , the computation cost in each round is given by

Ck
comp =

∑

i:M(i)=k

fi · Tik (1)

Communication Cost: At each node k ∈ N , the energy spent in communicating messages in

each round is given by

Ck
comm =

∑

(i,j)∈DE

fi · sij · RM(i)M(j)k (2)

Using these node-level costs, complex system-level metrics can be represented, as discussed

below.

1Note that the cost of sensing is included in the Tik of the sensing tasks.
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D. Performance Metrics

In this paper, we illustrate the use of above modeling framework to optimize two performance

metrics. The first is energy balance, which we consider to be achieved when the maximum

fraction of energy spent by any node in the system is minimized. In other words,

OPT1 = min
all Mappings M

max
k∈N

1

eko
· (Ck

comp + Ck
comm) (3)

For systems designed using data-driven macroprogramming, we can assume that the system

undergoes a reconfiguration, resulting in re-computation of the task mapping, and migration of

tasks, once the current energy etk of any node k goes below a fraction α (0 < α < 1) of its initial

energy e0k. The time when this happens is called the Time to Reconfiguration (TTR) for the

task mapping on the sensor network. Since we assume that the system behavior repeats itself in

each round, OPT1 also maximizes the TTR.

The second performance goal we model using our framework is the more classical total energy

spent in the entire system. Although we believe that energy balance is a better metric to measure

the quality of task placement, we use the goal of minimizing the total energy spent in the system

to illustrate the modeling power of our framework. In other words,

OPT2 = min
all Mappings M

∑

k∈N

(Ck
comp + Ck

comm) (4)

For each of the two metrics, a feasible solution is possible only when all nodes have non-zero

energy left at the end of one round. If there are no mappings possible for which this holds, the

task-mapping algorithms should report failure. In addition to the above, our framework can be

used to model other application scenarios also, e.g. when multiple paths between two nodes are

possible, or when the nodes are free to behave differently in each round.

E. Evaluation Criteria

One area where task graphs describing sensor network applications are different from those

traditionally seen in parallel and distributed computing is their use for sensing the environment

they are placed in, and reacting to it. This leads to certain commonly observed relationships

between the data-rates on the edges of the task graphs. Therefore, while evaluating the algorithms

for task mapping the input graph has to be carefully chosen. The worst-case analysis technique
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of testing algorithms against randomly generated task graphs with arbitrarily chosen inter-task

data-rates may identify certain task mapping techniques as inferior, while these techniques may

yield very good results in real-world WSN applications. Consequently, it is important that the

task graphs used to evaluate these techniques are drawn from actual WSN applications.

III. MATHEMATICAL FORMULATIONS FOR TASK MAPPING ON WSNS

A. Mixed Integer Programming Formulation for OPT1

To formulate the problem as a mixed integer programming (MIP) problem, we represent task

mapping M by an assignment matrix X , where xik is 1 if task i is assigned to node k, and 0

otherwise.

The problem can then be defined as:

Inputs:

• D = (DT,DE): Data-driven Task Graph

• fi: Firing rate for task i

• sij: Size of data transferred from task i to j on each invocation of i

• N : Network description

• T : Task execution energy matrix

• R: Routing energy cost matrix

Outputs:

• X: Assignment Matrix. xik is binary.

Optimization Goal:

minimize c

Constraints:
n∑

k=1

xik = 1 for i = 1, 2, . . . ,m (5)

1

e0k
(

m∑

i=1

fi · Tik · xik +
∑

(i,j)∈DE

n∑

β=1

n∑

γ=1

fi · sij · xiβ · xjγ · Rβγk) ≤ c for k = 1, 2, . . . , n (6)

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m,n) (7)

0 ≤ c ≤ 1 (8)
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The summation terms in (6) denote Ck
comp and Ck

comm respectively. The final constraint ensures

that the MIP fails if no feasible solution exists. Note that the above is an MIP since c is real

whereas xik are binary integers. Also, it is not a linear program since product terms xiβ · xjγ

appear in the constraints.

The above problem can be converted to a linear MIP by replacing each xiβ · xjγ term with a

binary variable yiβjγ , and adding the following constraints:

yiβjγ − xiβ ≤ 0 (9)

yiβjγ − xjγ ≤ 0 (10)

xiβ + xjγ − yiβjγ ≤ 1 (11)

This linearization techniques is derived from [6]. Intuitively, constraint (9) denotes that if edge

(i, j) is mapped to path (β → γ), then task i is mapped to node β. Similarly, (10) denotes the

constraint that if (i, j) is mapped to (β → γ), then task j is mapped to node γ. Finally, (11)

denotes the condition that if task i is mapped to node β, and task j is mapped to node γ, then

(i, j) is mapped to (β → γ).

B. MIP Formulation for OPT2

Using our formulation, the objective of solving the problem to minimize the total energy spent

by the system can be formulated as follows:

Inputs:

• D = (DT,DE): Data-driven Task Graph

• fi: Firing rate for task i

• sij: Size of data transferred from task i to j on each invocation of i

• N : Network description

• T : Task execution energy matrix

• R: Routing energy cost matrix

Outputs:

• X: Assignment Matrix. xik is binary.
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Optimization Goal:

minimize

n∑

k=1

(
m∑

i=1

fi · Tik · xik +
∑

(i,j)∈DE

n∑

β=1

n∑

γ=1

fi · sij · xiβ · xjγ · Rβγk)

Constraints:
n∑

k=1

xik = 1 for i = 1, . . . ,m (12)

m∑

i=1

fi · Tik · xik +
∑

(i,j)∈DE

n∑

β=1

n∑

γ=1

fi · sij · xiβ · xjγ · Rβγk ≤ ek0 for k = 1, . . . , n (13)

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m,n) (14)

The above also can be converted to a MIP with linear constraints using the techniques discussed

above.

IV. HEURISTIC FOR TASK MAPPING

A. Greedy Algorithms for Task Mapping

Although the MIP formulation leads to optimal results, solving an MIP can be quite time

consuming in practice. Our greedy heuristic for the goal of minimizing the maximum fraction

of energy spent at a node (OPT1) is detailed in Algorithm 1. The main intuition is that the

algorithm sorts the edges in the task graph in non-increasing order of the traffic going on them,

and then tries to map the still unmapped endpoints of each edge (i, j) so as to achieve the

minimum increase in the objective function.

Computational Complexity: Each invocation of maxCost takes θ(n(m+ |DE|)) time. During

Algorithm 1, the sorting takes O(|DE| log(|DE|)) time, and the main loops invokes Algorithm 2

for evaluating the maxCost O(|DE|n2) times. The total time complexity of the algorithm is

O(|DE|(log(|DE|)+n3(m+ |DE|))). Since |DE| > m in a DAG and |DE| > log(|DE|), this

can be simplified to O(n3|DE|2).

Algorithm 3 shows our modification to Algorithm 1 for mapping tasks for OPT2. The algo-

rithm calls totalCost subroutine (shown in Algorithm 4) repeatedly to determine the current total

cost of the assignment, and chooses the end points of the next edge so as to minimize the total

cost. Owing to the similarity in structure, its computational complexity is also O(n3|DE|2).
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Algorithm 1 GreedyMinMax: for OPT1

Input: D(= DT,DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n]

Output: M [m]: Task Assignment

1: Initialize M [i] = −1 for i = {1, . . . ,m}

2: Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]

3: for all (sorted) (i, j) in DE do

4: minmaxCost = ∞; minPath = (−1,−1) // Initialize minmaxCost and minPath for

this iteration

5: for all (α, β) such that (i, j) can be assigned to them do

6: M [i] = α, M [j] = β // Temporarily assign (i, j) to (α → β)

7: maxCost = maxCost(D,N, T ,R, f, s, e0,M)

8: if maxCost < minmaxCost then

9: minmaxCost = maxCost; minPath = (α, β) // Update minmaxCost and

minPath

10: if minmaxCost > 1 then

11: declare failure. stop. // Checking for feasibility

12: M [i] = minPath.α; M [j] = minPath.β

13: return M

B. Worst-case Analysis

Since both GreedyMinMax and GreedyMinTotal are heuristics, we explored the situations when

they can give sub-optimal results. We introduce the notion of the cost of an algorithm for this

purpose – the cost of GreedyMinMax is defined a the maximum fraction of energy spent in one

round at any node in N , and the cost of GreedyMinTotal is the total energy spent by all the

nodes in N in one round, when tasks are mapped according to the heuristic.

Theorem 1. For any integer υ ≥ 1, there are problem instances for which the cost of GreedyMin-

Max (GreedyMinTotal) is arbitrarily close to υ × OPT1 (υ × OPT2).

Proof. Consider a situation as illustrated in Figure 2. Tax = Tay = 0, and the other tasks can only

be placed on the nodes indicated by the arrows. Let us also assume that fa = 1, ex0 = ey0 = e0,

and both nodes in N spend one unit of energy per unit of data transmitted on the link between
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Algorithm 2 maxCost: for determining the maximum fraction of energy spent at a node

Input: D(= DT,DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n],M [m]

Output: maxCost: Maximum fraction of energy spent at any node

1: maxCost = 0 // Initialize max cost

2: for all k ∈ N do

3: cost = 0 // Initialize node cost

4: for all i ∈ DT do

5: if M [i] == k then

6: cost = cost+ f [i] · T [i][k] // Increment computation cost

7: for all (i, j) ∈ DE do

8: if M [i] 6= 1 AND M [j] 6= 1 then

9: cost = cost+ f [i] · s[i][j] · R[M [i]][M [j]][k] // Increment communication cost

10: if cost/e0[k] > maxCost then

11: maxCost = cost/e0[k]

12: return maxCost Placement constraint(other mappings impossible)a b1bυσ b0(σ-ε)(σ-ε)υ copies x y1
Fig. 2. Scenario for worst case performance of GreedyMinMax and GreedyMinTotal.

them. Finally, e0 ≫ k ≫ ε > 0. The optimal solution, both for OPT1 and OPT2, is to place a on

node x, thereby causing only the data on the (a, b0) edge in DE to go on the network, costing

k units of energy to be spent by node x (and the entire system) in each round. The greedy
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Algorithm 3 GreedyMinTotal: for OPT2

Input: D(= DT,DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n]

Output: M [m]: Task Assignment

Initialize M [i] = −1 for i = {1, . . . ,m}

Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]

for all (sorted) (i, j) in DE do

mintotalCost = ∞ // Initialize mintotalCost for this iteration

minPath = (−1,−1)

for all (α, β) such that (i, j) can be assigned to them do

M [i] = α

M [j] = β // Temporarily assign (i, j) to (α → β)

totalCost = totalCost(D,N, T ,R, f, s, e0,M)

if totalCost < mintotalCost then

mintotalCost = totalCost // Update mintotalCost

minPath = (α, β)

maxCost = maxCost(D,N, T ,R, f, s, e0,M)

if maxCost > 1 then

declare failure. stop. // Checking for feasibility

M [i] = minPath.α

M [j] = minPath.β

return M

algorithms, however, start with placing the costliest edge (a, b0) in the best possible manner,

co-locating a and b0 on node y. This leads to υ × (k − ε) traffic to go over the y → x link.

We thus get: OPT1 =
1

e0
σ (15)

⇒ cost(GreedyMinMax) =
1

e0
υ × (σ − ε) ≈ υ × OPT1 (16)

Similarly, OPT2 = 2σ (17)

⇒ cost(GreedyMinTotal) = 2υ × (σ − ε) ≈ υ × OPT2 (18)
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Algorithm 4 totalCost: for determining the total energy spent in the system

Input: D(= DT,DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n],M [m]

Output: totalCost: Total energy spent by nodes in N

totalCost = 0 // Initialize total cost

for all k ∈ N do

cost = 0; // Initialize node cost

for all i ∈ DT do

if M [i] == k then

cost = cost+ f [i] · T [i][k] // Increment computation cost

for all (i, j) ∈ DE do

if M [i] 6= 1 AND M [j] 6= 1 then

cost = cost+ f [i] · s[i][j] · R[M [i]][M [j]][k] // Increment communication cost

totalCost = totalCost+ cost

return totalCost

hence proving the theorem.

Theorem 2. There are problem instances for which GreedyMinMax and GreedyMinTotal will

terminate in failure although a feasible solution exists.

Proof. Consider the situation as illustrated in Figure 2. However, in this case, assume that

e0 = k ≫ ε > 0. The optimal solution (given by the MIP formulation) will still place task a on

node y, while the Greedy algorithms will try to place it on node y. Note that for υ ≥ 2, this will

lead to an infeasible solution, as the nodes end up spending > e0 energy. The proof follows.

V. TASK MAPPING WITH MULTI-PATH ROUTING

In many WSN applications, multiple routes are possible between a pair of nodes. In this sec-

tion, we provide generalized versions of our problem formulations to incorporate this condition.

The following changes are made to the model:

• We assume that a constant Φ number of paths are possible to be taken between any pair of

nodes β and γ in N .

• We further assume that for each pair of communicating tasks (i, j) mapped to nodes β and

September 7, 2012 DRAFT



IEEE TRANSACTIONS ON COMPUTERS 15

γ respectively, one of the Φ β → γ paths (say ρ) is chosen. Note that for another pair of

communicating tasks (s, t) mapped to β and γ, another β → γ path ρ′ can be chosen.

• To incorporate the above, we redefine the routing energy cost matrix R to be a n×n×n×Φ

matrix, with Rβγkρ denoting the energy consumed per unit of data at node k while routing

messages from node β to γ, using the ρth routing option.

• The task-mapping algorithms, apart from determining the task mapping M , also need to

provide the routing path choice mapping P : DE → {1, 2, . . . ,Φ}.

• The communication cost at node k is now given by:

Ck
comm =

∑

e(=(i,j))∈DE

fi · sij · RM(i)M(j)kP (e) (19)

A. MIP Formulation for OPT1 when Multi-Path Routing is Possible

The problem of task-mapping and route choice to minimize the maximum fraction of energy

spent at a node can thus be formulated as:

Inputs:

• D = (DT,DE): Data-driven Task Graph

• fi: Firing rate for task i

• sij: Size of data transferred from task i to j on each invocation of i

• N : Network description

• T : Task execution energy matrix

• R: Routing energy cost matrix, as modified above.

Outputs:

• X: Assignment Matrix. xik is binary.

• Z: Routing Path Choice Matrix. zeρ is binary, and is 1 if the traffic over edge e in DE is

routed along the ρth path.

Optimization Goal:

minimize c

Constraints:
n∑

k=1

xik = 1 for i = 1, 2, . . . ,m (20)
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Φ∑

ρ=1

zeρ = 1 for each e (21)

1

e0k
(

m∑

i=1

fi · Tik · xik +
∑

e=(i,j)∈DE

n∑

β=1

n∑

γ=1

C∑

ρ=1

fi · sij · xiβ · xjγ · zeρ · Rβγkρ) ≤ c for k = 1, . . . , n

(22)

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m,n) (23)

zeρ ∈ {0, 1} for each combination of (e, ρ) (24)

0 ≤ c ≤ 1 (25)

Note that the above is an MIP since c is real whereas xik and zeρ are binary integers. Also, it

is not a linear program since product terms xiβ · xjγ · zeρ appear in the constraints.

The above problem can be converted to a linear MIP by repeatedly applying the techniques

discussed in the previous section. We first absorb each (xiβ, xjγ) pair into a variable yiβjγ , and

then introduce another set of variables, one to absorb each (yiβjγ , zeρ) pair, to get the following:

yiβjγ − xiβ ≤ 0 (26)

yiβjγ − xjγ ≤ 0 (27)

xiβ + xjγ − yiβjγ ≤ 1 (28)

uiβjγρ − yiβjγ ≤ 0 (29)

uiβjγρ − zeρ ≤ 0 (30)

yiβjγ + zeρ − uiβjγρ ≤ 1 (31)
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B. MIP Formulation for OPT2 when Multi-Path Routing is Possible

Using our formulation, the objective of solving the problem to minimize the total energy spent

by the system can be formulated as follows:

Inputs:

• D = (DT,DE): Data-driven Task Graph

• fi: Firing rate for task i

• sij: Size of data transferred from task i to j on each invocation of i

• N : Network description

• T : Task execution energy matrix

• R: Routing energy cost matrix, as modified above.

Outputs:

• X: Assignment Matrix. xik is binary.

• Z: Routing Path Choice Matrix. zeρ is binary.

Optimization Goal:

minimize

n∑

k=1

(
m∑

i=1

fi · Tik · xik +
∑

e=(i,j)∈DE

n∑

β=1

n∑

γ=1

Φ∑

ρ=1

fi · sij · xiβ · xjγ · zeρ · Rβγkρ)

Constraints:
n∑

k=1

xik = 1 for i = 1, 2, . . . ,m (32)

Φ∑

ρ=1

zeρ = 1 for each combination of (e, β, γ) (33)

m∑

i=1

fi · Tik · xik+
∑

e=(i,j)∈DE

n∑

β=1

n∑

γ=1

Φ∑

ρ=1

fi · sij · xiβ · xjγ · zeρ · Rβγkρ ≤ ek0 for k = 1, . . . , n (34)

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m,n) (35)

zeρ ∈ {0, 1} for each combination of e, β, γ, ρ (36)

Note that the above can be converted to a MIP with linear constraints using the linearization

techniques used by us.
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C. Greedy Heuristics for Task-mapping with Multi-Path Routing

In view of the changed system model, we can modify the algorithms proposed in Section IV.

Our greedy heuristic for the goal of minimizing the maximum fraction of energy spent at a node

(OPT1) is detailed in Algorithm 5. The main intuition is that the algorithm sorts the edges in the

task graph in non-increasing order of the traffic going on them, and then tries to map the still

unmapped endpoints of each edge (i, j) and determine the best route to be taken by the data

items transferred between i and j them, so as to achieve the minimum increase in the objective

function.

Computational Complexity: Each invocation of maxCostM takes θ(n(m+ |DE|)) time. During

Algorithm 5, the sorting takes O(|DE| log(|DE|)) time, and the main loops invokes Algorithm 6

for evaluating the maxCost O(|DE|n2Φ) times. The total time complexity of the algorithm is

O(|DE|(log(|DE|) + n3(m + |DE|)Φ)). Since |DE| > m in a DAG and |DE| > log(|DE|),

this can be simplified to O(n3|DE|2Φ).

Algorithm 7 shows our modification to Algorithm 5 for mapping tasks for OPT2. The algo-

rithm calls totalCostM subroutine (shown in Algorithm 8) repeatedly to determine the current

total cost of the assignment, and chooses the end points of the next edge and the path choice so

as to minimize the total cost. Owing to the similarity in structure, its computational complexity

is also O(n3|DE|2Φ).

Worst Case Analysis: Since GreedyMinMaxM and GreedyMinTotalM are generalized versions

of the algorithms discussed in Section IV, the problem instance discussed in Section IV-B acts as

a special case of the task-mapping problem with multi-path routing, with the maximum number

of routes Φ = 1. Therefore, the same worst-case bounds hold for the algorithms discussed in

this section also.

VI. EVALUATION

A. Reference Applications

For evaluating our techniques, we use two real-world applications in this paper. The first

is a building environment management application for monitoring heating, ventilation and air-

conditioning (HVAC), similar in spirit to other applications in the literature [3]. We consider a

set of nodes spread across a building, with each node possibly attached to a temperature sensor,
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Algorithm 5 GreedyMinMaxM: for OPT1 with Multi-Path Routing

Input: D(= DT,DE), N, T [m][n],R[n][n][n][Φ], f [m], s[m][m], eo[n]

Output: M [m]: Task Assignment, P [|DE|]: Routing Path Choice

Initialize M [i] = −1 for i = {1, . . . ,m}

Initialize all entries P [e] = −1

Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]

for all (sorted) e = (i, j) in DE do

minmaxCost = ∞ // Initialize minmaxCost for this iteration

minPath = (−1,−1)

for all (α, β) such that (i, j) can be assigned to them do

M [i] = α

M [j] = β // Temporarily assign (i, j) to (α → β)

for ρ = 1 to Φ do

P [e] = ρ // Temporarily choose the ρth routing option

maxCost = maxCostM(D,N, T ,R, f, s, e0,M, P )

if maxCost < minmaxCost then

minmaxCost = maxCost // Update mintotalCost

minPath = (α, β, ρ)

if minmaxCost > 1 then

declare failure. stop. // Checking for feasibility

M [i] = minPath.α

M [j] = minPath.β

P [e][M [i]][M [j]] = minPath.ρ

return M,P

a humidity sensor and an actuator that can control the temperature and humidity of a region.

The aim of the system is to maintain desirable temperature and humidity levels in each room

of the building, by correlating the information from the sensor installed in the room, and using

it to drive actuation.

Figure 3 describes our application as a data-driven task graph. The Temperature Sampler

September 7, 2012 DRAFT



IEEE TRANSACTIONS ON COMPUTERS 20

Algorithm 6 maxCostM: for determining the maximum fraction of energy spent at a node

Input: D(= DT,DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n],M [m], P [|DE|][n][n]

Output: maxCostM: Maximum fraction of energy spent at any node

maxCostM = 0 // Initialize max cost

for all k ∈ N do

cost = 0 // Initialize node cost

for all i ∈ DT do

if M [i] == k then

cost = cost+ f [i] · T [i][k] // Increment computation cost

for all e = (i, j) ∈ DE do

if M [i] 6= −1 AND M [j] 6= −1 AND P [e] 6= −1 then

cost = cost+ f [i] · s[i][j] · R[M [i]][M [j]][k][P [e]] // Increment communication cost

if cost/e0[k] > maxCostM then

maxCostM = cost/e0[k]

return maxCostM

Humidity Sampler Collector HVAC ControllerTemperature Sampler Temperature Sampler... Humidity Sampler...

HVAC Controller.
.
.

Fig. 3. A task graph for HVAC management.

and Humidity Sampler tasks – instantiated on the nodes with relevant sensors – sample their

surroundings and generate temperature and humidity readings. This data is then sent to the

Collector task, one of which is placed in each room. Upon processing the data, the Collector

produces a command for the actuating tasks and sends the data to the HVAC Controller task,

which is placed on all nodes with an HVAC Actuator and responds to the Action data item by

adjusting the temperature/humidity controls.

September 7, 2012 DRAFT



IEEE TRANSACTIONS ON COMPUTERS 21

Algorithm 7 GreedyMinTotalM: for OPT2 with Multi-Path Routing

Input: D(= DT,DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n]

Output: M [m]: Task Assignment, P [|DE|]: Routing Path Choice

Initialize M [i] = −1 for i = {1, . . . ,m}

Initialize all entries P [e][β][γ] = −1

Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]

for all (sorted) e = (i, j) in DE do

mintotalCost = ∞ // Initialize mintotalCost for this iteration

minPath = (−1,−1)

for all (α, β) such that (i, j) can be assigned to them do

M [i] = α

M [j] = β // Temporarily assign (i, j) to (α → β)

for ρ = 1 to Φ do

P [e] = ρ // Temporarily choose the ρth routing option

totalCost = totalCostM(D,N, T ,R, f, s, e0,M, P )

if totalCost < mintotalCost then

mintotalCost = totalCost // Update mintotalCost

minPath = (α, β, ρ)

maxCost = maxCostM(D,N, T ,R, f, s, e0,M, P )

if maxCost > 1 then

declare failure. stop. // Checking for feasibility

M [i] = minPath.α

M [j] = minPath.β

P [e] = minPath.ρ

return M,P

The second application, illustrated in Figure 4, describes a highway traffic management system,

similar in spirit to [2]. In this case, two different sub-goals must be achieved - regulating

the speed of vehicles on the highway by controlling speed limit displays, and controlling the

access to the highway by means of red/green signals on the ramps. The highway is divided
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Algorithm 8 totalCostM: for determining the total energy spent in the system

Input: D(= DT,DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n],M [m], P [|DE|]

Output: totalCostM: Total energy spent by nodes in N

totalCostM = 0 // Initialize total cost

for all k ∈ N do

cost = 0; // Initialize node cost

for all i ∈ DT do

if M [i] == k then

cost = cost+ f [i] · T [i][k] // Increment computation cost

for all e = (i, j) ∈ DE do

if M [i] 6= −1 AND M [j] 6= −1 AND P [e]! = −1 then

cost = cost+ f [i] · s[i][j] · R[M [i]][M [j]][k][P [e]] // Increment comm. cost

totalCostM = totalCostM + cost

return totalCostM

RampSignalCalculator RampSignalDisplayerSpeedLimitCalculator SpeedLimitDisplayerRampSampler AvgQueueLengthCalculator(Sector k)AvgSpeedCalculator(Sector k)RampSampler...SpeedSamplerSpeedSampler.
.
.

AvgSpeedCalculator(Sector k-1)AvgSpeedCalculator(Sector k+1)
AvgQueueLengthCalculator(Sector k-1)AvgQueueLengthCalculator(Sector k+1)

Fig. 4. An task graph for highway traffic management.

into sectors, and sensors are deployed on the highway lanes and ramps to sense the speed and

presence of vehicles, respectively. The sensed data goes through a multi-stage process where it
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is first aggregated w.r.t. a single sector to derive an average measure (AvgSpeedCalculator and

AvgQueueLengthCalculator tasks). The SpeedLimitCalculator and RampSignalCalculator tasks

take the average speeds and queue lengths produced in the neighboring highway sectors (as

shown in the figure), and compute the desired actions to be sent to the SpeedLimitDisplayer

and RampSignalDisplayer tasks, which are located on the nodes attached to the corresponding

actuators.

B. Experiments

For evaluating the relative performance of our heuristics, we applied them on the reference

applications discussed in Section VI-A, by using our algorithms to map their tasks onto a

various simulated target deployments (shown in Figure 5) to map the tasks onto. For the HVAC

application, we placed an equal number of temperature and humidity sensors in a grid in a

room, and assigned the location of the HVAC actuators randomly. We also placed extra nodes in

the room for maintaining connectivity. For the traffic application, we placed forwarding nodes

uniformly apart at the edge of the highway, and randomly distributed the speed sensors on the

four lanes so that each of them was in range of at least another speed sensor or a forwarding

node. Similarly, the presence sensors were randomly distributed on the ramp so that each of

them was in range of at least one speed sensor or another presence sensor. The node controlling

the ramp signals and the speed limit displays were placed between different sectors, on opposite

sides of the road. Note that for both the applications, owing to the placement constraints of the

applications, the number of tasks m is O(n) for our experiments, where n is the number of

nodes.

Experimental Results: In our experiments, we assumed that all nodes started with a sufficiently

high initial energy level e0. The routing energy cost matrix R was obtained by using a shortest

path algorithm on the network, assuming equal energy spent by all nodes on a route, and all

data items were assumed to be of unit size (sij = 1). The task execution energy matrix T was

set up to represent placement constraints: Tik = 0 when task i could be placed on node k, ∞

when it could not. The tasks which performed sensing and actuating were tied to a node with the

relevant capabilities. Finally, the fi for each task was computed as follows: For sensing tasks,

fi was set to 10, and for all other tasks j, fj was set to the sum of the firing rates of tasks on

the other ends of the incoming edges. This represented the fact that task j fires whenever there
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ROOM [Roomi]
T

Forwarding Node ROOM [Roomi+1]
HTH

HTHT
THTH

HTHT
THTH

HTHTTemperature SensorHumidity SensorA A A AAAAA A AHVAC Actuator
(a) HVAC Application

HIGHWAY SECTOR [HSi]
SL

Ramp SignalPresence Sensors on Ramp
Speed Limit DisplaySLForwarding Node

HIGHWAY SECTOR [HSi+1]Speed Sensors
(b) Traffic Application

Fig. 5. Node placement in reference applications.

is data available for it. For the multi-path scenario, we generated the routing matrix using the

generalized Floyd algorithm [7] with Φ = 3.

We ran our experiments on a PC with a dual-core Pentium processor running at 1.6GHz, with

2GB of RAM. We implemented our greedy algorithm in Java, and solved the MIPS using the

lp solve [8] linear programming toolkit. The time taken for computing task placements for both

the applications so as to minimize the maximum fraction of energy spent by any node (OPT1)

is shown in Figure 6. The time taken by the two techniques for placing tasks so as to minimize

the total energy spent in the system (OPT2) is shown in Figure 7.

In our experiments, the Greedy algorithms obtained sub-optimal results only while computing
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Fig. 6. Time taken to compute task-mapping for minimizing maximum energy spent by any node.

task-mappings for minimizing total energy in some of the HVAC application. For the traffic

application, and the for all instances of OPT1 (which we believe is a better indicator of system

lifetime), the solution given by the greedy algorithm was the same as the one given by the
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Fig. 7. Time taken to compute task-mapping for minimizing total energy spent in the system.

MIP. Our experiments clearly show that the greedy algorithms take much less time that the MIP

formulation in finding the mappings. This showcases the efficacy of the algorithms in solving

the task-mapping problem for complex real-world WSN applications.
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Fig. 8. Time taken to compute task-mapping for minimizing maximum energy spent by any node (MultiPath).

In experiments conducted where multiple paths were possible (shown in Figures 8 and 9), we

see that the time taken by the heuristics still outperforms the MIP solver in terms of time. Note

that the graphs for the traffic management application denote the fact that the MIP solver did
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Fig. 9. Time taken to compute task-mapping for minimizing total energy spent in the system (MultiPath).

not terminate in a long time for some instances. As before, the quality of solution given by our

heuristics were found to be as good as that of the MIP, with the cost of the (few) outliers not

being more than 1.5 times the optimal cost.
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VII. RELATED WORK

A large body of work exists, both in the parallel and distributed computing as well as the

wireless sensor networking domain, on the problem of mapping tasks of an application onto the

nodes of a target system. In this section, we present some closely related work from various

domains.

Parallel and Distributed Computing: The task mapping problem [9] is a well studied problem

is parallel and distributed computing. In [10], the authors have covered a wide range of mapping

problems in such systems and approached to solve them. However, they are mostly concerned

with optimizing for latency, i.e., minimizing the computation and communication time. In

addition, the tasks do not have placement constraints. In [11], the authors include placement

constraints in their problem statement using a task preference matrix. However, they assume that

communication costs are paid only by the end-points, and their optimization goal is the total

cost that the system endures for the application.

Heterogeneous Systems: In [12], the authors present a genetic algorithm for placing tasks onto

a parallel processor. They also provide an extension for the case where not all tasks can be run

on all nodes, by way of assigning each node to a class, and associating a class number with each

task. Their algorithm is designed to work for a range of metrics, and they focus on the minimize

total execution time metric in the paper. However, unlike our work, they assume full control over

the message routing. In [13], the authors present algorithms based on the best-first A* technique

from artificial intelligence for optimal task placement on heterogeneous systems. The placement

constraint is specified as a placement cost metric for mapping a task to a particular node. Subject

to these costs, the nodes are assumed to be capable of executing any task in the application.

However, unlike our work, their optimization goal is to minimize the turnaround time. Also, they

assume a dedicated interconnection network, and there are no routing overheads for intermediate

nodes. Similarly, recent work such as that in [14] focus on scheduling jobs on grids by a Multi-

Resource Scheduling (MRS) algorithm using virtual maps and resource potentials. However,

they also assume a completely connected network, and no routing costs.

Wireless Sensor Networks: A wide variety of work exists in sensor networks to maximize

lifetime by reducing the energy spent, mostly using distributed algorithms for sleep-wake schedul-

ing [15]. The work in [16] achieves energy-balance during data-propagation by deciding in each
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step whether to propagate data one-hop towards the final destination (the sink), or to send data

directly to the sink. This randomized choice ensures that the average per sensor energy dissipation

is the nearly the same for all sensors in the network. Task placement on sensor networks has also

been addressed recently. One of the early works on this topic is [17], where the authors propose

an energy-balanced task allocation for collaborative processing in WSNs. However, unlike our

work, they focus on single-hop networks only. Further, our system model is more general than

theirs in some respects, since they only consider the case where two tasks cannot share the

same node. In [18], the authors have provided task placement approaches for unconstrained task

graphs with optimization goals such as minimizing total energy. In addition, they also provide

the routes taken by messages. Finally, efforts such as [19] approach the task-mapping problem

for WSNs from a protocol-centric point of view, whereas we take a high-level perspective of

the problem to determine a good initial task mapping.

WSN Macroprogramming: With the advent of macroprogramming, several approaches have

addressed this problem as it arises due to the high-level of applications divided into tasks. [20]

proposes a greedy solution to the service placement problem, which is applicable to our context

of compiling macroprograms. Similar to our case, their application also has task placement

constraints, where certain tasks can be placed only on certain nodes. However, they focus only on

task graphs that are trees, and not general graphs. Further, their algorithm’s goal is to minimize

the total energy of the system, and does not guarantee that a single node will not be over-

penalized. The work in [21] solves the generic role assignment problem, where task placements

are specified using roles. Their algorithm allows ILP solutions of role assignment onto the nodes

of the target system, based on a global optimization criteria represented in terms of the number

of nodes with a particular role. Unlike their case, our heuristics are meant for solving an offline

version of the problem, and the optimization goals more tied to the energy-consumption at the

nodes.

VIII. CONCLUDING REMARKS

In this paper, we formalized the problem of mapping tasks with placement-constraints and

data-rates as it arises in the context of designing applications for wireless sensor networks

using data-driven macroprogramming. These applications can process data streams or items

in-network to take decisions about actuation. We provided mathematical formulations for two
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energy-related optimization goals – minimizing the maximum fraction of energy consumed in a

node and minimizing the total energy consumed in the sensor network. For each of these goals,

we focused both on the case when a single route was available between any two nodes, as well as

when multiple routes were possible. We used our modeling framework to provide mathematical

formulations to solve these four problem instances, and demonstrated linearization techniques

to convert them into mixed-integer programs (MIP). We also provided greedy heuristics for the

above problem scenarios, and provided worst-case performance bounds for the same. In spite

of the worst-case performance possible for specially crafted problem instances, our heuristics

were shown to out-perform the MIP formulation by several orders of magnitudes of time for

real-world WSN applications, while not severely compromising in the quality of the solutions.

The area of mapping data-driven task graphs on sensor networks is still developing. Our hope

is that the concise model described in this paper will aid future research in this area, and the

MIP formulations can be used to compute the optimal placements where time of computation is

not an issue. Further, we acknowledge that later in the life of the WSN applications, distributed

protocols will be needed to re-assign the tasks in view of changing operating circumstances.

However, our techniques (and other technique based on our models) will provide good initial

task placements. Our immediate future work is to reduce the complexity of the heuristics, as well

as to explore better polynomial time approximation algorithms. Additionally, we are working on

integrating our algorithms into the compiler [22] of a pre-existing data-driven macroprogramming

framework.
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[21] C. Frank and K. Römer, “Solving generic role assignment exactly,” in IPDPS, 2006.

[22] A. Pathak, L. Mottola, A. Bakshi, G. P. Picco, and V. K. Prasanna, “A compilation framework for macroprogramming

networked sensors,” in Proc. of the the 3
rd Int. Conf. on Distributed Computing on Sensor Systems (DCOSS), 2007.

September 7, 2012 DRAFT


