400

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

A Routing Methodology for Achieving
Fault Tolerance in Direct Networks

Maria Engracia Gomez, Member, IEEE, Nils Agne Nordbotten, José Flich,
Pedro Lépez, Member, IEEE Computer Society, Antonio Robles, Member, IEEE Computer Society,
Jose Duato, Member, IEEE, Tor Skeie, and Olav Lysne, Member, IEEE

Abstract—Massively parallel computing systems are being built with thousands of nodes. The interconnection network plays a key
role for the performance of such systems. However, the high number of components significantly increases the probability of failure.
Additionally, failures in the interconnection network may isolate a large fraction of the machine. It is therefore critical to provide an
efficient fault-tolerant mechanism to keep the system running, even in the presence of faults. This paper presents a new fault-tolerant
routing methodology that does not degrade performance in the absence of faults and tolerates a reasonably large number of faults
without disabling any healthy node. In order to avoid faults, for some source-destination pairs, packets are first sent to an intermediate
node and then from this node to the destination node. Fully adaptive routing is used along both subpaths. The methodology assumes a
static fault model and the use of a checkpoint/restart mechanism. However, there are scenarios where the faults cannot be avoided
solely by using an intermediate node. Thus, we also provide some extensions to the methodology. Specifically, we propose disabling
adaptive routing and/or using misrouting on a per-packet basis. We also propose the use of more than one intermediate node for some
paths. The proposed fault-tolerant routing methodology is extensively evaluated in terms of fault tolerance, complexity, and

performance.

Index Terms—Fault tolerance, direct networks, adaptive routing, virtual channels, bubble flow control.

1 INTRODUCTION

THERE exist many compute-intensive applications that
require a huge amount of processing power (nuclear
weapons simulations, protein folding, global climate
modeling, galaxy interaction simulations, etc.). These
applications require continued research and technology
development to deliver computers with steadily increasing
computing power. The required levels of computing
power can only be achieved with massively parallel
computers, such as the Earth Simulator [19], the ASCI
Red [1], and the BlueGene/L [5].

The huge number of processors and associated devices
(memories, switches, and links, etc.) significantly affects the
probability of failure. Each individual component can fail
and, thus, the probability of failure of the entire system
increases dramatically. One of the JASON Defense Advi-
sory Panel reports from 2003, about the requirements for
ASCI, states that “Scaling to PetaFlop using present
machine architectures implies very large number of
processors—of order 100,000, perhaps—might be needed.
Such large numbers raises serious questions of scalability of
code performance and of machine reliability.”

o M.E. Gomez, |. Flich, P. Lopez, A. Robles, and]. Duato are with the
Department of Computer Engineering, Universidad Politécnica de
Valencia, Camino de Vera, 14, 46071-Valencia, Spain.

E-mail: {megomez, jflich, plopez, arobles, jduato}@disca.upv.es.

e N.A. Nordbotten, T. Skeie, and O. Lysne are with the Simula Research
Laboratory, PO Box 134, N-1325, Lysaker, Norway.

E-mail: {nilsno, tskeie, olavly|@simula.no.
The first two authors are listed in alphabetical order.

Manuscript received 7 Feb. 2005; revised 5 Aug. 2005; accepted 5 Oct. 2005;
published online 22 Feb. 2006.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0037-0205.

0018-9340/06/$20.00 © 2006 IEEE

Thus, in these systems, it is critical to keep the system
running, even in the presence of failures. In addition,
failures in the interconnection network may isolate a large
fraction of the machine, containing many healthy proces-
sors that otherwise could have been used. Although
network components, like switches and links, are robust,
they are working close to their technological limits and,
therefore, they are prone to failures. Increasing clock
frequencies leads to a higher power dissipation, which
again could lead to premature failures. Therefore, fault-
tolerant mechanisms for interconnection networks are
becoming a critical design issue for large massively parallel
computers [25], [47], [26], [48], [37], [38].

Faults can be classified as transient or permanent.
Transient faults are usually handled by communication
protocols, using CRCs to detect faults and retransmitting
packets. In order to deal with permanent faults in a system,
two fault models can be used: static or dynamic. In a static
fault model, it is assumed that all the faults are known in
advance when the machine is (re)booted. In order to
implement it, once a fault is detected, all the processes in
the system are halted, the network is emptied, and a
management application is run in order to deal with the
faulty component. The management application detects
where the fault is, computes the information required by
the nodes in order to tolerate the fault, and distributes the
information. Then, the system is rebooted and the processes
are resumed. This fault model needs to be combined with
checkpointing techniques in order to be effective. Applying
checkpointing minimizes the fault’s impact on applications
because they are restarted from the latest checkpoint. In a
dynamic fault model, once a new fault is found, actions are

Published by the IEEE Computer Society

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

GOMEZ ET AL.: A ROUTING METHODOLOGY FOR ACHIEVING FAULT TOLERANCE IN DIRECT NETWORKS 401

taken in order to appropriately handle the faulty compo-
nent while the system keeps running. For instance, a source
node that detects a faulty component in a path can switch to
a different path.

Although there are different ways to deal with faults in
the interconnection network (see Section 2), most of the
solutions proposed in the literature are based on designing
fault-tolerant routing algorithms that are able to find an
alternative path when a packet meets a fault along the path
to its destination. Most of the proposed fault-tolerant
routing strategies require a significant amount of extra
hardware resources (e.g., virtual channels) to route packets
around faulty components in the case of failure. Alterna-
tively, there exist some fault-tolerant routing strategies that
use a very small number of extra resources to handle
failures, at the expense of either disabling certain healthy
nodes [25], thus reducing the processing power, or
dramatically increasing the latencies for some packets
[42]. Moreover, when faults occur, with most of those
fault-tolerant strategies, link utilization may become sig-
nificantly unbalanced, thus leading to premature network
saturation and consequently degrading network perfor-
mance even more.

In this paper, we overcome all these limitations,
proposing a fault-tolerant methodology for interconnection
networks that does not degrade performance at all in the
absence of faults, inflicts minimal performance degradation
in the presence of faults, and tolerates a reasonably large
number of faults. Indeed, fault tolerance is achieved
without disabling any healthy node, without requiring too
many extra hardware resources, and without introducing
any significant penalty (e.g., extra latency) when routing
packets in a faulty network. The methodology assumes a
static fault model and the use of a checkpoint/restart
mechanism.

The methodology is based on the use of intermediate
nodes for routing [22].! That is, for some source-destination
pairs, packets are first forwarded to an intermediate node
and then from that node to the destination, in this way
splitting the routing path into two subpaths. Basically, we
avoid faulty links by reducing the number of possible
adaptive paths between source and destination nodes. In
particular, we remove those paths along which packets
could encounter any of the faults. Notice, though, that
adaptive routing is still used along both subpaths. How-
ever, for some few paths, an intermediate node is not
enough to avoid the faults. In order to increase the fault
tolerance degree, two extensions of the methodology are
proposed. These extensions restrict routing even more to
ensure that packets will not encounter the fault. The first
one disables adaptive routing and/or uses misrouting on a
per packet basis ([23], [24]). The second extension extends
the idea of intermediate nodes. Instead of using one
intermediate node, it allows the use of multiple intermedi-
ate nodes for some paths [34], enabling adaptive routing to
be used for all subpaths.

The methodology is valid for any network topology” and
allows the use of fully adaptive routing even in the presence

1. Intermediate nodes were introduced by Valiant [45] for other
purposes, such as traffic balancing.
2. For the sake of simplicity, we will focus on torus and mesh networks.

of failures.® To avoid deadlock, only three virtual channels
are required even for tori.*

In this paper, we present the fault-tolerant routing
methodology, fully exploring the impact of each of its
mechanisms ([22], [23], [34]). We compare them from a
uniform point of view and in the same scenarios, trying to
meet the trade-offs between fault tolerance, network
performance, and complexity.

The rest of the paper is organized as follows: Section 2
describes related work on fault tolerance. In Section 3, the
methodology based on using intermediate nodes is pre-
sented. The extensions to the methodology are presented in
Section 4. In Section 5, the different combinations of the
proposed methodology are evaluated and compared using
the same scenarios in terms of complexity, fault tolerance,
and performance. Finally, in Section 6, some conclusions
are drawn.

2 ReLATED WORK

Basically, there are three ways to tolerate faults in
interconnection networks: component redundancy, fault-
tolerant routing algorithms, and reconfiguration. Using
component redundancy has been the easiest way to provide
fault tolerance. Components in the system are replicated
and, once a failed component is detected, it is simply
replaced by its redundant copy. The main drawbacks of this
approach are the high extra cost of the spare components
and the nonnegligible probability that the circuits required
to switch to the spare components may fail. An enhanced
version of this technique does not require spare compo-
nents. It simply bypasses faulty components, together with
some healthy components, to maintain network regularity.
For instance, in the BlueGene/L project [5], the nodes are
connected by using a 3D torus. The full BlueGene/L
supercomputer is constituted by 65,536 nodes, which are
allocated over 64 racks of 1,024-nodes, with two 512-node
midplanes per rack [20]. Once a failure is detected, all the
nodes included in the midplane (512-nodes) that contains
the faulty node/link are marked as faulty.

Another powerful technique is based on reconfiguring
the routing tables in the case of failure, adapting them to the
new topology after the failure [7], [44], [32], [33]. This
approach is appropriate for switch-based networks
(Myrinet [2], Quadrics [35], InfiniBand [27]) in which the
topology is defined by the end user. When using reconfi-
guration, any number of faults is tolerated without
requiring additional resources [38], as long as the network
remains connected. This technique is extremely flexible, but
this flexibility may also kill performance due to the need of
using generic routing algorithms as a consequence of the
irregularity in the resulting network topology. Often,
generic routing algorithms achieve poor performance when
applied to regular networks (e.g., 3D tori), as shown in [39].
This is because, in these cases, generic routing schemes are
usually not able to provide minimal routing in all cases,
regardless of whether they are deterministic or adaptive

3. If intermediate nodes are used, fully adaptive routing refers to each
subpath.

4. Note that two virtual channels are already required to provide
deadlock-free fully adaptive routing [36].

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

402

[41].° Furthermore, they often provide worse traffic balance
than that provided by the routing schemes specifically
designed for these networks.

A large number of fault-tolerant routing algorithms for
multiprocessor systems have been proposed, especially for
mesh and torus topologies. Some approaches [30], [46] use
global status information of the network, whereas others
use only local status information. In particular, adaptive
routing is used together with link status in [15] and [31].
However, these approaches require using a large number of
virtual channels, depending on either the number of
tolerated faults [15] or the number of dimensions of the
topology [31]. Real systems implement very simple me-
chanisms that partly address the problem, such as the
direction order routing used in the Cray T3E [43]. Other
solutions consist of using routing algorithms together with
additional resources (virtual channels). Some of these
solutions are based on block faults [8], [4], [9], [10], [11],
[47], whereas others allow individual faults [21], [17], [12].
In the former case, several healthy nodes must be marked as
faulty, reducing the system’s processing capacity, in order
to build fault regions (either rectangular or nonconvex
regions). Packets are routed around these fault regions. To
this end, several virtual channels must be used. Finally,
some routing solutions ([28], [16]) are based on performing
misrouting and backtracking of packet headers. Despite
tolerating any number of faults, these strategies often
strongly penalize the network performance.

To overcome these drawbacks, a software-based fault-
tolerant routing approach [42] can be used. When a packet
encounters a fault, it is ejected from the network and is later
forwarded through an alternative path. This mechanism is
very flexible and supports many failure patterns, without
either marking healthy nodes as faulty or requiring
additional virtual channels. However, some packets may
suffer high latencies due to the packet ejection and
reinjection, and these packets also consume memory
bandwidth in the node where the injection/reinjection is
performed. An approach that minimizes the number of
required virtual channels and tolerates a fairly large
number of faults, at the expense of disabling some healthy
nodes, was recently proposed in [25]. This algorithm is
based on a static fault model and only requires two virtual
channels per link. In the absence of faults, dimension-order
routing (DOR) is used. When faults prevent the use of DOR,
a set of nodes must be sacrificed (lamb nodes) in order to
guarantee that every survivor node, a node that is neither
faulty nor a lamb, can reach every survivor node by at most
two rounds of DOR. Deadlock-freedom is guaranteed
provided that a different virtual channel is used during
each round. The main drawbacks of this routing algorithm
are that a significant number of nodes must be disabled for
packet transmission/reception (but not for routing) in order
to support communication among the remaining nodes and
that it does not support adaptive routing.

It is important to highlight the main differences between
our proposal, described in Sections 3-4, and other

5. Some generic routing strategies are able to provide minimal paths at
the expense of using a large number of virtual channels, often depending on
the network size.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

Fig. 1. The use of an intermediate node (I) limits the number of possible
paths, from the source (S) to the destination (D), enabling the fault (¥) to
be avoided.

approaches in the literature that also use a small number
of extra resources. In particular, unlike [42], in no case does
our proposed methodology require ejecting/reinjecting a
packet at an intermediate node, thus reducing latency
drastically. Moreover, unlike [25], our fault-tolerant meth-
odology does not need to deactivate any lamb node to
achieve good fault tolerance. Furthermore, the proposed
methodology allows packets to be adaptively routed, thus
increasing the overall network throughput.

3 METHODOLOGY

In this section, we will describe the basic mechanism for
achieving fault tolerance, that is, routing through inter-
mediate nodes. For this purpose, we will assume a k-ary
n-cube (torus) or an n-dimensional mesh network with
minimal adaptive routing based on Duato’s protocol [18]. In
the absence of faults, packets are routed using fully
adaptive routing, with at least two virtual channels (ie.,
one adaptive channel and one escape channel) per physical
link. The adaptive channels enable routing through any
minimal path, whereas the escape channels guarantee
deadlock freedom by using a deterministic routing function
free from cyclic dependencies. At each hop, packets that
cannot use any of the adaptive channels that provide a
minimal path to their respective destinations use the escape
channel provided by the deterministic routing function.®
Also, a static fault model with checkpointing is assumed.
Detection of faults, checkpointing, and distribution of
routing info is performed as part of the static fault model
and, thus, will not be further discussed in this paper.

If faulty components can be encountered when routing
packets between a source-destination pair, the methodology
avoids these faults by using intermediate nodes for routing.
Packets are first forwarded to a suitable intermediate node
and, then, from this node to their final destination. This
way, intermediate nodes are used in order to obtain greater
control over the paths followed by packets, thereby
avoiding the faults. Notice that the packets are not ejected
from the network at the intermediate node. Fig. 1 shows a
source-destination pair that uses an intermediate node. The
original routing algorithm (based on Duato’s protocol) is
used in both subpaths. By using intermediate nodes, areas

6. Notice that packets can again be routed through adaptive channels
(when free) after using an escape channel.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

GOMEZ ET AL.: A ROUTING METHODOLOGY FOR ACHIEVING FAULT TOLERANCE IN DIRECT NETWORKS 403

containing faults are avoided at the expense of reducing the
number of possible paths.

Deadlocks are avoided by using a separate escape
channel for each phase. That is, one escape channel is used
(if required) from the source to the intermediate node and
another one from the intermediate node to the destination.
This way, each phase defines a separate virtual network
and packets change virtual network at the intermediate
node. Thus, there are no dependencies between the two
subpaths, allowing two independent paths to be followed.”
Although each virtual network relies on a different escape
channel, they share the same adaptive channel(s). Thus, a
total of at least three virtual channels are required (one
adaptive and two escape). Notice that deadlock-free
minimal adaptive routing, based on Duato’s protocol,
requires at least two virtual channels, so only one additional
virtual channel is required.

The escape channels use deterministic dimension order
routing (DOR) and, for tori, also the bubble flow control
mechanism [6]. The bubble flow control mechanism avoids
deadlocks in the dimension rings of torus topologies by
ensuring that there is always an empty buffer that allows
packets to advance along the ring. With this mechanism, a
packet that is injected into the network, crosses a network
dimension, or originates from an adaptive channel requires
two free buffers (i.e., one for the packet and one additional
free buffer) in order to be allowed in the escape channel.
Indeed, a packet changing virtual network at an inter-
mediate node should also be considered as entering the ring
and, therefore, requires two free buffers. Alternatively, if
the bubble flow control mechanism is not used, deadlock
freedom can be provided in torus topologies through the
use of additional virtual channels [13]. If this latter
approach were used, each subpath (i.e., virtual network)
would require two escape channels, resulting in a total of
five virtual channels (i.e., four escape channels and at least
one adaptive channel). Anyway, this is an implementation
issue, aimed at guaranteeing deadlock-freedom along the
escape paths, that has no influence on the proposed fault-
tolerant routing methodology.®

Next, a methodology for identifying the intermediate
nodes is presented.

3.1 Intermediate Nodes for Adaptive Routing

In what follows, we will denote the source node as S and the
destination node as D. The intermediate node is denoted as I.
Faulty links are denoted as F;. A node failure can easily be
modeled as the failure of all the links of a node.

7. Note that, in certain cases, it may be unnecessary to carry out the
virtual network transition at the intermediate node as long as cyclic channel
dependencies are not introduced. However, these situations cannot be
foreseen when using adaptive routing. Applying deterministic routing
along the first subpath could help in some cases. However, the difficulties
in guaranteeing in all cases that cyclic channel dependencies are not
introduced prevent us from removing the need of using an additional
virtual network.

8. We suggest the use of the bubble flow control mechanism in tori
because it allows a more efficient implementation of the proposed
methodology (i.e., it requires a smaller number of virtual channels to
implement the escape paths). The bubble flow control mechanism is
currently being used in the BlueGene/L supercomputer [5].

—1

NN

N
03
-
ariy

Sy

[0] Node in 7, Node in 7;
Nodein7; [Source

il

-

Sods e
+§«J

Ly

v

e

v
=

50
CII LI

*

L'
ki
Node in 7
© Destination

+

Shsscns
=

5101415151601
felfeary

Fig. 2. The nodes in the sets 7, for j <5, for a particular source-
destination pair in a 2D torus.

When minimal adaptive routing is used, the intermediate
node I should have the following properties so that the
fault(s) F; are avoided when routing packets from Svia I to D:

1. [is reachable from S.

2. D is reachable from I.

3. There is no I’ (fulfilling the previous requirements)
giving a shorter path than I.

The first requirement guarantees that packets can be
routed from S to I and the second one that packets can be
routed from I to D. The third requirement guarantees that
the final path is the shortest possible. We define that, when
minimal adaptive routing is used, a node N, is reachable
from a node N, if and only if, for all ¢, F; is not on any
minimal path from N; to N;.

To identify the possible intermediate nodes, let 7 g be
the set of nodes reachable from S and 7 p the set of nodes
from which D is reachable. Furthermore, let I(x,y) be the
length of the minimal path, in the fault-free case, from « to
y. We then define 7; (for j > 0) in the following way: A
node N is in 7 if and only if [(S, N) + (N, D) = I(S, D) + j.
This way, 7, for different values of j defines nonoverlap-
ping sets of nodes, as shown in Fig. 2. These sets can easily
be identified by starting with the nodes that are traversed
on any minimal path from S to D (i.e., j = 0) and continuing
outward.

Theorem 1. Let j be the smallest integer for which T; N7 gg N
T p is nonempty. A node N fulfills all three requirements of an
intermediate node I if and only if N € T; N Trs N7 p.

Proof. We prove the theorem by induction. The theorem is
true for j = 0 (i.e., for minimal routes):

e Let us assume that there is one node NV in the set
that does not fulfill the requirements of an
intermediate node. Then, N would either have
to be unreachable from S, not have a valid route
to D, or not be on a minimal path from S to D. If
N is unreachable from S, it is by definition not in
T gs. If N does not have a valid route to D, it is by
definition not in 7 p. If N is not on a minimal path
from S to D, it is by definition not in 7'y. Because
of the properties of set intersections, N must be in

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

404

N SEATaS

L=
i

%Z;?EE% ;
I
Loy

u Source © Destination X Failure
] Node in Zxs[(M Node in 7, Tl Node in Tz N T,
@ Possible intermediate node

Fig. 3. The faults are avoided by the use of an intermediate node. The
shaded area identifies the nodes in 7.

all three sets, 7 rg, 7 p, and 7, to be in the set
ToNTrsNTp. Thus, we have a contradiction.

e Let us then assume that there is one node N,
outside the set, which fulfills the requirements of
an intermediate node. N would then have to be
outside at least one of the sets T gg, 7 p, or 7. If
N is outside T rg, it is unreachable from S and,
therefore, does not fulfill requirement one. If N is
outside 7 p, it has no valid route to D and,
therefore, does not fulfill requirement two. If N is
outside 7, NV is not on a minimal path from S to
D. Thus, we have a contradiction in all three
cases.

If the theorem is true for j = m, then the theorem is
also true for j=m+ 1: Concerning requirements one
and two, the arguments made for j =0 also hold for
j =m+ 1. Furthermore, when j = m + 1, no route S-I-D
exists for j < m + 1. Indeed, as each increase of j adds
one additional hop to the path S-I-D, all the intermediate
nodes found when j = m + 1 yield paths S-I-D of equal
lengths. Finally, for the same reason, no shorter path can
be found for j > m + 1. The theorem therefore fulfills all
three requirements. ad

This way, to identify possible intermediate nodes, we
start by considering the minimal paths (j = 0) and then, if
necessary, nonminimal paths (j > 0) to avoid the fault(s). By
minimizing j, preference is given to the shortest connected
paths. We illustrate the intermediate node selection in the
next section by applying Theorem 1 in two example
scenarios.

3.2 Example Scenarios

Fig. 3 shows a scenario with five link faults. Because there
are faults present in some of the minimal paths between S
and D, an intermediate node is needed. In order to find a
minimal path, we look for an intermediate node within 7.
As shown in Fig. 3, there are several nodes within 7 that
are either reachable from S or are able to reach D. However,
we are only interested in nodes with all of these attributes,
that is, the nodes given by the set 7o N7 pg N7 p. In this
scenario, there is only one such node, that is, the one
identified as a possible intermediate node in Fig. 3. By using
this node as the intermediate node, it is guaranteed that the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

faults are not encountered when packets are first routed
from S to I and then from I to D.

Notice that, in a mesh, if all the minimal paths are faulty,
it is not possible to find a suitable intermediate node even
when considering nonminimal paths (i.e., 7; for j > 0)
when fully adaptive routing is used. This is because it is
then impossible to position the intermediate node in such a
way that all the minimal paths from S to I and from I to D
are fault free. In a torus, however, such faults can be
avoided by using a nonminimal path given by taking the
opposite direction to the minimal path. Thus, if all the
minimal paths in the torus shown in Fig. 2 were blocked by
faults, one could, for example, use the node two hops to the
left of the source as an intermediate node and, thus, get a
nonminimal path in the opposite direction of the ring.
Because this node is in 7, the path length of this path
equals the minimal path plus two. To handle such a
situation in a mesh, it is necessary to use one of the
complementary mechanisms described in the next section.

4 COMPLEMENTARY MECHANISMS

In some situations, like the one in the last example, it is
impossible to avoid all the faults by using the methodology
presented in the previous section. Therefore, we now
present some alternative extensions to the methodology.
First, we present how the intermediate node concept can be
extended to use more than one intermediate node for some
source-destination pairs. Then, we present alternative
solutions based on using additional mechanisms, that is,
disabling adaptive routing and/or using misrouting for
some paths.

4.1 Multiple Intermediate Nodes

By using more than one intermediate node, additional
control over the paths followed by packets is gained,
enabling more faults to be avoided while still using
adaptive routing for all the paths. In order to still guarantee
deadlock freedom, an additional virtual channel is needed
for each additional intermediate node.” This way, each
subpath continues to use a different escape channel. So,
when at most two intermediate nodes are used in each path,
a total of four virtual channels is required (i.e., three escape
channels and one adaptive channel).

When using multiple intermediate nodes, we refer to the
intermediate nodes as I,, where I; denotes the first
intermediate node in a route. We will first present a
methodology for using two intermediate nodes. Then, we
generalize this methodology so that it can be used, in a
recursive way, for any number of intermediate nodes.

4.1.1 Two Intermediate Nodes

When using two intermediate nodes, we are looking for
intermediate nodes I; and I, so that:

e [is reachable from S.
e [, is reachable from I;.
e D is reachable from Is.

9. If the bubble flow control mechanism was not used in a torus
topology, two virtual channels would be required for each additional
intermediate node.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

GOMEZ ET AL.: A ROUTING METHODOLOGY FOR ACHIEVING FAULT TOLERANCE IN DIRECT NETWORKS 405

e There are no If and I (fulfilling the previous
requirements), giving a path shorter than I; and Is.
Indeed, it can be observed that if a suitable I; is
identified, then the second intermediate node I, follows
from Theorem 1. Thus, the problem can be reduced to
identifying I, where I; must be selected in such a way that
all four requirements for I; and I, stated above are fulfilled
when I, follows from Theorem 1.

In order to solve this problem, let us introduce a
variation of 7 p, namely, T’fjl. We define this new set as the
set of nodes that can reach D through one intermediate
node (i.e., the 1 in the subscript denotes that one
intermediate node is used). This intermediate node is given
by Theorem 1 and the value of k here equals the value of j,
in the set 7, used in Theorem 1 for identifying it, e.g., the
set ’Z'OD1 consists of the nodes that have a minimal path, via
one intermediate node, to D. The set 7 }n, on the other
hand, consists of the nodes that have a path length equal to
the minimal path plus one, via one intermediate node, to D.
As before, T ps denotes the nodes reachable from S.

Theorem 2. Let j and k be the smallest integers (i.e., so that their
sum is minimized) for which T ; T rs N T, is nonempty. A
node N fulfills all four requirements of an intermediate node I
if and only if N € T;NTrs NTH,.

Proof. Let us define [as the sum of jand k,i.e., [= j + k. We
then prove the theorem by induction. The theorem is true
for [=0 (i.e., for minimal paths):

e Let us assume that there is one node N in the set
ToNTrsN 7(1)31 that gives a path S-N-I,-D that
does not fulfill the requirements of an intermedi-
ate node I;. It follows from Theorem 1 and the
definition of T]}_')l that I, is reachable from N and
that D is reachable from I,. Thus, N must be
unreachable from S or the path S-N-I,-D is not
the shortest possible. If N is unreachable from S,
N is by definition not in 7 gg. It also follows from
Theorem 1 that the subpath N-15-D is the shortest
possible. Thus, N cannot be on a minimal path
from S to D for the path S-N-I-D to be a
nonminimal path. However, then N is by defini-
tion not in 7. Therefore, we have a contradiction.

e Let us then assume that there is one node N
outside the set ToN7TrsNT (,)31 that fulfills the
requirements of an intermediate node I;. N
would then have to be outside at least one of
the sets 7y, T rg, Or TODl. If N is outside 7T, it
violates our assumption that [= 0. If IV is outside
T gs, it is unreachable from S and therefore
violates requirement one. If N is outside of the
set TY,,, it violates requirements two or three or
our assumption that [= 0.

If the theorem is true for [= m, then it is also true for
l=m+1: As for reachability, the arguments used for
I =0 are still valid. Thus, it only remains to be shown
that the path S-N-I,-D is the shortest possible. By
definition, when | =m + 1, no N exists for | <m + 1.
Each increase of [adds one hop to the path S-N-I-D.

B source © Destination X Failure
@ Possible intermediate node

Fig. 4. Examples of nodes in 7%, for different values of k and z. Node 1
isin 79, node 2 is in 79, node 3 is in 7},,, and the source is in 77,,.

Thus, all paths where { = m + 1 are of equal length and
no shorter path can be found for I > m + 1. O

Thus, as before, to find the first intermediate node in a
path with two intermediate nodes, we start by considering
the minimal paths (i.e., j+k=0) and then consider
nonminimal paths (ie., j+ k> 0), if necessary, to avoid
all the faults. The second intermediate node is given by
Theorem 1. We will now extend this concept to any number
of intermediate nodes and then provide an example
scenario.

4.1.2 Any Number of Intermediate Nodes

Let us now generalize the definition of 7%, in order to
apply Theorem 2 for any number of intermediate nodes. We
therefore define 7%, in the following way:

e 79, The set of nodes from which D is reachable
without the use of any intermediate node (i.e., the set
of nodes defined by the original set 7 p).

° T’EZ (for z> 0 and k > 0): The set of nodes from
which at least one node in 7; NT%_ | is reachable
without the use of any intermediate node, where
7+ K=k

Thus, a node N € 7%, reaches D through z intermediate

nodes and k is, here, the number of additional hops, in the
path from N to D, compared to the minimal path. Fig. 4
shows some examples of nodes in 7%, for different values
of k and z. Node 1 here has a minimal path without any
intermediate nodes to the destination (D) and, thus, belongs
to the set 7 ODO. Node 2 has a minimal path, via one
intermediate node (i.e., node 1) to D, and therefore belongs
to the set 79,,. Node 3 has a path to D via two intermediate
nodes (i.e., nodes 2 and 1), with a length of four hops more
than the minimal path, and thus belongs to the set 77,,.
More specifically, j/ = 4 because the first intermediate node
in this path (i.e., node 2) is in 74 (relative to node 3 and D)
and k¥ = 0 because the path from node 2 to D is a minimal
one. Thus, k = j' + k' = 4. The source node (S) has a path to
D through three intermediate nodes and this path is four
hops longer than the minimal path, thus S is in the set 7 },,.
In this case, j/ =0 because node 3 is on a minimal path
between S and D, while k¥’ = 4 because node 3 is in T4D2 (i.e.,
the path from node 3 to D is four hops longer than the
minimal path).

Notice that the set 7; N 7 g N T, is actually the same as

that in Theorem 1, thus resulting in paths with one

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

406

iy

v

T TR
PaSH P s

i

ghisd
i€

B Source © Destination] Node in Txs
X Failure [l Node in ’Z}% I Node in Tzs N '12)(;

@ Possible first intermediate node (I;)

D“DHDHDE

Fig. 5. Two intermediate nodes must be used in order to avoid the faults.
The figure shows how the first of these intermediate nodes (i.e., I;) is
identified. The shaded areas identify the nodes in 7.

intermediate node. The set 7; N7 s N 7%, is that given by
Theorem 2, resulting in paths with two intermediate nodes.
Similarly, 7;N 7T zs N7}, gives paths with three inter-
mediate nodes. Continuing this way, an arbitrary number of
intermediate nodes can be obtained. When paths of equal
length exist, preference should be given to paths with fewer
intermediate nodes.

4.1.3 Example Scenario

Fig. 5 shows the same scenario as previously shown in
Fig. 3, except that the source node is different. In this case,
all the minimal paths between S and D are blocked by
faults. The set Ty N7 grs N T, giving minimal paths with
one intermediate node, is therefore empty. The set
ToNTrsNTY,, giving minimal paths with two intermedi-
ate nodes, is also empty. Because preference is given to the
paths with the least number of intermediate nodes, when
the path length is equal, we then try to find an intermediate
node within 7, (7 ; is empty for odd values of j in meshes)
giving a nonminimal path with one intermediate node.
However, this set, 7o N T rs N'T %O, is also empty.

There are now two more sets giving the same path
lengths as the previous one, but using two intermediate
nodes instead of one. Which of these two sets are given
preference is irrelevant for the correctness of the methodol-
ogy as they both give the same value for j+ k (which
should be minimized according to Theorem 2). Anyway, of
the two sets, the set 7o N7 gg N 75, is empty, while the set
ToNTprsN TODl gives us the possible intermediate nodes
shown in Fig. 5. Thus, the first intermediate node, I;, can be
selected among these three nodes. If I is the first
intermediate node, then the second intermediate node, I,
can be selected among the intermediate nodes that give I a
path with one intermediate node to D. In this case, I would
be the same node as the one earlier identified as /; in Fig. 3.

4.2 Disabling Adaptive Routing

A deterministic minimal routing function uses a subset of
the paths returned by an adaptive minimal routing
function. Therefore, a node given by Theorem 1 for adaptive
routing can also be used as an intermediate node when
deterministic routing is used. However, there are scenarios
where the set 7; N7 rgN T p is empty but where it is still
possible to find a suitable intermediate node if routing is
restricted to a deterministic route. This way, nodes that

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

could not be used as intermediate nodes with adaptive
routing may be used as intermediate nodes with determi-
nistic routing.

When fault tolerance through intermediate nodes is
applied in combination with deterministic routing, we are
looking for an intermediate node I such that:

e For all 4, F; is not on the S — I deterministic path.

e For all 4, F; is not on the I — D deterministic path.

e There is no I’ (fulfilling the previous requirements)

giving a shorter path than I.

As can be observed, these are the same requirements as
those that formed the basis for Theorem 1, except that
deterministic routing now is assumed. Therefore, we can
obtain the desired nodes by applying Theorem 1 for
deterministic routing. In order to do this, let 7%¢ be the
set of nodes reachable through deterministic routing from S
and 79, the set of nodes that have a valid deterministic
route to D.

Corollary 1. Let j be the smallest integer for which T; N T %g N
T4, is nonempty. A node N fulfills all three requirements of an
intermediate node, when deterministic routing is used along
the subpaths if and only if N € T;NT%he N T,

This gives intermediate nodes (I) where deterministic
routing is used from S to I and from I to D. However, even
when it is not possible to use adaptive routing all the way
from S via I to D (i.e, when the set 7,NTrsNTp is
empty), it may still be possible to use adaptive routing from
Sto I or from I to D.

Thus, if the intermediate node is selected from
T,NTrs N T}, adaptive routing can be used from S to I,
whereas deterministic routing must be used from I to D.
Similarly, if the intermediate node is selected from
;N T‘é,s N7 p, deterministic routing must be used from S
to I, whereas adaptive routing can be used from I to D. As
before, j is minimized in order to get the shortest path
length possible.

4.2.1 Example Scenario

Fig. 6a shows a mesh network where all the shortest paths
between the source and the destination are blocked by faults.
Thus, theset 7; N T4 N T4 isempty for j = 0.Itisalsoempty
for j =1 as the set 7 ; is empty for all odd values in meshes.
We must therefore try with j = 2. The set 7, consists of the
nodes within the shaded areas in the figure. Among the nodes
within 7 that can be reached from S, using deterministic
(dimension order) routing, one that also has a deterministic
route to D (i.e.,, anode in 7o N T%;NT%) can be chosen as
the intermediate node. As shown in Fig. 6a, there is one
such node in this scenario. This node should therefore be
used as the intermediate node. Notice that packets could
encounter a fault if adaptive routing was used in any of the
subpaths and it is therefore necessary to use deterministic
routing (i.e., disable adaptive routing) both from S to I and
from I to D.

4.3 Misrouting

The last complementary mechanism is the use of
misrouting. For this, we use direction-order routing

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

GOMEZ ET AL.: A ROUTING METHODOLOGY FOR ACHIEVING FAULT TOLERANCE IN DIRECT NETWORKS 407

X+

o Bobea
I:I%[FHE

(@)

»
»

$as s

(b)

] Node in Tgs (M Node in 7, sl Node in Zxs’ N 75° @ Possible intermediate node

(s Nodein 7Y M Source

© Destination XK Failure

< Direction order routing

Fig. 6. (a) Adaptive routing must be disabled in both subpaths to avoid all the faulty links. The shaded areas identify the nodes in 7. (b) Misrouting is
used in the first subpath and in the beginning of the second subpath in order to circumvent all the faults

TABLE 1
Variations of the Methodology
| Variation | Description |
1 All packets are adaptively routed. An intermediate node is used when needed.
D Adaptive routing can be disabled (i.e., deterministic routing is applied) on a per packet basis.
M Packets can be forced along up to three directions (at most eight hops in each direction) at the beginning
of the path to the destination (following minimal or non-minimal paths). Then, packets are adaptively routed.
I+D Packets can use an intermediate node (I) and/or disable adaptive routing (D). When an intermediate node
is used, adaptive routing can be disabled along a subpath or along the entire path.
+M If an intermediate node (I) is used, misrouting (M) can be applied for one or both of the subpaths. Otherwise,
misrouting can be applied at the beginning of the path to the destination. In all cases, packets are adaptively
routed after the misrouting phase.
D+M Misrouting (M) and/or disabling adaptive routing (D) can be applied. When both mechanisms are applied,
packets are deterministically routed after the initial misrouting phase. Otherwise, packets are adaptively routed.
I+D+M | If an intermediate node is used, misrouting and/or deterministic routing (D+M) can be applied for one or
both of the subpaths. Otherwise, misrouting and/or deterministic routing can be applied for the path to the
destination.
IxN All packets are adaptively routed. At most N intermediate nodes can be used for each path.
I[x2+D | At most two intermediate nodes can be used for each path, and adaptive routing can be disabled along any
of the subpaths.

(X4+Y+Z+X-Y —Z—) instead of dimension order
routing. This is because direction order routing allows
packets to be routed in both directions of a dimension and,
therefore, offers greater flexibility to avoid faults. Further-
more, direction order routing allows routing through
nonminimal paths. We restrict packet misrouting to at most
three directions, up to eight hops in each direction, at the
beginning of each path/subpath.

4.3.1 Example Scenario

Fig. 6b shows a scenario where the shortest paths between the
source and the destination are blocked by faults. By using
direction order routing, packets are first misrouted one hop in
the X + direction, thenonehopintheY + direction, and one
hop in the X — direction. By having an intermediate node at
this point, the packets are again allowed to travel in the Y +
direction. So, from the intermediate node, the packets are
misrouted one hop in the Y + direction and then one hop in
the X — direction before they continue toward the destina-
tion using adaptive routing.

5 EVALUATION

In this section, we will evaluate the methodology in terms of
fault tolerance, complexity, and performance. The three
basic mechanisms are analyzed individually: one inter-
mediate node (I), disabling adaptive routing (D), and
misrouting (M). Additionally, the following combinations
of these mechanisms are evaluated: I+D, I+M, M+D, and
I+D+M. The extension to more than one intermediate node
is also analyzed and is referred to as IxN, where N is the
maximum number of intermediate nodes used in a path.
We also analyze the combination of two intermediate nodes
(Ix2) and disabling adaptive routing (D), that is, Ix2+D.
Table 1 summarizes each variation of the methodology.

5.1 Fault Tolerance

A methodology is n-fault-tolerant if it is able to tolerate any
combination of n link failures. Indeed, we will say that a
given combination of failures is tolerated if the methodol-
ogy is able to provide a nonfaulty route between every
source-destination pair in the network. If, for a combination
of n faults, there is at least one source-destination pair
whose path is not fault-free, then that combination is not
tolerated and the methodology is not n-fault-tolerant.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

408

Faults may disconnect some nodes in the network. As
these nodes can no longer send or receive messages, such a
situation is not considered as not tolerated. We only
consider link failures since a node failure can be modeled
as the failure of all the links of a node.'®

We present fault tolerance results for a 3 x3x3
(27 nodes) torus network. Although current systems are
being built with larger topologies (e.g., a 32 x 32 x 64 torus
for BlueGene/L), smaller networks can be exhaustively
evaluated from a fault-tolerant point of view and the results
can then be easily transferred to larger networks. In larger
networks, the faults will be at the same or a greater distance,
so it is reasonable to expect that the fault tolerance will be
the same and that the percentage of not tolerated combina-
tions will be even lower.

5.1.1 Fault Analysis Models

For a limited number of faults, all the possible combinations
of faults can be explored. However, as the number of faults
increases, the number of possible fault combinations
increases exponentially. Therefore, from a particular num-
ber of faults, it is impossible to explore all the fault
combinations in a reasonable amount of time. We use two
approaches to deal with this problem. The first approach
focuses on faults bounded into a limited region of the
network. Notice that scenarios where the faults are closely
located are difficult to solve because the number of fault-
free paths among the nodes in a region with many faults
will be reduced. As the number of possible fault combina-
tions is much lower for such a region than for the entire
network, all the fault combinations can be evaluated.
Although the obtained results cannot be directly extended
to the generic case, where the faults may be located over the
entire network, it gives us an approximation of the
effectiveness of the methodology in a critical situation.

The analyzed region is formed by all the links of the
nodes that are one hop away from a node (the center node),
which is randomly selected.!’ We will refer to this region as
a distance 1 region. Fig. 7 shows a distance 1 region, formed
by 36 links. In a 3 x 3 x 3 torus, it only consists of 33 links
though, as three of the links then are shared by nodes
within the region. Notice that, with a high number of faults,
the center node is hardly accessible.

In the second approach, a statistical analysis is per-
formed. A subset of the total number of fault combinations
for a given number of faults is analyzed in order to check if
they are tolerated. The faults in each of these combinations
are randomly located over the entire network. From the
obtained results, we perform a statistical analysis to obtain
the fault tolerance of the proposed methodology.

5.1.2 Fault Tolerance Results

Table 2 shows the percentage of fault combinations not
tolerated by the different mechanisms and their possible
combinations in a 3 x 3 x 3 torus network. Results for the
three fault analysis models (exhaustive, distance 1, and
probabilistic) are shown. As can be observed, the I+D+M
combination achieves a very good fault tolerance degree. In
particular, all the evaluated fault combinations with up to
seven faults are tolerated. Notice that, for six-faults and up,
only the distance 1 and statistical analysis models are used.

10. When a link fails, we assume that it fails in both directions.
11. The selection of the center node does not affect the results due to the
symmetry property of torus networks.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

v

Y+

Q¢C
t///”"t'
: @

4

=== Links in the distance 1 region

@ Target node

Fig. 7. Distance 1 region in a 3D torus.

As the distance 1 represents a worst-case analysis, this
strongly indicates that the mechanism is 7-fault-tolerant.
Moreover, for the statistical fault analysis model, all the
analyzed fault combinations (up to 14 faults) were tolerated.
However, in the distance 1 analysis model, some fault
combinations are not tolerated from eight faults upward.

Table 2 also shows the fault tolerance of the mechanisms
when used individually. The D mechanism is neither able to
tolerate any fault nor any combination of faults. This result
was expected since the deterministic routing used (i.e., DOR
routing) is not even 1-fault-tolerant. Regarding the
I mechanism alone, we can observe that it is only 1-fault-
tolerant. Moreover, the number of not tolerated fault
combinations increases significantly as the number of faults
in the network increases. For five faults, roughly a quarter
of the fault combinations are not tolerated. Finally, the M
mechanism obtains a better fault tolerance degree than the I
mechanism by being 3-fault-tolerant. However, for a higher
number of faults, the percentage of not tolerated combina-
tions increases significantly. Therefore, in light of these
results, it must be noticed that an acceptable fault tolerance
degree cannot be achieved by using any of the mechanisms
separately, requiring additional support to be effective.

Looking at the combinations of mechanisms, we can
observe that disabling adaptive routing is effective when it is
combined with intermediate nodes. In fact, I+D is 5-fault-
tolerant and the percentage of not tolerated fault combina-
tions remains low as the number of faults in the network
increases. The percentage of not tolerated fault combinations
for eight faults is lower than 1.5 percent in the distance 1
region. These results are obtained thanks to the use of
dimension order (X +Y + Z £) routing. However, when
using direction order (X +Y +Z+ X —Y — Z —) routing
instead of dimension order routing, only three faults were
tolerated by I+D. This is because, when an intermediate node
isused, X £ Y £+ Z £+ provides more flexibility in the entire
path (i.e., taking into account both the S — I stretch and the
I — Dstretch) since the dimensions are always traveled in the
same order, regardless of the direction.

On the other hand, we can observe that disabling
adaptive routing together with misrouting does not help
much. In particular, D+M exhibits fault tolerance capabil-
ities similar to those obtained with M. I+M appears to be
7-fault-tolerant as I+D+M, although it has a slightly higher
percentage of not tolerated combinations in the distance 1
region for eight faults. The similar results are due to the fact

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

GOMEZ ET AL.: A ROUTING METHODOLOGY FOR ACHIEVING FAULT TOLERANCE IN DIRECT NETWORKS

409

TABLE 2
Percentages of Link Fault Combinations Not Tolerated by Each Mechanism and Their Combinations in a 3 x 3 x 3 Torus
Link # of D I M D+M I+D +M I+D+M Ix2 Ix3 Ix2+D
faults || combinations

Exhaustive analysis
1 81 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 3,240 100% | 2.5% 0% 0% 0% 0% 0% 0% 0% 0%
3 85,320 100% | 7.44% 0% 0% 0% 0% 0% 0% 0% 0%
4 1,663,740 100% | 14.67% | 0.95% || 0.84% 0% 0% 0% 0% 0% 0%
5 25,621,596 || 100% | 24.06% - - 0% 0% 0% 0% 0% 0%

distance-1 analysis
5 237,336 100% | 38.16% | 8.47% [7.09% 0% 0% 0% 0% 0% 0%
6 1,107,568 100% | 54.52% | 20.39% || 17.29% | 0.057% 0% 0% 0.01% 0% 0%
7 4,272,048 100% | 70.31% | 36.95% || 31.96% | 0.35% 0% 0% 0.06% 0% 0%
8 13,884,156 || 100% | 83.30% | 55.33% 49% 1.25% | 0.0006% | 0.0004% || 0.31% 0% 0%
9 38,567,100 || 100% | 92.15% - - - - - 1.06% 0% 0%
10 92,561,040 || 100% | 96.97% - - - - - 2.99% | 0.0007% | 0.0003%

Statistical analysis
5 > 14M 100% | 24.07% | 423% [2.11% 0% 0% 0% 0% 0% 0%
6 > 6M 100% | 3546% | 11.22% || 8.11% 0% 0% 0% 0% 0% 0%
7 > 4.5M 100% | 48.72% | 22.55% || 19.33% 0% 0% 0% 0% 0% 0%
8 > 3.4M 100% | 62.98% | 41.04% || 37.60% 0% 0% 0% 0% 0% 0%
9 > 2.7TM 100% | 76.51% | 54.14% || 47.82% | 0.00008% 0% 0% 0% 0% 0%
10 > 2.2M 100% | 87.40% | 70.29% || 69,71% | 0.48% 0% 0% 0.09% 0% 0%
11 > 1.7 100% | 94.47% | 83.08% || 74.47% | 1.063% 0% 0% 0.23% 0% 0%
12 > 1.5M 100% | 98.05% | 91.69% || 90.12% | 2.79% 0% 0% 0.52% 0% 0%
13 > 1.3M 100% | 99.46% | 96.60% || 93.67% | 3.16% 0% 0% 1.10% 0% 0%
14 > 1M 100% | 99.88% | 98.86% || 98.17% | 8.47% 0% 0% 2.13% 0% 0%

In the statistical results, the error is always less than 1 percent.

that misrouting can also be used in the same way as
deterministic routing.

We also consider the combination of several intermediate
nodes. When using two intermediate nodes, the methodol-
ogy greatly increases its fault tolerance degree. In particu-
lar, it is 5-fault-tolerant. With six faults in the network, two
intermediate nodes are not enough for all the fault
combinations. This is similar to the result obtained for the
I+D combination. However, for more than five faults, Ix2
obtains lower percentages of not tolerated combinations.
With three intermediate nodes, the methodology achieves a
very high fault tolerance degree. Taking into account the
distance 1 analysis, we can observe that Ix3 tolerates as
many as nine faults, while there are some not tolerated
combinations with 10 faults. In the statistical analysis, the
Ix3 combination could provide a valid path for every
nondisconnected pair of nodes for up to 14 faults in all the
analyzed fault combinations. The combination of two
intermediate nodes and disabling adaptive routing
(Ix2+D) achieves very similar results, that is, it tolerates
nine faults with a slightly lower number of not tolerated
combinations for 10 faults.

Table 3 shows, in the third column, for each analyzed
combination of mechanisms and each number of faults, the
percentage of paths (source-destination pairs) that require
using any mechanism(s) of the combination in order to
avoid the faults.'? As can be seen, for one fault, 6.85 percent
of the paths are affected by faults. This percentage increases
as the number of faults increases. For five faults, more than
a quarter of the paths are affected by faults.

Additionally, Table 3 shows, for each analyzed mechan-
ism combination and each number of faults, the percentage

12. Because only the tolerated combinations are included when
calculating the percentage of affected paths, the percentage of affected
paths may differ for the different mechanism combinations.

of the affected paths that use each of the available
mechanisms, either alone or in combination, in order to
avoid faults. For instance, when using I+D+M, for one fault,
all the faults are avoided by using only one intermediate
node. For five faults, several mechanisms, either alone (I,D)
or in combination (I+M, I+D), are required to provide fault
tolerance. It can be noticed that intermediate nodes (I) is the
most frequently used mechanism (when it is available). In
particular, for all the combinations of mechanisms that
allow the use of intermediate nodes, more than 98 percent
of the affected paths use only an intermediate node (fifth
column) to deal with faults when there are less than six
faults. Notice, though, that the additional mechanisms are
still required in order to ensure fault tolerance. When I is
not available (D+M combination), D is the most commonly
used mechanism since it provides paths shorter than M.
Remember that, when a path can use several options to
avoid the faults, it selects the one that avoids the faults and
provides a shorter path. Also, the option that allows
adaptive routing is preferred.

5.2 Required Resources and Complexity

In order to support the methodology, routing info must be
stored at each source node. For every destination, the
intermediate node(s) to use (if required) and, if applicable,
information about misrouting and/or switching off adap-
tive routing must be stored. Notice that the amount of
memory required to store the routing info is low, e.g., if the
Ix2 combination is used in a large system with
65,536 nodes, 256KB of memory would be required.13 This
table can easily be compacted by only storing information
about the faulty paths.

13. Two bytes are used to store the address of each intermediate node
((2B+2B)*65,536=256KB).

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

410

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

TABLE 3
Percentages of the Affected Paths in a 3 x 3 x 3 Torus Network that Make Use of a Specific Mechanism
when a Given Mechanism Combination Is Used

Percentage of the affected paths that utilize mechanism
Mech. # Affected M I +M D I+D D+M | I+D+M Ix2 Ix3
Comb. | faults Paths
Exhaustive analysis
I+D+M 1 6.85% 0% 100% | 0.00% | 0.00% | 0.00% 0% 0.00% - -
2 13.03% 0% 99.70% | 0.04% | 0.07% | 0.14% 0% 0.07% - -
3 18.60% 0% 99.26% | 0.07% | 0.16% | 0.34% 0% 0.16% - -
4 23.62% 0% 98.68% | 0.11% | 0.26% | 0.60% 0% 0.51% - -
5 28.16% 0% 98.05% | 0.18% | 0.41% | 0.92% 0% 0.43% - -
+M 1 6.85% 0.00% 100% | 0.00% - - - - - -
2 13.03% 0.00% | 99.90% | 0.10% - - - - - -
3 18.60% 0.00% | 99.78% | 0.23% - - - - - -
4 23.62% 0.00% | 99.58% | 0.42% - - - - - -
5 28.16% 0.00% | 99.36% | 0.65% - - - - - -
D+M 1 6.85% 23.36% - - 64.08% - 12.68% - - -
2 13.03% 24.38% - - 62.40% - 13.20% - - -
3 18.60% 25.38% - - 60.82% - 13.77% - - -
4 23.63% 25.64% - - 59.24% - 15.11% - - -
5 28.203% || 26.62% - - 57.69% - 15.81% - - -
I+D 1 6.85% - 100% - 0.00% | 0.00% - - - -
2 13.03% - 99.70% - 0.07% | 0.25% - - - -
3 18.60% - 99.26% - 0.17% | 0.57% - - - -
4 23.62% - 98.72% - 0.27% | 1.00% - - - -
5 28.16% - 98.06% - 0.39% | 1.53% - - - -
IxN 1 6.85% - 100% - - - - - 0.00% 0.00%
2 13.03% - 99.70% - - - - - 0.30% 0.00%
3 18.60% - 99.30% - - - - - 0.67% 0.00%
4 23.62% - 98.69% - - - - - 1.31% 0.00%
5 28.16% - 98.01% - - - - - 1.99% 0.00%
distance-1 analysis
I+D+M 6 29.45% 0.00% | 91.48% | 0.30% | 1.19% | 6.41% | 0.00% 0.61% - -
7 32.49% 0.00% | 89.41% | 042% | 1.66% | 7.60% | 0.00% 0.91% - -
8 35,21% 0.00% | 87.05% | 0.53% | 2.21% | 8.83% | 0.00% 1.33% - -
1+D 6 29.27% - 96.12% - 0.58% | 3.30% - - - -
7 32.21% - 94.72% - 0.75% | 4.55% - - - -
8 34.8% - 93.14% - 091% | 5.96% - - - -
I+M 6 29.45% 0.00% | 98.22% | 1.78% - - - - - -
7 32.49% 0.00% | 97.45% | 2.57% - - - - - -
8 34.9% 0.00% | 96.34% | 3.65% - - - - - -
IxN 6 29.45% - 95.93% - - - - - 4.06% | 0.0001%
7 32.49% - 94.47% - - - - - 5.53% | 0.0012%
8 34.76% - 92.77% - - - - - 7.22% | 0.0057%

For up to five faults, all the possible combinations have been analyzed. From six faults upward, the study is reduced to the distance | region. The
percentages are based on the fault scenarios that are tolerated by the respective combinations of mechanisms.

In addition, a proper packet header must be used,
according to the combination of mechanisms in use, in order
to allow the routing to be hardwired in the switches. In
particular, a packet routed through an intermediate node will
have two subheaders. The first one will be used for routing
the packet toward the intermediate node and the second one
for routing the packet toward the final destination. If more
than one intermediate node is used for some paths, an
additional subheader is needed for each one.

Fig. 8 shows the packet header used for the I+D+M
combination. The “I” bit indicates whether the packet is
being routed via an intermediate node or not and can be
used to select the proper escape channel. At the inter-
mediate node, the first subheader is removed and the “I” bit
is set to zero. As shown, the packet subheaders include
information about the directions and the number of hops to

misroute. Because we assume that misrouting can be
performed in three directions, three bits are used to indicate
the direction and three more to indicate the number of hops
to misroute in that direction. Furthermore, a bit in each of
the subheaders is used to disable adaptive routing.

The computational cost of the proposed methodology is
not too high, especially when taking into account that the
routing info is computed offline. Notice that most of the
affected paths will only use an intermediate node to avoid
faults and the cost of computing each intermediate node is
O(1). Therefore, for all the paths, the computational cost is
O(n?), where n represents the number of nodes. However,
when misrouting is used, the algorithm will have to explore
all the possible hops along each dimension (up to the
network radix, k) until a fault-free path is found. For a
3D torus (with n =#k® nodes), in the worst case, the

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

GOMEZ ET AL.: A ROUTING METHODOLOGY FOR ACHIEVING FAULT TOLERANCE IN DIRECT NETWORKS 411

Source

—>

Intermediate Node

——— > Destination

A|d1|h]|d2‘h2|d3| hiletz

A‘dl|hl|d2|h2|d3| th Data |

| 1|D512

A|d1| h1|d2‘h2|d3| h3| Data |

| I|Dstl
\

Header 1 Header 2

Dstl: Intermediate node

Dst2: Destination node

di: direction to misroute

hi: number of hops to misroute

Header 2

A: 1 adaptive routing, 0 deterministic routing
I: 1 with intermediate node (2 headers),
0 without intermediate node (1 header)

Fig. 8. Packet header for the methodology when the 1+D+M combination is used.

computational cost will be O(k*) = O(n). Therefore, the
computational cost for all the paths by using the proposed
methodology with misrouting will be O(n?). Similarly, the
computational cost, in the worst case, when multiple
intermediate nodes are used is also O(n?).

5.3 Performance

In this section, we analyze how the different variations of
the methodology influence network performance for dif-
ferent numbers of failures. Moreover, we are interested in
comparing the proposed methodology with real fault-
tolerant mechanisms used in current systems. In particular,
we compare the performance degradation of the proposed
methodology with a mechanism similar to the one used in
the IBM BlueGene/L supercomputer. Thus, we will first
provide a brief overview of the BlueGene/L supercompu-
ter. Then, the simulation model is described in detail and,
finally, the performance results are presented and analyzed.

5.3.1 BlueGene/L Supercomputer

The BlueGene/L supercomputer [5] is based on a new
architecture that exploits system-on-a-chip technology to
get a target peak processing power of 360 teraFLOPS. The
machine currently holds the number one position on the top
500 list. BlueGene/L is configured as a 3D torus of 64 x
32 x 32 compute nodes, with point-to-point serial links
between the routers. Each node has two processors and is
directly connected with six neighbors, one in each of the six
directions. The standard fault tolerance mechanism im-
plemented in the BlueGene/L supercomputer uses a static
fault model with checkpointing. Fault tolerance is achieved
by bypassing planes. In each rack, there are additional link
boards that connect links from the backplane with
connectors in the front panel so that each rack can be
connected with neighboring ones. Internal switches on the
link boards allow a plane to be connected to the next one or
to skip one plane (each plane containing 512 nodes). By
shutting down the bypassed section of the machine, the
fault can be repaired. The BlueGene/L also has an
additional software-based fault-tolerant mechanism. When
using this mechanism, it is ensured that packets are injected
in a manner that forces them to avoid the faults. This
mechanism uses nonminimal paths and can handle up to
three faults, provided they are not collinear. However, this
mechanism has great performance impacts and is not
intended for general use [20].

The torus network uses virtual cut-through [29] and
provides both adaptive and deterministic minimal-path
routing. Physical channels are multiplexed into four virtual
channels. Two virtual channels are used for minimal
adaptive routing [18]."* The remaining two virtual channels
are used for minimal deterministic routing. The first of
these is used to implement the escape paths for the adaptive
routing, whereas the second one is reserved for high
priority packets. In the deterministic virtual channels, the
bubble flow control mechanism [36] is used to avoid
deadlocks inside a ring, whereas dimension order routing
(DOR) is used to avoid deadlocks when routing through
different dimensions.

5.3.2 Simulation Model

A detailed event-driven simulator has been developed to
model the performance behavior exhibited by the proposed
methodology and a mechanism similar to the one used in
the BlueGene/L. The simulator models a direct intercon-
nection network with point-to-point bidirectional serial
links. Each router has a nonmultiplexed crossbar with
queues only at the input ports. The crossbar has an input for
each input queue and an output for each output port. A
round-robin policy is used to select among packets
contending for the same output port.

A 3D torus has been used for all the simulations. Thus,
each node in the network has six ports connecting it to other
nodes. In addition, four internal ports connect the router to
the processing node. We will present results foran 8 x 8 x 8
(512 nodes) torus network.

Each physical input port is split into several virtual
channels (four or five), each providing buffering resources
in order to store two packets. The number of escape
channels will depend on the number of intermediate nodes
that can be used in a single path. Virtual channels are used
as adaptive or as escape channels, depending on the
number of required escape channels. In order to make a
fair evaluation, the same total number of virtual channels
has been used, regardless of the number of intermediate
nodes in the methodology.

Packets are adaptively routed through minimal paths by
using the adaptive virtual channels. In the escape channels,
packets are deterministically routed following the X +Y +
Z+ X -Y — Z — ordering when misrouting is available.

14. It is expected that most of the traffic will use adaptive routing, so, in
order to reduce the head-off-line blocking effect, two virtual channels are
used.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

412

4D’
‘I+D+M’

450

Throughput (flits/cycle)

100 | k!

50 - b

0 2 4 6 8 10 12 14
Number of faults

(@)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

‘+D’ ——

I+D+M’ ——

"M+D? —*—
’Disabling planes’ —&—

400 -

350

300 -

250 |

200 -

150 B

Throughput (flits/cycle)

100 q

50 b

0 1 2 3 4 5 6 7
Number of failures

(b)

Fig. 9. Throughput (flits/cycle) for several combinations of mechanisms in an 8 x 8 x 8 torus network. Error bars are not shown as they are too small
to be seen. (a) Five virtual channels are used. (b) Four virtual channels are used. The throughput for the mechanism used in the BlueGene/L

supercomputer is also shown.

Otherwise, dimension-order routing (X+Y +£Z+) is
applied. The bubble flow control mechanism is used in
the escape channels." If a packet arrives at an input port
and the adaptive queues are full, the proper escape channel
is selected depending on the packet’s current destination
(I1,15,...,D). The output port is selected based on the
information located in the packet header (i.e., destination
node, adaptive routing disabled/enabled, and misrouting
info). If there are several possible output ports, then the
status of the available ports and the status of the queues at
the neighbor nodes are also taken into account.

In order to make the performance results independent of
the relative positions of the faults, a large number of
simulations has been performed. When required, confi-
dence intervals are provided. For each simulation run, the
packet generation rate is constant and equal for all the
nodes. The destination of a message is randomly chosen
(with the same probability for all the nodes). This pattern
has been widely used in other evaluation studies [3], [14]. In
all the simulations, the packet length is set to 128 bytes.

5.3.3 Performance Results

We have analyzed the network performance of the following
variations of the methodology: I+D, I+D+M, I+M, D+M, and
Ix2. Up to two intermediate nodes are used for IxN because
all the combinations randomly generated for the performance
evaluation could be solved by the use of just two intermediate
nodes.'® Furthermore, because most paths (allin this case) can
be resolved using two intermediate nodes alone, the
performance of Ix2+D is very similar to that of Ix2 and has
not been included in the results.

The evaluation takes into account the overhead in the
packet header that is required for each combination of
mechanisms. We have run 50 simulations for each number
of faults and each combination of mechanisms. That is, for

15. Remember that, alternatively, deadlock freedom along the escape
paths could be achieved by using two virtual channels such as stated by
Dally and Seitz [13].

16. This is because, in an 8 x 8 x 8 torus, the percentage of not tolerated
fault combinations, when using two intermediate nodes, is much lower than
in a 3 x 3 x 3 torus.

each number of faults, 50 fault combinations were selected
randomly. In each of them, the faults were located
randomly over the links of the entire network. For each of
these fault combinations, we have run a simulation for each
combination of mechanisms.

Each point in Fig. 9a represents the mean overall
network throughput for the 50 simulations (that correspond
to a given fault combination). Results for different numbers
of failures in an 8 x 8 x 8 torus network with five virtual
channels are shown. Notice that, in all cases, there are at
least two adaptive channels.'” The confidence intervals for
the 50 simulations are always lower than +5. As can be
seen, D+M provides the lowest throughput. Indeed, once a
fault is present in the network, the achieved throughput is
decreased by 31.6 percent. This is due to several factors,
such as the use of deterministic routing for a large number
of paths, the use of nonminimal paths, and a larger packet
header. For larger numbers of faults, the throughput
decreases very slowly.

The I+D, I+D+M, I+M, and Ix2 combinations obtain a
highly stable throughput, regardless of the number of faults
in the network. With one fault in the network, the
throughput is only slightly decreased. This is because only
intermediate nodes (see Table 3) are used for the affected
paths most of the time. Therefore, adaptive routing is not
seriously limited. As the number of injected faults increases,
the throughput decreases slightly (less when two inter-
mediate nodes are used). This behavior is due to the normal
traffic unbalance that the faults progressively introduce in
the network. Anyway, even with 14 faults present in the
network, the throughput only decreases by about 11 percent
for I+D, I+D+M, and I+M. The differences between these
combinations of mechanisms are due to the use of
nonminimal paths and the extra bits required in the packet
headers, by the I+D+M and I+M combinations, for mis-
routing information. However, although I+D+M and I+M
provide a slightly worse performance, note that they
tolerate a larger number of faults (up to seven faults). [+M

17. Two adaptive channels for Ix2, three for I+D, I+D+M, and I+M, and
four for D+M.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

GOMEZ ET AL.: A ROUTING METHODOLOGY FOR ACHIEVING FAULT TOLERANCE IN DIRECT NETWORKS 413

provides performance results very similar to I+D+M. For
Ix2, the performance degradation is even lower. In
particular, when there are 14 faults in the network, the
throughput is only decreased by 6.9 percent.

Finally, we compare the performance degradation of our
methodology against the performance degradation that
would be obtained when using a fault-tolerant mechanism
similar to the standard mechanism used in the BlueGene/L
supercomputer. The BlueGene/L system disables a
512-node plane in order to deal with a fault. As we are
using a smaller torus network, we will model the mechan-
ism of the BlueGene/L system by only disabling 32-nodes.
Fig. 9b shows the network throughput obtained with three
combinations of mechanisms (I+D, I+M+D, and D+M) and
the mechanism similar to the one used in the BlueGene/L
supercomputer when there are up to seven faults in an 8 x
8 x 8 torus. As the BlueGene/L uses four virtual channels
per physical link, in order to do a fair comparison, all the
simulations have been run with four virtual channels.

Notice that this is a worst case for the BlueGene/L-like
mechanism because it assumes that the seven faults are
located in different planes. If the seven faults were located
in the same plane, only that plane (32 nodes) would be
disconnected. However, our mechanism obtains a higher
network throughput for seven faults than the BlueGene/L-
like mechanism obtains for one fault (i.e., when only one
plane is disconnected). Network throughput degrades only
by 6.4 percent and 6.25 percent for I+M+D and I+D,
respectively, with seven random faults. When using the
BlueGene/L-like mechanism, network performance drops
by 6.8 percent and 47.1 percent, with one and seven faults,
respectively. However, if the seven faults were located in
the same plane (best scenario), the BlueGene/L-like
mechanism would reduce performance by 6.8 percent.

Also notice that, in a full-size BlueGene/L system, in the
presence of seven faults, the BlueGene/L mechanism
disables 512 nodes in the best case and 3,584 nodes in the
worst case, thereby reducing the total processing power.
Our methodology, on the other hand, inflicts no such
decrease in processing power.

5.4 Discussion

In light of the evaluation results, we observe that routing
through an intermediate node is the fault-tolerant mechan-
ism most widely used by the methodology. This is good
because it allows packets to continue being routed
adaptively in the presence of faults, thus avoiding an
excessive performance degradation. However, an inter-
mediate node alone is not sufficient in order to guarantee an
acceptable fault tolerance degree. In particular, we have
observed that also disabling adaptivity for some paths is
enough to increase the fault tolerance degree of the
methodology from one to five faults. Furthermore, this
combination of mechanisms (I+D) is able to tolerate up to
14 faults with a high probability. This is an interesting
result, especially when taking into account that the
improvement in the fault tolerance degree hardly increases
the implementation cost of the methodology. Moreover, it
has been shown that only a small percentage of the routing
paths need to disable adaptivity. This shows that the
combination of using intermediate nodes and disabling
adaptivity represents a cost-effective strategy.

An alternative way to tolerate up to five faults is to use
an additional intermediate node. The Ix2 approach mainly

has two advantages. First, the mechanism does not require
modifying the way in which packets are routed, which
allows us to maintain the same router design used in the
absence of intermediate nodes. Second, the Ix2 combination
allows all packets to be adaptively routed, which con-
tributes to keeping a good network performance. On the
other hand, this approach requires using an additional
escape channel.

Moreover, if we want to improve the fault tolerance
degree of the methodology, misrouting or additional
intermediate nodes can be used. In particular, the metho-
dology becomes 7-fault-tolerant when combining the I and
M mechanisms (I+M). Furthermore, this combination of
mechanisms tolerates up to 14 faults with a very high
probability. However, the application of misrouting leads to
an increase in the computation time of the fault-free routing
paths. However, this fact is insignificant because the new
routing paths are computed offline during the recovery
process when a static fault model is used. On the other
hand, we have observed that it is not worth combining the
three mechanisms (I+D+M) because it roughly achieves the
same fault tolerance degree and performance level as [+M
but at the expense of a slightly higher cost.

Alternatively, when using three intermediate nodes
(Ix3), the methodology is 9-fault-tolerant. Its main draw-
back is that it requires a total of four escape channels,
although virtual channels are nowadays inexpensive.
Considering that very few paths are not resolved using
two intermediate nodes alone, the combination of two
intermediate nodes with disabling adaptive routing
(Ix2+D) may be considered a more cost-effective way of
providing the same fault tolerance (i.e., tolerating nine
faults), saving one escape channel.

Finally, it is observed that, by applying only misrouting
and disabling adaptive routing (i.e., without using inter-
mediate nodes), either separately or jointly, is not enough to
provide a cost-effective fault-tolerant routing methodology.

6 CONCLUSIONS

In this paper, we have proposed a fault-tolerant routing
methodology for direct networks that assumes a static fault
model and tolerates a reasonably large number of faults
without significantly degrading performance. Moreover,
unlike other fault-tolerant approaches, the resulting routing
strategy does not need to disable any healthy node, does not
require too many extra hardware resources, and does not
degrade performance in the absence of failures. The
methodology requires at least one additional virtual channel.
The proposed methodology can potentially combine
three different fault-tolerant mechanisms. Among them,
intermediate nodes (I) is the most effective and elegant
mechanism to provide fault tolerance, providing the best
network performance in the case of failure. To achieve a
sufficient fault tolerance degree (tolerating five link faults),
it is necessary to use at least two intermediate nodes (Ix2)
for some paths, requiring another additional virtual
channel. The fault tolerance of this mechanism can be
further increased by combining it with a simple mechanism
such as disabling adaptive routing (D) on a per packet basis.
The resulting mechanism (Ix2+D) is then 9-fault-tolerant.
However, we have also shown that, by combining one
intermediate node with disabling adaptive routing on a per

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

414

packet basis (D), it is possible to guarantee an acceptable
fault tolerance degree (up to five link faults are tolerated in
a 3 x 3 x 3 torus) without significantly affecting the im-
plementation cost or performance. Therefore, the resulting
mechanism (I+D) could be considered a cost-effective
mechanism.

If a higher fault tolerance degree is required, without
adding additional virtual channels, an intermediate node
combined with misrouting (M) can be used, at the
expense of increasing complexity. This mechanism (I+M)
is 7-fault-tolerant (in a 3 x 3 x 3 torus) with very high
probability and exhibits a network performance slightly
lower than that of I+D.

To sum up, we can conclude by stating that routing
through intermediate nodes is the key mechanism to
providing a cost-effective fault-tolerant routing methodol-
ogy for direct networks.

ACKNOWLEDGMENTS

This work was supported by the Spanish MCYT under
Grant TIC2003-08154-C06-01.

REFERENCES

[1] ASCI Red Web Site, http://www.sandia.gov/ASCI/Red/, 2003.

[2] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.
Seizovic, and W. Su, “Myrinet—A Gigabit-per-Second Local Area
Network,” IEEE Micro, pp. 29-36, Feb. 1995.

[3] R. Bopana, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,]J.
Seizovic, and W. Su, “A Comparison of Adaptive Wormhole
Routing Algorithms,” Proc. 20th Ann. Int'l Symp. Computer
Architecture, pp. 351-360, May 1993.

[4] R.V. Boppana and S. Chalasani, “Fault-Tolerant Wormhole
Routing Algorithms for Mesh Networks,” IEEE Trans. Computers,
vol. 44, no 7, pp. 848-864, July 1995.

[5] The BlueGene/L Team, “An Overview of the BlueGene/L
Supercomputer,” Proc. ACM/IEEE Conf. Supercomputing, pp. 1-22,
Nov. 2002.

[6] C. Carrion, R. Beivide, J.A. Gregorio, and F. Vallejo, “A Flow
Control Mechanism to Avoid Message Deadlock in K-Ary N-Cube
Networks,” Proc. Fourth Int’l Conf. High Performance Computing,
pp- 332-329, Dec. 1997.

[71 R.Casado, A. Bermudez, J. Duato, F.J. Quiles, and J.L. Sanchez, “A
Protocol for Deadlock-Free Dynamic Reconfiguration in High-
Speed Local Area Networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 12, no. 2, pp. 115-132, Feb. 2001.

[8] A.A. Chien and]J.H. Kim, “Planar-Adaptive Routing: Low-Cost
Adaptive Networks for Multiprocessors,” Proc. 19th Int'l Symp.
Computer Architecture, pp. 268-277, May 1992.

[9] S. Chalasani and R.V. Boppana, “Fault-Tolerant Wormhole

Routing in Tori,” Proc. Eighth Int’l Conf. Supercomputing, pp. 146-

155, July 1994.

S. Chalasani and R.V. Boppana, “Communication in Multi-

computers with Nonconvex Faults,” IEEE Trans. Computers,

vol. 46, no. 5, pp. 616-622, May 1997.

C.L. Chen and G.M. Chiu, “A Fault-Tolerant Routing Scheme for

Meshes with Nonconvex Faults,” IEEE Trans. Parallel and

Distributed Systems, vol. 12, no. 5, pp. 467-475, May 2001.

CM. Cunningham and D.R. Avresky, “Fault-Tolerant Adaptive

Routing for Two-Dimensional Meshes,” Proc. First Ann. Int’l Symp.

High Performance Computing Architecture, pp. 122-131, Jan. 1995.

W]. Dally and C.L. Seitz, “Deadlock-Free Message Routing in

Multiprocessor Interconnection Networks,” IEEE Trans. Compu-

ters, vol. 36, no. 5, pp. 547-553, May 1987.

W.]. Dally, “Virtual-Channel Flow Control,” IEEE Trans. Parallel

and Distributed Systems, vol. 3, no. 2, pp. 194-205, 1992.

WJ. Dally and H. Aoki, “Deadlock-Free Adaptive Routing in

Multicomputer Networks Using Virtual Channels,” IEEE Trans.

Parallel and Distributed Systems, vol. 4, no. 4, pp. 466-475, 1993.

[10]

(1]

[12]

[13]

(14]

[15]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

(16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

(23]

[20]

[27]
(28]

[29]

(30]

(31]

(32]

(33]

(34]

(33]

(30]

(371

(38]

(39]

B.V. Dao, J. Duato, and S. Yalamanchili, “Configurable Flow
Control Mechanisms for Fault-Tolerant Routing,” Proc. 22nd Int’l
Symp. Computer Architecture, pp. 220-229, June 1995.

J. Duato, “A Theory of Fault-Tolerant Routing in Wormhole
Networks,” Proc. Int’l Conf. Parallel and Distributed Systems, pp. 600-
607, Dec. 1994.

J. Duato, “A Necessary and Sufficient Condition for Deadlock-
Free Routing in Cut-Through and Store-and-Forward Networks,”
IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 8, pp. 841-
854, Aug. 1996.

Earth Simulator Center, http://www.esjamstec.go.jp/esc/eng/
index.html, 2006.

A. Gara et al., “Overview of the Blue Gene/L System Architec-
ture,” IBM]. Research & Development, vol. 49, no. 2, pp. 195-212,
Mar./May 2005.

C.J. Glass and L.M. Ni, “The Turn Model for Adaptive Routing,”
Proc. Int’l Symp. Computer Architecture, pp. 278-287, May 1992.
M.E. Gémez, J. Duato, J. Flich, P. Lopez, and A. Robles, N.A.
Nordbotten, O. Lysne, and T. Skeie, “An Efficient Fault-Tolerant
Routing Methodology for Meshes and Tori,” Computer Architecture
Letters, vol. 3, May 2004.

M.E. Gémez,]. Duato, J. Flich, P. Lopez, A. Robles, N.A.
Nordbotten, T. Skeie, and O. Lysne, “A New Adaptive Fault-
Tolerant Routing Methodology for Direct Networks,” Proc. Int'l
Conf. High Performance Computing, pp. 462-473, Dec. 2004.

M.E. Gémez, J. Flich, P. Lopez, A. Robles, and J. Duato, N.A.
Nordbotten, O. Lysne, and T. Skeie, “An Effective Fault-Tolerant
Routing Methodology for Direct Networks,” Proc. Int'l Conf.
Parallel Processing, pp. 222-231, Aug. 2004.

C.T. Ho and L. Stockmeyer, “A New Approach to Fault-Tolerant
Wormhole Routing for Mesh-Connected Parallel Computers,”
IEEE Trans. Computers, vol. 53, no. 4, pp. 427-439, Apr. 2004.

Z. Jiang, J. Wu, and D. Wang, “A New Fault Information Model
for Fault-Tolerant Adaptive and Minimal Routing in 3-D Meshes,”
Proc. Int’l Conf. Parallel Processing, pp. 500-507, June 2005.
InfiniBand@ Trade Assoc., http:/ /www.infinibandta.com, 2006.
P.T. Gaughana and S. Yalamanchili, “A Family of Fault-Tolerant
Routing Protocols for Direct Multiprocessor Networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 6, no. 5, pp. 482-497,
May 1995.

P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New
Computer Communication Switching Technique,” Computer Net-
works, vol. 3, pp. 267-286, 1979.

T. Lee and J.P. Hayes, “A Fault-Tolerant Communication Scheme
for Hypercube Computers,” IEEE Trans. Computers, vol. 41, no. 1,
pp- 1242-1256, Oct. 1992.

D.H. Linder and J.C. Harden, “An Adaptive and Fault-Tolerant
Wormhole Routing Strategy for k-Ary n-Cubes,” IEEE Trans.
Computers, vol. 40, no. 1, pp. 2-12, Jan. 1991.

O. Lysne, T. Pinkston, and J. Duato, “A Methodology for
Developing Dynamic Network Reconfiguration Processes,” Proc.
Int’l Conf. Parallel Processing, pp. 77-86, Oct. 2003.

O. Lysne,]. M. Montafiana, T.M. Pinkston, J. Duato, T. Skeie, and J.
Flich, “Simple Deadlock-Free Dynamic Network Reconfigura-
tion,” Proc. Int’l Conf. High Performance Computing, pp. 504-515,
Dec. 2004.

N.A. Nordbotten, M.E. Gémez, J. Flich, P. Lopez, A. Robles, T.
Skeie, O. Lysne, and J. Duato, “A Fully Adaptive Fault-Tolerant
Routing Methodology Based on Intermediate Nodes,” Proc. IFIP
Int’l Conf. Network and Parallel Computing, pp. 341-356, Oct. 2004.
F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg, “The
Quadrics Network (QsNet): High-Performance Clustering Tech-
nology,” Proc. Ninth IEEE Hot Interconnects, Aug. 2001 (original
version), IEEE Micro, pp. 46-57, Jan./Feb. 2002 (extended version).
V. Puente, J.A. Gregorio,].M. Prellezo, R. Beivide, J. Duato, and C.
Izu, “Adaptive Bubble Router: A Design to Balance Latency and
Throughput in Networks for Parallel Computers,” Proc. Int’l Conf.
Parallel Processing, pp. 58-67, Sept. 1999.

V. Puente, J.A. Gregorio, R. Beivide, and F. Vallejo, “A Low Cost
Fault-Tolerant Packet Routing for Parallel Computers,” Proc. Int’l
Parallel and Distributed Processing Symp., Apr. 2003.

V. Puente, J.A. Gregorio, F. Vallejo, and R. Beivide, “Immunet: A
Cheap and Robust Fault-Tolerant Packet Routing Mechanism,”
Proc. Int’l Symp. Computer Architecture, pp. 198-211, June 2004.
J.C. Sancho, A. Robles, and J. Duato, “A Flexible Routing Scheme
for Networks of Workstations,” Proc. Int’l Conf. High Performance
Computing, pp. 260-267, Oct. 2000.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

GOMEZ ET AL.: A ROUTING METHODOLOGY FOR ACHIEVING FAULT TOLERANCE IN DIRECT NETWORKS 415

[40] R.Schwitters, “Requirements of ASCI,” The MITRE Corp., JASON
Program Office, 2003.

[41] F.Silla, “Routing and Flow Control in Networks of Workstations,”
PhD thesis, Mar. 1999.

[42] Y.J.Suh, B.V. Dao, J. Duato, and S. Yalamanchili, “Software-Based
Rerouting for Fault-Tolerant Pipelined Communication,” IEEE
Trans. Parallel and Distributed Systems, vol. 11, no. 3, pp. 193-211,
2000.

[43] S.L. Scott and G.M. Thorson, “The Cray T3E Network: Adaptive
Routing in a High Performance 3D Torus,” Proc. Hot Interconnects
1V, pp. 147-156, Aug. 1996.

[44] T.M. Pinkston, R. Pang, and J. Duato, “Deadlock-Free Dynamic
Reconfiguration Schemes for Increased Network Dependability,”
IEEE Trans. Parallel and Distributed Systems, vol. 14, no. 8, pp. 780-
794, Aug. 2003.

[45] L.G. Valiant, “A Scheme for Fast Parallel Communication,” SIAM
J. Computing, vol. 11, no. 2, pp. 350-361, 1982.

[46] J. Wu, “Unicasting in Faulty Hypercubes Using Safety Levels,”
Proc. Int’l Conf. Parallel Processing, vol. 3, pp. 132-136, Aug. 1995,
also available as Technical Report TR-CSE-95-2, Dept. of Compu-
ter Science and Eng., Florida Atlantic Univ.

[47] J. Wu, “A Fault-Tolerant and Deadlock-Free Routing Protocol in
2D Meshes Based on Odd-Even Turn Model,” IEEE Trans.
Computers, vol. 52, no. 9, pp. 1154-1169, Sept. 2003.

[48] J.P. Zhou and F.C. M. Lau, “Multi-Phase Minimal Fault-Tolerant
Wormhole Routing in Meshes,” Parallel Processing, vol. 30, no. 3,
pp. 423-442, 2004.

Maria Engracia Gomez received the MS and
PhD degrees in computer science from the
Universidad Politécnica de Valencia, Spain, in
1996 and 2000, respectively. She joined the
Department of Computer Engineering (DISCA)
at the Universidad Politécnica de Valencia in
1996, where she is currently an associate
professor of computer architecture and technol-
ogy. Her research interests are in the field of
interconnection networks. She is a member of
the IEEE.

Nils Agne Nordbotten received the Master's
degree in communication systems in 2003 from
the University of Oslo, Norway. He is currently a
PhD student at the Simula Research Laboratory,
where the focus of his work is on fault tolerance
in interconnection networks. Previously, he has
also been involved in the areas of service
discovery, Bluetooth, and ad hoc networks.

José Flich received the MS and PhD degrees in
computer science from the Technical University
of Valencia (Universidad Politécnica de Valen-
cia), Spain, in 1994 and 2001, respectively. He
joined the Department of Computer Engineering
(DISCA), Universidad Politécnica de Valencia in
1998, where he is currently an associate
professor of computer architecture and technol-
ogy. His research interests are related to high

: performance interconnection networks for multi-
processor systems and cluster of workstations.

Pedro Lépez received the BEng degree in
electrical engineering and the MS and PhD
degrees in computer engineering from the
Universidad Politécnica de Valencia, Spain, in
1984, 1990, and 1995, respectively, where he is
a full professor of computer architecture and
technology in the Department of Computer
Engineering (DISCA). He has taught several
courses on computer organization and architec-
ture. His research interests include high-perfor-
mance interconnection networks for multiprocessor systems and cluster
of workstations. Prof. Lépez has published more than 70 refereed
conference and journal papers. He is a member of the editorial board of
Parallel Computing. He is a member of the IEEE Computer Society.

Antonio Robles received the MS degree in
physics (electricity and electronics) from the
University of Valencia, Spain, in 1984 and the
PhD degree in computer engineering from the
Technical University of Valencia in 1995. He is
currently a full professor in the Department of
Computer Engineering at the Technical Univer-
sity of Valencia. His current research interests
include multiprocessor systems, clusters of
workstations, interconnection networks, fault
tolerance, and network-based computing. He has served on program
committees for several major conferences. He is a member of the IEEE
Computer Society.

Jose Duato received the MS and PhD degrees
in electrical engineering from the Technical
University of Valencia, Spain, in 1981 and
1985, respectively. Currently, he is a professor
in the Department of Computer Engineering
(DISCA) at the same university. He was also
an adjunct professor in the Department of
Computer and Information Science, The Ohio
State University. His current research interests
include interconnection networks and multipro-
cessor architectures. He has published more than 300 refereed papers.
He proposed a powerful theory of deadlock-free adaptive routing for
wormhole networks. He is a coauthor of the book Interconnection
Networks: An Engineering Approach. He is a member of the IEEE and
the IEEE Computer Society.

Tor Skeie received the PhD degree in computer

science from the Department of Informatics,

University of Oslo in 1998. He is affiliated with

the Simula Research Laboratory and the De-

partment of Informatics, University of Oslo,

é Norway. He has been working for years in the

g " interconnection networking problem domain,

/¢ focusing on the science and technology of how

‘ & . to connect point-to-point links and switches into

: scalable network topologies and how to route

packets effectively in these networks so that they yield the highest

possible performance. This includes fulfillment of various fault tolerance,
quality of service, and other nonfunctional requirements.

Olav Lysne received the Master's degree in
1988 and Dr.Scient. degree in 1992, both from
the University of Oslo. He is the research
director at the Simula Research Laboratory
and a professor of computer science at the
Simula Research Laboratory and the University
of Oslo. His early research contributions were in
the field of algebraic specification and term
rewriting, with a particular emphasis on auto-
mated deduction. While working in this field, he
was a visiting researcher at Université de Paris-Sud. In later years, he
has mainly been working on switching techniques, such as wormhole
switching and virtual cut through, focusing on problems like effective
routing, fault tolerance, and Quality of Service. He has published
approximately 70 academic papers. He is a member of the IEEE and the
IEEE Computer Society.

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

