
JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 1

Efficient Strong Privacy-Preserving Conjunctive
Keyword Search Over Encrypted Cloud Data

Chang Xu, Member, IEEE, Ruijuan Wang, Liehuang Zhu, Member, IEEE,Chuan Zhang, Member, IEEE,
Rongxing Lu, Fellow, IEEE, and Kashif Sharif, Senior Member, IEEE

Abstract—Searchable symmetric encryption (SSE) supports keyword search over outsourced symmetrically encrypted data. Dynamic
searchable symmetric encryption (DSSE), a variant of SSE, further enables data updating. Most DSSE works with conjunctive keyword
search primarily consider forward and backward privacy. Ideally, the server should only learn the result sets involving all keywords in
the conjunction. However, existing schemes suffer from keyword pair result pattern (KPRP) leakage, revealing the partial result sets
containing two of query keywords. We propose the first DSSE scheme to address aforementioned concerns that achieves strong
privacy-preserving conjunctive keyword search. Specifically, our scheme can maintain forward and backward privacy and eliminate
KPRP leakage, offering a higher level of security. The search complexity scales with the number of documents stored in the database
in several existing schemes. However, the complexity of our scheme scales with the update frequency of the least frequent keyword in
the conjunction, which is much smaller than the size of the entire database. Besides, we devise a least frequent keyword acquisition
protocol to reduce frequent interactions between clients. Finally, we analyze the security of our scheme and evaluate its performance
theoretically and experimentally. The results show that our scheme has strong privacy preservation and efficiency.

Index Terms—strong privacy-preserving, DSSE, conjunctive keyword search.

F

1 INTRODUCTION

W ITH the advent of cloud computing, outsourcing the
storage and processing of large data collection to

third-party servers has gained significant popularity. How-
ever, data privacy is a primary concern as the third-party
cloud server cannot be fully trusted. These privacy issues
may cause reputational damage and/or location leakage
[1], [2]. Generally, users do not desire that their sensitive
data be disclosed to an untrusted server. A straightforward
solution is to encrypt the data before uploading it to the
cloud server. However, this limits the search operations, as
encrypted data may not be directly searchable.

To address these challenges, the searchable encryption
(SE) technology is proposed to achieve keyword searching
over ciphertext without revealing sensitive data and queries
to the cloud server. Searching over encrypted data inevitably
reduces search efficiency; hence, the SE schemes try to
maintain an acceptable compromise between security and
efficiency. In recent years, a series of schemes have been
proposed [3], [4], [5], [6], which enable the data owner to
encrypt the data and generate encrypted indices for search-
ing. The cloud server can then retrieve the stored ciphertext
based on the received search tokens.

In general, searchable encryption can be divided into
two representative techniques: Symmetric searchable en-

• Chang Xu, Liehuang Zhu, and Chuan Zhang are with School of Cy-
berspace Science and Technology, Beijing Institute of Technology, Beijing
100081, China.
E-mail: {xuchang, liehuangz, chuanz}@bit.edu.cn

• Ruijuan Wang and Kashif Sharif are with School of Computer Science and
Technology, Beijing Institute of Technology, Beijing 100081, China.
E-mail: {ruijuanw, kashif}@bit.edu.cn

• Rongxing Lu is with the Faculty of Computer Science, University of New
Brunswick, Fredericton, NB E3B 5A3, Canada.
E-mail: rlu1@unb.ca.

cryption (SSE), and Public-key searchable encryption. SSE
has been extensively studied, and various schemes [7], [8],
[9], [10] have been presented successively. However, the
majority of schemes are severely limited to support single
keyword search. In realistic scenarios, conjunctive keyword
search is more appropriate, such as, e-health systems [11],
task recommendation systems [12], [13], and e-mail sys-
tems [14]. Hence, we focus on conjunctive keyword search
in SSE in this work.

A simple solution to support conjunctive keyword
search has been described in [15]. This solution returns
the intersection of search results of each single keyword in
the conjunction. Thus, this search method is inefficient due
to repeated searches in the database. Furthermore, it will
breach the searched data’s secrecy. The cloud server should
be allowed to acquire only the encrypted file identifiers
corresponding to all keywords in the conjunctive search
query q = (w1 ∧ · · · ∧wn). To maintain this secrecy, Cash et
al. [3] proposed the first sub-linear SSE protocol supporting
conjunctive keyword search, named Oblivious Cross-Tags
(OXT). The earlier SSE constructions [16] scale linearly with
the size of the entire database. Sub-linear means that the
search complexity is independent of the total number of
documents stored in the database. To reduce search over-
head, the complexity of OXT is proportional to the number
of matches involving the least frequent keyword as the s-
term in the conjunction. Subsequently, many conjunctive
SSE schemes based on OXT have been proposed [17], [18],
[19].

According to Lai et al.’s scheme [5], the OXT proto-
col suffers Keyword Pair Result Pattern (KPRP) leakage
during the search phase. This means that for an n key-
words conjunctive search query q, the server can learn
the encrypted file identifiers involving each pair of query

ar
X

iv
:2

20
3.

13
66

2v
2

 [
cs

.C
R

]
 2

2
Se

p
20

22

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 2

TABLE 1
Functionality Comparison of Existing Schemes and This Work.

Conjunctive
keyword

Forward
privacy

Backward
privacy

Keyword pair
result privacy

Non-
interactive

OXT [3] X 7 7 7 7

HXT [5] X 7 7 X 7

ODXT [20] X X X 7 7

SE-EPOM [6] X 7 7 7 X
Ours X X X X X

keywords (w1, wi), 2 ≤ i ≤ n, where the keyword w1

is assumed to be the s-term. The file-injection attack [21]
resorts to using KPRP leakage to expose all keywords in
a conjunctive query with 100% accuracy. To eliminate KPRP
leakage, Lai et al. [5] proposed the Hidden Cross-Tags (HXT)
protocol. Unfortunately, all of the above SSE schemes are
limited to static databases.

Adding and deleting files is generally required in real-
world scenarios to dynamically update the database, which
raises security concerns. For instance, the server might in-
tentionally match the previous search tokens with the newly
added file indexes to infer the keywords contained in the
file and infer the keywords of the query from repeated
search queries. Zhang et al. [21] presented file-injection
attacks. Specifically, an untrusted server first crafts a set
of files and tricks the client into encrypting them. After
that, the server searches for the injected files using the
prior tokens. According to the known keywords, the server
can infer which keyword is involved in the token. File-
injection attacks are effective to break the privacy of client
queries and require only a small number of injected files.
This attack was also described as leakage-abuse attacks in
known-document and chosen-document attack setting by
Cash et al. [22]. File-injection attacks and leakage-abuse
attacks are based on the prior knowledge of an adversarial
server. File-injection attacks require less prior knowledge
and the server must inject files. Therefore, we consider the
above attacks. To deal with the attacks, forward privacy and
backward privacy were first introduced informally in by
Stefanov et al. [23], and later formalized by Bost et al. [24],
[25]. Forward privacy ensures that the newly updated files
cannot be linked with the previously executed search, which
prevents the server from inferring the keywords. Backward
privacy requires that deleted files cannot be retrieved in
subsequent search queries. That is, search queries should
not reveal information about files that have already been
deleted from the database.

Most of the published forward and backward private
DSSE schemes only support single keyword search. For
conjunctive queries, Zuo et al. [26] proposed FBDSSE-CQ
scheme using the extended bitmap index and achieving both
forward and backward privacy. However, the number of
keywords in a conjunction query is limited. To date, for the
existing works that is not limited by the number of search
keywords, only the Oblivious Dynamic Cross Tags (ODXT)
scheme [20] supports conjunctive keyword search guaran-
teeing forward and backward privacy. However, there is still
the threat of KPRP leakage.

Besides, the previous OXT-based SSE protocols require

the search user to ask the data owner during each search be-
cause the least frequent keyword in the conjunction should
be known in advance. However, if a search user initiates
distinct search queries multiple times, it should interact with
the data owner for each query, and such frequent interac-
tions cause additional communication overhead problems.
In actuality, the data owner outsources the data to the
server in the expectation of not having to do anything else
but update the data and distribute secret keys. This work
aims to propose a DSSE scheme that guarantees forward
and backward privacy and eliminates the KPRP leakage to
achieve strong privacy, and enable search users to obtain the
least frequent keyword without interacting with the data
owner.

Our Contributions. This work develops a solution
for the privacy-preserving leakage problem of conjunctive
DSSE and proposes an Efficient Strong Privacy-preserving
Conjunctive Keyword Search (ESP-CKS) scheme. It ensures
forward and backward privacy of DSSE and avoids key-
word pair result pattern leakage. Table 1 shows a com-
parison of our scheme with prior representative works for
conjunctive keyword search. Our contributions are listed
below in detail.

• We propose the first strong privacy-preserving con-
junctive keyword search scheme named ESP-CKS.
It guarantees forward and backward privacy for
dynamic databases. Besides, our scheme can pre-
vent KPRP leakage in conjunctive search queries.
Although the previous schemes support forward and
backward privacy, they suffer from KPRP leakage.

• Our ESP-CKS scheme’s search complexity is inde-
pendent of the total number of documents in the
database, but scales with the update frequency of
the least frequent keyword in the conjunction. To
address the issue of frequent interactions between
the data owner and search users in previous work,
we propose the first non-interactive least frequent
keyword acquisition protocol.

• We conduct extensive experiments to evaluate the
scheme’s performance in terms of storage, computa-
tion, and communication. We prove that our scheme
is more secure and efficient than the other two con-
junctive keyword search approaches.

2 PROBLEM FORMULATION

This section describes the system model and then introduces
the threat model and design goals.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 3

2.1 System model

The system consists of three main entities as shown in
Figure 1: a data owner, a cloud server, and search users.

• Data Owner: The data owner is in charge of gen-
erating the system parameters and the secret key.
The data owner encrypts documents via symmetric
encryption and generates related indexes according
to system parameters. Then it submits both indexes
and encrypted documents to the cloud server. It can
also add and delete documents from the encrypted
database on the cloud server.

• Cloud Server: The cloud server holds unlimited com-
putation and storage capacities. It stores documents
and the indexes delivered by the data owner and
handles search queries.

• Search Users: A search user is permitted to search the
documents stored on the cloud server. It computes
search tokens for desired keywords and sends them
to the cloud server. After receiving the search results
from the cloud server, it decrypts them to obtain the
target documents’ indexes.

We call the data owner and search users as clients, and
the cloud servers as the server.

2.2 Threat Model

In our schemes, the data owner and search users are as-
sumed to be fully trusted. Specifically, they honestly follow
the protocol and never expose its encryption keys to other
entities except for permitted search users. The cloud server
is considered honest but curious and always honestly ex-
ecutes the protocol but may attempt to infer information
about data objects and the content of queries.

Fig. 1. System model

2.3 Design Goals

We aim to design a strong privacy-preserving conjunctive
keyword DSSE scheme, which enables the cloud server to
provide storage and search services in a privacy-preserving
manner. Our designed scheme should meet the following
security requirements and features.

• Forward Privacy: The cloud server should not learn
whether the newly stored documents contain the
previously searched keywords.

• Backward Privacy: The cloud server should not learn
the deleted document when searching.

• Keyword Pair Result Privacy: The cloud server
should not obtain the partial query result sets for two
specific keywords, eliminating KPRP leakage.

• Non-interactive: The search user should not interact
with the data owner for acquiring the keyword with
the least frequency in each search query.

• Search Efficiency: The search complexity should be
sub-linear. That means it is independent of the total
number of stored documents but is correlated with
the frequency of the least frequent keyword in the
conjunction.

This paper considers the scheme with the above-
mentioned privacy properties as a strong privacy-
preserving scheme.

3 PRELIMINARIES

In this section, we first present notations used in this work
in Table 2. Then we present the syntax of DSSE and a formal
security definition. Finally, we give a brief description of
Bloom filter and symmetric-key hidden vector encryption
scheme, which are adopted to construct our scheme.

TABLE 2
Notations and Descriptions.

Notation Meaning
λ security parameter
w a keyword
op operation in {add, del}
idi identifier of i-th file where idi ∈ {0, 1}λ
Wi list of keywords contained in the file idi
M number of files stored in DB
DB database {opi, idi,Wi}Mi=1

W set of keywords ∪Mi=1Wi

|W| number of keywords stored in DB
q conjunctive query (w1 ∧ · · · ∧ wn)
Q list {w1, · · · , wn} of keywords for q

DB(w) file identifiers containing w
DB(q) file identifiers

⋂n
i=1 DB(wi) for q

ws the keyword with the least update frequency
cntw the update frequency of w
ecntw encrypted value of cntw

Γ dictionary of keyword-frequency pairs (w, cntw)
ftokenw frequency token of w
T list of frequency tokens for q
∆ dictionary of token-value pairs (ftokenw, ecntw)
BF a Bloom filter
m size of BF
m′ number of non-wildcard elements in BF
N number of triple (op, id, w) stored in DB
[t] set of integers {1, 2, · · · t}

poly(λ) an unspecified polynomial in λ
negl(λ) a negligible function in λ
|| concatenation of strings

x
R← X uniformly sampling a random x from X

3.1 Syntax of Dynamic Searchable Symmetric Encryp-
tion
A Dynamic Searchable Symmetric Encryption (DSSE)
scheme Π = (SETUP,UPDATE, SEARCH) consists of an al-

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 4

gorithm SETUP run by a client and two protocols UPDATE
and SEARCH run by a client and a cloud server.

• SETUP(λ,DB): Given the security parameter λ and
a database DB, the client executes the algorithm to
generate (sk, σ,EDB), where sk is a secret key, σ is
the client’s state, and EDB is an empty encrypted
database that is sent to the server.

• UPDATE(sk, σ, op, id, w;EDB): The client takes as in-
put the secret key sk, the sate σ, an operation op
which can be add or del, a file identifier id and a
keyword w. The server takes as input EDB. After
executing the protocol, the client updates its internal
sate σ′ and the server updates encrypted database
EDB′.

• SEARCH(sk, σ, q;EDB): The client inputs the secret
key sk, the state σ, and a search query q. The server
takes as input EDB. After executing the protocol, the
client outputs DB(q) as the search result.

3.2 Security Definition of DSSE
The security of a DSSE scheme states that the server must
learn as little as possible about the content of the database
and queries. We expect that the adversary cannot learn
anything beyond certain obvious leakages. The security of
a DSSE scheme can be parametrized by a stateful leakage
function L = (LSetup,LUpdate,LSearch) that expresses the
information leaked to the adversary throughout each oper-
ation. We describe two probabilistic experiments in the real
world and the ideal world as follows.

• RealΠA(λ,Q): The adversary A chooses a database
DB and a query list q. The experiment runs
SETUP(λ,DB) and returns EDB to A. Then, for each
i ∈ Q (Q = |q|), the experiment responds to
the query by running UPDATE(sk, σi, qi;EDBi) →
(σi+1,EDBi+1) or SEARCH(sk, σi, qi;EDBi) →
DB(qi) depending on whether qi is an update query
or a search query. Eventually, A outputs a bit b ∈
{0, 1}.

• IdealΠA(λ,Q): The adversary A chooses a database
DB. Given the leakage function LSetup, the simulator
S returns EDB to A. Then, A adaptively chooses a
query list q. For each i ∈ Q, S answers the query qi.
Eventually, the adversary A outputs a bit b ∈ {0, 1}.

Definition 1. A DSSE scheme Π with a collection of leakage
function L is adaptively-secure if for any probabilistic polynomial-
time adversary A issuing a maximum of Q = poly(λ) queries,
there exists a probabilistic polynomial-time simulator S such that

|Pr[RealΠA(λ,Q) = 1]− Pr[IdealΠA(λ,Q) = 1]| ≤ negl(λ).

3.3 Bloom Filter
Bloom filter is a space-efficient probabilistic data structure
used to represent a set S = {s1, s2, ..., sN} of N elements.
Its main functionality is to support fast set membership ver-
ification. A Bloom filter consists of a binary array of m-bits
which is initially all 0. It is associated with k independent
hash functions {Hi}1≤i≤k. Given each element s ∈ S , the
bits at positions {Hi(s)}1≤i≤k in the Bloom filter are set
to 1. To test the existence of s, check whether all bits at

positions {Hi(s)}1≤i≤k are equal to 1. If so, s ∈ S with high
probability due to the false positive rate. Otherwise, s /∈ S
with the probability 1. The false positive means that s /∈ S
but membership test returns to 1. Suppose elements in S are
hashed into the Bloom filter, the false positive rate Pe is

Pe ≤ (1− e−kN/m)k.

Pe can be negligible by choosing optimal parameters m and
k. Given N,Pe, the optimal choice of k is k ≈ log2(1/Pe),
while the required m ≈ 1.44 · log2(1/Pe) ·N [27].

3.4 Symmetric-key Hidden Vector Encryption
Symmetric-key Hidden Vector Encryption (SHVE) [5] is
a lightweight predicate encryption scheme that supports
comparison over encrypted data. Assume that Σ = {0, 1} is
a finite set of attributes, and ∗ is a wildcard symbol not in Σ,
Σ∗ = Σ∪{∗}. For each index vector x = (x1, · · · , xm) ∈ Σm

and predicate vector v = (v1, · · · , vm) ∈ Σm∗ , we have:

P SHVE
v (x) =

{
1, ∀ 1 ≤ i ≤ m(vi = xi or vi = ∗)
0, otherwise.

The predicate P SHVE
v (x) = 1 means that the vector x

matches v in all the locations that are non-wildcard charac-
ters. The details of the SHVE are as follows:

• SHVE.Setup(1λ) → (msk,M): Given the security
parameter λ, the algorithm outputs an uniformly
sampled master secret key msk

R← {0, 1}λ, and
defines the payload message spaceM = {“True”}.

• SHVE.Enc(msk, µ = “True”, x ∈ Σm) → c: The
algorithm takes as input the master secret key msk,
a message µ = “True” and an index vector x =
(x1, · · · , xm) ∈ Σm. It returns the ciphertext

c = {cl}l∈[m],

where for each l ∈ [m], cl = F (msk, xl||l).
• SHVE.KeyGen(msk, v ∈ Σm∗) → s: The algorithm

takes as input the master secret key msk and a
predicate vector v = (v1, · · · , vm) ∈ Σm∗ . Let set
S = {lj ∈ [m]|vlj 6= ∗} be the set of all locations in v
that do not contain the wildcard characters. The algo-
rithm randomly samples to get K0

R← {0, 1}λ+log λ,
and calculates:

d0 = ⊕j∈[|S|](F (msk, vlj ||lj))⊕K0, and

d1 = Sym.Enc(K0, 0
λ+log λ).

Here F is a pseudorandom function, and Sym.Enc
denotes a symmetric encryption algorithm. The al-
gorithm finally returns the decryption key

s = (d0, d1, S).

• SHVE.Query(s, c) → µ(⊥): On input of the cipher-
text c and the key s, the query algorithm parse
s = (d0, d1, S) and c = ({cl}l∈[m]), where S =
{l1, l2, · · · , l|S|}. Then, it computes

K0
′ = (⊕j∈[|S|]clj)⊕ d0.

Next the decryption algorithm calculates

µ′ = Sym.Dec(K0
′, d1).

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 5

If µ′ = 0λ+log λ, it outputs “True”, otherwise out-
puts ⊥.

Correctness: Given the ciphertext c = ({cl}l∈[m]) re-
lated to index vector x = (x1, · · · , xm), the decryption
key s = (d0, d1, S) corresponding to predicate vector v =
(v1, · · · , vm), and the set of locations S = {l1, l2, · · · , l|S|},
we analyze the correctness of aforementioned scheme in the
following two scenarios:

• If P SHVE
v (x) = 1, vlj = xlj holds for each

j ∈ [|S|]. This means that we can calculate clj =
F (msk, vlj ||lj) for each j ∈ [|S|]. Then we have

K0
′ = (⊕j∈[|S|]clj)⊕ d0

= (⊕j∈[|S|]clj)⊕ (⊕j∈[|S|](F (msk, vlj ||lj)))⊕K0

= (⊕j∈[|S|]F (msk, vlj ||lj))
⊕ (⊕j∈[|S|](F (msk, vlj ||lj)))⊕K0

= K0, and

µ′ = Sym.Dec(K0
′, d1) = 0λ+log λ.

Finally, the query algorithm SHVE.Query returns
“True”.

• If P SHVE
v (x) = 0, there exists some j ∈ [|S|] such that

vlj 6= xlj . This implies that clj 6= F (msk, vlj ||lj), and
hence, K0

′ 6= K , so that we have µ′ 6= 0λ+log λ and
the algorithm returns the failure symbol ⊥.

4 CONSTRUCTION OF THE PROPOSED SCHEME

In this section, we present the detailed construction of
our ESP-CKS scheme. We first introduce our least frequent
keyword acquisition protocol to achieve non-interactive ac-
quisition of the s-term ws with the least update frequency
in the conjunction. After that, we propose the algorithm for
the setup, update and search phases, respectively.

4.1 Least Frequent Keyword Acquisition Protocol
The existing conjunctive keyword SSE schemes require that
a search user asks for the keyword with the least frequency
of updates from the data owner in each search query.
However, this produces redundant communication over-
head. Ideally, after the update is complete, the data owner
should not be required to perform additional interactions
for each search. We propose the privacy-preserving Least
Frequent Keyword Acquisition (LFKA) protocol to address
this problem. The protocol guarantees that a search user
can obtain the least frequent keyword without frequent
interactions with the data owner. Meanwhile, the privacy
of update frequency is protected.

Let F1 : {0, 1}λ × {0, 1}∗ → {0, 1}2λ and
F2 : {0, 1}λ × {0, 1}∗ → {0, 1}λ be pseudoran-
dom functions (PRFs). Our LFKA protocol Λ =
(KeyGen, FreqSetup, TokenGen, FreqF ind,Compare) is
constructed as follows.

• KeyGen(λ) → K : Given the security parameter λ,
the data owner generates the random secret key K ∈
{0, 1}λ for PRFs F1, F2.

• FreqSetup(Γ, r) → C: The data owner selects a
random integer r ∈ N. Then it takes r and the

dictionary Γ as input. For each keyword w ∈ W ,
the data owner computes the ciphertext ecntw for
the plaintext cntw composing the set C, then it sends
C to the cloud server.

• TokenGen(Q,K, r) → T : The search user inputs a
query Q, the secret key K and the random integer r.
It generates a frequency token list T , then sends T to
the cloud server.

• FreqF ind(T , C) → ∆: The cloud server inputs the
token list T and set C. It matches each token in T
with the elements in C to get a matching result set ∆.

• Compare(∆,K, r) → (ws, cntws): Given the set ∆,
the secret key K and the random integer r, the
search user outputs the least frequent keyword in the
conjunction with its update frequency.

In the stage FreqSetup, to reduce frequent interaction
between the search user and the data owner, for each w ∈
W , the client computes the ciphertext as

ecntw = F1(K, r||w) + F2(K,w||r) + cntw,

where F1 generates 2λ-bits output, F2 generates λ-bits
output, and operation + is a bitwise addition operation,
satisfying the value of (F2(K,w||r)+ cntw) does not exceed
2λ, which is convenient to find ecntw later. Therefore, when
retrieving the encrypted value ecntw corresponding to w, it
is obtained that only the first λ-bits need to be matched ac-
cording to F1(K, r||w). In addition, a fresh random integer
r is generated in each update and owned by the client, and
ecntw for each keyword is updated, ensuring the privacy of
the updated keywords.

When a client requests to search the least frequent key-
word in Q, it runs TokenGen to generate the frequency to-
kens. It computes ftokenw = F1(K, r||w) for each keyword
w ∈ Q, and then sends T = {ftokenw1

, · · · , ftokenwn
} to

the cloud server.
In response to the client, the cloud server executes the

algorithm FreqF ind. Note that the server uses ftokenw
to match and obtain the corresponding ecntw in the same
range according to the first λ-bits. Then the server sends the
set ∆ = {(ftokenwi

, ecntwi
)}i∈[n] to the client.

The client runs the algorithm Compare to find the key-
word with the least update frequency. Specifically, it obtains
cntw by decrypting ecntw, w ∈ Q

cntw = ecntw − F1(K, r||w)− F2(K,w||r),

where the secret key K and r are received previously from
the data owner. Finally, the client compares the frequencies
of each desired keyword in list Q, and returns the least
frequent keyword ws and its update frequency cntws

.

4.2 Setup Phase

Client: The SETUP algorithm (Algorithm 1) inputs the secu-
rity parameter λ and returns the sk, st, param,EDB. The
client initializes two empty maps Cnt and TSet, where
Cnt is the state parameter σ mentioned in Section 3.1
storing update frequencies of keywords, and TSet stores
address-value entries. Then it generates a m-bits Bloom
filter BF with k hash functions {Hj}1≤j≤k, which is set
up for dynamic cross-tags xtag introduced later. The client

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 6

randomly chooses keys for PRFs and msk. Then it executes
SHVE.Setup to encrypt BF . TSet and xtagBF are compo-
nents of the encrypted database EDB and sent to the server.

Algorithm 1 Setup
Input: a security parameter λ
Output: sk, st, param,EDB

Client:
1: Initialize Cnt, TSet to empty maps
2: Initialize a Bloom filter BF with element 0
3: Select k hash functions {Hi}1≤i≤k for BF
4: Select KT for PRF F
5: Select KX ,KY ,KZ for PRF Fp
6: Execute LFKA.KeyGen(λ) to get key for PRF F1, F2

7: Execute SHVE.Setup(1λ) to get secret key msk
8: Compute xtagBF = SHVE.Enc(msk, µ = “True”, BF)
9: Set sk = (msk,K,KT ,KX ,KY ,KZ), st = Cnt, param =
{Hi}1≤i≤k

10: Set EDB(1) = TSet, EDB(2) = xtagBF
11: Send EDB = (EDB(1),EDB(2)) to the server

4.3 Upate Phase

Client: In the UPDATE algorithm (Algorithm 2), the client
takes as input the key set sk, the state parameter st, and
the set L consisting of (op, w, id). The server takes database
EDB as input. The algorithm updates a batch of docu-
ments in each update. For each triple (op, id, w) in L, the
corresponding entry (addr, val, α) and dynamic cross-tag
xtag are generated adopting pseudorandom functions and
exponentiations, then the counter Cnt[w] = Cnt[w]+1. The
entry (addr, val, α) will be stored in the form of address-
value pair in the TSet. The address addr is generated by
a pseudorandom function F for w and the current update
frequency cntw. The corresponding stored contents of the
address addr are val and α, where val is the encrypted
(id, op) pair related to w and α is the dynamic blinding
factor that enables the server to calculate the xtag. Besides,
the client calculates the k positions related to xtag in the
Bloom filter BF , and sets the corresponding elements to 1.
Then it executes SHVE.Enc algorithm to encrypt BF , and
gets the ciphertext xtagBF , and send the entries mentioned
above to the server.

Note that in each update, the client is required to se-
lect a new random number r′ ∈ N (to distinguish the
previous r from the fresh r, we use r′ to represent the
latter) and re-encrypt the update frequencies of all keywords
via LFKA.FreqSetup. Then it sends the fresh set C to the
cloud server. According to the changed entry, this approach
prevents the cloud server from deducing which keyword is
in the updated file. Besides, it avoids frequent interactions
between the data owner and the search user. Even though
the cloud server might notice that the number of elements in
set C changes after each update, it cannot infer the plaintext
of the underlying keywords without knowing the secret key
K .
Server. After receiving the encrypted entries, the server up-
dates dictionary TSet and encrypted Bloom filter xtagBF
accordingly.

We introduce the update counter cnt to ensure forward
privacy. cntw is incremented when an updated file contains
the keyword w. Similarly, the random integer r changes in
each update. Because cntw and r are not the same as those

Algorithm 2 Update
Input: sk, st, L;EDB
Output: st,EDB

Client:
1: Initialize a dictionary Γ
2: Initialize C, addrList, valLsit, αList to empty sets
3: Get sk = (msk,K,KT ,KX ,KY ,KZ), st = Cnt
4: for i = 1 : L.size do
5: (op, id, w) = L[i]
6: if Cnt[w] = NULL then
7: Set Cnt[w] = 0
8: end if
9: Set Cnt[w] = Cnt[w] + 1

10: Set Γ[w] = Cnt[w]
11: Compute addr = F (KT , w||Cnt[w]||0)
12: Set addrList = addrList ∪ {addr}
13: Compute val = (id||op)⊕ F (KT , w||Cnt[w]||1)
14: Set valList = valList ∪ {val}
15: Compute α = Fp(KY , id||op) · Fp(KZ , w||Cnt[w])−1

16: Set αList = αList ∪ {α}
17: Compute xtag = gFp(KX ,w)·Fp(KY ,id||op)

18: for i = 1 : k do
19: Compute hind(op, id, w) = Hi(xtag)
20: Set BF [hind(op, id, w)] = 1
21: end for
22: end for
23: Select a random number r ∈ N
24: Set C = LFKA.F reqSetup(Γ, r)
25: Compute xtagBF = SHVE.Enc(msk, µ = “True”, BF)
26: Send (C, addrList, valLsit, αList, xtagBF) to the server

Server:
27: Get TSet = EDB(1)
28: for i = 1 : addrList.size do
29: Set TSet[addrList[i]] = (valLsit[i], αList[i])
30: end for
31: Set EDB = (TSet, xtagBF)

in the latest search query, it ensures there is no relation
between the new update and the previous search. Moreover,
since the server learns nothing about the secret key K and
KT , an update operation hides the underlying operation op,
the identifier id, and the keyword w.

4.4 Search Phase
Let q = (w1∧· · ·∧wn) be a conjunctive search query issued
by the client, then the SEARCH algorithm (Algorithm 3)
involves three rounds of interaction between the client and
the server. The keyword with the least frequency in the
conjunction is denoted as the s-termws, and other keywords
wi(2 ≤ i ≤ n) as the x-term.

Round-1 allows the client to execute the LFKA protocol
with the server. Then it obtain the s-term ws and its fre-
quency cntws

.
In Round-2, the client reverses the positions of ws and

w1, resulting in ws becoming w1. Subsequently, it generates
all relevant addresses saddrs in the TSet involving w1

from the first to the cntthw1
update. Meanwhile, it generates

an additional set of cross-tokens {xtokeni,j}i∈[2,n],j∈[cntw1]

related to the s-term w1 and the x-term for each idj , where
idj is the identifier of the file involving the s-term. After
receiving the list of saddr, the server retrieves the corre-
sponding TSet entries and gets the encrypted values sval of
(id, op) pairs and the dynamic blinding factors α. The server
computes the relevant cross-tag xtagi,j involving wi and
idj via exponential operations of cross-tokens and blinding
factors. Then it calculates the positions of BF which are set
to 1 for storing xtagi,j , and sends them to the client.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 7

Round-3 allows the client to construct a Bloom filter
vBFj for idj based on the received positions. That is, we
assume that each triple (op, idj , wi)(2 ≤ i ≤ n) already
exists in the database, where op is the operation executed
to the idj involving the s-term. Then the client executes
SHVE.KeyGen to encrypt vBFj , and sends the cipher-
text sBFj to the server. The server performs membership
test by executing SHVE.Query(sBFj , xtagBF) to measure
whether idj involves all keywords in the conjunction. If it
returns “True”, all n− 1 x-terms are also in the file idj , and
the server sends the relevant svals to the client.

Finally, the client decrypts svals to recover DB(w1)
along with corresponding operations. Then it includes the
identifiers with add operation in the result set IdRList, and
discards those with delete operation from IdRList.

Recall that the data owner encrypts and uploads the
frequency of updates to the server in the latest update.
Therefore, the search user can ask the server for the least
frequent keyword, which eliminates frequent interactions
between clients in searches, and handing over the corre-
sponding task to the server with unlimited computation and
storage capacities.

We now elaborate the correctness of oblivious conjunc-
tive search. Over any number of update operations, the
dynamic cross-tag can evaluate the presence or absence of
any identifier-keyword pair (id, w) in a dynamic dataset.
More specifically, for an update triple (op, idj , wi), there
exists the cross-tag

xtagop,i,j = gFp(KX ,wi)·Fp(KY ,idj ||op),

where op ∈ {add, del}. The xtag value is stored in BF .
We use a Bloom filter containing {xtagi,j}i∈[2,n] to assume
that file idj involves all n − 1 x-terms. By performing
SHVE protocol, the server checks the membership of idj
in ciphertext without the KPRP leakage on which wi are in
idj .

To make the server obliviously compute the cross-tag,
the client as a search user generates and sends an additional
set of cross-tokens {xtokeni,j}i∈[2,n],j∈[cntw1] to the server
which involve s-term w1 and n − 1 x-terms. Then, we can
obtain

xtokeni,j = gFp(KX ,wi)·Fp(KZ ,w1||j).

Since the TSet address corresponding to the jth update
operation involving w1 stores an additional pre-computed
blinding factor α, the server can calculate xtagop,i,j using
blinded exponentiations as

xtagop,i,j = gFp(KX ,wi)·Fp(KY ,idj ||op) = (xtokeni,j)
α.

The aforementioned computation process shows that
without learning underlying update triple (op, id, w), the
server can obliviously compute the relevant cross-tag. Next,
if all elements in {xtagop,i,j}i∈[2,n] exist in xtagBF , the file
idj involving w1 also contains other n− 1 keywords.

5 SECURITY ANALYSIS

In this section, we evaluate the security of our scheme.
Firstly, we formally describe the leakage functions for ESP-
CKS. Subsequently, we demonstrate its forward, backward,
and keyword pair result privacy.

5.1 Leakage Functions

We aim to guarantee that the DSSE scheme reveals as little
information as possible, ensuring that it achieves a higher
level of security. The leakage functions capture leakage.
Similar to [20], we formally define the leakage functions as

L = (LSetup,LUpdate,LSearch),

where LSetup =⊥, LUpdate(op, id, w) =⊥, LSearch(q) =
(TimeDB(q),Upd(q)).

Let O be a list containing the following entries:

1) (t, w): search query for keyword w at timestamp t;
2) (t, op, id, w): update query for (op, id, w) at times-

tamp t, where op ∈ {add, del}.

For any conjunctive query q = (w1 ∧ · · · ∧ wn), we
define TimeDB(q) as a function that returns file identifiers
and insertion timestamps. Files corresponding to the iden-
tifiers contain all the keywords involved in the query q
and have not yet been deleted from the database. Suppose
the keyword w1 is the s-term, namely aforementioned least
frequent term ws. Formally, it is expressed as

TimeDB(q) = {({ti}i∈[n], id) | (ti, add, id, wi) ∈ O
and ∀t′ : (t′, del, id, wi) /∈ O}.

We define Upd(q) as a function that returns the times-
tamps of all update operations on the s-term w1. Formally,
it is expressed as

Upd(q) = {t | ∃(op, id) : (t, op, id, w1) ∈ O}.

For simplicity, we assume that no Bloom filter false pos-
itives occur in our protocol. We have the following theorem
for the security of our scheme.

Theorem 1. Our ESP-CKS is adaptively-secure with respect to a
leakage function L defined as before, assuming that F, F1, F2, Fp
are secure pseudorandom functions, the decisional Diffie-Hellman
assumption holds over G, and SHVE is a selectively simulation-
secure protocol.

Proof. The detailed proof is given in Appendix.

5.2 Forward Privacy

According to the forward privacy definition introduced in
[25], the dynamic conjunctive SSE is adaptively forward
privacy iff the update leakage function LUpdate can be
written as

LUpdate(op, id, w) = L′(op, id),

where L′ is a stateless function. Note that forward
privacy guarantees that the underlying keyword w is
hidden during update phase. Whereas, in our scheme
LUpdate(op, id, w) =⊥. That is, an update operation hides
the underlying keyword w, along with the identifier id and
the operation op. A natural corollary of Theorem 1 is as
follows.

Corollary 1 (Forward Privacy of ESP-CKS). Our scheme is
adaptively forward private if F, F1, F2, Fp are secure pseudoran-
dom functions, the decisional Diffie-Hellman assumption holds
over G, and SHVE is a selectively simulation-secure protocol.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 8

Algorithm 3 Search

Input: param, sk, r,Q = {w1, · · · , wn};EDB
Output: IdRList

Client:
1: Initialize T to an empty set
2: Get sk = (msk,K,KT ,KX ,KY ,KZ)
3: Set T = LFKA.T okenGen(Q,K, r)
4: Send T to the server

Server:
5: Initialize ∆ to empty list
6: Set ∆ = LFKA.F reqF ind(T , C)
7: Send set ∆ to the client

Client:
8: Set (ws, cntws) = LFKA.Compare(∆,K, r)
9: Replace ws to the front of the list Q as w1

10: Initialize saddrList and xtokenList[cntw1]to empty lists
11: for j = 1 : cntw1 do
12: Compute saddrj = Fp(KT , w1||j||0)
13: Set addrList = saddrList ∪ {saddrj}
14: for i = 2 : n do
15: Compute xtokeni,j = gFp(KZ ,w1||j)·Fp(KX ,wi)

16: xtokenLsit[j] = xtokenList[j] ∪ {xtokeni,j}
17: end for
18: Randomly shuffle the tuple-entries of xtokenList[j]
19: end for
20: Send saddrList, xtokenList to the server

Server:
21: Get (TSet, xtagBF) = EDB
22: Initialize vBFind[xtokenList.size] to empty lists
23: for j = 1 : saddrList.size do
24: Set (svalj , αj) = TSet[saddrList[j]]
25: for i = 2 : n do
26: Set xtokeni,j = xtokenList[j][i− 1]
27: Compute xtagi,j = xtoken

αj

i,j
28: for t = 1 : k do
29: Compute hind = Ht(xtagi,j)

30: Set vBFind[j] = vBFind[j] ∪ {hind}
31: end for
32: end for
33: end for
34: Send vBFind[1], . . . , vBFind[j] to the client

Client:
35: Initialize cntw1 Bloom filters vBF with element ∗
36: Initialize sBFList to an empty list
37: for j = 1 : cntw1 do
38: for c = 1 : vBFind[j].size do
39: Set vBF [j][vBFind[c]] = 1
40: end for
41: Compute sBFj = SHVE.KeyGen(msk, vBF [j])
42: Set sBFList = sBFList ∪ {sBFj}
43: end for
44: Send sBFList to the server

Server:
45: Initialize sRList to an empty list
46: for j = 1 : sBFList.size do
47: Compute resj = SHVE.Query(sBFList[j], xtagBF)
48: if resj = “True” then
49: Add (j, svalj) into sRList
50: end if
51: end for
52: Send sRList to the client

Client:Final
53: Initialize IdRList to an empty list
54: for i = 1 : sRList.size do
55: Set (j, svalj) = sRList[i]
56: Compute (idj , opj) = svalj ⊕ F (KT , w1||j||1)
57: if opj == add then
58: Set IdRList = IdRList ∪ {idj}
59: else if opj == del then
60: Set IdRList = IdRList\{idj}
61: end if
62: end for

5.3 Backward Privacy

Backward privacy is formally defined in [25] and is ordered
from the most to least secure as Type-I, Type-II, Type-III. Ac-
cording to this, a DSSE scheme supporting single keyword
search is adaptively backward privacy iff the update leakage
function LUpdate and the search leakage function LSearch(w)

can be written as

LUpdate(op, id, w) = L′′(op, id), and
LSearch(w) = L′′′(TimeDB(w),Upd(w)),

where L′′ and L′′′ are stateless functions.

For a DSSE scheme supporting conjunctive keyword
search, a natural generalization of the aforementioned leak-
age function is defined as

LUpdate(op, id, w) =⊥, and
LSearch(q) = (TimeDB(q),Upd(q)),

where q is a conjunctive search query. The leakage meets the
Type-II backward privacy. A natural corollary of Theorem 1
is as follows.

Corollary 2 (Backward Privacy of ESP-CKS). Our scheme is
Type-II adaptively backward private if F, F1, F2, Fp are secure
pseudorandom functions, the decisional Diffie-Hellman assump-
tion holds over G, and SHVE is a selectively simulation-secure
protocol.

5.4 Keyword Pair Result Privacy
We compare ESP-CKS with ODXT scheme [20] to prove
that our scheme guarantees keyword pair result privacy;
that is, it prevents the KPRP leakage. We consider the
following example to illustrate the privacy improvement of
the proposed scheme.

Assuming that the database in the server stores five
encrypted files, whose plaintext of indexes are {idi}1≤i≤5.
The set of keywordsW contains six keywords expressed as
{wi}1≤i≤6. Each file involves different keywords, as shown
in Table 3.

TABLE 3
Document Identifier’s and Keywords Contained.

identifier keywords
1 w1, w2, w3, w4, w6

2 w2, w3, w4, w5

3 w1, w2, w4, w5, w6

4 w2, w3, w6

5 w1, w3, w4

Suppose that the client issues the search query q =
(w1 ∧ w2 ∧ w3). Note that keyword w1 is the least frequent
term. The set of documents involving w1 is DB(w1) =
{id1, id3, id5}. Then the server determines whether the files
containw2 andw3. In ESP-CKS, the server only learns the re-
sult DB(q) = {id1}. However, in ODXT, the server can learn
the partial query result that DB(w1) ∩ DB(w2) = {id1, id3}

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 9

and DB(w1)∩DB(w3) = {id1, id5}. Finally, the server sends
the encrypted data of the intersection of these two sets
(namely {id1}) to the client. Although the partial query
result called KPRP leakage is under the ciphertext, [21]
shows that file-injection attacks can reveal all keywords
of a conjunctive query with 100% accuracy via utilizing
KPRP leakage. Our ESP-CKS scheme eliminates the afore-
mentioned KPRP leakage and improves privacy.

6 PERFORMANCE ANALYSIS

In this section, we analyze the performance of the ESP-CKS
scheme and compare it with existing schemes. We evaluate
the performance theoretically and experimentally.

6.1 Theoretical Analysis
We now discuss the practical storage, computation, com-
munication costs of our scheme and compare them with
that in conjunctive keyword search schemes ODXT [20] and
SE-EPOM [6]. Notably, there are two types of servers in SE-
EPOM. Here we only focus on the performance of the Cloud
Platform (CP). We give a list of notations for comparative
analysis in Table 5.
Storage: Focusing on the storage size, the server in ODXT
stores the dictionary TSet and the Bloom filter of XSet.
For a triple (op, id, w), a O(λ)-size entry of the form
(addr, α, val) is added to TSet, and the size ofXSet ism. In
comparison to ODXT, we adopt ciphertext of a Bloom filter
with mλ-size instead of XSet. Moreover, the server stores
the ciphertext of keyword update frequency of size |W|λ. If
update operations contain N triples (op, id, w), the overall
storage size of our ESP-CKS scheme is Nλ + mλ + |W|λ.
In SE-EPOM, server stores M entries and each encrypted
by Enc algorithm [28] of Zλ2 -size. Hence, the storage cost of
SE-EPOM is more than the proposed scheme.
Update Computation Overhead: During the update phase,
the computational cost is generated by the client. For a
batch update containing multiple triples (op, id, w), in our
scheme, the time taken to encrypt keywords update fre-
quencies is uTPRF + uTADD. For the computation in TSet,
the cost of generating N entries (addr, val, α) is N(TPRF +
TXOR + TMUL). For the generation of xtags and xtagBF ,
the costs are Nepre +NkThash and mTPRF, respectively. Note
that the ODXT shares a lot of similarities with our scheme
on the stage of TSet computation and the Bloom filter
generation involving xtags, the cost is N(TPRF + TMUL +
TXOR + epre + kThash). Although forward and backward
privacy cannot be guaranteed, the static SE-EPOM protocol
can also perform adding files operation. In SE-EPOM, the
client encrypts a decimal number of keywords in a file with
the proposed public key encryption method, which involves
exponentiations and multiplications, and the overall update
cost is m(e+ TMUL2).
Search Computation Overhead: We now investigate the
search computation overhead of our ESP-CKS and contrast
it with that of the ODXT and SE-EPOM. Both server-side
and client-side should be considered during the search
phase.

First, we focus on the computational cost of our scheme.
The client spends n(TPRF + TADD) + TComp when it gen-
erates frequency tokens. In the subsequent interaction, the

client computes saddrs and xtokens costing C(nTPRF +
(n − 1)epre). The server spends C(n − 1)e to compute
xtags and C(n − 1)kThash for membership test in Bloom
filters. The client computes sBF through SHVE.KeyGen,
which costs m′TPRF + m′TXOR + TEnc. The server spends
C(m′TXOR + TDec) to perform SHVE.Query. Finally, the
client decrypts the search result costing C(TPRF + TXOR).
The search computation overhead investigated above is
presented in Table 4.

In ODXT, the server spends C(n − 1)(e + kThash) to
generate xtags and calculate the location of elements in
the Bloom filter. The client spends C(nTPRF + (n − 1)epre)
in saddrs and xtokens generation, and C(TPRF + TXOR) in
result decryption, respectively.

We now compare the computational cost on the server-
side and client-side between our ESP-CKS scheme and the
ODXT scheme. We define Os on the server-side as

Os =
m′TXOR + TDec

(n− 1)(e+ kThash)
.

According to the relationship between execution time
of different operations mentioned in [5], we conclude that
additional cost on server side is only about 1.8%, while
false positive rate is 10−6, n = 2, k ≈ log2(1/Pe) ≈ 20,
and m′ = (n− 1)k.

Similarly, we define Oc on the client side as

Oc =
Tfreq + TsBF

C((n+ 1)TPRF + (n− 1)epre + TXOR)
,

where Tfreq = n(TPRF + TADD) + TComp and TsBF =
C(m′TPRF +m′TXOR + TEnc). Likewise, we can deduce that
additional cost on server side is about 15% when C = 10,
and it decreases as n and C increase. Therefore, our scheme
achieves an enhanced security with minimum compromise
in search efficiency.

In SE-EPOM, the client needs to generate a trapdoor and
decrypt the results with a weak private key, which costs
M(e+TMUL2). On the server-side, the computation overhead
of protocol SBD [29], SAD, and SMD is θ(e+ TMUL2). More-
over, NOT-operation in ciphertext takes e + TMUL2 . Hence,
the overall search computational cost is M(θ+1)(e+TMUL2)
for the server. Note that the server computation overhead is
linear with C and n in our scheme, but scales with M and
θ in SE-EPOM. It can be observed that the search in our
scheme is more efficient because of M ≥ C , θ ≥ n and the
probability of being equal is extremely low.
Communication Overhead: Focusing on communication
cost in our scheme, the bandwidth of sending encrypted fre-
quency values is nO(λ). The interaction of transmit saddrs
and xtokens costs Cλ + C(n − 1)G. The server sends the
positions in BF to the client with CO(m′) communication
overhead. Then the client sends the output of SHVE.KeyGen
with C(O(m′) + 2λ) cost. Finally, the server costs rO(λ)
to transmit the final result. Note that in ODXT, there is
no communication about transmitting frequency values and
ciphertext of Bloom filter, and the overall communication
overhead is Cλ + C(n − 1)G + rO(λ). In SE-EPOM, the
client sends the search token with O(λ2), and the server
sends encrypted result with MO(λ2). The communication
overhead investigated above is presented in Table 4.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 10

TABLE 4
Comparison of Conjunctive Keyword Search Schemes.

SE-EPOM [6] ODXT [20] OURS

storage storage size(S) MZλ2 Nλ+m Nλ+mλ+ |W|λ

computation

update cost
common

m(e+ TMUL2)
N(TPRF + TMUL + TXOR + epre + kThash)

additional N/A (u +m)TPRF + uTADD

search cost (S)
common M(θ + 1)· C(n− 1)(e+ kThash)

additional (e+ TMUL2) N/A C(m′TXOR + TDec)

search cost (C)
common

M(e+ TMUL2)

C((n+ 1)TPRF + (n− 1)epre + TXOR)

additional N/A
n(TPRF + TADD) + TComp+

C(m′TPRF +m′TXOR + TEnc)

comunication cost
common

MO(λ2)
C((n− 1)G + λ) + rO(λ)

additional N/A nO(λ) + CO(m′ + 2λ)

TABLE 5
Notations for Comparative Analysis.

Notation Meaning
C update frequency of the s-term
e number of exponentiations
epre number of preprocessed exponentiations
u number of keywords updated in a batch
N number of triple (op, id, w) updated in a batch
m number of files updated in a batch
r number of pairs (id, op) in the search result
θ the maximum number of keywords in setW
G size of an element from G
Zλ2 size of an element from Z∗λ2

TPRF time taken to compute a PRF
TXOR time taken to execute an XOR operation over λ
Thash time taken to compute a hash of Bloom filter
TADD time taken to perform an addition over λ
TMUL time taken to perform a multiplication over λ
TMUL2 time taken to perform a multiplication over λ2

TComp time taken to compare n values.
TEnc time taken to perform a symmetric encryption.
TDec time taken to perform a symmetric decryption.

6.2 Experimental Evaluations
We conduct the following experiments to evaluate the ef-
ficiency of our scheme in terms of setup, update, and con-
junctive search time. Each experimental result is the average
execution times over 10 runs.

TABLE 6
Overhead Comparison.

SE-EPOM ODXT OURS
setup(ms) 4006 416 468

update-1000(ms) 2.91 55.27 61.01
update-10000(ms) / 42.34 73.21

Implementation details. We implement our ESP-CKS with
Python. The communication is simulated in a single-
threaded environment to facilitate testing time. We conduct
our experiments on a PC with a 1.30 GHz eight-core proces-
sor and 16GB RAM. The security parameter is λ = 256. We
deploy the scalable Bloom filter from Paulo Sérgio Almeida

22 24 26 28 210
101

102

103

104

105

|CNT(w1)|

C
lie

n
t

C
o

m
p

u
ta

ti
o

n
T

im
e

(m
s

)

SE-EPOM
ODXT

ESP-CKS

(a) |CNT (w2)| = 210

22 24 26 28 210
101

102

103

104

|CNT(w2)|

C
lie

n
t

C
o

m
p

u
ta

ti
o

n
T

im
e

(m
s

)

SE-EPOM

ODXT

ESP-CKS

(b) |CNT (w1)| = 22

22 24 26 28 210
101

102

103

104

105

106

107

|CNT(w1)|

S
e

rv
e

r
C

o
m

p
u

ta
ti

o
n

T
im

e
(m

s
)

ODXT

ESP-CKS

SE-EPOM

(c) |CNT (w2)| = 210

22 24 26 28 210
101

102

103

104

105

106

107

|CNT(w2)|

S
e

rv
e

r
C

o
m

p
u

ta
ti

o
n

T
im

e
(m

s
)

SE-EPOM
ODXT

ESP-CKS

(d) |CNT (w1)| = 22

Fig. 2. Two-conjunctive search query q = (w1 ∧ w2) computation time
over client and server.

[30]. The false positive rate of the Bloom filter is set to 10−6,
which is negligible and enables the server to perform the
membership test accurately. For comparison, we also imple-
ment conjunctive keyword search schemes ODXT [20] and
SE-EPOM [6]. Notation θ denotes the maximum number of
keywords in set W . The outputs of F, Fp, F2 are 256 bits
long, while that of F1 is 512 bits long.
Datasets: We employ two different sorts of datasets: one
with 1,200 files and the other with 12,500 files. Because SE-
EPOM runs slow in a single thread on an extensive database
without supporting deleting files, the dataset with 1,200 files
is exploited to compare the three works. The dataset with
12,500 files is to compare our ESP-CKS with ODXT. We
ensure that each document in datasets is inserted at least
once. Update operations can be additions or deletions of
batch files, 20% of which are deletions.
Setup: Table 6 compares the costs of the Setup (KeyGen in

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 11

22 24 26 28 210
102

103

104

105

|CNT(w1)|

C
lie

n
t

C
o

m
p

u
ta

ti
o

n
T

im
e

(m
s

)
SE-EPOM

ODXT

ESP-CKS

(a) |CNT (w2)| = 210

22 24 26 28 210
102

103

104

105

|CNT(w2)|

C
lie

n
t

C
o

m
p

u
ta

ti
o

n
T

im
e

(m
s

)

SE-EPOM

ODXT

ESP-CKS

(b) |CNT (w1)| = 22

22 24 26 28 210
101

102

103

104

105

106

107

|CNT(w1)|

S
e

rv
e

r
C

o
m

p
u

ta
ti

o
n

T
im

e
(m

s
)

SE-EPOM

ODXT

ESP-CKS

(c) |CNT (w2)| = 210

22 24 26 28 210
101

102

103

104

105

106

107

|CNT(w2)|

S
e

rv
e

r
C

o
m

p
u

ta
ti

o
n

T
im

e
(m

s
)

SE-EPOM

ODXT

ESP-CKS

(d) |CNT (w1)| = 22

Fig. 3. Multi-conjunctive search query q = (w1 ∧ · · · ∧ w5) computation
time over client and server.

SE-EPOM) algorithm. The time taken in ODXT and our ESP-
CKS scheme are similar and better than that of SE-EPOM,
since SE-EPOM consumes more time assigning the secret
keys under the public key system.
Update: Table 6 also compares the cost of the client in the
Update(Store in SE-EPOM) algorithm, where each update
involves 1000 or 10,000 documents. For SE-EPOM, although
it takes less time than our ESP-CKS, the variety of keywords
is limited because it must be agreed upon in advance.
Moreover, update calculation overhead of SE-EPOM scales
with value θ, so it is more expensive than our scheme if
θ is initially set to be large and some documents have just
a few keywords. Comparing ODXT with our scheme, our
scheme takes longer due to keyword pair result privacy,
this is because the update phase requires the Bloom filter
to be encrypted, and the computational overhead of this
part depends on the size of the Bloom filter. However,
when we update batch files, the average cost of each file
between the two schemes is not significant, because files in
a batch update amortize the cost of encrypted bloom filter.
Therefore, our scheme does not sacrifice significant update
efficiency but offers a higher level of security.
Search: Figures 2, 3, and 4 show the comparisons of compu-
tation overheads in Search (Test in SE-EPOM) algorithm for
various schemes.

Figure 2 shows the impact of the update frequency
for conjunctive searches involving two keywords on query
efficiency. In this implementation, we set the frequency of
one term to a constant value and changed the frequency
of another term from 22 to 210. The dataset contains 1200
files, and θ of scheme SE-EPOM is 10. Assuming w1 is the
keyword s-term with the least frequency, both the client and
the server computation overhead in ESP-CKS and ODXT
scale with the frequency of the s-term, while SE-EPOM has
a constant but prohibitively expensive computation cost.

101 102 103 104
101

102

103

104

105

106

Number of matching documents

C
lie

n
t

C
o

m
p

u
ta

ti
o

n
T

im
e

(m
s

)

ODXT

ESP-CKS

(a) Client overhead

101 102 103 104
101

102

103

104

105

Number of matching documents

S
e

rv
e

r
C

o
m

p
u

ta
ti

o
n

T
im

e
(m

s
)

ODXT

ESP-CKS

(b) Server overhead

Fig. 4. Two-conjunctive search query q = (w1 ∧ w2) computation time
over client and server.

This also demonstrates the significance of selecting the least
frequent keyword.

Similarly, Figure 3 shows the impact of the update
frequency for conjunctive searches involving multiple key-
words on query efficiency. Note that the difference in per-
formance between ESP-CKS and ODXT is not significant,
but keyword pair result privacy is protected in ESP-CKS.
Therefore, our scheme is better than ODXT and SE-EPOM.

Figure 4 compares ESP-CKS and ODXT for the computa-
tion overhead. We adopt the dataset with 12,500 documents
and perform conjunctive search queries with 10 to 10,000
matching documents. Note that the time spent by client
and server in our scheme and ODXT is proportional to
the number of matching documents, and there is not much
difference between the time cost of both. However, our
scheme offers a higher level of security.

Based on the evaluations above, the computation over-
head of SE-EPOM is prohibitively expensive, and ESP-CKS
closely matches ODXT but performs better in privacy pro-
tection. Overall, our scheme delivers superior functionality
and security, as shown in Table 1.

7 RELATED WORK

SSE was first proposed by Song et al. [31], the search cost
of the proposed SSE scheme is linear with the number of
file-keyword pairs. To improve search efficiency, Curtmola
et al. [32] presented an inverted index data structure later
to achieve sub-linear search time, but focused mainly on
single keyword search. Cash et al. [3] proposed the first sub-
linear SSE protocol named Oblivious Cross-Tags (OXT) that
supports conjunctive keyword search. The computational
overhead of search scales with the update frequency for s-
term, and sub-linear with the size of the database. It also
uses a dictionary TSet to make it possible to correlate a
list of fixed-sized data tuples with each keyword in the
database, and later allows the server to retrieve these lists
via keyword-related tokens. Based on the above, the cloud
server can first search for the encrypted data tuples associ-
ated with documents containing the s-term, then determine
over encrypted data whether the documents match the other
desired keywords. Lai et al. [5] improved the OXT protocol
in terms of private information leakage and proposed the
Hidden Cross-Tags (HXT) protocol. According to [5], the
OXT protocol leads to Keyword Pair Result Pattern (KPRP)
leakage during the search phase. However, the file-injection
attacks [21] can exploits this leakage to reveal all keywords

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 12

in the conjunction with 100% accuracy. Hence, it is essential
to eliminate KPRP leakage.

The SSE schemes above focused mainly on static
database settings. To support updates of the encrypted
database, Kamara et al. [33] introduced the DSSE scheme,
but it is vulnerable to file-injection attacks. SSE providing
forward privacy firstly defined by Stefanov et al. [23] which
enables to resist the attacks, and the first efficient DSSE
scheme is proposed to achieve small leakage based on
oblivious RAM (ORAM). In the setting of single keyword
search, the schemes [34], [35] can provide forward privacy
based on ORAM. However, they suffer from prohibitively
expensive computation overhead. Yang et al. [4] proposed
a novel dynamic searchable symmetric encryption scheme
with forward privacy by maintaining an increasing counter
for each keyword. Song et al. [36] presented the efficient
FAST scheme based on symmetric key cryptography, which
achieves forward privacy by singly linked lists structure and
a pseudorandom permutation. Li et al. [9] developed the
hidden pointer technique (HPT) to further strengthen se-
curity while ensuring forward privacy. Whereas, aforemen-
tioned works focused mainly on single keyword search. In
order to provide conjunctive keyword search, Kamara and
Moataz [37] presented IEX-2Lev and IEX-ZMF, achieving
forward security. Wu et al.’s scheme [14] exploited coun-
ters and building trees with efficient queries to guarantee
forward private conjunctive search.

Backward privacy was later formalized by Bost et al.
[25]. Subsequently, Javad et al. [10] achieve backward pri-
vacy based on ORAM, and Sun et al. [38] adopted symmet-
ric puncturable encryption technology to guarantee back-
ward privacy. He et al. [39] proposed CLOSE-FB scheme
with forward and backward privacy based on fish-bone
chain, and the scheme only stores a secret key and a
global counter on the client achieving constant client storage
cost. Xu et al. [40] presented a forward and backward
secure DSSE scheme named Bestie which also attains non-
interactive real deletion, and Xu et al. [41] presented the
robust DSSE scheme with forward and backward secu-
rity based on the key-updatable pseudorandom function.
However, these schemes can only perform single keyword
search. Zuo et al. [42] considered range queries, and devel-
oped a scheme called FBDSSE-RQ based on their refined
binary tree which can retrieve files containing keywords in
a given range. For conjunctive queries that achieve forward
and backward privacy, a FBDSSE-CQ scheme using ex-
tended bitmap indexing was proposed by Zuo et al. [26], but
it is severely limited to to the number of search keywords.
The most effective existing scheme that is not restricted by
keywords is the ODXT scheme [20], [43], but there is still
the threat of KPRP leakage, and the problem of frequent
interactions between clients in the search phase.

8 CONCLUSION

This work proposes the first efficient conjunctive keyword
search ESP-CKS scheme with strong privacy. It supports
dynamic databases and achieves forward and backward
privacy. Besides, it eliminates the threat of keyword pair
result leakage, which has never been guaranteed in existing

dynamic conjunctive keyword search schemes. It is indepen-
dent of the total number of documents in the database but
scales with the least frequency of updates. Furthermore, the
least frequent keyword acquisition protocol presented can
efficiently attain the lowest frequency in a non-interactive
approach, eliminating frequent communication between the
data owner and search users. Compared with other key-
word search approaches, our scheme offers a higher level
of security, and experiment results demonstrate that it per-
forms better.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 61972037, 61872041,
U1804263), the China Postdoctoral Science Foundation
(Grant Nos. 2021M700435, 2021TQ0042).

REFERENCES

[1] Q. Liu, G. Wang, F. Li, S. Yang, and J. Wu, “Preserving privacy with
probabilistic indistinguishability in weighted social networks,”
IEEE Trans. Parallel Distributed Syst., vol. 28, no. 5, pp. 1417–1429,
2017.

[2] S. Zhang, X. Mao, K. R. Choo, T. Peng, and G. Wang, “A trajectory
privacy-preserving scheme based on a dual-k mechanism for
continuous location-based services,” Inf. Sci., vol. 527, pp. 406–419,
2020.

[3] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Highly-scalable searchable symmetric encryption
with support for boolean queries,” in Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, ser. Lecture Notes
in Computer Science, R. Canetti and J. A. Garay, Eds., vol. 8042.
Springer, 2013, pp. 353–373.

[4] L. Yang, Q. Zheng, and X. Fan, “RSPP: A reliable, searchable and
privacy-preserving e-healthcare system for cloud-assisted body
area networks,” in 2017 IEEE Conference on Computer Communi-
cations, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017. IEEE,
2017, pp. 1–9.

[5] S. Lai, S. Patranabis, A. Sakzad, J. K. Liu, D. Mukhopadhyay,
R. Steinfeld, S. Sun, D. Liu, and C. Zuo, “Result pattern hiding
searchable encryption for conjunctive queries,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, D. Lie,
M. Mannan, M. Backes, and X. Wang, Eds. ACM, 2018, pp. 745–
762.

[6] X. Liu, G. Yang, W. Susilo, J. Tonien, X. Liu, and J. Shen, “Privacy-
preserving multi-keyword searchable encryption for distributed
systems,” IEEE Trans. Parallel Distributed Syst., vol. 32, no. 3, pp.
561–574, 2021.

[7] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient con-
structions,” J. Comput. Secur., vol. 19, no. 5, pp. 895–934, 2011.

[8] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu,
and M. Steiner, “Dynamic searchable encryption in very-large
databases: Data structures and implementation,” in 21st Annual
Network and Distributed System Security Symposium, NDSS 2014, San
Diego, California, USA, February 23-26, 2014. The Internet Society,
2014.

[9] J. Li, Y. Huang, Y. Wei, S. Lv, Z. Liu, C. Dong, and W. Lou,
“Searchable symmetric encryption with forward search privacy,”
IEEE Trans. Dependable Secur. Comput., vol. 18, no. 1, pp. 460–474,
2021.

[10] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili,
“New constructions for forward and backward private symmetric
searchable encryption,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, D. Lie, M. Mannan,
M. Backes, and X. Wang, Eds. ACM, 2018, pp. 1038–1055.

[11] R. Zhang, R. Xue, and L. Liu, “Searchable encryption for health-
care clouds: A survey,” IEEE Trans. Serv. Comput., vol. 11, no. 6,
pp. 978–996, 2018.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 13

[12] J. Shu, X. Jia, K. Yang, and H. Wang, “Privacy-preserving task
recommendation services for crowdsourcing,” IEEE Trans. Serv.
Comput., vol. 14, no. 1, pp. 235–247, 2021.

[13] C. Zhang, L. Zhu, C. Xu, J. Ni, C. Huang, and X. S. Shen, “Lo-
cation privacy-preserving task recommendation with geometric
range query in mobile crowdsensing,” IEEE Transactions on Mobile
Computing, 2021, doi: 10.1109/TMC.2021.3080714.

[14] Z. Wu and K. Li, “Vbtree: forward secure conjunctive queries over
encrypted data for cloud computing,” VLDB J., vol. 28, no. 1, pp.
25–46, 2019.

[15] N. Jho and D. Hong, “Symmetric searchable encryption with
efficient conjunctive keyword search,” KSII Trans. Internet Inf. Syst.,
vol. 7, no. 5, pp. 1328–1342, 2013.

[16] P. Golle, J. Staddon, and B. R. Waters, “Secure conjunctive key-
word search over encrypted data,” in Applied Cryptography and
Network Security, Second International Conference, ACNS 2004, Yellow
Mountain, China, June 8-11, 2004, Proceedings, ser. Lecture Notes in
Computer Science, M. Jakobsson, M. Yung, and J. Zhou, Eds., vol.
3089. Springer, 2004, pp. 31–45.

[17] J. Wang, X. Chen, S. Sun, J. K. Liu, M. H. Au, and Z. Zhan,
“Towards efficient verifiable conjunctive keyword search for large
encrypted database,” in Computer Security - 23rd European Sym-
posium on Research in Computer Security, ESORICS 2018, Barcelona,
Spain, September 3-7, 2018, Proceedings, Part II, ser. Lecture Notes
in Computer Science, J. López, J. Zhou, and M. Soriano, Eds., vol.
11099. Springer, 2018, pp. 83–100.

[18] S. K. Kermanshahi, J. K. Liu, R. Steinfeld, S. Nepal, S. Lai,
R. Loh, and C. Zuo, “Multi-client cloud-based symmetric
searchable encryption,” IEEE Trans. Dependable Secur. Comput.,
vol. 18, no. 5, pp. 2419–2437, 2021. [Online]. Available:
https://doi.org/10.1109/TDSC.2019.2950934

[19] Q. Gan, J. K. Liu, X. Wang, X. Yuan, S. Sun, D. Huang,
C. Zuo, and J. Wang, “Verifiable searchable symmetric encryption
for conjunctive keyword queries in cloud storage,” Frontiers
Comput. Sci., vol. 16, no. 6, p. 166820, 2022. [Online]. Available:
https://doi.org/10.1007/s11704-021-0601-8

[20] S. Patranabis and D. Mukhopadhyay, “Forward and backward
private conjunctive searchable symmetric encryption,” in 28th
Annual Network and Distributed System Security Symposium, NDSS
2021, virtually, February 21-25, 2021. The Internet Society, 2021.

[21] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are
belong to us: The power of file-injection attacks on searchable
encryption,” in 25th USENIX Security Symposium, USENIX Security
16, Austin, TX, USA, August 10-12, 2016, T. Holz and S. Savage,
Eds. USENIX Association, 2016, pp. 707–720.

[22] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse
attacks against searchable encryption,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015, I. Ray, N. Li, and C. Kruegel,
Eds. ACM, 2015, pp. 668–679.

[23] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic
searchable encryption with small leakage,” in 21st Annual Network
and Distributed System Security Symposium, NDSS 2014, San Diego,
California, USA, February 23-26, 2014. The Internet Society, 2014.

[24] R. Bost, “
∑

oϕoς : Forward secure searchable encryption,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, E. R.
Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi,
Eds. ACM, 2016, pp. 1143–1154.

[25] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward
private searchable encryption from constrained cryptographic
primitives,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, Eds. ACM, 2017, pp. 1465–1482.

[26] C. Zuo, S. Sun, J. K. Liu, J. Shao, J. Pieprzyk, and G. Wei, “Forward
and backward private dynamic searchable symmetric encryption
for conjunctive queries,” IACR Cryptol. ePrint Arch., p. 1357, 2020.

[27] A. Z. Broder and M. Mitzenmacher, “Survey: Network applica-
tions of bloom filters: A survey,” Internet Math., vol. 1, no. 4, pp.
485–509, 2003.

[28] X. Liu, R. H. Deng, K. R. Choo, and J. Weng, “An efficient privacy-
preserving outsourced calculation toolkit with multiple keys,”
IEEE Trans. Inf. Forensics Secur., vol. 11, no. 11, pp. 2401–2414, 2016.

[29] B. K. Samanthula, H. Chun, and W. Jiang, “An efficient and
probabilistic secure bit-decomposition,” in 8th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS ’13,

Hangzhou, China - May 08 - 10, 2013, K. Chen, Q. Xie, W. Qiu, N. Li,
and W. Tzeng, Eds. ACM, 2013, pp. 541–546.

[30] P. S. Almeida, C. Baquero, N. M. Preguiça, and D. Hutchison,
“Scalable bloom filters,” Inf. Process. Lett., vol. 101, no. 6, pp. 255–
261, 2007.

[31] D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in 2000 IEEE Symposium on Security
and Privacy, Berkeley, California, USA, May 14-17, 2000. IEEE
Computer Society, 2000, pp. 44–55.

[32] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient con-
structions,” in Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS 2006, Alexandria, VA, USA, Oc-
tober 30 - November 3, 2006, A. Juels, R. N. Wright, and S. D. C.
di Vimercati, Eds. ACM, 2006, pp. 79–88.

[33] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in the ACM Conference on Computer and
Communications Security, CCS’12, Raleigh, NC, USA, October 16-18,
2012, T. Yu, G. Danezis, and V. D. Gligor, Eds. ACM, 2012, pp.
965–976.

[34] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: efficient
oblivious RAM in two rounds with applications to searchable en-
cryption,” in Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part III, ser. Lecture Notes in Computer
Science, M. Robshaw and J. Katz, Eds., vol. 9816. Springer, 2016,
pp. 563–592.

[35] I. Demertzis, J. G. Chamani, D. Papadopoulos, and C. Papaman-
thou, “Dynamic searchable encryption with small client storage,”
in 27th Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-26, 2020. The
Internet Society, 2020.

[36] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, “Forward private
searchable symmetric encryption with optimized I/O efficiency,”
IEEE Trans. Dependable Secur. Comput., vol. 17, no. 5, pp. 912–927,
2020.

[37] S. Kamara and T. Moataz, “Boolean searchable symmetric encryp-
tion with worst-case sub-linear complexity,” in Advances in Cryp-
tology - EUROCRYPT 2017 - 36th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part III, ser. Lecture Notes in
Computer Science, J. Coron and J. B. Nielsen, Eds., vol. 10212,
2017, pp. 94–124.

[38] S. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad, V. Vo, and
S. Nepal, “Practical backward-secure searchable encryption from
symmetric puncturable encryption,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, D. Lie,
M. Mannan, M. Backes, and X. Wang, Eds. ACM, 2018, pp. 763–
780.

[39] K. He, J. Chen, Q. Zhou, R. Du, and Y. Xiang, “Secure dynamic
searchable symmetric encryption with constant client storage
cost,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 1538–1549, 2021.

[40] T. Chen, P. Xu, W. Wang, Y. Zheng, W. Susilo, and H. Jin, “Bestie:
Very practical searchable encryption with forward and backward
security,” in Computer Security - ESORICS 2021 - 26th European
Symposium on Research in Computer Security, Darmstadt, Germany,
October 4-8, 2021, Proceedings, Part II, ser. Lecture Notes in Com-
puter Science, E. Bertino, H. Shulman, and M. Waidner, Eds., vol.
12973. Springer, 2021, pp. 3–23.

[41] P. Xu, W. Susilo, W. Wang, T. Chen, Q. Wu, K. Liang, and H. Jin,
“Rose: Robust searchable encryption with forward and backward
security,” IEEE Transactions on Information Forensics and Security,
vol. 17, pp. 1115–1130, 2022.

[42] C. Zuo, S. Sun, J. K. Liu, J. Shao, J. Pieprzyk, and L. Xu, “For-
ward and backward private DSSE for range queries,” IEEE Trans.
Dependable Secur. Comput., vol. 19, no. 1, pp. 328–338, 2022.

[43] S. Patranabis and D. Mukhopadhyay, “Forward and backward pri-
vate conjunctive searchable symmetric encryption,” IACR Cryptol.
ePrint Arch., p. 1342, 2020.

APPENDIX A
PROOF OF THEOREM 1
We prove through a sequence of games between a challenger
and an adversary. We start from RealΠA(λ) and construct a

https://doi.org/10.1109/TDSC.2019.2950934
https://doi.org/10.1007/s11704-021-0601-8

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 14

sequence of games where each game is designed slightly
differently from the previous one, and show that they are
computationally indistinguishable for the adversary A. The
final construction is a simulation game IdealΠA,S(λ). Due
to the transitive property of each two successive games’
indistinguishability, IdealΠA,S(λ) is computationally indis-
tinguishable from the RealΠA(λ). Eventually, we conclude
that the views of A in RealΠA(λ) and IdealΠA,S(λ) are com-
putationally indistinguishable, thus completing the proof of
the Theorem 1.

Game0: Game0 is the same as the real game RealΠA(λ) of
our scheme.

Game1: Game1 is the same as Game0, except that we
replace the PRFs F (KT , ·), F1(K, ·), F2(K, ·), Fp(KX , ·),
Fp(KY , ·), and Fp(KZ , ·) with random functions GT (·),
G1(·), G2(·), GX(·), GY (·), and GZ(·), respectively. Specif-
ically, the function GT (·) is uniformly randomly sampled
from the set of all functions that map λ-bit string onto λ-bit
string, G1(·) is uniformly randomly sampled from the set of
all functions that map λ-bit string onto 2λ-bit string, G2(·)
is uniformly randomly sampled from the set of all functions
that map λ-bit string onto λ-bit string, while GX(·), GY (·)
and GZ(·) are uniformly randomly sampled from the set of
all functions that map λ-bit string onto components in Z∗p.

Lemma 1. Suppose that F, F1, F2, and Fp are secure PRFs, the
views of A in Game1 and Game0 are computationally indistin-
guishable.

Proof. Assuming that there exists a probabilistic
polynomial-time adversary B1 that can distinguish between
the views of adversaryA in Game0 and Game1. This implies
that B1 can be used to construct a probabilistic polynomial-
time adversary B′1 that can distinguish pseudorandom
functions from random functions. Obviously, this is
contrary to the pseudorandomness of the pseudorandom
function.

Game2: Game2 is the same as Game1, except that we
regenerate xtoken in the search phase. Specifically, for a
query q = (w1 ∧ w2 · · · ∧ wn), the challenger initially
looks for the adversary A’s history of update queries to get
the set of update operations (opj , idj , w1) involving the s-
term w1. Then, for each x-term wi, it computes αi,j and
xtagi,j , where xtagi,j is stored in an array A. The array
A is used to generate BF and the element A[op, id, w] is
added to BF . Next, it computes xtokeni,j = xtag

1/αi,j

i,j .
For an impossible matched xtoken, the challenger computes
xtokeni,j = gGX(wi)·GZ(w1||j) and stores it in an array B.

It’s trivial to see that the distribution of each xtoken
value in Game2 is the same as that of in Game1. Therefore,
the view of the adversary A in Game2 is indistinguishable
from the view of the adversary A in Game1.

Game3: Game3 is the same as Game2, except that we
generate α in an alternative but equivalent way during
each update phase. We replace computing α with sampling
randomly α R← Z∗p.

Lemma 2. The views of A in Game3 and Game2 are statistically
indistinguishable.

Proof. Note that the previous α is the product of an evalu-
ation of GY (·) with the inverse of an evaluation of GZ(·),

where GY (·) and GZ(·) are uniformly randomly sampled
from the set of all functions that map λ-bit string onto
components in Z∗p. Moreover, the value of α is also uniform
and independent of the rest of the randomness in Game2.
Consequently, the distribution of each α value in Game3 is
statistically indistinguishable from that in Game2.

Game4: Game4 is the same as Game3, except that we re-
generate xtag in array A and xtoken in array B. We replace
xtag in array A with random sample A[op, id, w] = gγ ,
where γ

R← Z∗p. Moreover, we replace xtoken in array B

with random sample B[w1, wi, j] = gι, where ι R← Z∗p. That
is, all of the values in arrays A and B are randomly picked
from G.

Lemma 3. Suppose that the decisional Diffie-Hellman (DDH)
assumption holds in the group G, the views of A in Game4 and
Game3 are computationally indistinguishable.

We prove Lemma 3 by the equivalent Lemma 4, where
the equivalence is derived from the (polynomial) equiv-
alence of the DDH assumption and the extended DDH
assumption [43] over any group G. (The papaer [43] has
already proved that the extended DDH assumption holds
over a group G iff the DDH assumption holds over the same
group G.)

Lemma 4. Suppose that the extended DDH assumption holds
in the group G, the views of A in Game4 and Game3 are
computationally indistinguishable.

Proof. Assuming that there exists a probabilistic
polynomial-time adversary B2 that can distinguish between
the views of adversary A in Game4 and Game3. B2 can
easily be used to construct a probabilistic polynomial-time
adversary B′2 that can distinguish between gGX(w)·GY (id||op)

and gγ . Similarly, xtoken in array B is the same. Obviously,
B′2 breaks the extended DDH assumption over the group
G, hence there is no such aforementioned probabilistic
polynomial-time adversary B2.

Game5: Game5 is the same as Game4, except that we
regenerate addr and val in the update phase. The function
evaluation of the form GT (w||cnt||b)(b ∈ {0, 1}) is replaced
with a function evaluation of the form GT (t), where t
is the timestamp when the update operation is executed.
Similarly, we regenerate saddr in the search phase, namely
a function evaluation of the form GT (t) is substituted for
the function evaluation of the form GT (w||cnt||0), where t
is the timestamp associated with the corresponding update
operation.

Lemma 5. The views of A in Game5 and Game4 are computa-
tionally indistinguishable.

Proof. Note that the counter increases monotonically, and
the uniform random function GT never takes a value on
the same input at two different timestamps. Therefore, the
values of GT in Game5 and Game4 are computationally
indistinguishable from the point of view of the adversary
A.

Game6: Game6 is the same as Game5, except that we
replace the challenger with a simulator S that could only

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X 15

access the leakage function L = (LSetup,LUpdate,LSearch)
for each update and search query.

Lemma 6. The views of A in Game6 and Game5 are computa-
tionally indistinguishable.

Proof. The Simulator S can access an empty update leakage
function LUpdate(op, id, w) =⊥ and search leakage function
LSearch(q) = (TimeDB(q),Upd(q)), ensuring that S does
not have access to the actual queries issued by A. The rest
of the variables are generated by S as done by the challenger
in Game5. For the search phase, S can learn the update
frequency involving the s-term and the timestamp of each
operation, which is expressed as Upd(q). It can also learn
the final result of conjunctive search queries, that is, a set
of document identifiers together with operation timestamps
expressed as TimeDB(q). In addition, S can infer that the
two conjunctive search queries q1 and q2 have the same s-
term, which is subsumed by Upd(q1) and Upd(q2). Note
that from the perspective of adversary A, the transcripts
generated by S are identical to the corresponding transcripts
generated by the challenger in Game5.

The proof of Lemma 6 is complete, that is, Theorem 1 is
proved.

	1 Introduction
	2 Problem formulation
	2.1 System model
	2.2 Threat Model
	2.3 Design Goals

	3 Preliminaries
	3.1 Syntax of Dynamic Searchable Symmetric Encryption
	3.2 Security Definition of DSSE
	3.3 Bloom Filter
	3.4 Symmetric-key Hidden Vector Encryption

	4 Construction of the Proposed Scheme
	4.1 Least Frequent Keyword Acquisition Protocol
	4.2 Setup Phase
	4.3 Upate Phase
	4.4 Search Phase

	5 Security Analysis
	5.1 Leakage Functions
	5.2 Forward Privacy
	5.3 Backward Privacy
	5.4 Keyword Pair Result Privacy

	6 Performance Analysis
	6.1 Theoretical Analysis
	6.2 Experimental Evaluations

	7 Related Work
	8 Conclusion
	References
	Appendix A: Proof of Theorem 1

