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Abstract

Mechanical ventilation of patients with acute respiratory distress syndrome (ARDS) is a necessary 

life support measure which may lead to ventilator induced lung injury, a complication that can be 

reduced or ameliorated by using appropriate tidal volumes and positive end-expiratory pressures. 

However, the optimal mechanical ventilation parameters are almost certainly different for each 

patient, and will vary with time as the injury status of the lung changes. In order to optimize 

mechanical ventilation in an individual ARDS patient, therefore, it is necessary to track the 

manner in which injury status is reflected in the mechanical properties of the lungs. Accordingly, 

we developed an algorithm for assessing the time-dependent manner in which different lung 

regions open (recruit) and close (derecruit) as a function of the pressure waveform that is applied 

to the airways during mechanical ventilation. We used this algorithm to test the notion that 

variable ventilation provides the dynamic perturbations in lung volume necessary to accurately 

identify recruitment/derecruitment dynamics in the injured lung. We performed this test on 

synthetic pressure and flow data generated with established numerical models of lung function 

corresponding to both healthy mice and mice with lung injury. The data were generated by 

subjecting the models to a variety of mechanical ventilation regimens including variable 

ventilation. Our results support the hypothesis that variable ventilation can be used as a diagnostic 

tool to identify the injury status of the lung in ARDS. I.

Index Terms
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Introduction

The current standard of care for acute respiratory distress syndrome (ARDS) dictates use of 

the low tidal volume (Vt) of 6 ml/kg ideal body weight to reduce ventilator induced lung 

injury (VILI) caused by over-distention (volutrauma) [1] together with positive end-

expiratory pressure (PEEP) to maintain airway patency [2, 3]. These guidelines are based on 

the aggregate characteristics of ARDS patients in general, which constitute a rather 

heterogeneous patient population [1] in which the best average strategy is very unlikely to 

be best in any particular case. It seems reasonable to suppose, therefore, that optimizing 

mechanical ventilation for individual patients should improve outcomes beyond the current 
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universally applied low-Vt approach. However, personalized management of mechanical 

ventilation must conceptually involve the minimization of a cost function describing the 

injury that different ventilatory settings would cause. Any such injury prediction will 

inevitably depend on the current injury status of the lung [4], and thus must be based on 

diagnostic parameters that can be tracked continuously in time.

It is reasonable to believe that such diagnostic parameters must relate to lung mechanical 

function, since we have shown that acute lung injury is typically accompanied by substantial 

changes in lung derecruitability, reflected in the propensity of a recruited lung to derecruit 

over time [4–10]. Assessing the derecruitability of the lungs thus requires that lung volume 

be periodically perturbed in a manner sufficient to cause a significant degree of recruitment, 

so that the dynamics of subsequent derecruitment can be observed. We have previously 

achieved this in mouse models of lung injury by recruiting the lungs with a large inspiration 

and then tracking lung elastance while low-Vt ventilation is applied at various levels of 

PEEP [6, 7, 11, 12]. This provides a set of elastance time profiles to which we can fit a 

computational model that recapitulates the regionally distributed time-dependent nature of 

derecruitment [10]. Previous in vitro [13] and computational [14–16] studies suggest that 

our model fits can be used to infer the extent to which lung injury affects surface tension at 

the air-liquid interface. However, the ventilatory maneuvers we have employed in mice to 

determine derecruitability do not resemble any of the conventional regimens of mechanical 

ventilation employed for managing ARDS patients, and thus are very unlikely to be 

considered clinically acceptable methodologies by the medical community.

We therefore seek a means of perturbing lung volume in a manner that will be safe for 

ARDS patients while at the same time allowing the dynamics of recruitment and 

derecruitment (R/D) to be observed. These requirements are potentially met by variable 

ventilation (VV) [17], which attempts to recapitulate the breath-to-breath changes in Vt and 

breathing frequency seen during spontaneous breathing. VV has been shown to be protective 

in animal models of lung injury [18–20], and we have previously shown that this therapeutic 

efficacy may be related to the dynamics of R/D [21]. Here we investigate the use of VV in a 

different role, namely as a diagnostic modality that provides the volume perturbations 

necessary to identify lung derecruitability. In order to perform this investigation in a 

precisely controlled environment, we estimated derecruitability from synthetic airway 

pressure and flow data generated by subjecting our previously developed computational 

model of R/D dynamics [4, 8, 10, 22] to regimens of VV.

I. MATERIALS AND METHODS

A. Generation of synthetic data

We simulated pressure and flow at the airway opening during mechanical ventilation using a 

simulation model consisting of NUnits = 48,000 parallel elastic lung units. Each lung unit had 

an elastance EUnit that was constant at low volumes but which increased quadratically with 

volume above a critical volume VCrit thus:
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(1)

where EBase, EFac (= 13EBase), VUnit are constants. The elastance Emod of the entire model 

was a function of the number of open units Nopen according to

(2)

The airflow resistance of each unit was Runit = NUnitsRaw, with Raw = 0.47 cm H2O·s·ml−1 to 

match experimental observations [22]. The total resistance Rmod of the model was therefore

(3)

Flow into the model for each breath was driven by a volume waveform buffered by a gas 

elastance Egas = 130 cm H2O·ml−1 [22], representing the ventilation delivered by the small 

animal ventilator we used in our previous studies [10]. Inspiration was sinusoidal, while 

expiration from the model was driven by the difference between the elastic recoil pressure 

within each open lung unit and the prescribed level of PEEP. The rate of expiration from 

each unit was governed by the ratio of this pressure difference to the sum of RUnit and the 

resistance of the ventilator tubing Req = 0.4 cm H2O·s·ml−1.

The dynamics of R/D of each lung unit was simulated using virtual trajectories as we have 

described previously [4, 8–10, 22] which provide an empirical approximation to the pressure 

dependence and latency of these phenomena. Each lung unit was associated with a trajectory 

represented by a variable 0 ≤ y ≤ 1 that decreased in value at a rate given by dy/dt = SC(P

−PC) if the airway pressure P was less than the critical closing pressure PC; SC is the closing 

velocity constant. Conversely, if P was greater than the critical opening pressure PO then 

dy/dt = SO (P−PO). The opening velocity constant SO = 10SC, causing reopening to occur an 

order of magnitude more quickly than closure, as we have previously determined to be the 

case in injured mice [10]. The model equations were integrated using the forward Euler 

method at a simulation frequency of 150 Hz.

The dynamics of the model were thus governed by statistical distributions used to assign 

values of PO, SO, PC and SC to each lung unit. Closing and opening pressures have 

previously been reported to follow Gaussian distributions [23, 24], and we have used these 

distributions in previous model fitting studies [8, 10]. Accordingly, PC in the present study 

was drawn from a Gaussian distribution having a mean μ specified to correspond to a 

particular clinical situation. The standard deviation of the Gaussian was 3 cm H2O in all 

cases. PO was also drawn from a Gaussian distribution such that PO = PC + ΔP with ΔP = 4 

cm H2O in all cases. We have also found in previous model fitting studies [5, 10] that 

monotonically decreasing probability density functions (PDFs) are appropriate for SO and 

SC, so in the present study we selected these parameters from exponential PDFs.
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We initialized the simulation model by ventilating it for 1 min with Vt = 0.25 ml at 200 

breaths/min followed by two deep inspirations (DI, Vt = 1.0 ml, 0.8 Hz). This ventilation 

sequence was applied to provide a standardized volume history for the virtual trajectories for 

each iteration of the model, and the two large DIs were included to fully recruit the 

simulation model.

Eighty sec sequences of mechanical ventilation were then applied at a respiratory rate of 240 

breaths/min (appropriate for a 20 g mouse) in the four patterns listed below. The first 40 sec 

were used to establish a standardized volume history, while the pressures and flows in the 

later 40 sec (the fitting period) were used to estimate derecruitability as described in §IIB.

VVH: VV for healthy mice. The tidal volume of each breath was chosen using the 

probability density function defined by Thammanomai et al. [25, 26]

(4)

where VtMean is mean tidal volume (8.0 ml/kg), VtMin is the minimum tidal volume (0.7 

VtMean), VMax is maximum tidal volume (3.5 VtMean), VP = 0.9 VtMean, the decay constant δ 

= 5.1, and PEEP = 3 cm H2O. The normalization constant g0 = 3.35 was chosen so that 

.

VVI: VV for mice with HCl-induced lung injury. This was identical to VVH except with 

VMax = 2.25 VtMean [25] and g0 = 3.31.

CV: Constant volume ventilation with Vt = 8.0 ml/kg and PEEP = 3 cm H2O.

CV-RM: Constant volume ventilation with Vt = 8.0 ml/kg and PEEP = 3 cm H2O with two 

successive 50 ml/kg inspirations at 0.8 Hz applied at the onset of the fitting period.

We simulated pressure and flow at the airway opening during VVH, VVI, CV, and CV-RM 

in a healthy BALB/c mouse and a mouse with VILI [22] to enable calibration of the model 

to previously collected experimental data. The model parameters for these two conditions 

are listed in Table II. We have found previously that the progression of VILI is accompanied 

by changes in lung derecruitability that can be characterized in terms of two injury-

dependent populations of lung units with markedly different R/D characteristics [22]. 

Accordingly, in the present study we separated the lung units in the VILI simulations into 

two groups, one containing 30% of the units that opened and closed relatively slowly with 

low critical opening and closing pressures, and the remaining 70% that opened and closed 

more rapidly at higher pressures (Table II). This gave bimodal PDFs for PO and PC for the 

injured mice as shown in Figure 3 (black line). These PC PDFs are similar to the 

distributions of regional compliance at low inflation pressures in dogs with oleic acid injury 

reported by Kaczka et al [27], suggesting that acid injury increased PC in a subset of lung 

units resulting in derecruitment and decreased compliance. Furthermore, at higher inflation 

pressures the compliance distributions were similar to those of healthy dogs. This indicates 
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that recruitment in the injured lung occurred between 15 and 20 cm H2O which is in 

agreement with the 18 cm H2O upper peak of our bimodal PC distribution.

B. Estimation of lung derecruitability

We estimated lung derecruitability and elastance from the simulated airway pressure and 

flow data generated by the simulation model using an estimation model that was similar in 

many ways to the simulation model but significantly simpler in structure so that its 

parameters could be determined uniquely by model fitting. The estimation model contained 

NUnits = 512 lung units. The PDF for PC in the estimation model consisted of the 

superposition of four Gaussian distributions having means at 0, 6, 12, and 18 cm H2O each 

with a standard deviation of 3 cm H2O. The amplitudes of these four Gaussians were 

specified by a weighting vector α = [α1, α2, α3, α4]. Similarly, PDFs for SC for each of these 

four Gaussian PC distributions were chosen from exponential distributions of the form 

λce−λcz, where the value of λc for each distribution was specified in the four element vector 

λ.

To fit the estimation model to data generated by the simulation model, we had to determine 

nparam = 10 parameters that together minimized the objective function f = RMS(Psim − Pest) 

when the estimation model was driven by the corresponding ventilation waveform. Here, 

Psim and Pest are the airway pressures predicted by the simulation and estimation models, 

respectively, and RMS indicates the root mean square. The parameters are the four 

components of α, the four components of λ, EBase and VCrit (Table III). Model fitting was 

achieved iteratively using a constrained parallel pattern search (PPS) algorithm [28–32] that 

functions by repeatedly simulating pressure and flow data with the estimation model using 

sets of parameter values selected from within a specified bounded domain. The lower (l) and 

upper (u) bounds on this domain, listed in Table III, were selected to include parameters 

values that we have observed in our previous experimental studies in mice [4, 10, 22, 33]. 

To standardize the volume history of the estimation model prior to each run through the 

iterative fitting algorithm we first ventilated it for 40 sec using the prescribed ventilation 

pattern. A second 40 sec period of ventilation was then applied and these data were used to 

compute the value of the objective function.

The initial guess for the parameter values was  where  is the average 

parameter starting value (Table III), B is a random number from a uniform distribution −1 ≤ 

B ≤ 1, and Δ0 is the initial step size vector. This random variation was included to avoid bias 

in the solution due to the prescribed initial conditions which would be unknown in clinical 

or laboratory scenarios.

We defined a set of search directions  = {d(1), …, d(pmax)} where each d(i) is a vector of 

length nparam and superscripts indicate the direction index. The maximum number of search 

directions , and ng = 3 is the number of possible values for each 

variable in x. The search directions were defined as
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(5)

Each iteration of the pattern search algorithm 0 ≤ k ≤ 30 consisted of three steps:

1. Generate a set of trial points which correspond to the search directions

(6)

where Δk is the step size vector and xk is the solution vector from the previous step. 

The four (out of nparam) elements for each  corresponding to the weighting 

vector α are scaled to a magnitude of 1 and duplicate trial points resulting from this 

transformation are removed. Likewise, any direction index which contains points 

outside the constrained domain  is also eliminated. Finally, only a 

single value of λC is included for any entry of α = 0, where the remainder of the 

trial parameter values are identical. The remaining trial points in Xk are evaluated 

in a queue.

2. If a trial point zk ∈ Xk exists so that f(zk) < f(xk) then the iteration is deemed 

successful, and we set xk+1 = zk, Δk+1 = Δk, and return to step 1 if k ≤ 30. Otherwise, 

the algorithm is terminated.

3. If a trial point zk ∈ Xk does not exist so that f(zk) < f(xk) then the iteration is deemed 

unsuccessful and we set xk+1 = xk and Δk+1 = 0.5 Δk. If k ≤ 30 and Δk+1 > 0.025 Δ0 

the algorithm returns to step 1. Otherwise, the algorithm is terminated.

The pattern search algorithm is readily parallelized [28–31] because once Xk is calculated 

the objective function evaluation for each trial point is independent of the others. 

Accordingly, we implemented the above algorithm using the compute unified device 

architecture on a graphics processing unit (GPU) (Tesla K20, NVIDIA, Santa Clara CA) as 

suggested by Zhu [34, 35]. Each trial point was assigned to an independent thread on the 

GPU and dynamic parallelism was used to branch each trial point into 512 additional threads 

(1 per RU) which were then used to evaluate the dynamics of R/D. This novel approach 

provided a substantial performance improvement, particularly when polling smaller 

parameter spaces near the bounds of the search domain.

II. RESULTS

Figure 1 shows EUnit as a function of total lung volume in the fully recruited lung for the 

healthy and injured simulation models (circles), as well as the corresponding EUnit curves 

for selected cases provided by the estimation model (the latter are the averages of 16 

estimations obtained using different random initial guesses for the parameter values of the 

estimation model). The gray areas in Figure 1 show the mean ± standard deviation, 

demonstrating the repeatability of these estimates. These results show that we are able to 

accurately estimate the volume dependence of EUnit from the airway pressure and flow data 
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recorded during various modes of mechanical ventilation in mice, including two different 

types of VV.

The PDF for PC used for simulating data from a healthy mouse is shown in Figure 2 (gray 

circles), together with the PDF produced by the estimation model, again showing good 

agreement. The area of the black lines in Figure 2 represents the mean ± standard deviation. 

Corresponding plots for the injured mouse are shown in Figure 3, and demonstrate that the 

estimation model is able to recover the bimodal distribution we used in the simulation model 

to generate the airway pressure and flow data. Note that the position of the lower peak in the 

PDF for PC (at 3 cm H2O) does not align with positions of any of the four Gaussians 

comprising the composite PC distribution used in the estimation model, demonstrating the 

capacity of the composite distribution to estimate the PDF for PC.

We quantified the accuracy of the elastance fit as

(7)

where superscript Sim and Est indicate the simulation and estimation models, respectively. 

Likewise, the accuracy of the PC fit was described by

(8)

where K is the PC PDF in the simulation model and κi is the PDF for PC for the ith Gaussian 

distribution in the estimation model. Statistically significant differences in εE and εP, 

determined using a 1-way analysis of variance (p = 0.05) and Tukey’s honestly significant 

difference criterion, are indicated with symbols in Figure 4.

The performance of the estimation algorithm was proportional to the degree to which the 

applied ventilation waveform perturbed the model system. Figure 5 shows that CV-RM 

spanned the widest range of open fractions and, as shown in Figure 4, provided the best 

parameter estimate. The dashed line in this figure shows the minimum possible value for εP 

due to the composite PDF used in the estimation model.

To evaluate the efficacy of the fitting method in recovering data which could be used to 

evaluate injury or optimize mechanical ventilation, we determined the open fraction φ 

during ‘derecruitability tests’ which we have previously demonstrated are a sensitive 

measure of lung injury [6–8, 10, 12, 22]. We utilized φ to test the performance of the 

estimation model because changes in the open fraction of the lung that occur as a result of 

R/D play a pivotal role in the genesis of VILI. The derecruitability tests consisted of a 1 min 

stabilization period (Vt = 0.25 ml, 200 breaths/min) followed by a recruitment maneuver (2 

breaths of Vt = 0.25 ml, 50 breaths/min) as described above for the simulation model. The 

predicted open fraction was then monitored during 3 min of ventilation at 8 ml/kg and 240 

breaths/min. This procedure was repeated for a range of PEEPs. The root mean square 

(RMS) difference in φ predicted using the average parameters determined with the 

estimation model (φE) and prescribed in the simulation model (φS) was used to quantify the 
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model accuracy during the derecruitability tests. Figure 6 shows the average RMS(φS − φE) 

for 10 simulations of the VILI mice at ½ cm H2O PEEP increments. Here we note that at 

low PEEPS all modes of ventilation resulted in excellent approximations to the parameters 

used in the simulation model. However, as PEEP increased, the accuracy of the φ 

predictions decreased.

III. DISCUSSION

The pulmonary edema that characterizes ARDS impairs surfactant function and causes 

increased derecruitment of small airways and alveoli. This, in turn, increases the 

susceptibility of the lung to VILI as a result of the excessive fluid-mechanical and tissue 

stresses that invariably accompany mechanical ventilation. The current standard of care in 

ARDS is a one-size-fits-all approach employing low Vt to reduce volutrauma, and is based 

on the reduction in mortality reported with 6 ml/kg compared to the nominal prior standard 

of 12 ml/kg [1]. However, the seminal clinical trial on which the low-Vt approach is based 

employed a large number of patients at multiple sites and at huge expense. Gaining new 

evidence to further refine the 6 ml/kg target is probably beyond the practical limits of 

randomized clinical trials because of the large number of patients that would be required to 

obtain statistical significance.

Currently, PEEP and the fraction of inspired oxygen (FiO2) are both frequently prescribed 

based on blood oxygenation, and thus provide some degree of personalized management 

aimed at optimizing the efficacy of gas exchange. However, while decrements in 

oxygenation are readily measured in the clinic, they lag behind the lung derecruitment that is 

responsible for them, suggesting that better personalized control of VILI would be achieved 

by monitoring lung function. In addition, lung function measurements potentially reflect the 

repetitive R/D events and the tissue over-distension that constitute the fundamental injurious 

processes behind VILI. Accordingly, we hypothesize that further improvements in the 

ventilatory management of ARDS patients will demand a personalized approach that adapts 

to the changing lung mechanics of individual patients. This approach would use continuous 

monitoring of lung function to adjust the parameters of a predictive computational model 

which is then used to determine the least injurious mode of ventilation.

In a series of previous studies in mice, we have demonstrated that the dynamics of R/D are 

sensitive and specific indicators of lung injury, and that they can be used to follow the 

progression of VILI [6–8, 10, 12, 22]. Accordingly, we believe that the dynamic 

derecruitability of the lung constitutes the appropriate readout on which to base an adaptive 

and personalized strategy for mechanical ventilation of the ARDS lung. The question we 

address in the present study is how to determine derecruitability in a manner that could 

potentially be applied safely to a human patient with ARDS. In our prior mouse studies, we 

estimated derecruitability from the transient responses in lung elastance observed during 

episodes of mechanical ventilation at different levels of PEEP, each episode being preceded 

by a large inflation to recruit closed lung units [6, 7, 10–12]. These maneuvers provided the 

volume perturbations necessary for identifying the lung’s propensity to derecruit, but they 

would almost certainly be unacceptable in the clinical arena; very large inflations may 
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themselves cause VILI, and ventilation for even a few minutes at a low level of PEEP may 

be highly inadvisable for severely injured lungs because it would promote atelectrauma.

Our goal in the present study was therefore to determine if VV imposes a set of volume 

perturbations that is rich enough to allow accurate identification of the dynamic R/D 

characteristics of the lung. Actually, the extent to which this can be done is a matter of 

degree; even conventional mechanical ventilation perturbs lung volume, and so should itself 

be able to reveal R/D dynamics to some extent. The problem with conventional ventilation, 

however, is that its perturbations are completely regular and rather modest, and thus can 

only reveal the derecruitability characteristics of the lung over a limited range of operating 

conditions. By contrast, the explicit goal of VV is to impose a varied volume perturbation to 

the lung [17], so we reasoned that it would be much better suited to the identification of lung 

derecruitability. Also, VV has shown potential as a therapy for ARDS [36] in both animals 

[20, 37, 38] and humans [36, 39] due to increased surfactant secretion [19, 26] and 

recruitment [21, 26, 40, 41].

In the present study, we used simulated airway pressure and flow data to test the use of 

various ventilation patterns in the assessment of lung derecruitability. The data were 

generated by an established computational model of R/D dynamics [4, 8, 10, 22], which 

allowed us to make objective comparisons of the performances of the various ventilation 

patterns since the true R/D characteristics represented by the data were known precisely. 

Our results show that the ability to determine derecruitability accurately is closely linked to 

the range over which volume is perturbed. Thus, for example, CV-RM gave the best 

estimates of the true parameter values (Figures 2, 3, and 4), no doubt because of the very 

large degree of derecruitment that was induced by the initial deep inspirations in this 

scenario (Figure 5). By contrast, the very limited amount of recruitment produced by CV 

resulted in the least accurate parameter estimates. These differences occurred because the 

peak pressures did not exceed approximately 10 cm H2O with CV, so the open fraction 

varied, on average, by less than 1% as shown in Figure 5. Consequently, changes in α and λ 

did not substantially impact the objective function. On the other hand, with CV-RM the 

airway pressures reached almost 30 cm H2O causing φ to span from an average of 0.22 to 

0.96. Therefore, even minor changes in R/D properties are reflected in the objective function 

obtained with CV-RM.

The two VV ventilation patterns were intermediate in performance between these two 

extremes, as shown in Figure 4. The predicted open fraction for VVH in the injured mouse is 

shown in Figure 5, demonstrating that a sufficient period of low-Vt ventilation must follow a 

deep breath for derecruitment to occur and provide information for the parameter fitting. 

The timing between these recruitment events is implicit in the definition of the VV tidal 

volume PDF (Eq. 4). Interestingly, all four ventilation patterns provided good estimates of 

the nonlinear elastance for the injured mouse simulations. This was likely due to the fact that 

all the ventilation patterns perturbed lung volume enough to cause VUnit to exceed VCrit in 

those lung units that remained open. In contrast, VUnit did not exceed VCrit during CV and 

VVI in the healthy mouse simulations due to the greater degree of recruitment.
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The accuracy of the estimation model was further assessed by simulating derecruitability 

tests in injured mice over a range of PEEP using the best-fit parameters. At low PEEP, there 

were only minor differences in φ between the estimation and simulation models (Figure 6), 

as expected due to the good agreement in the PC distributions (Figure 3). However, with 

increasing PEEP, the estimated φ diverged progressively from that of the simulation model 

for all ventilation modes except CV-RM (Figure 6). This deviation at high PEEP is 

proportional to the peak pressures during the fitting period and is also reflected in the 

pressure and elastance errors (Figure 4). These findings demonstrate the tradeoff between 

the ability of a ventilation mode to avoid damaging the lung (i.e. not causing large volume 

excursions) versus providing the information necessary to assess derecruitability. On 

balance, we believe that VV achieves a useful compromise between these competing factors.

The real-world efficacy of our parameter estimation algorithm could be impaired by noise in 

the measured pressure response to a prescribed flow. A full analysis of the effects of noise 

on the fitting performance is beyond the scope of the current investigation. We have, 

however, compared the results of the estimation model in the absence and presence of 

random noise in the pressure signal using VVI in an injured mouse. The noise in Psim was 

drawn from a Gaussian distribution with a standard deviation of 0.22 cm H2O, equal to 1% 

of the peak-to-peak pressure amplitude. We evaluated 8 iterations of the estimation 

algorithm, for each iteration the initial conditions were identical in the noisy and noise-free 

cases. The addition of noise did not significantly change the mean of the fitted values for α, 
λ, EBase or VCrit (paired t-test, p= 0.01). However, the mean of the standard deviation of the 

10 predicted parameter values did increase by 53%. These findings suggest that the 

estimation algorithm is robust enough to provide accurate parameter estimates in the 

presence of noise.

In summary, we have developed a numerical optimization algorithm that uses pressures and 

flows evaluated at the trachea to identify a distributed model of the lung that encapsulates its 

intrinsic stiffness as well as the dynamics of R/D. The performance of this algorithm was 

evaluated using simulated data representing healthy and injured mice subjected to four types 

of mechanical ventilation. Our results indicate that the spectrum of lung volume 

perturbations provided by VV is rich enough for the ongoing assessment of lung 

derecruitability. This potentially gives VV a useful diagnostic capability to complement its 

emerging role as a therapeutic modality.
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Figure 1. 
Lung unit elastance prescribed in the simulation model (black circles) and determined with 

the estimation model using VVH (a) and VVI (b) for healthy and injured mice. Gray area 

shows mean ± standard deviation over 16 runs.
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Figure 2. 
Probability density of PC for healthy mice prescribed in the simulation model (gray circles) 

and the mean ± standard deviation of 16 iterations of the estimation model.
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Figure 3. 
Probability density of the closing pressure for injured mice prescribed in the simulation 

model (black line) and computed using the estimation model. Gray area shows the mean ± 

standard deviation of 16 iterations of the estimation model.
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Figure 4. 
Mean error between the simulation and estimation models for 16 estimation model runs, 

light gray bars show error in PC and dark gray bars show errors in elastance. Lines shows 

the standard error. * indicates a significant difference from CV-RM and ‡ indicates a 

significant difference from CV (p=0.05). Dashed line shows the lowest possible value of εP 

for the injured mouse due to the composite PC PDF.
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Figure 5. 
Open fraction predicted by the simulation model for an injured mouse. The first 40 sec of 

the simulation is used to initialize the model and the second 40 sec is used to fit the 

estimation model.
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Figure 6. 
Average error in the open fraction during derecruitability tests at different PEEPs using 

parameters determined via the estimation algorithm and compared to the simulation model 

for injured mice.
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Table I

Nomenclature.

Parameter Description

NUnits Number of respiratory units

NOpen Number of open units

VUnit Respiratory unit volume

EUnit Respiratory unit elastance

EBase Low-volume elastance

EFac Elastance increase rate in nonlinear regime

VCrit RU transition volume between linear and nonlinear elastance

Emod Total model elastance

Rmod Total model resistance

RUnit Unit resistance

y Virtual trajectory

λC Constant which defines exponential PDF for SC

SC Virtual trajectory closing velocity constant

SO Virtual trajectory opening velocity constant

PC Virtual trajectory closing pressure

PO Virtual trajectory opening pressure

μ Mean virtual trajectory closing pressure

ΔP Difference between PC and PO

P Airway pressure

Vt Ventilation tidal volume

α Closing pressure distribution weighting vector

λ Vector of closing velocity constant PDFs [λC]

Variable Ventilation Parameters

p(Vt) Volume PDF for VV

g0 VV normalization constant

VtMean VV mean tidal volume

VtMin VV minimum tidal volume

VMax VV maximum tidal volume

VP Peak Vt for uniform portion of VV PDF

δ VV decay constant

Pattern Search Algorithm Parameters

nparam Number of parameters to fit with PPS

ng Number of possible values for each fit parameter

pmax Maximum number of search directions
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Parameter Description

l Lower bound of parameter space

u Upper bound of parameter space

k Pattern search algorithm iteration number

xk kth vector of best-fit parameters

Δk kth step size vector

Set of search directions for PPS

d(i) ith search direction vector of length nparam

pmax Maximum number of search directions

Xk Set of trial points for the kth PPS search step

Analysis Parameters

ϕS Respiratory unit open fraction for simulation model

ϕE Respiratory unit open fraction for estimation model

K Composite PC PDF in the simulation model

κi ith of the four PC PDFs in the estimation model

εP PC PDF error between simulation and estimation models

εE Elastance error between estimation and simulation models
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Table II

Parameter Values for Healthy and Injured Mice.

Variable Healthy
Mouse

VILI
Mouse

EBase (cm H2O) 11.5 14

VCrit (ml) 0.6 0.55

RU Group 1 Membership 100% 30%

RU Group 1 µ (cm H2O) 0 3

RU Group 1 λC 4 4

RU Group 2 Membership 0% 70%

RU Group 2 µ (cm H2O) N/A 18

RU Group 1 λC N/A 0.5
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Table III

Initial Conditions.

Variable Lower
Bound (l)

Upper
Bound (u)

Initial Step
Size (Δ0) Mean Starting

Value 

EBase 8 18 1.5 15

VCrit 0.4 0.7 0.05 0.575

α [1–4] 0.0 1.0 0.125 [1.0,0.1,0.1,0.1]

λ [1–4] 0.025 2.5 1 0.8
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