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Abstract—Objective monitoring of food intake and ingestive 

behavior in a free-living environment remains an open problem 

that has significant implications in study and treatment of obesity 

and eating disorders. In this paper, a novel wearable sensor 

system (Automatic Ingestion Monitor, AIM) is presented for 

objective monitoring of ingestive behavior in free living. The 

proposed device integrates three sensor modalities that wirelessly 

interface to a smart phone: a jaw motion sensor, a hand gesture 

sensor and an accelerometer. A novel sensor fusion and pattern 

recognition method was developed for subject-independent food 

intake recognition. The device and the methodology were 

validated with data collected from 12 subjects wearing AIM 

during the course of 24 hours in which both the daily activities 

and the food intake of the subjects were not restricted in any way. 

Results showed that the system was able to detect food intake 

with an average accuracy of 89.8%, which suggests that AIM can 

potentially be used as an instrument to monitor ingestive behavior 

in free living individuals. 

 
Index Terms—Automatic ingestion monitor (AIM), chewing, 

eating disorders, food intake detection, obesity, pattern 

recognition, wearable sensors. 

I. INTRODUCTION 

FFECTIVE interventions are required to reduce the 

incidence of obesity and eating disorders and their life-

threatening complications. Obesity is a major health problem 

that affects not only adult population but also adolescents and 

children. A reduction in life expectancy of individuals with 

severe obesity is plausible [1]. In the United States, the 

prevalence of obesity reached a total of 35.5% among adults 

and 16.9% among adolescents in 2009-2010 [2]. On the other 

hand, eating disorders are serious mental disorders that cause 

disturbances on eating habits or weight-control behavior of 

individuals [3]. Anorexia nervosa, bulimia nervosa and binge 

 
The project described was supported by Grant Number R21DK085462 

from the National Institute of Diabetes and Digestive and Kidney Diseases 

(NIDDK). The content is solely the responsibility of the authors and does not 

necessarily represent the official views of the NIDDK or the NIH. 

Juan M. Fontana, Muhammad Farooq and Edward Sazonov 

(esazonov@bama.ua.edu phone: 205-348-1981) are with the Department of 

Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 

35487 USA. Juan M, Fontana is also with the Facultad de Ingenieria, 

Universidad Nacional de Rio Cuarto, Rio Cuarto, Cordoba, Argentina. 

Copyright (c) 2013 IEEE. Personal use of this material is permitted. 

However, permission to use this material for any other purposes must be 

obtained from the IEEE by sending an email to pubs-permissions@ieee.org.  

eating are the most common eating disorders with lifetime 

prevalence ranging from 0.6 to 4.5% in the United States [4]. 

Both obesity and eating disorders are medical conditions 

highly resistant to treatment and can have severe physical and 

physiological health consequences [5]. Thus, the implementation 

of accurate methods for Monitoring of Ingestive Behavior 

(MIB) is critical to provide a suitable assessment of intake 

particularly in individuals who would most benefit from 

professional help. 

Current methodologies used to understand and analyze food 

intake patterns associated with obesity and eating disorders 

largely rely on laboratory studies and on self-report rather than 

on objective observations [6], [7]. The doubly-labeled water 

[8] is the most precise method to measure energy intake over a 

period of several days, however it is not capable of identifying 

individual eating episodes. Other methods for MIB such as 

food frequency questionnaires and diet diaries are inaccurate 

due to subjects tending to underreport and miscalculate food 

consumption [9]. Thus, new approaches for objective and 

accurate assessment of free-living food intake patterns in 

humans are necessary for monitoring of eating behavior [10].  

Recent advances in the area of food intake monitoring 

focused on the development of systems that attempt to address 

research and clinical needs by replacing manual self-reporting 

methods [11]–[19]. Several authors explored the use of 

chewing sounds captured through an in-ear microphone to 

detect and characterize food intake activity [14], [16]. 

Specialized algorithms were developed to process the acoustic 

signal achieving acceptable results for single meal experiments 

in laboratory settings, where the number of food types 

consumed was restricted. The recognition of gestures using 

wearable sensors was also proposed for MIB [12], [18]. 

Recently, a watch-like device incorporating a miniature 

gyroscope was developed for measuring intake by an 

automatic tracking of wrist motions during hand-to-mouth 

gestures or “bites” [18]. This device showed high sensitivity 

for “bite” counting but may carry the limitations of self-

reported food intake as subjects need to turn it on and off at 

every meal to avoid spontaneous hand gestures registering as 

“bites”. A novel wearable sensor platform was recently 

presented [19]. It consisted of a microphone and a camera for 

detecting and characterizing food intake with high recognition 

rate. Although these technologies presented satisfactory 

performances in the laboratory, the accuracy of the 

methodologies for detecting unrestricted food intake in free-
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living environments remains to be tested. 

Our research group is working towards the development of a 

non-invasive wearable device for automatic and objective MIB 

under free-living conditions. Our approach proposes the use of 

hand-to-mouth gestures, chews and swallows as indicators of 

food intake (objectively detecting timing and duration of each 

instance of food intake, number of bites and chews in each 

eating episode, characterizing eating frequency and mass of 

ingestion) [11], [13]. Monitoring of swallowing activities by 

acoustical means was integrated with machine learning 

algorithms in [20] and [21] to create classification models, 

which detected periods of food intake with more than 85% 

accuracy. The drawback of this methodology is the need for 

individual calibration due to an apparent uniqueness of 

swallowing sounds for each individual. Monitoring of chewing 

activities by sensing characteristic jaw motions was integrated 

with pattern recognition algorithms in [17] and [22] to create 

group models that achieved >80% accuracy for food intake 

detection in laboratory settings. The implementation of such 

group models eliminated the need for individual calibration.  

In this paper we present the design and validation of a novel 

wearable sensor system (Automatic Ingestion Monitor, AIM) 

for objective detection of food intake in free-living. To the 

best of our knowledge, AIM is the first wearable sensor system 

that is capable of objective 24-hr monitoring of ingestive 

behavior without relying on any input or self-report from the 

subject, only compliance with wearing of the device. AIM 

wirelessly integrates three different sensors with a smart 

phone: a jaw motion sensor to monitor chewing, a hand 

gesture sensor to monitor hand-to-mouth (HtM) gestures and an 

accelerometer to monitor body motion. A novel approach to 

sensor information fusion and pattern recognition based on 

Artificial Neural Networks (ANN) is used for robust and 

accurate detection of food intake in free living conditions that 

presents a substantially more challenging environment than the 

laboratory. The device and methodology were validated with 

data collected from 12 subjects who wore AIM in free living 

during 24 hours without any restrictions on their food intake 

and daily activities (except showering). 

II. AUTOMATIC INGESTION MONITOR (AIM) 

A. Device description 

The wearable sensor system of AIM consists of 4 key parts: 

a jaw motion sensor; a wireless module; an RF transmitter of 

the hand-to-mouth sensor; and an Android smartphone. Fig.1 

right shows a picture of a subject wearing AIM.  

The jaw motion sensor (Fig.1. left-a) was attached by 

medical adhesive below the earlobe and used to capture 

characteristic motion of the jaw during food intake [17]. The 

sensor was the LDT0-028K piezoelectric film element which 

was interfaced to the microcontroller through a buffering, level 

shifting and differential amplifying op-amp circuit.  

The wireless module (Fig.1. left-b) was worn on a lanyard 

around the neck. It contained a custom-built electronic circuit 

powered by a Li-Polymer 3.7V 680mAh battery (Tenergy). 

This circuit incorporated: 1) MSP430F2417 processor with an 8-

channel 12-bit ADC used to sample analog sensor signals; 2) 

RN-42 Bluetooth module with serial port profile; 3) M25P64 

64Mbit serial flash memory for data buffering in situations 

where wireless Bluetooth connection is temporarily 

unavailable; 4) preamplifier for jaw motion sensor (sampled at 

1 kHz); 5) RF receiver for HtM gesture sensor (sampled at 10 

Hz) operating in RFID frequency band of 125 kHz; 6) 

ADXL335 low power 3-axis accelerometer for capturing body 

acceleration (sampled at 100 Hz); and 7) a self-report push 

button (sampled at 10 Hz) that was used in this study for 

pattern recognition algorithm development and validation and 

use of which will not be required in the future. The sensor 

signals were delivered in near real time via Bluetooth to an 

Android smart phone that acted as a data logger.  

RF transmitter module was worn on the inner side of the 

dominant arm at the wrist (Fig.1. left-c). It interacted with the 

RF receiver in the wireless module to implement a proximity 

sensor for detection of characteristic HtM gestures during food 

intake [23]. The response of the hand gesture sensor was 

within a range of 0-20 cm, saturating at its maximum amplitude 

from 0-10 cm and reaching its minimal value at 20 cm. 

 

 
Fig. 1. Left: Wearable sensor system: a) jaw motion sensor, b) wireless 

module, c) RF transmitter, and d) Smart phone. Right: Subject wearing AIM. 

B. Data Collection and Signal Preprocessing 

A total of 12 subjects (6 male, 6 female) were recruited to 

participate in this study. The average age was 26.7 y (SD ± 

3.7) and the average body mass index (BMI) was 24.39 kg/m
2
 

(SD ± 3.81). Subjects did not present any medical condition 

that affected normal food intake. This study was approved by 

the Internal Review Board at The University of Alabama and 

subjects read and signed an informed consent document.  

Subjects were asked to wear AIM in free living for a period 

of 24 hrs, usually starting in the morning before breakfast and 

finishing in the morning of the following day. The experiments 

were initiated in the laboratory where a member of the 

research team helped subjects to put on the AIM device. The 

lanyard was then adjusted to the proper length making sure 

that subjects were comfortable while the AIM was in a good 

position for capturing hand gestures. An Android smart phone 

that included a data logger application was provided to 

subjects and they were asked to keep the phone with them at 

all times to ensure proper data transmission. Subjects were 

then dismissed from the lab and asked to continue with their 

regular activities of daily living (except showering/swimming 

and other activities including water immersion) without 

restrictions. During the experiments, subjects accomplished 



0018-9294 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBME.2014.2306773, IEEE Transactions on Biomedical Engineering

>TBME-01050-2013.R2 < 

 

3

ad-libitum intake meaning that they were able to eat any kind 

of food at any time of the day according to their own 

preferences and without any restrictions on the content and 

size of each eating episode. Subjects were asked to come back 

to the lab after 24 hours of data collection.  

The push button included in AIM was used as the primary 

method for self-reporting food intake. Subjects marked each 

eating episode by pressing and holding the button with their 

non-dominant hand (not equipped with the proximity sensor) 

during the chewing process. As a secondary method of self-

report, subjects completed a food journal indicating what type 

of foods they ate during the experiment as well as the start and 

end time of each eating period. The push button signal was 

used as the gold standard for identifying, timing, and marking 

food intake events in the sensor signals. The food journal was 

used to corroborate button data as well as to identify and 

remove accidental presses of the button. The annotated sensor 

data was used for developing the food intake detection 

algorithm. 

Selecting 24 hours as the recording period for this study was 

based on two main reasons. First, it was long enough to cover 

a full cycle of daily meals and activities, including potential 

night eating [24]. Second, it was short enough to avoid 

introducing a significant error related to self-reporting intake 

over several days [25]. Also, the goal was to demonstrate 

recognition of food intake in realistic conditions of daily living 

without the high costs related to a longer observational study.  

Fig. 2 shows the raw signals collected for one subject during 

a 24-hr period: the jaw motion signal (top graph), the hand 

gesture signal (2
nd
 graph), the accelerometer signal for the y-

axis (3
rd
 graph) and the self-reported food intake (bottom 

graph). The self-report indicates the consumption of 4 major 

meals: breakfast (at the beginning of the experiment), lunch (at 

~3.5 hrs after beginning), dinner (at ~13 hrs) and another 

breakfast before the end of the experiment (at ~23 hrs). 

Snacking was also reported to occur at approximately 2 hrs, 

6.5 hrs and 12.5 hrs after the beginning of the experiment. The 

hand gesture signal shows an increment in the hand gesture 

activity during food intake intervals due to the presence of a 

high number of HtM gestures in the process of bringing the 

food to the mouth. Also, it is possible to visually identify the 

interval where the subject was sleeping (i.e. from 16 hrs to 22 

hrs) by looking at the three sensor signals together. The jaw 

motion, hand gesture and body acceleration signals present a 

very low standard deviation during sleeping compared to the 

rest of the activities due to the subject resting quietly with 

minimal activity.  

AIM captured and stored the jaw motion signal JM(t), the 

accelerometer signals for each axis ACCx(t), ACCy(t), and 

ACCz(t), the hand gesture signal HG(t) and the push button 

signal PB(t). All sensor signals were time-synchronized and 

had exactly the same time duration. JM(t) and ACC(t) were 

high-pass filtered to remove the DC component (0.1 Hz cutoff 

frequency). These signals were then normalized to compensate 

for variations in the signal amplitude between subjects. HG(t) 

was normalized to provide a value of “1” at saturation. HtM 

gestures outside the 0.25-7.5 s range were removed as most of 

the hand gestures related to food intake were shorter than 7.5 s 

and having hand gestures sorter than 0.25 s is highly unlikely 

and it most probably is due to artifacts in the signal. 

 
Fig. 2. Example of the signals collected by AIM in a 24-hr experiment. 

III. SENSOR FUSION AND PATTERN RECOGNITION 

METHODOLOGY  

Monitoring of food intake under free-living conditions over 

an extended period of time generates more complex datasets 

than monitoring in laboratory. The intra- and inter-subject 

variability of the sensor signals increases due to the presence 

of artifacts in the signals caused by activities from real life 

situations that are not possible to reproduce in a laboratory. 

The intra-subject variability was stipulated by the different 

activities performed by a subject during the 24-hr period (i.e. 

walking, talking, eating, sleeping, etc.) and the inter-subject 

variability was given by subjects having different eating patterns 

and lifestyles. This makes it difficult to apply models created 

with laboratory data to free-living data and maintain an 

acceptable performance. For example, a group (population-

based) model created in our previous study with a database 

encompassing chewing information from 20 subjects achieved 

an accuracy of 81% under laboratory settings [17]. When the 

same model was applied to the free-living data collected in the 

present study, the accuracy decreased to 62%. This is a clear 

indication that lab experiments may not provide data that are 

representative of food intake in the community and food 

detection models should be created using innovative 

methodologies based on free living data. For that reason, a 

novel sensor fusion and pattern recognition approach was 

implemented in this work. This approach was divided into 

three steps, which are explained in detail in this section: a) the 

Sensor Fusion steps for reducing the size of the original 

dataset and eliminating the outliers, b) the Feature Extraction 

step for extracting features from the reduced dataset, and c) the 

Classification step for training a classifier to detect food intake 

episodes.  

A. Sensor Fusion 

The data collected after 24 hrs contained only about 3% of 

data related to food intake, which generated a highly unbalanced 

dataset. The sensor fusion approach combined information from 

the sensor signals to identify and remove periods of 'no food 
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intake' within the signals for balancing the dataset and removal 

of the signal artifacts and outliers. It involved two major steps. 

First, the product between the absolute values of JM(t) and 

HG(t) was computed as:  

)()()(
1

tHGtJMtSF ⋅=  (1)            (1) 

SF1(t) was divided into non-overlapping epochs ei of 30 s 

duration with i = 1,2, ..., MS total number of epochs for each 

subject S. The size selected for the epoch was found to present 

the best trade-off between the frequency of physiological 

events such as bites, chewing and swallowing and time 

resolution of food intake monitoring [11], [13]. The Mean 

Absolute Value (MAV) of the signal SF1(t) within ei was 

computed as: 

∑
=

=

N

k

kie
x

N
MAV

1

1
 (2) 

where xk is the k-th sample in an epoch ei of SF1(t) 

containing a total of N samples. The self-report signal, PB(t), 

was also divided into 30 s epochs and used to assign a class 

label ci ∈{'food intake' (FI), 'no food intake' (NFI)} to each ei. 

An epoch was labeled as FI if at least 10s of self-report within 

the i-th epoch was marked as food intake; otherwise it was 

labeled as NFI. The 10s was chosen based on an estimation of 

the shortest duration of the physiological sequence that generates 

intake: bite, chews and swallows [26]. SF1(t) epochs would 

have higher MAV during food intake due to the presence of 

HtM gestures (associated with bites and use of napkins) and 

jaw motion activity (chewing) during eating. For that reason, a 

threshold level T1 was set to remove epochs in SF1(t) belonging 

to activities that did not present a combination of jaw motion 

and hand gestures (i.e. sleeping, sitting quietly, working on a 

computer, watching TV, etc.). Fig. 3 illustrates the cumulative 

distribution function (CDF) of the MAV for FI and NFI 

epochs in SF1(t) for one subject. The CDF represents the 

probability that an epoch will have a MAV less than or equal 

to a certain number in the x-axis. The CDF for NFI epochs 

grows faster than the CDF for FI epochs (Fig. 3), meaning that 

there is a high probability to find a NFI epoch with low MAV 

but a low probability to find a FI epoch with the same MAV 

and vice versa. Consequently, a common threshold value, T1, 

was determined for all subjects and the indexes of the i-th 

epochs having a MAV below T1 were stored in a vector IdxSF1 

for further processing.  

In the second step, the mean of the acceleration signals was 

computed as:  

( ))()()(31)(2 tACCtACCtACCtSF ZYX ++⋅=  (3) 

SF2 (t) was divided into MS non-overlapping epochs of 30 s 

duration and a class label ci was assigned to each epoch ei as in 

the first step. The MAV of SF2(t) within each epoch was 

calculated as in (2). Since most of the individuals consumed 

foods in a sedentary position, it was reasonable to anticipate 

that SF2(t) epochs would have higher MAV during activities 

involving body acceleration (i.e. walking, running, etc.) than 

during food intake. An example of this rationale is presented in 

Fig. 4, which shows a clear difference in the amplitude of 

SF2(t) (middle) during eating and during walking. This 

difference is not that clear in the jaw motion signal (top). Thus, 

a common threshold value T2 was set for all subjects and the 

indexes of the i-th epochs in SF2(t) with a MAV above T2 were 

stored in a vector IdxSF2 for further processing. 

 
Fig. 3. Cumulative distribution function (CDF) of the MAV for food intake 

(FI), no food intake (NFI) epochs in SF1(t). Dashed line represents the CDF 

for all epochs combined. 

The two steps of the Sensor Fusion algorithm were performed 

independently, so the epoch indexes in IdxSF1 and IdxSF2 were 

grouped into a new vector { } SD
SFSFSF IdxIdxIdx ℜ∈∪= 21  

with DS < MS total number of epochs for each subject S. 

Finally, the signals JM (t), HG (t), ACCx(t), ACCy(t), ACCz(t), 

and PB(t) for each subject were divided into MS non-

overlapping epochs of 30 s duration, which were synchronized 

in time with SF1 (t) and SF2 (t) epochs. Thus, the epoch indexes 

stored in IdxSF were used to label the sensor signals epochs as 

NFI and remove them from the dataset used in the pattern 

recognition task. As a result, a total of DS epochs were 

removed from the initial MS epochs for each subject S. 

Implementation of this procedure allowed obtaining a more 

balanced dataset with approximately 36% of epochs labeled as 

food intake. 

 
Fig. 4. Food intake and walking intervals captured by the jaw motion and 

accelerometer sensors. Reduced body acceleration is seen during food intake. 

B. Feature Extraction 

Time and frequency domain features were extracted from 

the remaining epochs of the sensor signals and combined to 

create a feature vector fi 
68ℜ∈ that represented a 30 s interval. 

Each vector fi was formed by combining features from sensor 

signals as: { }
ACCHGJMi ffff ,,= , where fJM 

38ℜ∈ , fHG
9ℜ∈ , and 

fACC 
21ℜ∈ represented the subsets of features extracted from 
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JM(t), HG(t), and the accelerometer signals respectively [27].  

The subset fJM included time and frequency domain features 

extracted from each epoch of the jaw motion signal (Table I). 

Frequency domain features were computed from different 

ranges of the frequency spectrum of JM(t) within each epoch. 

Previous studies determined that features in the 1.25-2.5 Hz 

range contained information about chewing, which was 

successfully used to discriminate between FI and NFI epochs 

[17]. Also, the frequency spectrum in the 100-300 Hz range 

presented valuable information to identify talking intervals due 

to fundamental frequencies of voice for adults were found on 

that range [22]. Finally, features in the 2.5-10 Hz frequency 

range were also included in fJM as they may contain important 

information related to other activities (i.e. walking) that could 

help to discriminate between intake and no intake. 

The subset fHG included time domain features extracted from 

the HtM gestures observed within each epoch (Table II). HtM 

gestures were detected when the amplitude of HG(t) exceeded 

a predefined threshold value above the electronic noise.  

The subset fACC contained time domain features computed 

from the accelerometer signals from each axis (Table III). 

Features included MAV, SD and the median value of the 

signal as well as number of zero crossings, mean time between 

crossings and entropy of the signal within the epoch. The 

means of the MAV, SD and entropy across the 3 axes were 

computed to obtain a total 21 features. 

TABLE I. FEATURES EXTRACTED FROM THE JAW MOTION SIGNAL 

# Description # Description

1 Mean Absolute Value (MAV) 20 Energy spectrum in chewing range
2
 (chew_ene)

2 Root Mean Square (RMS) 21 Entropy of spectrum chewing range (chew_entr)

3 Maximum value (Max) 22 Ratio: chew_ene / spectr_ene

4 Median value (Med) 23 Energy spectrum in walking range
3
 (walk_ene)

5 Ratio: MAV / RMS 24 Entropy of spectrum walking range (walk_entr)

6 Ratio: Max / RMS 25 Ratio: walk_ene / spectr_ene

7 Ratio: MAV / Max 26 Energy spectrum in talking range
4
 (talk_ene)

8 Ratio: Med / RMS 27 Entropy of spectrum talking range (talk_entr)

9 Signal entropy (Entr) 28 Ratio: talk_ene / spectr_ene

10 Number of zero crossings (ZC) 29 Ratio: chew_ene / walk_ene

11 Mean time between ZC 30 Ratio: chew_entr / walk_entr

12 Number of peaks (NP) 31 Ratio: chew_ene / talk_ene

13 Average range 32 Ratio: chew_entr / talk_entr

14 Mean time between peaks 33 Ratio: walk_ene / talk_ene

15 Ratio: NP/ZC 34 Ratio: walk_entr / talk_entr

16 Ratio: ZC/NP 35 Fractal dimension

17 Wavelength 36 Peak frequency in chewing range (maxf_chew)

18 Number of slope sign changes 37 Peak frequency in walking range (maxf_walk)

19
Energy of the entire frequency 

spectrum
1
 (spectr_ene)

38 Peak frequency in talking range (maxf_talk)

 
1Frequency range: 0.1-500 Hz; 2 Chewing range: 1.25-2.5 Hz; 3 Walking range:2.5-10 

Hz; 4 Talking range: 100-300 Hz.  

TABLE II. FEATURES EXTRACTED FROM THE HAND GESTURE SIGNAL 

# Description # Description

1 Num. of HtM gestures within epoch (num_HtM) 6 Wavelength (WL)

2 Duration of HtM (D_HtM) 7 Ratio: WL / Duration HtM

3 MAV of HtM 8 Ratio: D_HtM / num_HtM

4 Stardard Deviation of HtM 9 Ratio: MAV_HtM / D_HtM 

5 Maximum value (Max_HtM)  

TABLE III. FEATURES EXTRACTED FROM THE ACCELEROMETER SIGNALS 

# Description # Description

1 MAV of ACC X  (MAVx) 12 Entropy of ACCy  (Entr y )

2 SD of ACC X  (SDx) 13 MAV of ACCz  (MAVz)

3 Median of ACCy 14 SD of ACCz  (SDz)

4 Num. of zero crossings (ZC) for ACCx 15 Median of ACCz

5 Mean time between ZC for ACCx 16 Num. of ZC for ACCz

6 Entropy of ACCx (Entr x ) 17 Mean time between ZC for ACCz

7 MAV of ACCy  (MAVy) 18 Entropy of ACCz  (Entr z )

8 SD of ACCy (SDy) 19 Mean of {MAVx, MAVy, MAVz}

9 Median of ACCy 20 Mean of {SDx, SDy, SDz}

10 Num. of zero crossings for ACCy 21 Mean of {Entr x , Entr y , Entr z }

11 Mean time between ZC for ACCy  

Finally, each feature vector fi was associated with a class 

label ti ∈ {1,-1}, where ti = 1 and ti = -1 represented FI and 

NFI, respectively. The same rule used in the Sensor Fusion 

step was used here to assign class labels to each fi vector. A 

dataset containing the pairs {fi, ti} was presented to a 

classification algorithm for training, validation and testing. 

C. Classification 

ANN is a supervised learning technique that has shown 

excellent results for many pattern recognition and classification 

problems [28]. ANN is robust and flexible, can analyze 

complex patterns and can handle noisy data. In this study, a 

population-based classification model based on ANN was 

trained to discriminate between food intake and no food intake 

epochs. Implementation of a population-based model (group 

model) was preferred over subject-dependent models (individual 

models) to achieve a robust model that included intra- and 

inter-subject variability and required no individual calibration. 

A three layered (input layer, hidden layer and output layer) 

feed-forward neural network with the back-propagation 

training algorithm was the network topology implemented. The 

input layer consisted of 68 predictors (one for each feature) 

whereas the hidden layer contained a total of 10 neurons. The 

output layer consisted of one output neuron, which indicated 

the final class label ti assigned to the input vector fi in the test 

set. The hyperbolic tangent sigmoid was the transfer function 

used for the hidden and output layers. Training, validation and 

testing of the model was done using the Neural Network 

toolbox available in Matlab R2011b (The Mathworks Inc). 

A leave-one-out cross-validation procedure was used to 

evaluate the performance of the ANN model. This allowed 

training and validating the model with data from 11 subjects 

(80 % of the data for training and 20% for validation) and 

testing with data from an independent subject. This procedure 

allowed each subject to be the test subject once. The final 

result was obtained by averaging the results across all subjects. 

Per-epoch classification accuracy was the metric used to 

evaluate the performance of the classification model [17]. For 

each subject, the accuracy value was computed using all 

subject’s epochs available (including epochs labeled as “no 

food intake” in the Sensor Fusion stage). This was done to 

illustrate the performance the entire Sensor Fusion and Pattern 

Recognition methodology. Accuracy was computed as the 

average between Precision (P) and Recall (R) to account for 

the high number of true negatives that are typical in 

monitoring of food intake over long periods of time. These 
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metrics measured the ability of the model to recognize FI epochs 

while rejecting NFI epochs. Finally, a weighted average 

accuracy was computed to determine whether the size of the 

subject’s datasets will impact on the final results. This average 

was weighted by the proportion of epochs of a subject’s 

dataset in the total amount of epochs 

IV. RESULTS 

Information collected from the food diaries indicated that 

the foods consumed were mostly solids and liquids (a total of 

40 different foods). There was only one event associated to 

semi-liquid intake (yogurt). Tea/coffee (consumed 12 times), 

rice (9 times), toast (6), oranges (6), chips (5), banana (5), 

granola bar (5), cereal (4), chicken (2), and waffles (2) were 

the foods of choice for participants.  

The dataset used to create the food intake detection model 

contained approximately 10 hours of data labeled as food 

intake. Results of the leave-one-out cross-validation procedure 

for the different sets of features are showed in Table IV. The 

values in the table represent the mean and standard deviations 

of the food intake detection accuracy as well of the precision 

and recall results. The best performance was achieved by 

combining features from the jaw motion and the accelerometer 

signals (89.8%). Using such features, one half of the subjects 

presented accuracies above 90%, being 75.82% and 97.7% the 

lowest and highest accuracy values obtained, respectively. 

Inclusion of hand gesture features did not improve the results. 

Weighted average accuracy values showed no major 

differences when compared to the original average accuracy. 

TABLE IV. CROSS-VALIDATION RESULTS FOR DIFFERENT FEATURE SETS
1 

Mean SD Mean SD Mean SD

88.1 8.5 84.8 14.4 86.4 8.8 86.1

38.0 35.4 7.1 11.1 22.6 21.4 22.3

74.1 12.6 67.3 20.5 70.7 10.7 70.8

87.7 9.4 86.3 9.0 87.0 6.6 86.7

89.8 8.8 89.9 9.0 89.8 6.7 89.7

73.4 12.0 70.7 18.3 72.0 10.0 72.3

89.1 8.5 90.4 4.9 89.7 5.5 89.5

Weighted 

accuracy (% )

Accuracy (% )

f JM  + fHG  + fACC

Precision (% ) Recall (% )
Feature set

f JM

fHG

fACC

f JM  + fHG

f JM  + fACC

fHG  + fACC

 
1 fJM: jaw motion features; fHG: hand gesture features, fACC: accelerometer features 

 

Fig. 5. Food intake prediction results for an average performance of the group 

model. It was able to predict (bottom graph) all major meals (2 hrs, 9 hrs and 22 

hrs) but failed to predict a snacking event at 7 hrs with a false prediction at 6 hrs. 

Fig. 5 shows the food intake detection results for one subject. 

The model correctly detected all major meals (lunch, dinner 

and breakfast at 2 hrs, 9 hrs and 22 hrs, respectively) and 1 

snacking episode (granola bar at 1 hr) but incorrectly predicted 

food intake at 6 hrs. Also, the model failed to predict a 

snacking event (slice of bread) at 7 hrs. The difference in the 

physical properties of the snacks may have been the reason for 

correctly detecting one out of two snaking events. Overall, the 

model correctly detected all of the 30 major meals consumed 

by the participants while incorrectly predicting the occurrence 

of 1 major meal. Regarding to snacking, 18 out of 19 episodes 

were correctly detected while 27 episodes were incorrectly 

predicted. Although this number may appear to be high, it only 

represented a total of 15 minutes of ingestion (2.5% of the 

total food intake time).  

V. DISCUSSION AND CONCLUSIONS 

The development of new strategies for objective and accurate 

monitoring of ingestive behavior of free-living individuals is 

imperative to overcome the current limitations of self-reported 

food intake. This paper introduced the Automatic Ingestion 

Monitor (AIM) as a wearable device for objective monitoring 

of food intake under free-living conditions. Compared to the 

state of the art, this work presents three new contributions: 1) 

the design and implementation of a novel wearable multi-

sensor device that has the ability to monitor 24 hours of 

ingestive behavior without relying on self-report or any other 

actions from subjects, 2) the implementation of a robust 

methodology for reliably detecting food intake episodes in the 

presence of real-life artifacts in the sensor signals, and 3) the 

validation of the device and methodology in an objective study 

where 12 subjects wore AIM in free living during 24 hours 

without any restrictions on their eating behavior and activities. 

The proposed wearable device presented several benefits 

that make it suitable for food intake monitoring without a 

conscious effort from the subjects. First, AIM integrated three 

different sensor modalities for monitoring of jaw motion, 

hand-to-mouth gestures, and body motion. Second, AIM was 

designed as a pendant worn on a lanyard around the neck 

which intended to satisfy the need for a socially acceptable 

device. Although further quantitative evaluation of necklace 

and sensors wear convenience is needed, preliminary studies 

showed that the jaw motion sensor presented high levels of 

wearing comfort and did not significantly affect the way 

subject eat their meals [29]. Third, the electric circuit 

embedded in the wireless module contained mostly low power 

components permitting 24 or more hours of data collection 

without need for recharging the battery. Finally, AIM presented 

a reliable data transmission system using Bluetooth 

technology. Minimal data loss was observed during the 

experiments. Only about 1.6% of the total data was lost most 

probably due to subjects walking away from the phone. All of 

these properties of AIM would theoretically keep subjects 

away from the burden of self-reporting their intake and 

provide objective measures of food consumption. Although 

AIM in its present form is rather a tool for studying of 

ingestive behavior over a period of several days, in the future 

it can be miniaturized into a less intrusive device suitable for 

long-term studies and personalized everyday monitoring. 

An accurate detection of food intake in free living is highly 

desirable to obtain reliable information about dietary intake of 

individuals. Wearable systems integrating sensor signals with 



0018-9294 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBME.2014.2306773, IEEE Transactions on Biomedical Engineering

>TBME-01050-2013.R2 < 

 

7

complex pattern recognition algorithms have been implemented 

as a potential solution to self-reported intake [12], [14], [16]–

[19]. Such systems achieved recognition rates ranging from 

80% to 90%. However, direct comparisons with AIM results 

cannot be quantified due to they were obtained under different 

scenarios. The methodologies used in those wearable systems 

were developed based on data collected in the laboratory, 

which may result in high accuracies but with a poor 

generalization that would make them unreliable for free-living 

data. On the other hand, AIM incorporated a novel methodology 

based on free-living data that correctly detected around 90% of 

food intake. The advantage is that AIM can accurately detect 

ingestion events in a challenging scenario, where the real-

world variability directly affects the eating behavior and is 

usually missing in laboratory settings, e.g. food selection, 

timing of meals (i.e. determined by external schedules, work, 

etc.), food intake environments and food intake behavior, 

which may vary during the course of a day [30], [31]. 

The methodology proposed consisted of three steps: sensor 

fusion, feature extraction, and classification. The sensor fusion 

step was implemented to balance the dataset and to remove 

potential outliers in the signals. Sensor fusion used information 

from the sensor signals to identify and remove more than 85% 

of NFI epochs for each subject (i.e. resting, walking, sleeping) 

while retaining most of the FI epochs (< 5% of FI epochs were 

removed per subject). In the feature extraction step, a set of 

time and frequency domain features were computed every 30 s 

of sensor signals and feed to the classifier. Table IV 

demonstrates that features from the jaw motion signals were 

the most important for food intake detection. The classification 

step presented a robust group model based on ANN. Although 

various advanced classification techniques and feature 

selection were previously evaluated by this research team [17], 

[22], [27], a computationally lightweight ANN algorithm was 

used because it can be easily implemented in a processor of a 

wearable system. This ANN model was able to identify when 

the major meals were consumed and when most of the 

snacking periods occurred.  

In the proposed methodology it was assumed that food 

intake is mutually exclusive with vigorous physical activity (> 

6 Metabolic Equivalents [32], for example, running). Indeed, 

although the study did not restrict or specify the way in which 

the food is to be consumed and involved individuals with 

origins from 5 different countries, having different lifestyles 

and ingestive behaviors, all of the participants demonstrated a 

tendency to eat while remaining sedentary. It is possible that 

some individuals may consume foods during physical activity 

of moderate intensity (3 to 6 MET) and the methodology will 

need to be validated in such scenarios. Lastly, the 

methodology requires no individual calibration meaning that it 

can potentially be used to detect food intake in a wide 

population. Another observation is that the optimization of the 

threshold values in the sensor fusion algorithm was based on 

the population as a whole. However, due to the diversity of 

subject population, the threshold values should be close to 

optimal and should not bias the recognition results. 

The main limitation of this study is related to the use of self-

report as the gold-standard for developing the food intake 

detection methodology. Subjects may provide inaccurate 

information about dietary intake, thus leading to unreliable 

results. However, self-report error is mostly related to the 

amount of food consumed and the misreporting bias becomes 

significant over longer periods of time [25]. To minimize the 

reporting error, subjects were asked to report their intake in 

two different ways: by pushing a button during the chewing 

process and by writing down in a food journal the times at 

which foods were consumed. Push button data were analyzed 

in 30 s epochs and used to label sensor signals. This windowing 

procedure impacted on the accuracy of the timing reference. 

However, for the rule selected to label the epochs (see section 

III.a), the worst case scenario would have an epoch labeled as 

food intake when it contains 10 s of data associated to an 

ingestion event while the remaining 20 s will not be related to 

food intake. Even with this error, the timing of ingestion 

events using the windowed push button signal is significantly 

more accurate than timing events using the conventional food 

journal, which are typically filled post-factum and contain only 

approximate times. 

The use of the push button and the monitoring system itself 

may change the eating behavior of individuals. However, there 

are two points to consider. First, even if the behavior was 

changed by using a push button in this study, AIM was able to 

accurately detect food intake episodes. Also, the use of push 

button is only required at the stage of algorithm development 

and in the future will not affect the behavior. Second, AIM is 

likely to affect behavior less than other methods as it does not 

rely on the self-report. The testing of this hypothesis is left to the 

future as it requires a much larger study and methods to assess 

behavior change under observation by different methods. 

Another limitation of the methodology may be related to the 

capability of detecting liquid intake through the monitoring of 

jaw motion. The reported accuracy value corresponded only to 

solid food intake. Our previous studies suggested the presence 

of the characteristic jaw motion during a continuous intake 

(gulping) of liquids that is similar to the chewing present in the 

intake of solid foods [17]. Further studies are needed to 

determine the feasibility of the proposed methodology to 

detect liquid intake in free-living. In addition, effects of sensor 

positioning on the jaw and their impact on the accuracy of 

solid and liquid intake detection need to be studied. 

Finally, the collected diary data was not enough to analyze 

the impact of certain activities on accuracy of food intake 

recognition. Our goal was to minimally load the participants 

with reporting burden, thus information about daily activities 

was restricted to what they reported in the diary. An 

observational study would be needed to obtain greater detail 

about subject’s activities during the day and to better 

understand the behavior of AIM under daily life conditions.  

 The results presented in this study indicated a satisfactory 

level of robustness of the system for recognizing food intake 

events in free-living population, although testing on a larger 

and diverse population will be required to demonstrate 

performance of the device for individuals with uncharacteristic 

eating behaviors such as binge eating, bulimia nervosa, 

anorexia nervosa, compulsive eating disorders, etc. Lastly, 

future studies of the system will evaluate social acceptability 
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and subject compliance with wearing the device.  

Although the prediction was done offline, in the future AIM 

is intended to perform real-time recognition and 

characterization of food intake (i.e. how much food is 

consumed) as well as to provide on-time feedback to 

individuals about their intake behavior. Estimation of the mass 

ingested could be achieved through the counts of chews [13] 

and the type and caloric density of food could potentially be 

determined by adding a camera triggered by the detection 

algorithm [19]. Ingested mass could also be predicted by 

acoustic recognition of chewing cycles and food types. A prior 

study showed that the bite weight of a reduced number of food 

types may be predicted using chewing sound features [15]. 

However, the main challenge facing this sound-based approach 

is the generalization of the bite weight prediction models for 

the broad variety of foods encountered in everyday life.   

The development of AIM as a wearable device for 

monitoring food intake would intend to serve as a behavioral 

modification tool for correcting known ingestive behaviors 

leading to weight gain (snacking, night eating, weekend 

overeating) and would help to advance the study of free-living 

food consumption in obesity and in other eating disorders.  
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