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Abstract

Several groups in neurobiology have embarked into deciphering the brain circuitry using large-

scale imaging of a mouse brain and manual tracing of the connections between neurons. Creating 

a graph of the brain circuitry, also called a connectome, could have a huge impact on the 

understanding of neurodegenerative diseases such as Alzheimer’s disease. Although considerably 

smaller than a human brain, a mouse brain already exhibits one billion connections and manually 

tracing the connectome of a mouse brain can only be achieved partially. This paper proposes to 

scale up the tracing by using automated image segmentation and a parallel computing approach 

designed for domain experts. We explain the design decisions behind our parallel approach and we 

present our results for the segmentation of the vasculature and the cell nuclei, which have been 

obtained without any manual intervention.
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I. Introduction

Multiterabyte volumetric datasets of a mouse brain have been acquired in different 

institutions using serial-section electron microscopy [1]–[22]. Manual tracing efforts by 

teams of up to 70 trained biologists working for several months have led to the analysis of a 

portion of these datasets [23]–[30]. However, creating a complete connectome using such a 

labor-intensive method would require several decades and is unlikely to scale up with the 

size of future datasets. In order to reduce this time frame to the order of days, we propose to 

combine robust segmentation techniques and a flexible, parallel computing approach. We 

first describe our segmentation algorithm as we apply it on subvolumes of the volumetric 

dataset. Then we explain and justify our decision to use the Intel CnC library [31]–[36] as 

the framework for our parallel implementation. Next, we present some results for the 

segmentation of the vasculature and the cell nuclei, and finally, we discuss potential 

applications in other scientific domains and we summarize the article.

II. Segmentation Algorithm for Subvolumes

Our segmentation algorithm is a sequence of automated image operations performed on 

multiscale subvolumes: extraction of subvolumes, local image filtering, and robust 

connected component analysis.

A. Extraction of Multiscale Subvolumes

The size of a subvolume depends on the scale of the feature of interest. For the vasculature 

large subvolumes are necessary, while for cell nuclei smaller subvolumes are created. Note 

that features split between neighboring subvolumes might be discarded because they do not 

exhibit a sufficient size in any subvolume. To address this issue, we create subvolumes, also 

called ghost volumes, that overlap by at least half the maximum diameter of the feature of 

interest. The overlap is significantly smaller along the Z axis than along the X and Y axes 

since the section thickness is typically larger than the in-plane pixel resolution.

B. Local Image Operations

We perform local operations on the images based on the intensity distribution of the feature 

of interests, in a similar fashion as typically performed on a region of interest. First, we 

manually segment the feature of interests in three randomly selected subvolumes and 

perform an histogram analysis for the different features. Then we select the intensity 

threshold that results in the minimum misclassification. Finally, since small clusters of 

pixels are typically noise, we remove them and fill the holes within large clusters of pixels. 

This sequence of intensity thresholding and noise removal results in large areas that 

characterize the features of interest that we try to segment.

C. Data Recovery and Connected Components Analysis

It is typical that part of a tissue sample gets damaged during the sectioning or the staining. 

This artifact results in partially imaged sections. Fortunately, performing the sectioning 

process at a thickness below the size of the features of interest allows for some data recovery 

by interpolation across the stack of imaged sections. First we sum up the intensity of pixels 
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across Z stacks of  sections, where N is the total number of sections within a subvolume. 

Since the previous operations produced binary sections, the pixel intensity within each 

section is either 0 or 1. Then, if the total intensity of a pixel after the summation is larger 

than , the pixel is classified as belonging to a feature of interest. Finally, we perform a 3-D 

connected components analysis, compute their respective number of pixels, and threshold 

out the smaller components.

III. Parallel Computing Approach

The development of parallel computing code can be challenging. In parallel computing 

solutions using libraries such as OpenMP [37], specific keywords need to be inserted inside 

the computation methods. These modifications require that the programmer is not only a 

domain expert, but also a parallel computing expert. Our approach is a departure from this 

programming methodology in the sense that only the signatures of the computation methods 

are modified and only a small header file describing the relations between data items and 

computation methods, also called computation steps, is added.

A. Subvolume Items and Segmentation Steps

In our application, the data items are the image subvolumes, and the computation steps are 

the segmentation methods for the different features of interest. Every image subvolume is 

indexed by a triplet 〈i, j, k〉, which we call a subvolume control tag. The segmentation 

method will consume a pair of subvolume control tag and subvolume data item. The method 

is then triggered and upon its execution it will produce a set of segment data items, where 

the entire set is indexed by a segment set control tag 〈x, y, z〉, where x = i, y = j, z = k.

B. Segment Sets and Merge Steps

To connect segments across neighboring subvolumes, we write a merge method that 

compares the segments across subvolumes, and connects the segments that overlap. The 

merge method thus consumes a segment set control tag and produces a connectivity tag 〈u, 

v, w, a, id〉, where u = x, v = y, w = z, a ∈ 1, 2, 3 defines the direction of the neighboring 

subvolume (+X axis, +Y axis or +Z axis), id is the id of the segment in the second 

subvolume.

C. Reconstruction Step

Upon completion of all the merge steps, a reconstruction step is executed to create the 

segmentation results for the entire dataset. This light-weight step simply follows the list of 

connectivity tags and puts together the segments that overlap partially. Fig. 2 shows a 

graphical presentation of the elements in the Intel CnC header file.

IV. Results

We applied our parallel implementation to segment the vasculature and the cell nuclei in the 

entire dataset. The overlay of our segmentation results on one section of the dataset is shown 

in Fig. 3. A surface rendering in 3-D can be seen in Fig. 4.
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A. Data Acquisition

We extracted a volumetric sample of tissue within the visual cortex of a mouse, and 

performed the tissue fixation within resin. Then we sectioned the sample at a 45 nanometer-

thickness, we stained each section for electron microscopy imaging. We acquired 1153 

serial sections under a transmission electron microscope where the electron beam is 

projected onto a phosporus plate 1.5 m below the sample and a CCD camera captures a 

gray-level picture. The section is incrementally displaced along the X axis and the Y axis in 

order to cover the entire length and width of the section.

B. Data Size and Computation Time

The digitized section composed after mosaicking and alignment of the camera images has a 

length of 135 200 pixels and a width of 119 600 pixels. The total size for the uncompressed 

dataset is approximately 19 terabyte, which makes it the largest imaging dataset for a single 

volume. An array of 5-RAID disks was used to store the data and was connected through a 

SATA port onto a workstation with two 3.2 GHz quad-core processors with 32 GB memory. 

Each subvolume was 3250 pixel by 3250 pixel in-plane and 50 sections high. The overlap 

margin was 650 pixels in the −X, +X, −Y, and +Y directions, and the overlap in −Z and +Z 

was five sections. The total computation time for the entire 19 terabyte dataset was two days 

and 10 h.

C. Computation Speedup

To assess the speedup due to the parallel implementation, we performed an experiment on a 

subset of the dataset. We divided the length and the width of the dataset by 16, and extracted 

a subvolume with this reduced dimensions, i.e., 1153 sections of 8450 pixel by 7475 pixel 

images, around the center of the original dataset. The execution of the serial implementation 

took 1 h and 26 min, while the execution of the parallel implementation took 14 min, 

resulting in a 6.14 speedup factor. The segmentation results were identical. Given that our 

hardware had two quad-core processors, the maximum speedup factor would be 8. Since the 

imaging operations on the individual subvolumes are the most time-consuming, we 

speculate that our application could be considered as embarrasingly parallel. In this context, 

a speedup close to the total number of subvolumes (i.e., 46 × 52 = 2392) could be attained 

on a cluster with an equal number of processors.

V. Validation

We perform the following validation experiment to compare the accuracy of our 

segmentation results versus the tracing by an expert. First, we randomly select one cell 

nucleus within the volumetric dataset and extract a 3250 pixel × 3250 pixel subvolume Sd 

centered on this cell nucleus. Second, we extract a 3250 pixel × 3250 pixel subvolume Ss 

centered at the same position within the segmentation results, and we locate the largest 

connected component Cs. Then an expert manually contours the cell nucleus in every section 

of Sd, so that a volumetric component Cm can be reconstructed from the stack of contours. 

We denote Cs̄, the pixels, within Ss that do not belong to Cs. Similarly, C̄m is the set of 

pixels within Sm that do not belong to Cm. In this experiment, 49% of N, the total number of 

pixels within the subvolume, belong to Cm, thus #Cm ≈ #C̄m. Finally, we compute 
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normalized values for the true positives TP, true negatives TN, false positives FP, and false 

negatives FN as formulated in (1), (2), (3), and (4). An exact segmentation would lead to TP 

= 100%, TN = 100%, FP = 0%, and FN = 0%. Our results are TP = 95%, TN = 98%, FP = 

2%, and FN = 5%.

(1)

(2)

(3)

(4)

The high values for TP and TN demonstrate the accuracy of our segmentation results. The 

relative larger value for FN compared with FP indicate that portions of the nucleus were not 

included in the segmentation results. The overlay of the segmentation results with the 

original sections shows that dark areas close to the membrane of the nucleus are often mis-

segmented. These dark areas are typically clusters of polyribosomes, as shown in Fig. 1.

We believe that the extension of our multiscale segmentation algorithm to smaller features, 

such as mylenated axons and dendrites, is possible. The segmentation step for the nuclei 

needs to produce a triplet 〈i, j, k〉, which will then be consumed by a segmentation step for 

the mylenated axons and dendrites. It is possible to refine the segmentation by using 

different image operations for mylenated axons and dendrites, and for basal dendrites and 

apical dendrites. The rationale is the same as explained in this paper: in every subvolume the 

segmentation step at the large scale is performed first and generates the control tag that will 

trigger further segmentation steps at finer scales.

VI. Conclusion

We have presented a solution for scaling-up the tracing of the connectome using automated 

segmentation and parallel computing. The idea is to apply robust image segmentation 

techniques in carefully-sized subvolumes and to merge the segmentation results as soon as 

overlapping subvolumes have been computed. Our decision to use Intel CnC library has 

been critical to rapidly port our serial segmentation code into a parallel implementation. We 

have demonstrated that our implementation can segment the vasculature and the cell nuclei 

with high accuracy and without manual intervention. We believe that our approach could be 

extended beyond the automated tracing of a connectome and could solve other data-

intensive applications where the analysis of large volumetric datasets requires an automated 

and accurate solution.
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Fig. 1. 
Our segmentation results (green) for a cell nucleus are highly accurate. Inset A shows that 

the segmentation accurately follows the boundary of the cell. Inset B indicates that 

polyribosomes near the cell membrane can cause a segmentation error, but the error is 

generally very localized and does not propagate to neighboring sections.
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Fig. 2. 
Our parallel computing implementation can be represented in a graph connecting the 

computation steps (blue), the data items (grey), and the control tags (red). We use the Intel 

CnC library in order to separate the development of the computation steps, and the 

development of the header file that describes the relations in the graph above. This 

separation allows for an implementation that can be easily optimized to new hardware 

configurations.
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Fig. 3. 
Overlay of our segmentation results for nuclei and blood vessels on one section of the 

electron microscopy datasets allows for a visual inspection of the segmentation accuracy. 

This presentation can help the expert to visualize the features of interest when reviewing the 

stack of images.
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Fig. 4. 
We created a surface rendering of the segmentation results for cell nuclei (green) and the 

vasculature (red) using triangulation of binary masks and OpenGL visualization. This 

representation helps the expert to understand how the anatomy of the mouse brain is 

organized in space.
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