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Abstract—A neuro-fuzzy classifier (NFC) of sleep-wake states
and stages has been developed for healthy infants of ages 6 mo
and onward. The NFC takes five input patterns previously identi-
fied on 20-s epochs from polysomnographic recordings and assigns
them to one out of five possible classes: Wakefulness, REM-Sleep,
Non-REM Sleep Stage 1, Stage 2, and Stage 3-4. The definite crite-
rion for a sleep state or stage to be established is duration of at least
1 min. The data set consisted of a total of 14 continuous recordings
of naturally occurring naps (average duration: 143 39 min),
corresponding to a total of 6021 epochs. They were divided in a
training, a validation and a test set with 7, 2, and 5 recordings,
respectively. During supervised training, the system determined
the fuzzy concepts associated to the inputs and the rules required
for performing the classification, extracting knowledge from the
training set, and pruning nonrelevant rules. Results on an inde-
pendent test set achieved 83 9 0 4% of expert agreement. The
fuzzy rules obtained from the training examples without a priori
information showed a high level of coincidence with the crisp rules
stated by the experts, which are based on internationally accepted
criteria. These results show that the NFC can be a valuable tool for
implementing an automated sleep-wake classification system.

Index Terms—ANFIS, fuzzy rule extraction, knowledge dis-
covery, neural nets and expert systems, rule pruning, sleep
classification.

I. INTRODUCTION

A. Sleep Classification

SLEEP scoring is a fundamental tool for sleep research
and sleep medicine [1]. In 1968, Rechtschaffen and Kales

(R&K) [2] edited a manual for normal sleep classification
which became the gold standard for classification and, despite
its drawbacks [3], [4], is still in use in most sleep laboratories
around the world [4], [5]. Since the R&K rules were originally
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determined to score sleep in adults, they do not take into con-
sideration the maturational development in infants. Thereafter,
specific age-related scoring systems were introduced. In par-
ticular, Guilleminault and Souquet established a classification
procedure for infants, also accepted as an international stan-
dard, considering subjects of age 3 mo and onward [6]. Thus,
sleep-wake is classified in wakefulness (WA) or one of two
sleep states: REM and Non-REM (NREM) sleep. The latter
is divided in 4 stages numbered from 1 to 4. In this study, we
grouped NREM stages 3 and 4 into a single stage NREM 3 and
4.

The sleep classification process can be divided into three
steps: data acquisition, pattern identification and sleep-wake
states classification. In the first step, several signals generated
by bioelectrical and biomechanical activity of the infant’s body
are simultaneously recorded by a polygraph, generating a large
number of pages with graphical data, i.e., the polysomnogram.
The pattern identification process is performed for each page
or epoch. In the manual approach, the expert determines the
background predominant frequency range in the electroen-
cephalogram (EEG) according to [2] and [6]; relevant for this
study are the slow delta (SD) (0.5–2 Hz) and theta (TH) (3–7
Hz) frequency ranges. The EEG is also examined to detect
sleep spindles (SS), which are in the sigma range (12–14 Hz).
The electrooculogram (EOG) and the electromyogram (EMG)
are used to determine the presence of rapid eye movements
(REMov) and muscular tone (MT), respectively. They are
analyzed in 20- or 30-s-long pages in a polysomnograph. In this
paper, we will always refer to an epoch as a 20-s data frame.

After identifying the sleep patterns present within an epoch,
the experts determine the sleep state or stage using a set of rules
based on [2], [6] (Table I). It is widely accepted that a minimum
duration of 1 min is required to establish a sleep class [7], [8],
i.e., three consecutive epochs. If periods of at least 1 min do
not match any of the rules, they are classified as indeterminate
sleep (IS). The result of this scoring is a hypnogram, which rep-
resents the temporal profile of sleep-wake states evolution. The
1-min rule cannot be applied if fragmented sleep, characterized
by rapid changes of sleep states, were to be analyzed, but this is
beyond the current scope of our ongoing automated classifica-
tion project.

Sleep classification has some degree of ambiguity. Studies
have shown that even among expert coworkers there is less than
90% agreement in sleep classification [9]. Usually, experts from
different research centers have slightly different approaches. In
[5], a reliability study is mentioned where the test-retest agree-
ment for the same experts was 79% for NREM 1, while 98%
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TABLE I
EXPERT’S RULES FOR SLEEP-WAKE STATE CLASSIFICATION

for REM sleep. The same study reported the inter agreement
rates among 3 different laboratories, under uniform criteria, ob-
taining 63% for NREM 1 and 95% for REM sleep. The other
stages ranged from 82% to 93% of inter expert agreement. Sim-
ilar results have been found in other studies [10].

The large amount of data, hence the time-intensive task, as
well as the complexity of the classification procedure and the
variability among human experts are reasons to develop an auto-
mated sleep classification system [11]–[17]. The computational
tools developed for automatic sleep scoring can be grouped in
three different categories. The first are the computational tools
that facilitate the visual scoring by identifying the main sleep
patterns and frequencies of the signals, like [18], [19]; most of
the modern digital polysomnographs come with analysis soft-
ware of this kind. The second category consists of classification
systems [14]–[17], [20]–[22] that perform traditional (R&K-
like) classification of the raw data, yielding a hypnogram. Fi-
nally, the third category includes sleep classifiers using other
than traditional standards to characterize the sleep state of the
patient [23]–[27] .

An evaluation of the computerized system ALICE 3 (Health-
dyne Technologies, Marietta, GA) using 50 subjects [28],
showed substantial differences between automated computer
scoring and manually scored paper polysomnographies. A
manual edition of the computer scoring enhanced the agree-
ment with the paper polysomnography to 75.7%. In general,
none of the existing automated scoring systems is reliable
enough to be fully trusted by physicians or sleep experts.
Nevertheless, they are being used in many sleep laboratories
as a first general characterization that could detect possible
abnormalities.

In [29], a pattern identification system for sleep-wake state
classification which emulates the way the expert searches for
each of the five relevant patterns was implemented. The quality
of the pattern detection was evaluated by classifying the epochs
in their corresponding sleep states and stages using an -cut
classifier which uses the information of Table I as its rule base.

It is desirable for a sleep classifier, or in general, for an au-
tomatic diagnosis system, to possess the following three char-
acteristics in order to be useful and trustworthy: First, it must
have at least a performance similar to the agreement achieved
between two experts; second, it must be adaptable to the user’s
criteria and expertise and third, it must be able to give an accept-
able explanation of the decisions it makes.

B. Neuro-Fuzzy Systems

The artificial neural networks (NN) [30], [31], and the fuzzy
inference systems (FIS) [30], [32], are considered part of the
“soft computing” family. Both approaches generate nonlinear
systems that relate a set of inputs with their corresponding
outputs. The main difference between them is that NN establish
the input-output relations in a numerically quantitative way,
while FIS do it in a symbolically qualitative way [33]. One
of their main applications is to model the behavior of an ex-
pert, imitating its actions in order to solve complex problems.
Neuro-fuzzy modeling allows the construction of FIS to model
a problem domain using a linguistic model, whose parameters
can be adjusted in the same way as the parameters of NN [34].
Since the early 90’s, several neuro-fuzzy systems have been
developed. Most research focused on the ability of neuro-fuzzy
systems to approximate nonlinear functions or to perform fuzzy
control without a priori information, partitioning the input
space with clustering-like methods [36]–[42]. A few of them
addressed the issue of classification [43]–[50]. Applications of
neuro-fuzzy systems to biomedical problems can be found in
[35], [51]–[53].

This paper presents the implementation of a new adaptive
and robust automated neuro-fuzzy classifier (NFC), which is ca-
pable of discovering rules from examples, applied to the sleep
classification problem. It illustrates how neuro-fuzzy systems
can be very valuable in biomedical applications in general and in
automatic diagnosis systems in particular. The NFC is based on
ANFIS [30], [37], [43], one of the most well-known neuro-fuzzy
systems. The initial rule base is usually composed of all pos-
sible rules to gain as many degrees of freedom as possible. In
this case, two fuzzy concepts are associated to each of the 5
sleep patterns, i.e., it can be either present or absent. All possible
combinations of inputs result in rules for each of the 5
classes, i.e., a total of 160 rules. Their parameters can be mod-
ified with supervised learning using gradient descent methods
[31]. This number of rules does not convey a meaning for a
human user. In order to achieve interpretability with the NFC,
we developed a simple, yet effective, pruning mechanism based
on the average contribution of the rules, to eliminate the irrele-
vant ones. Preliminary results of a first version of the proposed
NFC were published in [54].

II. METHODS

A. Data Acquisition and Pattern Identification

Polygraphic recordings were obtained at the Sleep Lab-
oratory, INTA, Universidad de Chile. The procedures were
standardized to minimize the potential influences of the envi-
ronment, circadian rhythms, and/or food intake on sleep-wake
patterns and related physiological activities. Fourteen contin-
uous recordings of naturally occurring daytime sleep (naps)
were obtained from infants between 6 and 13 mo. of age, on a
TECA lA97 18-channel polygraph connected as follows: five
EEG channels with electrode placement adapted for infants
from the international 10–20 system [55] (FP1-C3, O1-C3,
FP2-C4, O2-C4, and C3-C4), EOG for REMov detection, tonic
chin and diaphragmatic EMGs, electrocardiogram (ECG), body
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TABLE II
CHARACTERISTICS OF THE 14 POLYSOMNOGRAPHIC RECORDINGS OF THE DATABASE

movement detection of upper and lower limbs using piezo-elec-
tric crystal transducers, abdominal respiratory movements
using a mercury strain gauge; and nostrils airflow, by means of
a thermistor. All data were simultaneously recorded on paper
and on digital means at a 250-Hz sampling rate. The digital
data were stored in laser media and divided in 20-s epochs for
off-line analysis. Infant behavior was also observed directly
and noted on the polygraph paper. The data were divided in a
training set with 7 recordings, corresponding to 2962 epochs, a
validation set with 2 recordings, corresponding to 691 epochs
and test set with 5 recordings corresponding to 2368 epochs.
Table II shows some characteristics of each recording of the
database, corresponding to 12 different individuals. The first
two letters in the register label identify the patient. The testing
data came from different subjects than the training data or the
validation data. The database separation into the different sets
was decided using Kohonen maps, to have a better representa-
tion of the different combinations of input patterns in all sets.

The pattern detection system described in [29] was applied
to obtain a level of presence for the SD, TH, REMov, SS, and
MT sleep patterns. Its outputs are either percentage of pres-
ence, or quality indices of a given pattern per epoch in the [0,1]
range. Fig. 1 shows examples of the patterns visually identified
as present or absent in the polysomnogram. Both background
activity patterns (SD and TH) were detected analyzing power
spectra on EEG channel 4 (C3-O1) applying fast Fourier trans-
form. For SD the spectra of all overlapping windows of 1024
samples (step size: 128) within an epoch were averaged. The
method also considered the relation between SD and fast delta
activity (2–3 Hz), as well as context information, such as limb
movements (LM) and overall delta activity. For TH the index of
presence was the percentage of windows that showed significant
power in the theta range in a given epoch. The third EEG-based
pattern, SS were detected in a four stage process analyzing the 4
EEG channels FP1-C3, O1-C3, FP2-C4, and O2-C4. The detec-
tion of three consecutive peaks was followed by the formation
of trains of pulses, evaluated according to the amplitude and du-
ration of the trains and finally, the level of presence of SS in the
epoch was determined considering a 5-min context of not only
the 4 EEG channels but also the indices of the other patterns as
well as LM.

Fig. 1. Examples of signal plots taken from isolated segments of polysomno-
grams showing present and absent sleep patterns. The plots for SD and TH were
taken from EEG channel O2-C4, the plot for SS from the EEG channel FP1-C3,
the plot for REMov from the EOG channel and the plot for MT from the chin
EMG channel. The experts mark the presence of sporadic patterns on the paper
as they perform the visual scoring, underlining the episodes of SS and ticking
the episodes of REMov.

The REMov pattern detection began by identifying a peak in
the EOG signal, determined by three consecutive sign changes
in the slope. The amplitude, duration, and power relative to the
surroundings of the peak were combined in two fuzzy REMov
concepts, one optimized for REMov events occurred during WA
and the other optimized for REMov detection during REM, and
thus expressed as two quality indices. The final output consid-
ered that REMov are sparse by nature, and a 1–min memory was
applied. The RMS power of the EMG channel was determined
to establish the MT pattern. The moving window length was dy-
namically adjusted according to the strength of the EMG signal.

B. Neuro-Fuzzy Classifier (NFC)

The parameters of the NFC were adjusted using supervised
learning. Each example of the training set consists of an input
vector , whose components are the levels
of presence of the sleep patterns, and the corresponding desired
output vector . They summarize the ac-
tivity of one sleep epoch of 20 s. The number of inputs is 5;
they are normalized in the interval [0,1]. The number of output
classes is 5; usually one of the outputs is a 1, representing the
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Fig. 2. Neuro-Fuzzy classifier architecture. The inputs are the level of presence
detected for the sleep patterns at a given epoch. Layer 1 determines the mem-
bership degree to the fuzzy concepts present (P ) and absent (A ) for every pat-
tern. In layer 2, the rule strengths are determined using a differentiable T-norm
operator, in this case the product �, which combines the membership degrees
determined at layer 1. Each node at layer 3 corresponds to an output class and
performs first a linear combination of all the strengths calculated at layer 2. The
result is modified by a sigmoid function, establishing a degree of presence of the
input vector to the output class at every node. The node with maximum output
will determine the class associated to the input vector.

current sleep state as classified by the sleep expert, and the rest
are 0 s, except if the current epoch corresponds to the IS class,
in which case all outputs are 0 s.

The training method was enhanced to speed up the training
process and to avoid local minima convergence. It has two
phases. First the system is trained with all possible rules, like
the original ANFIS implementation of the NFC [43]. Then
a pruning procedure is applied to eliminate the nonrelevant
fuzzy rules, extracting relevant rules from a set of data. The
parameters are restored to their initial values and the system is
retrained with the surviving rules only, determining the final
shape of the fuzzy concepts and the final weights for every rule.
The result of the training is a NFC capable of classifying input
vectors in one out of five sleep states.

1) Architecture of the NFC: Fig. 2 shows the architecture
of the ANFIS-based NFC applied to the sleep classification
problem. The system can be divided in 3 layers of processing,
each with functionally different nodes. The number of input
nodes in layer 1 and output nodes in layer 3 was determined
according to the structure of the training data for the sleep
classification problem, as explained in I-B.

a) Layer 1: Fuzzification: In this layer, the level of pres-
ence of the sleep patterns are transformed into fuzzy numbers.
The membership degree to the fuzzy concepts “present” (P) and
“absent” (A) is evaluated for each input. Each fuzzy concept is
represented by a sigmoid

(1)

where is the slope of the sigmoid and its center. Sigmoids
are suitable for this method because they are monotonic, differ-
entiable and bounded in the [0,1] range. The concept “present”
has a positive slope , whereas the concept “absent” has
a negative one . The output of every node at layer 1 is

(2)

where is the th sleep pattern, , and
, with the amount of fuzzy concepts associ-

ated to pattern . In this case, for all . The parame-
ters and correspond to the slope and center of the fuzzy
concept associated to the input at layer 1. Their values were
adjusted during training.

b) Layer 2: Rule Strength: Each rule at layer 2 consists
of an antecedent and a consequent. The antecedent is the set
of conditions that must be satisfied in order to trigger the rule,
and the consequent links the rule with an output class. The rule
strength reflects how well all the conditions of the antecedent
are satisfied. This is performed by a T-norm operation among
the membership degree inputs, considering one fuzzy concept
(either present or absent) per sleep pattern. The T-norm utilized
was the product, although other differentiable T-norms can be
used [30], [43]. Before the pruning phase, there was one node
for each possible combination of present/absent sleep patterns.
The output at the th node of layer 2 is

(3)

where , is the total number of
possible combinations considering one fuzzy concept per input
pattern. In this case, since for all . The
index indicates which of the fuzzy concepts as-
sociated to input is considered in the th rule. It is a function
that returns the value of the position of a (R N) matrix,
which is the concept (in this case present or absent) associated to
the th input variable for determining the th rule strength. The
antecedent of each rule has a unique combination of N fuzzy
concepts. There are no adaptive parameters in this layer.

c) Layer 3: Classes: In layer 3, there are as many output
nodes as sleep classes. Every node performs a weighted sum of
all the rule strengths entering to it and the result is modified by
a sigmoid function. The output at the th node is

(4)

where and are the slope and the center (or bias) of the
output sigmoid of class at layer 3, and is the weight as-
sociated to rule strength in node . The slope was
determined empirically and considered a fixed parameter in all
output nodes. The weights and the bias are adjusted
during training. When a rule is pruned in a certain node , its
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weight is set to 0. Applying equations (1)–(3), (4) can be ex-
pressed as

(5)

which shows the nonlinear relationship between the input vector
of sleep patterns and its degree of membership to the output
class .

The input vector is classified to the sleep-wake state corre-
sponding to the output node that has the maximum value. Im-
itating the expert’s criteria for visual scoring, if the maximum
value is below a threshold of 0.2, the epoch is classified as IS.

2) Parameter Adjustment: Layers 1 and 3 have parameters
that can be adjusted to optimize the classification performance
of the system. The four parameter types that are adjusted during
training are the slope and bias of the fuzzy concepts at layer 1,
and the weights and bias in each output node at layer 3. These
parameters are adjusted using gradient descent [30], [31], ac-
cording to

(6)

where is the parameter to be modified, is the learning rate,
and is the error function to be minimized. In this paper, the
error function was set as the mean squared error (mse), which
is defined as

(7)

where is the number of examples in the training set, and
is the desired output. The learning rate is a constant that deter-
mines the step size in the direction that locally minimizes the
error function. Each parameter was adjusted applying an indi-
vidual learning rate. The learning rates , and
used to modify the parameters and , respec-
tively, were set as large as possible to have a fast convergence
but without reaching an oscillatory behavior. Using the chain
rule of calculus, the update rules for each of the four parameters
were obtained, e.g., for

(8)

with ; the set
K includes all the rules involving the fuzzy concept being ad-
justed. Since each input is associated to two fuzzy concepts, the
set K has a cardinality of R/2.

The update rules were applied iteratively in an off-line
(batch) learning mode. After presenting all the examples,

which is called a training epoch,1 the parameters were updated
according to , where denotes the th training
epoch.

At layer 1, the slopes of the fuzzy concepts were initialized
at .The biases of the fuzzy concepts were initialized
in the midpoint of its range, according to

(9)

where is the th component of example in the training set.
Both concepts, present and absent ( or 2, respectively),
were initialized with the same bias and the same absolute value
of the slope. At layer 3, the output sigmoid biases were ini-
tialized at 0.5 and the rule weights were initialized with
random numbers in the [0,1] interval. This originated a small
variability among different simulations.

The training of the parameters had two phases: before pruning
(B.P.) and after pruning (A.P.). In the B.P. phase, the goal was to
identify and eliminate the nonrelevant rules for each output. The
system was trained for 500 training epochs and then the least
relevant rules were pruned. In the A.P. phase, the goal was to
establish the optimal parameter values considering only the sur-
viving rules. At the beginning of this phase, the parameters were
reset to the same initial values used at the beginning of the B.P.
phase. The system was trained again without the pruned rules,
until the classification performance of the validation set stopped
improving or the system reached a maximum of 500 training
epochs. For determining if the performance had stopped im-
proving, the average agreement percentage of the last 50 epochs
was compared to the average of the previous 50 epochs. The
whole training process is called one simulation.

3) Modifications Introduced to the Original ANFIS System:
a) Pruning mechanism: The ANFIS classifier proposed

in [43] considered all possible rules formed by combining
one fuzzy concept per input pattern. The aim of the proposed
pruning mechanism is to eliminate the least relevant rules
without producing a significant deterioration in the classifica-
tion performance.

The relevancy of the th rule for a given input vector is
measured as the contribution it makes to the output of the cor-
responding node . Using (5), the rule contribution (RC) can be
expressed as the weight of the rule multiplied by its strength

(10)

For each output node , the pruning mechanism stores the con-
tribution of every rule each time a training vector is associated
to class . After a training epoch, the average contribution of
every rule in each output node is calculated. These average con-
tributions are normalized dividing them by the highest average
contribution in each output node. A rule contributing rarely to a
node would present a small average contribution, because even
if its contribution is high once or a few times, it would be av-
eraged with several low ones. Rules that always have a weak
strength, i.e., they map an empty area of the input space, would

1We use the term epoch as one frame of sleep data and the term training epoch
as one presentation of all the examples when training the NFC.
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also have a low average contribution. After the B.P. training, if
the normalized average contribution of a certain rule for output
node is below a pruning threshold, the rule is eliminated for
that output node by setting its weight to 0. The pruning threshold
value is determined iteratively (iteration steps of 1% of nor-
malized average contribution) as the largest value, hence the
smallest set of surviving rules that does not significantly dete-
riorate the classification, measured by not degrading the results
of the validation set in more than 0.5%. As a consequence of
pruning the irrelevant rules, the classifier greatly simplifies its
architecture. Moreover, because of the fuzzy nature of the input
variables, the surviving rules have a direct linguistic meaning,
expressing in simple terms the criteria applied to classify each
sleep class.

b) Weighted Error: The parameter adjustment was origi-
nally driven to minimize the mse However, this could produce a
suboptimal classification performance because the expert-clas-
sified output for each example was binary (one for the corre-
sponding class and zero for the rest), whereas the system-classi-
fied output corresponded to the node with the maximum value.
All the parameters were updated proportionally to the output
error, which is given by

(11)

Sometimes adjusting the system to obtain a closer-to-one output
of an already well classified example could decrease the mse
more than what fixing a wrongly classified example would do.
As a result, the training had a less than optimal performance.

In order to improve the algorithm performance, the update
rules were modified, amplifying the output error for the classes
that showed poor classification performance during training,
thus increasing their influence when adjusting the parameters,
i.e.,

(12)

where is the weighted error obtained for the example at node
is the error calculated as in (11), is the percentage of

misclassification in class c and ( is the per-
centage of misclassification of class . The 0.1s were arbitrarily
added to avoid zeros when there is no error in a class, and chosen
small enough to maintain an error amplification proportional to
the class error-minimum class error quotient while class results
remained unbalanced. The weighted error produced not only an
improvement in the classifier homogeneity, i.e., the classes pre-
sented a more even classification performance, but also a faster
convergence and a better global agreement rate.

4) State Duration Algorithm: A state duration algorithm was
created in order to filter the epoch by epoch classification ob-
tained by the NFC and simulate a minute-by-minute classifica-
tion, as introduced in I-A. The state duration algorithm trans-
forms the 20–s based classification into a 1-min-based one, ac-
cording to expert-based empirically developed criteria.

Fig. 3. Average contribution of the 15 extracted (nonpruned) rules for sleep
classification. The relevance of each rule was given by its normalized average
value. All rules matched the expert rules except rules number 31 and 32 for
NREM 1, which were additional rules established by the NFC. For NREM 3 and
4, 4 expert rules were pruned due to lack of training examples with meaningful
contribution. These 15 rules were combined and expressed as the 5 rules shown
in Table III, recursively applying that, if two rules for the same output class
differ only in the fuzzy concept associated to one pattern, they were merged
into a single rule declaring that pattern irrelevant.

TABLE III
FUZZY RULES OBTAINED BY THE NFC FOR SLEEP CLASSIFICATION

III. RESULTS

The average agreement between the NFC and the sleep ex-
pert was determined using 20 simulations, with different ini-
tial values for the rule weights set randomly. In all simulations,
the same rules survived the pruning, with different parameter
values.

A. Fuzzy Rule Extraction

Every fuzzy rule in the sleep classification problem associates
a 5-dimensional fuzzy region in the input space with a degree
of membership to an output class. This degree of membership
was determined by the multiplication of the rule strength and
the rule weight, modified by the corresponding output sigmoid.
The pruning algorithm identified and eliminated the least rele-
vant fuzzy rules for every class, according to their average con-
tribution as defined in Section II-B3). As a result of applying
these criteria, it turned out that any rule whose normalized av-
erage contribution was lower than a threshold of 7% was pruned,
because it did not contribute significantly to the classification
(cumulatively less than 0.5% measured on the validation set).
Fig. 3 shows the surviving rules with their average contribution
for each output class; 145 rules were pruned, leaving a rule base
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TABLE IV
CLASSIFICATION RESULTS OF THE NFC

of only 15 relevant rules. These rules were later combined in a
reduced set of 5 rules as explained below.

To enhance the human understandability of the extracted
knowledge, when two meaningful rules belonging to the same
output class differ only in the fuzzy concept associated to one
pattern, they were merged into a single rule declaring that
pattern irrelevant. This means that if one rule required con-
cept n-Present and the other required concept n-Absent while
matching all other conditions for the same class, the level of
presence of pattern was irrelevant in discriminating whether
the input vector corresponded to the class or not. Applying it
recursively, individual rules for each output class were merged,
forming the extracted rule base for sleep classification shown
in Table III. Thus, for interpretation purposes, the final set is
reduced to only 5 rules.

B. Sleep Pattern Classification

The average results are shown in Table IV for the training, val-
idation and test sets. In each simulation, the parameters of the
NFC were adjusted using the training set; nonrelevant rules were
pruned and the system was re-trained until the overall agreement
of the validation set did not improve anymore. To illustrate the
difference between a minute-based classification and a frame by
frame classification, Table V shows the agreement percentage
achieved for the train, validation and test sets with and without
applying the 1 min state duration algorithm. Also this table il-
lustrates the differences in agreement achieved with and without
pruning the irrelevant rules.

TABLE V
AVERAGE RESULTS WITHOUT AND WITH APPLYING THE RULE-PRUNING

MECHANISM AND THE S.D.A.

For comparison purposes, the same sleep data set was clas-
sified with an -cut classifier [29]. The level of presence of
the sleep patterns was reduced to either present or absent. The
thresholds ( -cuts) were adjusted to achieve at least 80% of ex-
pert agreement in all sleep classes with the training set. The
expert criteria of Table I were directly applied as crisp rules
on the binarized sleep patterns, to achieve sleep classification.
The 1-min class duration algorithm was also applied. The ex-
pert-guided -cut classifier rendered agreement percentages of
87.0%, 85.2%, and 83.8% for the training, validation and test
sets respectively, similar to the results obtained with the self-
trained NFC shown in Table IV.

IV. DISCUSSION AND CONCLUSION

Our proposed neuro-fuzzy classifier achieved an expert
agreement of about 84% on an independent and unedited test
set in the classification of sleep-wake states and stages, as
shown in Table IV. This performance is comparable both to the
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inter-expert agreement percentages described in the literature
[9] and the level of agreement achieved by an -cut classifier
applying the expert rules. It is a remarkable result that the
system can discover a set of fuzzy concepts and fuzzy rules that
give a “human-understandable” interpretation of a classification
scheme learned from examples. The pruning method showed to
be robust in presence of noise, allowing a clear discrimination
between relevant and irrelevant rules (data not shown) provided
a sufficient number of training examples. The only a priori
information used by the NFC was the amount of concepts
associated to the patterns of each sleep-wake state or stage
and the number of output classes; this was needed to compare
the extracted rules with the expert’s. Alternatively, clustering
methods can be implemented to assess an optimal number of
fuzzy concepts per input and output.

Table III shows the fuzzy rules extracted by the system. Ex-
cept for slight differences, the NFC rediscovered the crisp rules
stated by the expert (Table I). The only differences are the roles
of TH in the classification of NREM 1 and NREM 3 and 4. In
the former case, the system established TH as irrelevant, since
there were many epochs of NREM 1 in the training set where
the pattern detection algorithm didn’t show a significant pres-
ence of TH. In the latter case, only the TH-Absent rules survived
the pruning, because there weren’t enough training examples in
which TH coexisted with SD to make a meaningful contribution
to the class NREM 3 and 4.

Table V allows comparing the agreement percentages
achieved for the training, validation and test sets without and
with the 1–min state duration algorithm (S.D.A.) and the rule
pruning mechanism. The S.D.A. improved the agreement in
less than 2%. Comparing the results obtained with all the rules
(B.P.) and only with the rules which survived the pruning, it
can be established that eliminating non relevant rules did not
produce a statistically significant decrease in the classification
performance, after removing more than 90% of the rules; it
even improved the classification agreement for the test set, al-
though not significantly. This can be interpreted as that pruning
not only provides interpretability but also may increase the
generalization ability of the NFC.

The amount of noise in the data can be estimated as the
complement of the agreement percentage achieved with the
training set without pruning. There were agreements of 86.2%
and 88% without and with applying the 1-min state duration
algorithm respectively. Thus, about 14% of the training epochs
were noisy, including imperfections in the automated pattern
detection system as well as inconsistencies in the expert clas-
sification.

The main drawback of the NFC is that its complexity grows
exponentially with the number of inputs and concepts associated
to them. This is known as the “curse of dimensionality” [30].
However, in most medical applications, physicians and experts
in general make decisions based on only a few parameters that
can have an also limited number of characteristics or concepts
associated, since humans are also limited by the same curse.
Typically, if more variables are involved, intermediate decision
points are used. Therefore, applications of the NFC could be
implemented for modeling and automating many human classi-
fication tasks. The ability to extract rules from examples and to

select them by pruning, together with the flexibility to achieve
a good performance, makes the NFC an adequate tool to auto-
mate medical diagnosis procedures.
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