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On The Theoretical Foundation of Meta-Modelling in Graphically Extended BNF
and First Order Logic

Hong Zhu
Department of Computing and Electronics, Oxford Brookes University,

Oxford OX33 1HX, UK. Email: hzhu@brookes.ac.uk

Abstract—Meta-modeling plays an important role in model
driven software development methodology. In our previous
work, a graphic extension of BNF (GEBNF) was proposed
to define the abstract syntax of graphic modeling languages.
From a GEBNF syntax definition, a first order predicate
logic language can be induced so that meta-modeling can be
performed formally by specifying a predicate on the domain
of syntactically valid models. In this paper, we investigate the
theoretical foundation of this meta-modeling approach. We first
formally define the semantics of GEBNF syntax definitions as
algebras that contain no junk and satisfy constraints derived
from GEBNF syntax rules. The semantics of the induced
logic is then formally defined by regarding such algebras
as models. We then formally prove that well-formed syntax
definitions together with syntax morphisms form a category,
where syntax morphisms represent the translations between
modeling languages. The models (i.e. algebras) in a modeling
language and the homomorphisms between them also form
a category. Finally, we prove that the functors from GEBNF
syntax definitions to the categories of models and to sentences
in the induced first order logic form an institution. Therefore,
GEBNF and its induced logics form a valid formal specification
language for models.

Keywords-Modeling languages; Meta-modeling; Syntax and
semantics, Formal specification; Institutions; Predicate logic;
Graphic modeling; Algebra.

I. INTRODUCTION

Meta-modeling is to model models, i.e. to define a set
of models that have certain structural and/or behavioral
features. It play three key roles, or a combination of them,
in model-driven software development methodologies.

Firstly, meta-modeling defines a modeling language by
specifying the syntax, usually at the abstract syntax level,
and the semantics, usually in the form of a set of basic
concepts underlying the models and their interrelationships.
For example, the meta-model for UML defines the abstract
syntax of UML modeling language in a class diagram by
defining a set of concepts represented as meta-classes and
the relationships between them in association, inheritance
and aggregation relations between meta-classes [1].

Secondly, it imposes restrictions on an existing modeling
language so that only a subset of the syntactically valid mod-
els are considered as its instances. For example, specifying
design patterns is widely considered as a meta-modeling
problem. Each design pattern can be defined by a meta-

model so that only those design models that are instances
of the meta-model conform to the design pattern [2], [3].

Finally, meta-modeling also extends an existing meta-
model by introducing new concepts and defining how the
new concepts are related to the existing ones. For example,
platform specific models can be defined through introducing
platform specific model elements. Aspect-oriented modeling
can be defined by a meta-model that extends UML meta-
model with basic concepts of aspect-orientation, such as
crosscut points, etc. [4].

Due to the importance of meta-modeling, growing re-
search efforts on meta-modeling have been made in the past
few years. In our previous work, we proposed a formal
meta-modeling approach, which includes a meta-notation
called GEBNF, which stands for Graphic Extension of BNF,
for the definition of abstract syntax of modeling languages,
and a theory and technique that induce first order predicate
logic languages (FOL) from GEBNF syntax definitions [5].
In this FOL, constraints on models can be specified and
inferred formally and supported by automatic or interactive
inference engines. A non-trivial subset of UML, including
class diagrams and sequence diagrams, has been defined in
GEBNF, and all the design patterns in the Gang-of-Four
book [6] have been formally specified as meta-models using
the induced FOL [7], [9]. An design pattern recognition tool
LAMBDES-DP based on the formal specification has been
developed successfully by employing the theorem prover
SPASS [10]. Reasoning about meta-models, such as proving
a design pattern A is a sub-pattern of B and composition
of patterns, has also been explored [8]. In this paper, we
further advance the approach by laying a solid theoretical
foundation through a formal semantics of GEBNF meta-
notation and its induced logic.

The paper is organized as follows. Section II introduces
the GEBNF meta-modeling approach. Section III investi-
gates how syntactic constraints imposed by GEBNF meta-
notation can be represented as predicates in the induced
FOL. Section IV formally defines the semantics of GEBNF
and its induced FOL by applying the model theory of math-
ematical logic. Section V studies the theoretical properties
of GEBNF and its induced logic systems in the framework
of institution theory. Finally, section VI concludes the paper
with a discussion of related works and future work.
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II. OVERVIEW OF GEBNF

In this section, we introduce the meta-notation GEBNF
and the FOL induced from GEBNF syntax definitions.

A. The Meta-Notation

Similar to the syntax definitions of programming lan-
guages in BNF, a syntax definition of a modeling language
in GEBNF consists of a set of syntax rules that contains
non-terminal symbols and terminal symbols. The extensions
that GEBNF brings to BNF are twofold. The first is field
names, which enable a set of function symbols to be deduced
from a syntax definition to form a signature of a FOL. The
second is the facility for referential occurrences of non-
terminal symbols so that non-linear structures like graphs
can be defined.

Definition 1 (GEBNF meta-notation): In GEBNF, the ab-
stract syntax of a modeling language is defined as a tuple
〈R,N, T, S〉, where N is a finite set of non-terminal sym-
bols, and T is a finite set of terminal symbols. Each terminal
symbol represents a set of atomic elements that may occur
in a model. R ∈ N is the root symbol and S is a finite set
of syntax rules in the form of

Y ::= f1 : X1, f2 : X2, · · · , fn : Xn,

where Y ∈ N , f1, f2 , · · ·, fn are called field names, and X1,
X2 , · · ·, Xn are the fields. Each field can be an expression,
which is inductively defined as follows.
• C is an expression, if C is a literal constant of a

terminal symbol, such as string or number.
• Y is an expression, if Y ∈ N ∪ T .
• Y@Z.f is an expression, if Y, Z ∈ N , and f is a field

name in the definition of Z, and Y is the type of f
field in Z’s definition. The non-terminal symbol Y in
the expressions Y@Z.f is a referential occurrence.

• Y ∗, Y + and [Y ] are expressions, if Y ∈ N ∪ T .
• Y1 | Y2 | · · · | Yn is an expression, if Y1, Y2, · · · , Yn ∈
N ∪ T .

The meaning of the meta-notation is explained in Table I.
Informally, each terminal and non-terminal symbol denotes a
type of elements. Terminal symbols denote the basic atomic
element; like String denotes the set of strings. Non-terminal
symbols denote the constructs of the modeling language. The
elements of the root symbol are the models of the language.

If a non-terminal symbol Y is defined as

Y ::= f1 : X1, · · · , fn : Xn,

then, Y denotes a type of elements that each consists of n
elements of type X1, · · · , Xn, respectively. In other words,
each element of type Y is constructed from n elements of
type X1, · · · , Xn, respectively. The k’th element in the tuple
can be accessed through the field name fk, for 1 ≤ k ≤ n,
and we write a.fk for the k’th element of a, if a is an
element of type Y .

Note that the original GEBNF notation for referential
occurrences of non-terminal symbols is in the form of Y

.It does not specify which occurrence of the non-terminal
symbol it refers to. This may cause ambiguity. Thus, in this
paper, we revised the notation. The original notation Y can
be considered as a short form of Y@Z.f when there is no
risk of ambiguity, i.e. when there is only one non-referential
occurrence of Y in the syntax definition. Moreover, one can
also write Y@Z as a short form of Y@Z.f when there is
only one non-referential occurrence of Y in the definition
of Z.

Example 1 (Directed graphs): The following is a defini-
tion of the abstract syntax of directed graphs in GEBNF. We
will use it throughout the paper to illustrate the notions and
notations introduced in this paper.

Graph ::= nodes : Node+, edges : Edge∗

Node ::= name : String, weight : [Real]

Edge ::= from : Node@Graph.nodes,

to : Node@Graph.notes, weight : Real

where Graph is the root symbol. Graph,Node and Edge
are non-terminal symbols, and String and Real are terminal
symbols.

The syntax rules state that a graph consists of a non-empty
set of nodes and a set of edges. Each node has a name,
which is a string of characters, and may have an optional
weight, which is a real number. Each edge is from one node
to another, which refer to the nodes in the same graph. And,
each edge has a weight, which is a real number.

B. Well-Formed Syntax Definitions

If a symbol X ∈ T ∪ N occurs on the right-hand side
of the definition of non-terminal symbol Y , we say that
X is directly reachable from Y through a field name.
For example, Node and Edge are directly reachable from
Graph. We define the reachable relation as the transitive
closure of the directly reachable relation.

If there is a non-terminal symbol that is not reachable
from the root symbol R, its elements do not play any role
in the construction of any model. Such cases should not
occur in a well defined syntax. Similarly, we do not want
a non-terminal symbol to be used but not defined, or to be
defined more than once. Thus, we have the following notion
of well-formed syntax.

Definition 2 (Well-Formed Syntax Definition): A syntax
definition 〈R,N, T, S〉 in GEBNF is well-formed if it satis-
fies the following two conditions.

1) Completeness. For each non-terminal symbol X ∈ N
,there is one and only one syntax rule s ∈ S that defines

X , i.e. of which X is the left-hand-side.
2) Reachability. For each non-terminal symbol X ∈ N

,X is reachable from the root R.
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Table I
MEANINGS OF THE GEBNF NOTATION

Notation Meaning Example Explanation
X∗ A set of elements of type X . Model ::= diags : Diagram∗ A model consists of a number N of dia-

grams, where N ≥ 0.
X+ A non-empty set of elements of type X . Model ::= diags : Diagram+ A model consists of a number N of dia-

grams, where N ≥ 1.
[X] An optional element of type X . StickF ig ::= actor : [Actor] A StickF ig has an optional element of

type Actor.
X@Z.f A reference to an existing element of type

X in field f of an element of type Z.
Assoc ::= end : ClassNode

@ClassDiag.classes
An association has an end that refers to an
existing class node in the field classes of
ClassDiag.

X1| · · · |Xn An element of type X1 or, · · ·, or Xn. Node ::= Actor|UseCase A node is either an actor or a use case.

Obviously, the syntax of directed graphs given above is
well-formed.

C. Induced First-Order Language

Consider the syntax definition of directed graphs given in
Example 1. The first syntax rule introduces two field names
nodes and edges. They can be regarded as two functions
that mapping from a graph to two types of elements in the
graph, i.e. its non-empty set of nodes and the set of edges,
respectively. That is, if g is a graph, then g.nodes is the set
of nodes in g.

In general, every field f : X in the definition of a symbol
Y introduces a function f : Y → X . Function application is
written a.f for function f and argument a of type Y . Given
a well-formed syntax, a set of function symbols and their
types can be derived as follows.

First, we define the types of expressions and symbols.
1) For all s ∈ T ∪N , s is a type, which is called a basic

type.
2) P(τ) is a type, called the power type of τ , if τ is a

type.
3) τ1 + · · · + τn is a type, called the disjoint union of

τ1, · · · τn for n > 1, if τ1 · · · τn are types. We also
write

∑n
i=1 τi to denote τ1 + · · · τn.

4) τ1 → τ2 is a type, called a function type from τ1 to
τ2, if τ1 and τ2 are types.

Definition 3 (Induced functions): A syntax rule “A ::=
· · · , f : B, · · ·” introduces a function symbol f of type A→
T (B), where T (B) is defined as follows.
• T (C) = C, if C ∈ T ∪N ;
• T ([C]) = T (C);
• T (C@Z.f) = T (C);
• T (C∗) = P(T (C));
• T (C+) = P(T (C));
• T (C1| · · · |Cn) =

∑n
i=1(T (Ci)).

Example 2 (Induced Functions): For example, the func-
tions induced from the GEBNF syntax definition of directed
graphs and their types are given in Table II.

Given a well-defined GEBNF syntax G = 〈R,N, T, S〉
of a modeling language L, we write Fun(G) to denote the

Table II
EXAMPLE: INDUCED FUNCTIONS OF DIRECTED GRAPHS

Function Type
nodes Graph→ P(Node)
edges Graph→ P(Edge)
name Node→ String
weight Node→ Real
from Edge→ Node
to Edge→ Node
weight Edge→ Real

set of function symbols derived from the syntax rules. From
Fun(G), a FOL can be defined as usual using variables,
relations and operators on sets, relations and operators on
basic data types denoted by terminal symbols, equality and
logic connectives or ∨, and ∧, not ¬, implication → and
equivalent ≡, and quantifiers for all ∀ and exists ∃ [11].

In particular, assume that for each terminal symbol s ∈ T ,
there is a set Ops of operator symbols and a set Rs of
relational symbols defined on s. These operation and relation
symbols can be used in the predicates on models. The FOL
induced from a GEBNF syntax definition can be defined
inductively as follows.

Let V =
⋃
s∈N∪T Vs be a set of variables, where x ∈ Vs

are variables of type s.
1) Each literal constant c of type s ∈ T is an expression

of type s.
2) Each element v in Vs, i.e. variable of type s, is an

expression of type s, where s ∈ T ∪N .
3) e.f is an expression of type τ ′, if f is a function

symbol of type τ → τ ′, e is an expression of type τ .
4) {e(x)|Pred(x)} is an expression of type P(τe), if x

is a variable of type τx, e(x) is an expression of type
τe and Pred(x) is a predicate on type τx.

5) e1 ∪ e2, e1 ∩ e2, and e1 − e2 are expressions of type
P(τ), if e1 and e2 are expressions of type P(τ).

6) e ∈ E is a predicate on type τ , if e is an expression
of type τ and E is an expression of type P(τ).

7) e1 = e2 and e1 6= e2 are predicates on type τ , if e1

and e2 are expressions of type τ .
8) R(e1, · · · en) is a predicate on type τ , if e1, · · · en are

expressions of type τ , and R is any n-ary relation
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symbol on type τ .
9) e1 ⊂ e2 and e1 ⊆ e2 are predicates on type P(τ), if

e1 and e2 are expressions of type P(τ).
10) p∧ q, p∨ q, p ≡ q, p⇒ q and ¬p are predicates, if p

and q are predicates.
11) ∀x ∈ D · p and ∃x ∈ D · p are predicates, if D is

an expression of type P(τ) or a non-terminal symbol
s, x is a variable of type τ or of type s, and p is a
predicate.

Further functions and relations can be defined as usual in
the FOL. For the sake of readability, we will also use infix
and prefix forms for defined functions and relations. Thus,
we may also write the application of function f to argument
x with the more conventional prefix notation f(x).

Example 3 (Definition of a function): For example, the
set of nodes in a graph g that have no weight associated with
them can be formally defined using the functions induced
from the syntax definition as follows.

UnweightedNodes(g : Graph) ,

{n|n ∈ g.nodes ∧ n.weight = ⊥}

D. Meta-Modeling

Given the abstract syntax of a modeling language defined
in GEBNF, meta-modeling in the framework of the modeling
language can be performed by defining a predicate p such
that the required subset of models are those satisfy the
predicate. In the sequel, we define a meta-model to be an
ordered pair (G, p), where G is a GEBNF syntax and p is
a predicate in the FOL induced from G.

Example 4 (Meta-modeling): Consider the directed
graphs defined in Example 1. The set of strongly connected
graphs can be defined as the set of models that satisfy the
following predicate.

∀x, y ∈ g.nodes · (x reaches y),

where g is a variable of type Graph, and the predicate
(x reaches y) is defined as follows.

(x reaches y)⇔
∃e ∈ g.edges · (x = e.from ∧ y = e.to) ∨
∃z ∈ g.nodes · ((x reaches z) ∧ (z reaches y))

The set of acyclic graphs can be defined as the set of models
that satisfy the following predicate.

∀x, y ∈ g.nodes · ((x reaches y)⇒ x 6= y)

The set of connected graphs can be defined as follows.

∀x 6= y ∈ g.nodes · ((x reaches y) ∨ (y reaches x)).

Finally, a tree can be defined as satisfying the following
condition.

∃x ∈ g.nodes · (∀y ∈ g.nodes · (x reaches y)) ∧
∀e, e′ ∈ g.edges · (e.to = e′.to⇒ e = e′)

In the same way, design patterns have been specified by
first defining the abstract syntax of UML class diagrams
and sequence diagrams in GEBNF, and then specifying the
conditions that their instances must satisfy [7], [9].

III. AXIOMATIZATION OF SYNTAX CONSTRAINTS

In this section, we discuss how to use the induced FOL
to characterize the syntax restrictions that GEBNF imposes
on models.

A. Optional Elements

Assume that a non-terminal symbol A is defined in the
following form.

A ::= · · · , f : [B], · · · .

Then, an occurrence of an element of type B in an element
of type A is optional. The function f has the type A→ B,
which is the same as the function g in the following syntax
rule, where B is not optional.

A ::= · · · , g : B, · · · .

The difference is that f is a partial function while g is a total
function. Therefore, for each non-optional function symbol
g, we require it satisfying the following condition.

∀x ∈ A · (x.g 6= ⊥),

where ⊥ means undefined.
Example 5 (Partial functions): In Example 1, according

to the second syntax rule, a node n may be associated with
no weight. Thus, the function weight of type Node→ Real
is a partial function. When a node n has no weight,
n.weight is undefined and we write n.weight = ⊥. The
type of a function does not distinguish total functions
from partial functions. Instead, we assume that all function
symbols are partial unless explicitly stated by an axiom
about the function. An example of total function is name :
Node → String. It, therefore, must satisfy the following
condition.

∀x ∈ Node · (x.name 6= ⊥).

B. Non-Empty Repetitions

Assume that a non-terminal symbol A is defined in one
of the following forms.

A ::= · · · , f : B∗, · · · (1)
A ::= · · · , g : B+, · · · (2)

An element of type A may contain a set (in case of (1)) or
non-empty set (in case of (2)) of elements of type B. The
functions f and g induced from the above syntax rules are of
the same type, i.e. A→ P(B). But, the image of the former
can be an empty set while that of the latter cannot. Thus,
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for each of the non-empty repetition structure, we require
the function g satisfying the following condition.

∀x ∈ A · (x.g 6= ∅).

Example 6 (Non-empty Repetition): In Example 1, the
set of nodes in a directed graph is defined as a non-empty
repetition while the set of edges is defined as repetition that
allows the empty occurrence. Therefore, the function nodes
must satisfy the following axiom, but edges do not.

∀g ∈ Graph · (g.nodes 6= ∅).

C. Referential and Creative Elements

Assume that a non-terminal symbol A is defined in the
following form.

A ::= · · · , f : B@C.g, · · ·

The field f of an element of type A will contain a reference
to an element of type B in the field g of an element of type
C. Thus, it is called a referential occurrence. The function
f has the same type A → B as the function f ′ in the
following syntax rule, where the element of type B is a
creative occurrence.

A ::= · · · , f ′ : B, · · ·

However, the function f has different properties from f ′.
Thus, its semantics in terms of the structure of the models
is different. For example, if the syntax definition of Edge in
Example 1 is replaced by the following rule (i.e. when the
reference modifier on Node is removed from the original
rule),

Edge ::= from : Node, to : Node,weight : Real,

each edge will introduce two new nodes, i.e. for all edges
e 6= e′ ∈ Edges, we have that e.from 6= e′.from. More-
over, for all edges e, we have that the node e.from must be
different from the node e.to, i.e. e.from 6= e.to. In contrast,
the original definition requires that for all e ∈ g.edges, we
have e.from ∈ g.nodes and e.to ∈ g.nodes . This allows
e.from = e.to, e.from = e′.from and e.to = e′.to to be
true for some edges e and e′.

In general, the function symbols induced from creative
occurrences of a same non-terminal symbol must have dis-
joint images. Formally, let f and g be two functions induced
from two creative occurrences of non-terminal symbol X in
two syntax rules in the following form,

Y ::= · · · , f : E(X), · · ·
Z ::= · · · , g : E′(X), · · ·

where E(X) and E′(X) be any of the expressions X , [X]
and (X|X1| · · · |Xn), we require functions f and g satisfy
the following condition.

∀a ∈ Y · ∀b ∈ Z · (a.f 6= b.g).

Let E(X) and E′(X) be any of the expressions X∗ and
X+. If the syntax rules are in the form of

Y ::= · · · , f : E(X), · · ·
Z ::= · · · , g : E′(X), · · · ,

we require that the functions f and g satisfy the following
conditions.

∀a ∈ Y · ∀b ∈ Z · (∀x ∈ a.f · (x /∈ b.g)),

∀a ∈ Y · ∀b ∈ Z · (∀x ∈ b.g · (x /∈ a.f),

or simply,

∀a ∈ Y · ∀b ∈ Z · (b.g ∩ a.f = ∅).

Similarly, let E(X) be any of the expressions X , [X] and
(X|X1| · · · |Xn), and E′(X) be any of the expressions X∗

and X+. If the syntax rules are in the form of

Y ::= · · · , f : E(X), · · ·
Z ::= · · · , g : E′(X), · · · ,

we require that the functions f and g satisfy the following
property.

∀a ∈ Y · ∀b ∈ Z · (a.f /∈ b.g).

The semantics of referential occurrences can also be
formally defined as constraints on models as follows.

Let E(X) be in one of the forms X , [X] and
(X|X1| · · · |Xn). For syntax rules in the following form:

Y ::= · · · , g : E(X), · · · ,
Z ::= · · · , f : X@Y.g, · · · ,

we require functions f and g satisfy the following property.

∀a ∈ Z · ∀b ∈ Y · (a.f = b.g)

Let E(X) be one of the forms X∗ and X+. If the syntax
rules are in the following form:

Y ::= · · · , g : E(X), · · · ,
Z ::= · · · , f : X@Y.g, · · · ,

we require functions f and g satisfy the following property.

∀a ∈ Z · ∀b ∈ Y · (a.f ∈ b.g)

Let E(X) and E′(X) be any of the forms X∗ and X+.
If the syntax rules are in the following form:

Y ::= · · · , g : E(X), · · · ,
Z ::= · · · , f : E′(X)@Y.g, · · · ,

we require functions f and g satisfy the following property.

∀a ∈ Z · ∀b ∈ Y · (a.f ⊆ b.g)

It is worth noting that the above constraints are in the
FOL induced from syntax definitions.
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Example 7 (Referential Occurrences): In Example 1,
there are two referential occurrences of non-terminal
symbols. Thus, the functions to and from must satisfy the
following conditions.

∀g ∈ Graph · ∀e ∈ g.edges · (e.from ∈ g.nodes)
∀g ∈ Graph · ∀e ∈ g.edges · (e.to ∈ g.nodes)

Let G be any well-formed syntax definition in GEBNF.
In the sequel, we write Axiom(G) to denote the set of
constraints derived from G according to the above rules.

IV. ALGEBRAIC SEMANTICS

This section formally defines the semantics of GEBNF.

A. Models as Mathematical Structures

Let G = 〈R,N, T, S〉 be a GEBNF syntax definition
and ΣG = (N ∪ T, FG), where FG = Fun(G) is the
set of function symbols induced from G. ΣG is called the
signature induced from G.

Definition 4 (ΣG-Algebras): A ΣG-algebra A is a math-
ematical structure that consists of a family {Ax|x ∈ N ∪T}
of sets and a set of functions {fϕ|ϕ ∈ FG}, where if ϕ is
of type X → Y , then fϕ is a function from set AX to the
set [[Y ]], where

[[Y ]] =

 AY , if Y ∈ N ∪ T
P(AZ), if Y = P(Z)∑n
i=1ACi , if Y =

∑n
i=1 Ci.

In particular, for each terminal symbol s ∈ T , for exam-
ple, String, and the set Ops of operator symbols and set Rs
of relational symbols defined on s, there is a mathematical
structure 〈As, {opϕ|ϕ ∈ Ops} ∪ {rρ|ρ ∈ Rs}〉 such that

1) there is a non-empty set As of elements, which are
elements of type s;

2) for each operator symbol ϕ in the set Ops, there is a
corresponding operation opϕ defined on As;

3) for each n-ary relational symbol ρ, there is a corre-
sponding n-ary relation rρ defined on As.

Obviously, not all ΣG-algebras are syntactically valid
models. Thus, we have the following notion of ’no junk’.

Definition 5 (Algebra without Junk): We say that a ΣG-
algebra A contains no junk, if

1) |AR| = 1, and
2) for all s ∈ N and all e ∈ As, we can define a function

f : R → P(s) in FOL such that for some m ∈ AR
we have e ∈ f(m).

Informally, we consider a ΣG-algebra A as a model in the
modeling language. No junk means there is only one root
element. This is similar to the condition that a parse tree
of a program must have one and only one root. Moreover,
because each non-terminal symbol corresponds to a type of
model elements, every element in a model must be accessible

from the root. This is similar to the condition that every
element in a program must be on the parsi tree of the
program and thus is accessible from the root of the tree.

In the sequel, we will only consider ΣG-algebras that
contain no junk.

B. Satisfaction of Constraints

For a ΣG-algebra to be a syntactically valid model, it must
also satisfy the axioms derived from the GEBNF syntax.
The following defines what is meant by an algebra satisfies
a predicate.

An assignment in an Σ-algebra A is a mapping α from
the set V of variables to the elements of the algebra.

Definition 6 (Evaluation of Expressions and Predicates):
The evaluation of an expression e or predicate p under an
assignment α, written [[e]]α, is defined as follows.
• [[c]] = c, if c is a constant of basic type τ ∈ T ;
• [[v]]α = α(v) ∈ Aτ , if v is a variable of type τ ;
• [[e.f ]]α = fA([[e]]α);
• [[{e(x)|Pred(x)}]]α = {[[e(x)]]α|[[Pred(x)]]α};
• [[e1 ∪ e2]]α = [[e1]]α ∪ [[e2]]α;
• [[e1 ∩ e2]]α = [[e1]]α ∩ [[e2]]α;
• [[e1 − e2]]α = [[e1]]α − [[e2]]α;
• [[e ∈ E]]α = [[e]]α ∈ [[E]]α;
• [[e1 = e2]]α = ([[e1]]α = [[e2]]α)
• [[e1 6= e2]]α = ([[e1]]α 6= [[e2]]α);
• [[R(e1, · · · en)]]α = RA([[e1]]α, · · · , [[en]]α);
• [[e1 ⊂ e2]]α = [[e1]]α ⊂ [[e2]]α;
• [[e1 ⊆ e2]]α = [[e1]]α ⊆ [[e2]]α;
• [[p ∧ q]]α = [[p]]α ∧ [[q]]α;
• [[p ∨ q]]α = [[p]]α ∨ [[q]]α;
• [[p ≡ q]]α = ([[p]]α ≡ [[q]]α);
• [[p⇒ q]]α = ([[p]]α ⇒ [[q]]α);
• [[¬p]]α = ¬[[p]]α;
• [[∀x ∈ D · (p)]]α = True, if for all e in [[D]]α, [[p]]α[x/e]

is true;
• [[∃x ∈ D · (p)]]α = True, if there exists e in [[D]]α such

that [[p]]α[x/e] is true.
where [[D]]α = Aτ , if D ∈ N ∪ T , and α[x/e](x) = e.

Let α be an assignment in ΣG-algebra A and p be a
predicate in the FOL induced from G.

Definition 7 (Satisfaction Relation): We say that p is true
in A under assignment α and write A |=α p, if [[p]]α = true.
We say that p is true in A and write A |= p, if for all
assignments α in A we have that A |=α p.

We can now define what is a syntactically valid models
and the semantics of meta-models.

Definition 8 (Syntactically Valid Models): A ΣG-algebra
A (with no junk) is a syntactically valid model with respect
to G, if for all p ∈ Axiom(G), we have that A |= p.

Let MM = (G, p) be a meta-model that consists of a
GEBNF syntax definition G and a predicate p in the FOL
induced from G. The semantics of the meta-model MM is
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a subset of syntactically valid models of G that satisfy the
predicate p.

Note that, the definition of satisfaction relation is the
standard treatment of first order logic in the model theory
of mathematical logics. Thus, it is sound, complete and
compact [11].

V. INSTITUTION OF META-MODELS

Meta-modeling often involves multiple meta-models,
where each meta-model defines a FOL. Translation between
such logics plays a fundamental role in model transformation
and reasoning about models. The syntax and semantics of
such translations are captured by the theory of institutions
[12] and entailment systems. This section we apply these
theories to GEBNF.

A. The Category of GEBNF Syntax Definitions

Let’s first introduce a few mathematical notions and
notations.

A category C consists of a class Cobj of objects and a
class Cm of morphisms or arrows between objects together
with the following three operations:
• dom : Cm → Cobj ;
• codom : Cm → Cobj ;
• id : Cobj → Cm,

where for all morphisms f , dom(f) = A is called the
domain of the morphism f ; codom(f) = B the codomain,
and we say that the morphism f is from object A = dom(f)
to object B = codom(f), written f : A → B. For each
object A, id(A) is the identity morphism that its domain
and codomain are A. id(A) is also written as idA.

Moreover, there is a partial operation ◦ of composition of
morphisms. The composition of morphisms f and g, written
f ◦ g, is defined if dom(f) = codom(g). The result of
composition f ◦g is a morphism from dom(g) to codom(f).
The composition operation has the following properties. For
all morphisms f, g, h,

(f ◦ g) ◦ h = f ◦ (g ◦ h)
idA ◦ f = f, if codom(f) = A
g ◦ idA = g, if dom(g) = A.

Given a category C, we will also write |C| and ||C|| to
denote Cobj and Cm, respectively, in the sequel.

We now define the morphisms between GEBNF syntax
definitions and prove that they form a category.

Let G = 〈RG, NG, TG, SG〉, H = 〈RH , NH , TH , SH〉 be
two GEBNF syntax definitions, Fun(G) and Fun(H) be
the function symbols induced from G and H, respectively.

Definition 9 (Syntax Morphisms): A syntax morphism µ
from G to H, written µ : G → H, is a pair (m, f) of
mappings m : NG → NH and f : Fun(G) → Fun(H)
that satisfy the following two conditions:

1) Root preservation: m(RG) = RH ;

2) Type preservation: for all op ∈ Fun(G),
(op : A→ B)⇒ (f(op) : m(A)→ m(B)),
where we naturally extend the mapping m to type
expressions.

The composition of two syntax morphisms is the compo-
sition of the mappings correspondingly. Formally, we have
the following definition.

Definition 10 (Composition of Syntax Morphisms):
Assume that µ = (m, f) : G→ H and ν = (n, g) : H→ J
be syntax morphisms. The composition of µ to ν, written
µ ◦ ν, is defined as (m ◦ n, f ◦ g).

We can prove that the above definition is sound.
Lemma 1 (Soundness of Syntax Morphism Compositions):

For all syntax morphisms µ : G → H, ν : H → J, and
ω : J→ K, we have that:

1) µ ◦ ν is a syntax morphism from G to J;
2) (µ ◦ ν) ◦ ω = µ ◦ (ν ◦ ω).

Proof.
1) The statement can be proved by showing that the

composition satisfies the root and type preservation
conditions. Details are omitted for the sake of space.

2) The statement follows the associative property of the
composition of mappings.

We now define the identity syntax morphism IdG on G.
Let idX be the identity mapping on set X .

Definition 11 (Identity Syntax Morphisms): For all G =
〈R,N, T, S〉, IdG is defined as the pair of mappings
(idN , idFun(G)).

The following lemma proves that the definition of IdG is
sound, i.e., they are indeed syntax morphisms and have the
identity property. Its proof is omitted for the sake of space.

Lemma 2 (Soundness of Identity Syntax Morphisms):
For all GEBNF syntax definitions G and H, we have that

1) IdG is a syntax morphism.
2) For all syntax morphism µ : G → H, we have that

IdG ◦ µ = µ and µ ◦ IdH = µ.
From Lemma 1 and 2, we can easily prove that the set of

GEBNF syntax definitions and the syntax morphisms defined
above form a category.

Theorem 1 (Category of GEBNF Syntax): Let Obj be
the set of well-formed GEBNF syntax definitions, Mor
be the set of syntax morphisms on Obj. (Obj,Mor) is a
category. It is denoted by GEB in the sequel.
Proof. The theorem directly follows Lemma 1 and 2.

B. Translation of Sentences through Syntax Morphisms

Given a syntax morphism from one GEBNF defined
modeling language to another, we can define a translation
between the FOLs induced from them. Such a translation can
be formalized as a functor between categories. The notion
of functor is defined as follows.

Let C,D be two categories. A functor F from C to D
consists of two mappings: an object mapping Fobj : Cobj →
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Dobj , and a morphism mapping Fm : Cm → Dm that have
the following properties.

First, for all morphisms f : A → B of category C, we
have that Fm(f) : Fobj(A)→ Fobj(B) in category D.

Second, for all morphisms f and g in C, we have that

Fm(f ◦ g) = Fm(f) ◦ Fm(g).

Finally, for all objects A in category C, we have that
Fm(idA) = idFobj(A).

The following defines a functor from the category of
GEBNF syntax definitions to the category of the sets of
sentences in the FOL induced from GEBNF syntax defini-
tions.

Definition 12 (Functor Sen from Syntax to Sentences):
Given a well-formed GEBNF syntax definition G,
Senobj(G) is the set of predicates on the root of G.

Given a syntax morphism µ = (m, f) from G to H, we
define a mapping Senm(µ) from Senobj(G) to Senobj(H)
as follows. For each predicate p in Senobj(G),

1) Each variable v of type τ in predicate p is replaced
by a variable v′ of type m(τ).

2) Each op ∈ Fun(G) in predicate p is replaced by the
function symbol f(op).

The predicate p′ obtained is the image of p under Senm(µ).

The following Theorem proves that the pair of mappings
is a functor indeed.

Theorem 2 (Soundness of the Definition of Functor Sen):
The pair (Senobj , Senm) is a functor from category GEB
of GEBNF syntax definitions to the category SET of
sentences in the corresponding induced FOLs.
Proof.

For the sake of space, here we only give a skeleton of the
proof. Details are omitted.

First, we prove that for all predicate p in Senobj(G),
Senm(µ)(p) is a predicate in Senobj(H). Thus, Senm(µ)
is a mapping from Senobj(G) to Senobj(H). This can be
proved by induction on the structure of the predicate p.

Second, we prove that Senm(µ ◦ ν) = Senm(µ) ◦
Senm(ν). This follows directly the definition of syntax
morphisms.

Finally, we prove that for all GEBNF syntax definition
G, Senm(IdG) is also the identity mapping on Senobj(G).
This directly follows the definition of IdG.

C. Translation of Models

The translation of the models in one modeling language
to another can also be defined as a functor.

We first observe that the models in any given modeling
language defined by a GEBNF syntax definition is a cate-
gory, where the morphisms are the homomorphisms between
the models (i.e. the algebras).

Let G be any given GEBNF syntax definition. We denote
the set of ΣG-algebras without junk by Mod(G). The
following defines the homomorphisms between models.

Definition 13 (Homomorphisms): Let A and B be ΣG-
algebras, a homomorphism ϕ from A to B is a mapping
ϕ : A→ B such that

∀s ∈ N ∪ T · ∀x ∈ As · (ϕ(x) ∈ Bs)),

and,

∀x ∈ Aτ · ∀f ∈ FG · (fB(ϕ(x)) = ϕ(fA(x))),

where functions f(x) are naturally extended to functions on
sets such that f(X) = {f(x)|x ∈ X}.

Lemma 3 (Category of Models): For any given well-
formed GEBNF syntax definition G, the set of ΣG-algebras
without junk as the set of objects and homomorphisms
between them as the set of morphisms form a category,
where for each ΣG-algebra without junk A, IdA is the
identity mapping on A. The category is denoted by MODG
in the sequel.
Proof. The statement can be proved by showing the condi-
tions of a category are satisfied. In particular, the associativ-
ity of morphism composition follows the associativity of the
composition of homomorphisms. The unit property of IdA
follows the unit property of homomorphisms.

Now, we define a category whose objects are the cate-
gories MODG for G varies in the set of GEBNF syntax
definitions, and the morphisms are functors Uµ between
these categories of models, where µ is any syntax morphism
between GEBNF syntax definitions.

For each syntax morphism µ = (m, f) from G to H, the
mapping Uµ from category MODH to category MODG is
defined as follows.

Let B ∈ |MODH |. We define an ΣG-algebraA as follows:
1) For each s ∈ NG, As = Bm(s);
2) For each function symbol op ∈ Fun(G), the function

ϕop ∈ A is the function ϕf(op) in B.
We can prove that A defined as such is a ΣG-algebra and

contains no junk, thus it is in |MODG|. Moreover, through
Uµ, the homomorphisms between models in ||MODH || are
also naturally induced into the homomorphisms between
such defined models in MODG. Therefore, we have the
following lemma.

Lemma 4 (Functor between Categories of Models):
For each syntax morphism µ = (m, f) from G to H, the
mapping Uµ from objects of category MODH to the objects
of category MODG and its naturally induced mapping on
homomorphisms is a functor from MODH to MODG.

Furthermore, we have the following theorem.
Theorem 3 (Category of Modeling Languages): Let

Obj = {MODG|G ∈ |GEB|} and Mor = {Uµ|µ ∈
||GEB||}. (Obj,Mor) is a category. In the sequel, it is
denoted by CAT.
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Proof. It is easy to prove that the definition satisfies the
conditions of a category. Details are omitted for the sake of
space.

Now, we define the model translation as a functor.
Definition 14 (Model Translation): We define mappings

MODobj : |GEB| → |CATop| and MODm : ||GEB|| →
||CATop|| as follows.

MODobj(G) = Mod(G);

MODm(u) = Uopµ

where for an arrow µ : a → b, µop is the inverse arrow of
µ.
Then, we have the following theorem. Here, again for the
sake of space, we omit the proof.

Theorem 4 (Functor of Model Translation): MOD is a
functor from GEB to CATop.

D. Institution of GEBNF induced First Order Logics

We are now ready to prove that GEBNF and its induced
first order logics form an institution. First let’s review the
notion of institution [12].

An institution is a tuple (Sig,Mod, Sen, |=), where

1) Sig is a category whose objects are called signatures.
2) Sen : Sig → Set is a functor that for each signature

it gives a set of sentences over that signature.
3) Mod : Sig → Catop is a functor that for each

signature Σ it gives a category Mod(Σ) whose objects
are called Σ-models and whose arrows are called Σ-
homomorphisms.

4) |= is a signature indexed family of relations (|=Σ

)Σ∈|Sig|, where for each Σ ∈ |Sig|, |=Σ⊆ |Mod(Σ)|×
Sen(Σ). It is called Σ-satisfaction. It must satisfy the
condition that for any (φ : Σ → Σ′) ∈ ||Sig||, any
M ′ ∈ |Mod(Σ′)| and any e ∈ Sen(Σ),

M ′ |=Σ′ Sen(φ)(e)⇔Mod(φ)(M ′) |=Σ e.

Theorem 5 (GEBNF Institution): Let GEB be the cate-
gory of well-formed GEBNF syntax definitions as proved
in Theorem 1; MOD be defined in Definition 14; Sen be
defined in Definition 12; and |= be the satisfaction relation
defined in Definition 7. The tuple (GEB,MOD,Sen, |=) is
an institution.
Proof.

The condition 1) of institution is true by Theorem 1.
Condition 2) is true by Theorem 2. Condition 3) is true by
Theorem 4. Condition 4) can be proved by induction on the
structure of the sentence e. It is tedious but straightforward.
Details are thus omitted for the sake of space.

Note that, condition (4) means that the truth of a sentence
is invariant under the translation of sentence and the models.

VI. CONCLUSION

In the past few years, many research efforts on meta-
modeling have been reported in the literature. Existing
meta-modeling languages can be classified into the general
purpose and special purpose ones.

MOF and its representation in UML class diagrams is
a general purpose meta-modeling language. It is a part of
four layer UML language definition architecture. In such a
meta-model, the basic concepts of a modeling language is
represented as the meta-classes. The relationships between
the concepts are represented as meta-relations between the
meta-classes. Restrictions on the syntax and usage of models
are specified using multiplicities and other properties (such
as derived property, default values, etc.) associated to meta-
classes and meta-relations. There are two long lasting issues
associated to the UML meta-modeling approach. First, the
semantics of meta-models is informally defined. There are
few research efforts to formalize the semantics of UML
meta-model, except [17]. Second, graphic notions are weak
in expressiveness. In particular, properties that involve mul-
tiple entities are hard to express in graphic notation. This is
partially overcome by defining and employing the Object
Constraint Language OCL associated to elements in the
meta-models. OCL is in fact also a first order predicate logic
language induced from meta-model, but it is represented
in a syntax more close to object oriented programming
languages. Attempts to formalize the semantics of OCL have
been reported in [18], [19], [20], [21], [22], [23], [24], [25],
[26] etc. However, it is still unsatisfactory in the formal
definition of OCL’s semantics and understanding of its logic
properties [27], [28].

Many special purpose meta-modeling languages have
been proposed, mostly for defining design patterns. Typical
examples are LePUS [13], [29], RBML [2], DPML [15],
[16], and PDL [30]. They all use graphic notation to
represent meta-models. In general, graphic meta-modeling
approach suffers from several drawbacks. First, graphic
meta-models are difficult to understand. This is partly solved
in RBML, DPML and PDL by introducing new graphic
notations for meta-models, but at the price of complexity in
their semantics, which have not been formally defined. Sec-
ond, graphic meta-models are ambiguous as in all graphic
modeling languages such as UML. LePUS is the only
exception that it has a formal specification of its semantics
in first order logic. Third, graphical meta-models are not
expressive enough. In particular, they are unable to state
what is NOT allowed to be in a model.

In this paper, we have advanced the GEBNF approach to
meta-modeling by laying its theoretical foundation on the
basis of mathematical logic and theory of institutions. The
main contributions are:

• We have formally defined semantics of a GEBNF
syntax definitions as the algebras without junk and
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satisfying a set of constraints written in the induced
FOL. These constraints are derived from the syntax
rules in GEBNF. We proved that these algebras and
homomorphisms between them form a category.

• We have formally proved that GEBNF syntax defini-
tions and syntax morphisms form a category, where a
syntax morphism represents translations between mod-
eling languages. Thus, this lays a solid foundation for
model transformations and extension mechanisms of
meta-modeling.

• We have formally proved that the category of GEBNF
syntax definitions, the categories of models in any given
modeling languages defined by GEBNF and the satis-
faction relation form an institution. Therefore, GEBNF
syntax definitions and the induced FOLs form a valid
specification language of models.

For future work, we are considering developing soft-
ware tools to support meta-modeling in GEBNF. Further
application of theory to facilitate a meta-model extension
mechanism should also be interesting. It is also interesting
to found out if the approach taken by this paper is applicable
to meta-models in UML class diagrams and OCL.
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