arXiv:1706.07536v2 [cs.CV] 19 Sep 2017

Listen to Your Face: Inferring Facial Action Units
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Abstract—Extensive efforts have been devoted to recognizing facial action units (AUs). However, it is still challenging to recognize AUs
from spontaneous facial displays especially when they are accompanied with speech. Different from all prior work that utilized visual
observations for facial AU recognition, this paper presents a novel approach that recognizes speech-related AUs exclusively from audio
signals based on the fact that facial activities are highly correlated with voice during speech. Specifically, dynamic and physiological
relationships between AUs and phonemes are modeled through a continuous time Bayesian network (CTBN); then AU recognition is

performed by probabilistic inference via the CTBN model.

A pilot audiovisual AU-coded database has been constructed to evaluate the proposed audio-based AU recognition framework. The
database consists of a “clean” subset with frontal and neutral faces and a challenging subset collected with large head movements and
occlusions. Experimental results on this database show that the proposed CTBN model achieves promising recognition performance
for 7 speech-related AUs and outperforms the state-of-the-art visual-based methods especially for those AUs that are activated at low
intensities or “hardly visible” in the visual channel. Furthermore, the CTBN model yields more impressive recognition performance on
the challenging subset, where the visual-based approaches suffer significantly.

Index Terms—Facial Action Units, Continuous Time Bayesian Networks, Audio-based Facial Action Unit Recognition

1 INTRODUCTION

ACIAL activity is one of the most powerful and natural means

for human communication [1]. Extensive efforts have been
devoted to facial activity analysis, most of which focused on
recognizing six basic expressions, i.e., anger, disgust, happiness,
fear, sadness, and surprise. To describe more complex facial
activities, Facial Action Coding System (FACS) [2] defines a set
of facial action units (AUs), each of which is anatomically related
to the contraction of a set of facial muscles. An automatic facial
AU recognition system is desired in many applications, such as
human behavior analysis, interactive games, online learning, etc.

Facial AU recognition from static images or videos has re-
ceived an increasing interest during the past decades as elab-
orated in the survey papers [3]-[5]. In spite of progress on
posed facial displays and controlled image acquisition, recognition
performance degrades significantly for spontaneous facial displays
with free head movements, occlusions, and various illumination
conditions [6]. More importantly, it is extremely challenging
when recognizing AUs involved in speech production, since these
AUs are usually activated at low intensities with subtle facial
appearance/geometrical changes and often introduce ambiguity in
detecting other co-occurring AUs [2], i.e., non-additive effects of
AUs in a combination. For example, pronouncing a phoneme /p/
has two consecutive phases, i.e., Stop and Aspiration phases. As
shown in Fig. 1(b), the lips are apart and the oral cavity between
the teeth is visible in the Aspiration phase, based on which AU25
(lips part) and AU26 (jaw drop) can be detected from the image.
Whereas, during the Stop phase as shown in Fig. 1(a), the lips
are pressed together due to the activation of AU24 (lip presser).
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Fig. 1: Example images of speech-related facial behaviors, where
different AUs are activated to pronounce sounds. Note non-additive
effects of AUs co-occurring in a combinations in (a) and (d).

Since the oral cavity is occluded by the lips, AU26 is difficult
to be detected from the visual channel. In another example, the
oral cavity is partially occluded by the lips when producing /2:/ in
Fig. 1(d) due to the activation of AU18 (lip pucker). Hence, even
the mandible is pulled down significantly, it is difficult to detect
AU27 (mouth stretch) from Fig. 1(d).

These facial activities actually can be “heard”, i.e., inferred
from the information extracted from the audio channel. Facial AUs
and voice are highly correlated in two ways. First, voice/speech
has strong physiological relationships with some lower-face AUs
such as AU24, AU26, and AU27, because jaw and lower-face
muscular movements are the major mechanisms to produce dif-
fering sounds. In addition, eyebrow movements and fundamental
frequency of voice have been found to be correlated during
speech [7]. As demonstrated by the McGurk effect [8], there is a
strong correlation between visual and audio information for speech
perception. Second, both facial AUs and voice/speech convey
human emotions in human communications. Since the second
type of relationships is emotion and context dependent, we
will focus on studying the physiological relationships between



lower-face AUs and speech, which are more objective and will
generalize better to various contexts.

In audiovisual automatic speech recognition (ASR), a viseme
has been defined to represent facial muscle movements that can
visually distinguish the sound [9]-[11]. Since some phonemes
have similar facial appearance when produced, the mapping
from phoneme to viseme is usually derived by statistical cluster-
ing [12]-[15], but without a universal agreement. Furthermore, the
mapping is not always one-to-one because the number of visemes
is usually less than the number of phonemes. For example, Neti
et al. [14] clustered 44 phonemes into 13 visemes. However, one
viseme may be produced by different AU or AU combinations
or by a sequence of AU or AU combinations. For example, /p/
and /m/ are in the same cluster of bilabial consonants [14]. /p/
is produced by AU24 (lip presser) + AU26 (jaw drop) (Fig. 1a)
followed by AU25 (lips part) + AU26 (jaw drop) (Fig. 1b); while
/m/ is produced by AU24 (lip presser) + AU26 (jaw drop) as
shown in Fig. 1c. Based on these observations, we proposed to
directly study the relationships between facial AUs and phonemes
rather than utilizing visemes as intermediate descriptors.

Specifically, a phoneme, which is the smallest phonetic unit
of speech, is pronounced by activating a combination of AUs
as illustrated in Fig. 1. Due to the variation in individual sub-
jects, such relationships are stochastic. Furthermore, different
combinations of AUs are responsible for sounding a phoneme at
different phases as depicted in Fig. 1(a) and (b). Therefore, the
dynamic dependencies between AUs and phonemes also undergo
a temporal evolution rather than stationary.

Inspired by these, we proposed a novel approach to recog-
nize speech-related AUs from speech by modeling and exploit-
ing the dynamic and physiological relationships between AUs
and phonemes through a Continuous Time Bayesian Network
(CTBN) [16]. CTBNS are probabilistic graphical models proposed
by Nodelman [16] to explicitly model the temporal evolutions over
continuous time. CTBNs have been found in different applications,
including users’ presence and activities modeling [17], robot mon-
itoring [18], sensor networks modeling [19], object tracking [20],
host level network intrusion detection [21], dynamic system re-
liability modeling [22], social network dynamics learning [23],
cardiogenic heart failure diagnosis and prediction [24], and gene
network reconstruction [25].

Dynamic Bayesian networks are widely used dynamic models
for modeling the dynamic relationships among random variables,
and have been employed for modeling relationships among facial
AUs in the visual channel [26], [27]. However, the dynamic
events need to be discretized into discrete time points and thus,
the relationships between them are modeled discontinuously. In
addition, an alignment strategy should be employed to handle
the difference in time scales and the time shift between the two
signals. In contrast, considering AUs and phonemes as continuous
dynamic events, the CTBN model can explicitly characterize the
relationships between AUs and phonemes, and more importantly,
model the temporal evolution of the relationships as a stochastic
process over continuous time. Fig. 2 illustrates the proposed
audio-based AU recognition system. During the training process
(Fig. 2(a)), ground truth labels of AUs and phonemes are em-
ployed to learn the relationships between AUs and phonemes in
a CTBN model. Furthermore, this model should also account for
the uncertainty in speech recognition. For online AU recognition,
as shown in Fig. 2(b), measurements of phonemes are obtained
by automatic speech recognition and employed as evidence by the
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CTBN model; then AU recognition is performed by probabilistic
inference over the CTBN model.
This work has three major contributions.

e The dynamic and physiological relationships between AUs
and phonemes are theoretically and probabilistically mod-
eled using a CTBN model.

e Instead of using low-level acoustic features, accurate
phoneme measurements are employed benefiting from
advanced speech recognition techniques.

e A pilot AU-coded audiovisual database is constructed to
evaluate the proposed audio-based AU recognition frame-
work and can be employed as a benchmark database for
AU recognition.

The audiovisual AU-coded database consists of a “clean”
subset with frontal and neutral faces and a challenging subset col-
lected under unconstrained conditions with large head movements,
occlusions from facial hair and accessories, and illumination
changes. Experimental results on this database show that the pro-
posed audio-based AU recognition framework achieves significant
improvement in recognizing 7 speech-related AUs as compared
to the state-of-the-art visual-based methods. The improvement is
more impressive for those AUs that are activated at low intensities
or “hardly visible” in the visual channel. More importantly, dra-
matic improvement has been achieved on the challenging subset:
the average F1 score of the 7 speech-related AUs is almost doubled
compared to those of the visual-based approaches.

2 RELATED WORK

As elaborated in the survey papers [3]-[5], the current practice for
facial AU recognition directly employs either spatial or temporal
features, which are extracted from the visual channel, i.e., static
images or videos, to capture the visual appearance or geometry
changes caused by a specific AU.

2.1

The visual-based features utilized can be human-crafted and thus,
general purpose. The features widely adopted in facial expres-
sion or facial AU recognition include magnitudes of a set of
multiscale and multiorientation Gabor wavelets extracted either
from the whole face region or at a few fiducial points [26]-[32],
Haar wavelet features [32] considering the intensity difference of
adjacent regions, and Scale Invariant Feature Transform (SIFT)
features [33] extracted from a set of keypoints that are invariant to
uniform scaling and orientation. Histograms of features extracted
from a predefined facial grid have also been employed using
Local Binary Patterns (LBPs) [6], [34], [35], Histograms of
Oriented Gradients (HOG) [36], Local Phase Quantization (LPQ)
features [37], and Local Gabor Binary Patterns (LGBP) [38], [39].
In addition, spatiotemporal extensions of the aforementioned 2D
features such as LBP-TOP [40], LGBP-TOP [41], [42], LPQ-
TOP [37], and dynamic Haar features [43], [44], which are usually
calculated from three orthogonal planes, have been proposed to
capture spatiotemporal changes.

In addition to the human-crafted feature representations, fea-
tures can also be learned in a data-driven manner by sparse
coding [45]-[51] or deep learning [52]-[64]. As an over-complete
representation learned from given input, sparse coding can capture
a wide range of variations that are not targeted to a specific
application and has achieved promising results in facial expression
recognition [47]-[51]. Non-negative Sparse Coding (NNSC) [65],

Visual-based Approaches
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Fig. 2: The flowchart of the proposed audio-based AU recognition system: (a) an offline training process for CTBN model learning and (b) an

online AU recognition process via probabilistic inference.

integrating sparse coding and Non-negative Matrix Factorization
(NMF) [66], has been adopted in facial expression recogni-
tion [67]-[70]. To learn representations that are more robust to the
real-world applications [71], deep learning has been employed for
facial expression recognition including deep belief network based
approaches [54], [56], [57], [60] and convolutional neural network
(CNN) based approaches [52], [53], [55], [58], [59], [61]-[64],
[72]. Most of these deep-learning based methods took the whole
face region as input and learned the high-level representations
through a set of processing layers.

All the aforementioned visual-based approaches extract infor-
mation, i.e., features, from the visual channel, and thus are chal-
lenged by imperfect image/video acquisition due to pose variations
and occlusions and more importantly, by the non-additive effects
as illustrated in Fig. 1 in recognizing speech-related AUs.

2.2 Audio-based Approaches

Recently, recognizing facial activities in the audio channel has
been briefly studied in [74]-[76]. Lejan et al. [74] detected three
types of facial activities, i.e. eyebrow movement, smiling, and
head shaking, from audio signals. Based on the assumption that
these facial activities are uncorrelated, different groups of low-
level acoustic features are extracted independently for different
facial activities, respectively. Then, artificial neural networks
(ANNSs) and RepTree are employed for classification. Ringeval
et al. [75] utilized low-level acoustic feature sets, i.e. ComParE
and GeMAPS, along with SVM and Long Short-Term Memory
Recurrent Neural Network (LSTM-RNN) as classifiers to recog-
nize facial AUs for emotion recognition. Most recently, our early
work [76] employed a combination of audio features, i.e., Mel Fre-
quency Cepstral Coefficents (MFCCs), and visual features (LBP
features and CNN features) to improve recognition performance
of speech-related AUs. However, all these aforementioned audio-
based methods only utilize low-level acoustic features, which
are susceptible to noise in the audio channel, whereas semantic
and dynamic relationships between audio and visual channels are
ignored.

In contrast, the proposed audio-based AU recognition frame-
work employs information extracted solely from the audio channel
to recognize speech-related AUs. Instead of directly utilizing
low-level acoustic features, high-level audio information, i.e.,
phonemes, is employed by taking advantage of the advanced
speech recognition techniques. Moreover, a CTBN-based prob-
abilistic framework is developed to systematically model the dy-
namic and physiological relationships between AUs and phonemes
over continuous time.

3 AUDIO-BASED FACIAL ACTION MODELING
3.1 Phoneme-AU Relationship Analysis

A phoneme is defined as the smallest phonetic unit in a language.
In this work, a set of phonemes defined by Carnegie Mellon
University Pronouncing Dictionary (CMUdict) [77] is employed,
which is a machine-friendly pronunciation dictionary designed for
speech recognition, where 39 phonemes are used for describing
North American English words. The 39 phonemes defined by
CMUdict, along with sample words in parenthesis, are as follows:
AA (0odd), AE (at), AH (hut), AO (awful), AW (cow), AY (hide), B
(be), CH (cheese), D (dee), DH (thee), EH (Ed), ER (hurt), EY
(ate), F (fee), G (green), HH (he), IH (it), IY (eat), JH (gee), K
(key), L (lee), M (me), N (knee), NG (ping), OW (oat), OY (toy), P
(pee), R (read), S (sea), SH (she), T (tea), TH (theta), UH (hood),
UW (two), V (vee), W (we), Y (yield), Z (zee), ZH (seizure) [77].
Since each phoneme is anatomically related to a specific set
of jaw and lower facial muscular movements, there are strong
physiological relationships between the speech-related AUs and
phonemes. Taking the word gooey for instance, a combination of
AU25 (lip part) and AU26 (jaw drop) is first activated to produce G
(gooey) (Fig. 3a). Then, AU18 (lip pucker), AU25, and AU26 are
activated together to sound UW (gooey) (Fig. 3b). Finally, AU25
and AU26 are responsible for producing 1Y (gooey) (Fig. 3c).
Furthermore, these relationships also undergo a temporal evo-
Iution rather than stationary. There are two types of temporal
dependencies between AUs and phonemes. First, a phoneme is
produced by a combination of AUs as shown in Fig. 3. The
probabilities of the AUs being activated increase prior to voicing



(b) UW(gooey)
AU18+25+26

(c) IY(gooey)
AU25+26

(a) G(gooey)
AU25+26

Fig. 3: Examples of physiological relationships between phonemes
and AUs. To pronounce a word gooey , different combinations of AUs
are activated sequentially. (a) AU25 (lip part) and AU26 (jaw drop) are
responsible for producing G (gooey); (b) AU18 (lip pucker), AU2S,
and AU26 are activated to pronounce UW (gooey); and (c) AU2S and
AU26 are activated to sound 7Y (gooey).
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Fig. 4: Illustration of the dynamic relationships between AUs and
phonemes while producing P. Specifically, AU24 (lip presser) and
AU26 (jaw drop) are activated in the first phase, i.e., the Stop phase,
while AU25 (lips part) and AU26 are activated in the second phase,
i.e., the Aspiration phase. The activated AUs are denoted by green bars
with a diagonal line pattern; while the inactivated AUs are denoted by
grey bars. Best viewed in color.

the phoneme and reach an apex when the sound is fully emitted,
and then decrease while preparing to voice the next phoneme.

Second, different combinations of AUs are responsible for
producing a single phoneme at different phases. For example, as
illustrated in Fig. 4, the phoneme P in the word chaps has two
consecutive phases, i.e., Stop and Aspiration phases. During the
Stop phase, AU24 (lip presser) is activated as lips are pressed
together to hold the breath without making sound [78], when the
upper and lower teeth are apart indicating the presence of AU26
(jaw drop). In the Aspiration phase, the lips are apart by activating
AU25 and releasing AU24 to release the breath with an audible
explosive sound [78]. Thus, AU24 and AU26 are activated before
the sound is heard, and AU24 is released as soon as the sound is
made when AU2S is activated.

Note that these dynamic and physiological relationships are
stochastic and vary among individual subjects and different words.
For example, according to Phonetics [78], AU20 (lip stretcher) is
required to produce AE in chaps. However, some subjects may not
activate AU20 as observed in our audiovisual dataset. In addition,
the duration of the Stop phase of P or B varies across different
subjects and different words. In addition, the AUs are usually
activated slightly before the phoneme is produced [79]. Therefore,
we employ a probabilistic framework, a CTBN [16] in particular,
to explicitly model the dynamic relationships between phonemes
and AUs over continuous time.

3.2 Modeling Phoneme-AU Relationships by a CTBN

A CTBN is a directed, possibly cyclic, graphical model [16],
which consists of an initial distribution specified as a Bayesian

Fig. 5: A CTBN model for audio-based AU recognition.

network and a set of random variables. As shown in Fig. 5, a
CTBN model is employed to capture the dynamic and physio-
logical relationships between AUs and phonemes as well as the
measurement uncertainty in speech recognition. There are two
types of nodes in the model: the unshaded nodes represent hidden
nodes, whose states should be inferred through the model; whereas
the shaded node denotes the measurement node, whose states can
be observed and used as evidence for inference.

Specifically, the phoneme node denoted by ‘“Phone” has 29
states, i.e., 28 phonemes in the audiovisual dataset and one silence
state, and is employed to model the dynamics of phonemes:
durations of phonemes and transitions between phonemes. A
measurement node denoted as “O,” with 29 states is used to
represent the phoneme measurement obtained by speech recogni-
tion. The directed link between “Phone” and “O,,” represents the
measurement uncertainty in speech recognition, e.g., misdetection
and temporal misalignment.

Based on the study in [26], there are semantic and dynamic
relationships among AUs. In this work, AUs often occur in com-
binations to produce sounds. However, the CTBN model has an
assumption that no two variables change at exactly the same time,
which, unfortunately, is not held in this application, where two or
even more different AUs can change simultaneously. For example,
AU2S5 is activated at the same time when AU24 is released as
illustrated in Fig 3.

Instead of using 7 separate nodes for 7 speech-related AUs,
respectively, a single “AU” node is employed to model the joint
distributions of all speech related AUs. Since each AU can be at
one of “absence” or “presence” status, “AU” has 27 = 128 states,
each of which is corresponding to one combination of 7 AUs. For
example, the state 0 of the “AU” node represented by a binary
number “0000000”, means no AU is activated, while the state 1
with a binary number “0000001”, means only AU27 is present.
This way, the relationships between all AUs are naturally modeled
without learning the CTBN structure. The directed links between
“AU” and “Phone” capture the dynamic and physiological rela-
tionships between them.

3.3 Model Parameterization

In a CTBN, each node, e.g., “Phone” and “AU” in this work,
evolves as a Markov process, whose dynamics is described by
a set of transition intensity matrices, called conditional intensity
matrices (CIMs) denoted by Q, in which the transition intensity
values are determined by the instantiations of parent node(s).

3.3.1 Model Parameterization for “Phone”

The directed link from “AU” to “Phone” represents the rela-
tionships that AUs are activated prior to pronounce a phoneme
and thus, the dynamic of “Phone” is based on the instantia-
tions of “AU”. Given the k' state of “AU” denoted as ag,



k=20,---,127, the CIM for “Phone”, a 29 x 29 matrix denoted
as Qphone|AU—a,,- i$ defined as follows:
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where qf 1% denotes the conditional intensity value when

“Phone” remains at its i*" state denoted by ph;, i = 0, --- , 28,
given AU = ay; qf}jla’“ (j =0, ---,28 and j # i) denotes the
conditional intensity value when “Phone” transitions from its i*"
state to its j** state, given AU = ay,; and qphla" Z phlak.

Based on Eq. 1, the dynamics of “Phone” may change follow-
ing the state of “AU”. For example, if “AU” is at its ag state, the
dynamics of “Phone” will be controlled by its CIM Qppone|au=a,
while the intensity matrix Qppgpejau—q, Will be employed after
“AU” transitions to its @y state.

Given the initial states of “Phone” and “AU” at time ¢ = 0
(Phone = ph; and AU = ay), the probability of Phone remaining
at its initial state ph; is specified by the probability density
function as [16]:

h
D \akt
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Then, the expected time of transition of “Phone”, i.e., leaving
from the ith state to any of the other states, can be computed
as When transition occurs, “Phone” transitions from its

ith

ph an
i

state to its ]

phlak
[16].

state with probability denoted by 9i7j|ak =

ph|(Lk
q;

3.3.2 Model Parameterization for “AU” and “O,,”

The state of “AU” may also change according to the state
of “Phone”. Following the previous example of producing a
phoneme P, the probability of AU24 (lip presser) should decrease
rapidly if the sound is emitted in the Aspiration phase. Such
relationships can be captured by a directed link from “Phone” to
“AU”. Then, the CIM of “AU” given the it state of “Phone”
is denoted by Qayphone—pn; and can be defined similarly as
Eq. 1. Likewise, the CIM of “0,,” given the i state of “Phone”
(Qo, |Phone=pn;) captures the measurement uncertainty of speech
recognition and is defined similarly as Eq. 1.

3.4 Parameter Estimation

The model parameters of a CTBN include the initial distribution
Pry specified by a Bayesian network, the structure of CTBN,
and the CIMs. The initial distribution Prq can be estimated given
the groundtruth AU and phoneme labels of the first frames of
all sequences. It becomes less important in the context of CTBN
inference and learning when we assume the model is irreducible,
especially when the time range becomes significantly large [21].
Thus, as the CTBN model structure is given as shown in Fig. 5,
the model parameters we should learn are the expected time of

transitions, i.e., ﬁ%, and the transition probabilities, i.e., 9i7j|ak.
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In this work, the groundtruth AU labels and the phoneme labels
are manually annotated, and thus the training data D is complete,
i.e., for each time point along each trajectory, the instantiation
of all variables is known. Then, we can estimate the parameters
of a CTBN efficiently using Maximum Likelihood estimation
(MLE) [80]. In particular, the likelihood function can be factorized
as the product of a set of local likelihood functions as below:

L(q,0: D) = H Lx(qX|VX70X\VX : D)
XeX
= H Lx (qX|VX :D)Lx (0X|VX :D) 3
XeX

where X consists of all random variables in the CTBN, i.e., “AU”,
“Phone”, and “0,” in this work; X € X is a random variable
with M states and has a set of parent nodes denoted by V.
ax|v, is a set of parameters characterizing the expected time of
transition from the current state of X to any of the other states
given its parent nodes V , i.e., the diagonal elements of Q X[V,
and 6 X|v, Tepresents the transition probabilities of X given its
parent nodes V, , i.e., the off-diagonal elements of Q XV,

Given an instantiation of the parent nodes, i.e., V,, = v, the
sufficient statistics are T'[x;|v, | representing the total length of
time that X stays at the state z-; and N [xz;, x;|v ] representing the
number of transitions of X from the state z; to the state x;. With
the sufficient statistics, L (qX‘VX :D)and L (Ox|y,_ : D) in
Eq. 3 can be calculated as follows [80],

LX (qX|VX : D)
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where qj(lvx is the 7*" diagonal element in the CIM of X given an

instantiation of its parent nodes (Qx|y
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. JEM,j#i
of transitions leaving from the state x;.

, referring to Eq. 1); and
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where 0, vy = %(T represents the transition probability from

the ™" state of X to the jth state, given an instantiation of its
parent nodes v, .

By substituting Eq. 4 and Eq. 5 into Eq. 3, the log-likelihood
for X can be obtained as below

Ex (levx’OX\VX : D) = éx (qX\VX D) +£x (0X|VX : D)
X|v X|v
=3 Ny Jin(g; ") — ¢ ey, ]
vy i€EM
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Vi €M jEM,j#i



By maximizing Eq. 6, the model parameters can be estimated
as follows [81]:

Xy Nlzilv,]
G Talvy @
.. _ N[xiaxﬂvx}

v = N, ®

3.5 Phoneme Measurements Acquisition

In this work, a state-of-the-art speech recognition approach, i.e.,
Kaldi toolkit [82], is employed to obtain the phoneme mea-
surements. In particular, 13-dimensional MFCC features [83] are
first extracted, based on which, Kaldi is used to produce word-
level speech recognition results, which are further aligned into
phoneme-level segments. These phoneme-level segments are then
fed into the CTBN model as the evidence. Note that, the evidence
is given as a continuous event and the gaps between two successive
phonemes are considered as silence.

3.6 AU Recognition via CTBN Inference

Given the fully observed evidence, i.e., phoneme measurements
denoted by E,,, and a prior distribution, Prg, over the variables at
time tp, AU recognition is performed by estimating the posterior
probability Pr(AU|E,) via the CTBN model. Exact inference can
be performed by flattening all CIMs into a single intensity matrix
Q using amalgamation, which will be treated as a homogeneous
Markov process [16], where the intensity values in Q stay the
same over time. However, exact inference is infeasible for this
work as the state space grows exponentially large as the number of
variables increases. In this work, we employ auxiliary Gibbs sam-
pling [84], which takes a Markov Chain Monte Carlo (MCMC)
approach to estimate the distribution given evidence, implemented
in the CTBN reasoning and learning engine (CTBN-rle) [85] to
perform CTBN inference.

Since the state of the “AU” node corresponds to the joint states
of 7 speech-related AUs, the inference results would be the joint
probability of those AUs. Then, the posterior probability of a target
AU given the evidence can be obtained by marginalizing out all
the other AUs. Optimal states of the target AUs can be estimated
by maximizing the posterior probability.

4 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed approach, a
pilot audiovisual database is constructed, on which the proposed
method, a state-of-the-art visual-based method, and a set of base-
line experiments are conducted.

4.1 Audiovisual Dataset

As far as we know, all the publicly available AU-coded datasets
only provide visual information. Moreover, all speech-related
AUs are either coded using a uniform label, i.e. AD50 [6], or
completely ignored [39], during speech. Thus, in order to learn
the dynamic and physiological relationships between AUs and
phonemes, as well as to evaluate the proposed audio-based facial
AU recognition framework, we constructed a pilot audiovisual
database consisting of two subsets, i.e. a clean subset and a chal-
lenging subset. Fig. 6 illustrates example images of the speech-
related AUs in the audiovisual database.

Fig. 7: Example images in the challenging subset collected from
different illuminations, varying view angles, and with occlusions by
glasses, caps, or facial hairs.

There are a total of 13 subjects in the audiovisual database,
where 2 subjects appear in both the clean and challenging subsets.
All the videos in this database were recorded at 59.94 frames per
second at a spatial resolution of 1920 x 1080 with a bit-depth
of 8 bits; and the audio signals were recorded at 48kHz with 16
bits. The statistics, i.e., the numbers of occurrences, of the speech-
related AUs in the clean and challenging subsets are reported in
Table. 1, respectively.

TABLE 1: Statistics of the speech-related AUs in the audiovisual
database.

Subsets AUI8 AU20 AU22 AU24 AU25 AU26 AU27 Total Frames
Clean 7014 1375 4275 2,105 25092 18280 4,444 34,622
Chall 4,118 1,230 3396 1,373 17,554 11,830 3,242 23,274

In the clean subset, videos were collected from 9 subjects
covering different races, ages, and genders. It consists of 12
words !, which contain 28 phonemes and the most representative
relationships between AUs and phonemes. Other phonemes are
generally produced by AU25 (lips part) and AU26 (jaw drop),
which represents the most common facial AU combination ob-
served during speech. For example, even though there are two
different phases to pronounce 7T in fea or K in key, the same
combination of facial AUs, i.e. AU25+AU26, is activated in both
phases with tongue movements. Each subject was asked to speak
the selected 12 words individually, each of which was repeated 5
times. In addition, all subjects were required to keep a neutral face
during data collection to ensure all the facial activities are only
caused by speech.

Videos in the challenging subset were collected from 6 sub-
jects covering different races and genders speaking the same words
for 5 times as those in the clean set. As illustrated in Fig. 7, the
subjects were free to display any expressions on their face during
speech and were not necessary to show neutral face before and
after speaking the word, and there are occlusions on the face region
caused by glasses, caps, and facial hairs, introducing challenges to
AU recognition from the visual channel. Instead of being recorded
from the frontal view, videos were collected mostly from the
sideviews with free head movements. In addition, illumination
sources were at different locations to the subjects, and some videos
were collected under low illumination. Moreover, the videos were
collected under unconstrained conditions with background noise
and the microphone was mounted at different locations to the
subjects, both of which introduced challenges to the audio channel.

1.The 12 words including “beige”,“chaps”,“cowboy”,“Eurasian”,

“gooey”, *hue”,“joined”,“more”, “patch”,“queen”, “she”, and “waters” were
selected from English phonetic pangrams (http://www.liquisearch.com/list_
of_pangrams/english_phonetic_pangrams) that consists of all the phonemes at
least once in 53 words.
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1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

AU18 AU20 AU22 AU24 AU25 AU26 AU27 AVG

MCC

(a) the clean subset

1

0.9

058

0.7

0.6

8 os
2 04
03

0.2

0.1

0

AU18 AU20 AU22 AU24 AU25 AU26 AU27 AVG

(b) the challenging subset

Fig. 8: Inter-coder reliability measured by MCC for the 7 speech-related facial AUs on (a) the clean subset and (b) the challenging subset.

Groundtruth phoneme segments and AU labels were recorded
in the database. Specifically, the utterances were transcribed using
the Penn Phonetics Lab Forced Aligner (p2fa) [86], which takes
an audio file along with its corresponding transcript file as input
and produces a Praat [87] TextGrid file containing the phoneme
segments. 7 speech-related AUs, i.e. AU18, AU20, AU22, AU24,
AU25, AU26, and AU27, as shown in Fig. 6, were frame-by-
frame labeled manually by two certified FACS coders. Following
the settings in [39], most of the data has been labeled only by
one labeler, while roughly 10% of the data was labeled by two
coders independently to estimate inter-coder reliability measured
by Matthews Correlation Coefficient (MCC) [88]. When the visual
observation was impeded by occlusions, the AU coders labeled
AUs according to Phonetics [78] as well as self-reports from the
subjects to achieve a good inter-coder agreement. As illustrated
in Fig. 8, the MCC for each AU ranges from 0.69 for AU27 to
0.98 for AU25 and has an average of 0.88 on the clean subset
(Fig. 8(a)), and ranges from 0.80 for AU26 to 0.96 for AU25 on
the challenging subset (Fig. 8(b)), which indicates strong to very
strong inter-coder reliability of AU annotation.

4.2 Baseline Methods for Comparison

To demonstrate the effectiveness of the proposed audio-based
AU recognition framework, we compared the proposed method,
denoted as CTBN, with seven baseline methods on the AU-coded
audiovisual database.

Ada-LBP: The first visual-based baseline method, denoted as
Ada-LBP [89], employs histogram of LBP features, which have
been shown to be effective in facial AU recognition. Specifically,
face regions across different facial images are aligned to remove
the scale and positional variance based on a face and eye detector
and then cropped to 96 x 64 for preprocessing purposes 2. Then,
the cropped face region is divided with a 7 x 7 grid, from each

2. All the visual-based baseline methods employed the same preprocessing
strategy. Except the IB-CNN-LIP, which employed a 96 x 96 face region, all
methods used a 96 x 64 face region.

subregion of which, LBP histograms with 59 bins are extracted.
AdaBoost is employed to select the most discriminative features,
which are used to construct a strong classifier for each AU.

Ada-LPQ: The second visual-based baseline method, denoted
as Ada-LPQ [37], employs histogram of LPQ features. Specifi-
cally, the face region is divided into 7 x 7 grid, from each of which,
LPQ histograms with 256 bins are extracted. Similar to the Ada-
LBP, AdaBoost is employed for feature selection and classifier
construction for each AU.

SVM-LGBP: The third visual-based baseline method, denoted
as SVM-LGBP, employed histogram of LGBP features [38], [39].
Particularly, the face region is convolved with 18 Gabor filters,
i.e. three wavelengths A = {3,6.3,13.23} and six orientations
0=10,%,%,%, %’r, ‘%T}, with a phase offset 1) = 0, a standard
deviation of the Gaussian envelope 0 = g—g, and a spatial aspect
ratio v = 1, which results in 18 Gabor magnitude response
maps. Each of the response maps is divided into a 7 x 7 grid,
from each of which, LBP histograms with 59 bins are extracted
and concatenated as LGBP features. For each AU, AdaBoost is
employed to select 400 LGBP features, which are employed to
train an SVM classifier.

IB-CNN-LIP: The fourth baseline method, denoted as IB-
CNN-LIP, employed a deep learning based model, i.e. Incremen-
tal Boosting Convolutional Neural Network (IB-CNN) [72] for
facial AU recognition. Since only the lower-part of the face is
responsible for producing the speech-related AUs, the aligned and
cropped lip region along with the landmarks on lips are employed
in a two-stream IB-CNN to learn both appearance and geometry
information for each target AU.

Ada-MFCC: The fifth baseline method, denoted as Ada-
MFCC, employs low-level audio features, i.e., 13-dimensional
MEFCC features, extracted from the audio channel. Since there is
a random shift between the MFCC and the video frames, a cubic
spline interpolation method is employed to synchronize MFCC
features with the image frames [76]. In addition, 7 frames of the
MFCC features, i.e. 3 frames before and after the current frame
along with the current one, are concatenated as the final MFCC
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Fig. 9: A DBN model learned from the clean subset for modeling
the semantic and dynamic relationships between AUs and phonemes.
The directed links in the same time slice represent the semantic
relationships among the nodes; the self-loop at each node represents
its temporal evolution; and the directed links across two time slices
represent the dynamic dependency between the two nodes. The
shaded node is the measurement node and employed as evidence for
inference; and the unshaded nodes are hidden nodes, whose states can
be estimated by inferring over the trained DBN model.

features employed as the input to train an AdaBoost classifier for
each AU.

DBN: The sixth baseline method, denoted as DBN, employs
a Dynamic Bayesian Network (DBN) to model the semantic and
dynamic relationships between phonemes and AUs. Specifically,
the DBN structure as shown in Fig. 9 as well as the DBN
parameters are learned using the Bayes Net Toolbox [90] from the
clean subset. In order to synchronize phoneme measurements with
the image frames, the continuous phoneme segments obtained by
speech recognition are discretized according to the sampling rate
of the image frames, as illustrated in Fig. 10. Then, AU recognition
is performed by DBN inference given the discretized phoneme
measurements.

CTBN-F: The last baseline method, denoted as CTBN-F,
which is short for CTBN-Factorized, employs a factorized CTBN
to explicitly model the dynamic and physiological relationships
between phonemes and each AU as well as the dynamic relation-
ships between AUs. As shown in Fig. 11, each AU is represented
by an individual node with 2 states, i.e. “absence” and “presence”,
in contrast to a combined node in Fig. 5. The directed link
between “Phone” and each AU node represents the dynamic
and physiological relationships between phonemes and the AU.
Those between AU nodes capture the dynamic interactions among
AUs and are learned from the data using CTBN-Ire [85]. The
model parameters, i.e., the CIMs, are estimated as described in
Section 3.4 from the training data.

Both DBN (Fig. 9) and CTBN-F (Fig. 11) capture dynamic
relationships between AUs and phonemes. However, the dynamic
dependencies from AUs to phonemes are not learned and modeled
in a DBN. This is because the penalty for adding a link from an
AU node to the phoneme node is much higher that that from the
phoneme node to AU nodes for the 29-state phoneme node. In
addition, since loops are allowed in a CTBN model, there is a
loop between AU24 and AU25 in CTBN-F indicating the strong
dynamic relationships between those two AUs.

Note that the Ada-MFCC, SVM-LGBP, IB-CNN-LIP, DBN,
and CTBN-F methods are proposed in this work for recognizing
speech-related AUs using only audio information.

Fig. 11: The structure of a CTBN-F model trained on the clean subset
for modeling the dynamic physiological relationships between AUs
and phonemes.

4.3 Experimental Results and Data Analysis on the
Clean Subset

We first evaluate the proposed CTBN model on the clean subset.
For all methods compared, a leave-one-subject-out training/testing
strategy is employed, where the data from 8 subjects is used for
training and the remaining data is used for testing. Quantitative
experimental results on the clean subset are reported in Fig. 12 in
terms of F1 score, true positive rate, and false positive rate. As
shown in Fig. 12, the proposed CTBN model outperformed all the
baseline methods significantly in terms of the average F1 score
(0.653).

Compared with Ada-LBP, Ada-LPQ, and SVM-LGBP,
which employ appearance information from the visual channel,
the overall AU recognition performance is improved from 0.416
(Ada-LBP), 0.448 (Ada-LPQ), and 0.386 (SVM-LGBP) to 0.653
by the proposed CTBN model in terms of the average F1 score.
As shown in Fig. 12, CTBN outperforms Ada-LBP, Ada-LPQ, and
SVM-LGBP for all target AUs, which demonstrates the effective-
ness of using information extracted from the audio channel. The
improvement is more impressive for AU27 (mouth stretch), i.e.,
0.755 by CTBN versus 0.273 by Ada-LBP, 0.279 by Ada-LPQ,
and 0.296 by SVM-LGBP, since the visual observation of AU27
is not reliable during speech due to the occlusion caused by lip
movements as illustrated in Fig. 1.

Compared with IB-CNN-LIP, which employs both appear-
ance and geometry information from the visual channel, the
overall AU recognition performance is improved from 0.465 (I/B-
CNN-LIP) to 0.653 by the proposed CTBN in terms of the average
F1 score. Not surprisingly, the IB-CNN-LIP outperforms the other
visual-based approaches that employ only appearance features.
In addition, it also performs better than the proposed CTBN on
AU2S5 (lips part) because both the appearance and geometry clues
from the visual channel are strong for AU2S5. In contrast, drastic
improvement is achieved for AU26 (jaw drop), from 0.367 by /B-
CNN-LIP to 0.748 by CTBN, because the appearance information
for AU26 is invisible due to the occlusion as depicted in Fig. 1
and the geometrical change is subtle during speech.

Compared with Ada-MFCC, which employs low-level acous-
tic features in AU recognition, the proposed CTBN improves
the overall AU recognition performance by 0.217 in terms of
the average F1 score. Furthermore, the CTBN outperforms the
Ada-MFCC for all AUs notably by employing more accurate
and reliable higher level audio information, i.e., the phonemes,
thanks to the advanced speech recognition techniques, and more
importantly, by exploiting the dynamic physiological relationships
between AUs and phonemes.
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Fig. 13: ROC curves for 7 speech-related AUs on the clean subset.

Compared with DBN, the proposed CTBN improves the over-
all AU recognition performance by 0.138, in terms of the average
F1 score. Particularly, the F1 scores of CTBN are better than or at
least comparable to those of DBN for all AUs, as shown in Fig. 12.
The primary reason for the performance improvement is that the
dynamic dependencies modeled in DBN are stationary; whereas
the relationships between AUs and phonemes actually undergo a
temporal evolution as modeled in the CTBN. For example, the
F1 score of AU24 (lip presser) is dramatically improved from
0.158 by DBN to 0.603 by CTBN, because AU24 is activated
before the sound is produced and released once the sound is
heard, which can be better modeled in CTBN. Note that DBN fails
to recognize AU20 (lip stretcher). Although AU20 is required to
produce AE in chaps according to Phonetics [78], some subjects
did not activate AU20 as observed in our audiovisual dataset and
thus, the semantic relationship between Phone and AU20 is rather
weak. However, no dynamic link is learned between Phone and
AU20 in DBN. In contrast, dynamic relationships between AUs
and phonemes modeled by CTBN are more crucial for inferring

AU20. As a result, the F1 score of AU20 is improved from
0 by DBN to 0.314 by CTBN. We found that DBN performs
slightly better on AU18 (lip pucker) and AU22 (lip funneler) than
CTBN. This is because AU18 and AU22 have the strongest static
relationships with phonemes: when pronouncing UW in two and
CH in cheese, they are activated for most of subjects.

Compared with CTBN-F, the proposed CTBN further im-
proves the overall AU recognition performance by 0.057, in
terms of the average F1 score. By employing one single node to
model the joint distribution over the 7 target AUs, comprehensive
relationships between AUs and phonemes, i.e., AUs occur in
combinations to produce sounds, can be well characterized as
discussed in Section 3.2.

In addition, Fig. 14 gives an example of the system outputs of
the CTBN and CTBN-F, i.e., the probabilities of AUs given the
phoneme measurements (the shaded phoneme sequence), by the
CTBN inference over continuous time. For both CTBN and CTBN-
F, the probabilities of AUs change corresponding to the transitions
of phonemes, when sounding a word “beige”. For example, the
probability of AU24 increases and reaches its apex before the
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Fig. 14: An example of the system outputs by CTBN inference using
CTBN and CTBN-F, respectively. The top row shows key frames from
an image sequence where a word “beige” is produced, where AU22,
AU24, AU25, and AU26 are involved. The bottom two figures depict
the probabilities of AUs changing over time by CTBN and CTBN-F,
respectively. The shaded phoneme sequence is used as evidence of
the CTBN models and the unshaded one is the ground truth phoneme
labels. The vertical green line denotes the time point when AU24 is
released, while the vertical garnet line denotes the time point when
AU?2S5 is activated. The two lines are overlapped with each other in
the CTBN output. Best viewed in color.

phoneme B is produced. AU26 can be recognized even though the
gap between upper and lower teeth is invisible in visual channel
because the presence of AU24. When the sound B is emitted,
the probability of AU24 drops rapidly, while the probability of
AU2S5 increases. The vertical green line denotes the time point
when AU24 is released, while the vertical garnet line denotes the
time point when AU25 is activated. Ideally, they should overlap
with each other due to the transition from the “Stop” phase to the
“Aspiration” phase of sounding B, as the result of the CTBN (the
top plot). Whereas, a noticeable gap between the two lines can be
observed in the result of the CTBN-F (the bottom plot) because
that no two AUs are allowed to change states at the same time in
the factorized CTBN.

Moreover, we analyzed the relationships learned by CTBN.
Table 2 depicts a part of the CIM associated with the “AU”
node given the state of “Phone” as B, where the first row and
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Fig. 15: A DBN model learned from the challenging subset for
modeling the semantic and dynamic relationships between AUs and
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column give the states of “AU” with the corresponding AU/AU
combinations. For example, if “AU” is at its 10" state, i.e., AU24
and AU26 are activated, the corresponding conditional intensity
value in the CIM is —16.72. As described in Section 3.3, the
“AU” node is expected to transit in {5 72 s. Upon transition, it has
a higher chance to transit to its 6'” state (AU25+AU26) with a
probability of 1693 72 However, if the lip movement is not fast, i.e.,
AU?25 is not activated when AU24 is released, it may transit to
its 2"¢ state (AU26) with a probability of 2% . Then, the “AU”
node will leave this state quickly in 401 17 S and transit to its 6th
state with a high probability of i?) f’;

We further performed a Receiver Operating Characteristic
(ROC) analysis for each AU. An ROC curve is obtained by plotting
the true positive rates against the false positive rates while varying
the decision threshold of the predicted scores. As shown in Fig. 13,
the performance of the proposed CTBN is better than or at least
comparable to that of the baseline methods for all the target AUs.
The improvement is more significant on the AUs that have strong
dynamic relationships with phonemes, i.e. AU24, or whose visual
observation is not reliable during speech, i.e. AU27.

4.4 Experimental Results on the Challenging Subset of
the Audiovisual Database

Experiments were conducted on the challenging subset to demon-
strate the effectiveness of the proposed audio-based facial AU
recognition under real world conditions, where facial activities are
accompanied by free head movements, illumination changes, and



Fig. 16: A CTBN-F model trained on the challenging subset for
modeling the dynamic physiological relationships between AUs and
phonemes.

often with occlusions of the face regions caused by facial hairs,
caps, or glasses.

The proposed CTBN model and the baseline methods, i.e. Ada-
LBP, Ada-LPQ, SVM-LGBP, IB-CNN-LIP, Ada-MFCC, DBN, and
CTBN-F, were trained and tested on the challenging subset using
a leave-one-subject-out strategy. Since there are only 6 subjects
in the challenging subset, we employed the data in the clean
subset except those of the two subjects, who also appear in the
challenging subset, as additional training data to ensure a subject-
independent context. Specifically, the data of 5 subjects from the
challenging subset along with the data of 7 subjects from the clean
subset is used as the training data, and the remaining one subject
from the challenging subset is employed as the testing data.

The structures of the DBN and CTBN-F trained on the
challenging data are shown in Fig. 15 and Fig. 16, respectively.
Comparing Fig. 9 and Fig. 15, we can see that the dynamic
relationships from phonemes to AUs become more important on
the challenging subset in the DBN model, i.e. more temporal links
are learned from the phoneme node of the t— 1" slice to AU nodes
of the t*" slice in Fig. 15. This is because the labeling uncertainty
of AUs is alleviated in the challenging subset, especially for non-
frontal faces, since lip movement is often asymmetrical during
speech [7].

4.4.1 Experimental Results and Discussion

Quantitative experimental results are reported in Fig. 17 in terms
of F1 score, true positive rate, and false positive rate. As shown
in Fig. 17, the proposed CTBN achieved the best recognition
performance among all the methods compared, in terms of the
average F1 score (0.682).

Note that the performance of the visual-based methods de-
grades significantly on the challenging subset even with more
training data. As shown in Table 3, the average F1 score of
Ada-LBP decreases from 0.416 (clean) to 0.372 (challenging);
that of Ada-LPQ decreases from 0.448 (clean) to 0.362 (chal-
lenging); that of SVM-LGBP decreases from 0.386 (clean) to
0.339 (challenging); and that of IB-CNN-LIP drops from 0.465
to 0.382 due to large face pose variations and occlusions on
the face regions. In contrast, the information extracted from the
audio channel is robust to head movements and occlusions for
facial AU recognition. As a result, the performance of the audio-
based methods on the challenging subset is comparable or even
slightly better than that on the clean subset because of employing
additional training data, as reported in Table 3.

11

SILENCE

SILENCE B

EY ZH

AU24+26 AU25+26 AU22+25
4 AU18 -¢- AU20 AU22 -+ AU24 » AU25

A

SILENCE B EY ZH
SILENCE B EY ZH

AU26 »¢AU27

SILENCE

,

0] 22
0 0.102030405060.708091.01.11.21.31.41.46
Time (second)

Fig. 18: An example of the system outputs by CTBN inference on
the challenging subset. The top row shows key frames from an image
sequence where a word “beige” is produced and AU22, AU24, AU25,
and AU26 are involved. The bottom figure depicts the probabilities
of AUs changing over time. The shaded phoneme sequence is used
as evidence of the CTBN and the unshaded one is the ground truth
phoneme labels.. Best viewed in color.

TABLE 3: Performance comparison on the two subsets in terms of
the average F1 score.

Subsets  Ada-LBP  Ada-LPQ  SVM-LGBP _ IB-CNN-LIP Ada-MFCC _ DBN  CTBN-F CTBN

Clean 0.416 0.448 0.386 0.465 0.436 0.515 0.596 0.653

Challengi 0.372 0.362 0.339 0.382 0.445 0.534 0.589 0.682

An ROC analysis was performed for each target AU on the
challenging subset. As shown in Fig. 19, the performance of the
proposed CTBN is better or at least comparable to that of the
baseline methods for all the target AUs. In addition, an example
of the system outputs of the CTBN over continuous time is
illustrate in Fig. 18. As depicted by Fig. 18, the probabilities of
AUs undergo a similar temporal evolution corresponding to the
transitions of phonemes as the case in the clean subset.

4.5 Analysis on Phoneme Measurement

The proposed audiovisual fusion framework benefits from the re-
markable achievements in speech recognition. In our experiments,
the speech recognition performance of the Kaldi Toolkit [82]
is 1.3% (7/540) on the clean subset and 1.4% (5/360) on the
challenging subset in terms of the word-level error rate (WER,
[insert+delete+substitute]/[number of words]). To evaluate the
effect of phoneme measurement on fusion, we have conducted
an experiment using the ground-truth phoneme segments as the
evidence for the CTBN model, denoted as CTBN-perfect. As
shown in Fig. 20, CTBN using phoneme measurements from
speech recognition yields comparable performance with CTBN-
perfect using ground-truth phoneme segments.
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5 CONCLUSION AND FUTURE WORK

It is challenging to recognize speech-related AUs due to the subtle
facial appearance and geometrical changes as well as occlusions
introduced by frequent lip movements. In this work, we proposed
a novel audio-based AU recognition framework by exploiting
information from the audio channel, i.e., phonemes in particular,
because facial activities are highly correlated with voice. Specif-
ically, a CTBN model is employed to model the dynamic and
physiological relationships between phonemes and AUS, as well as
the temporal evolution of these relationships. Given the phoneme
measurements, AU recognition is then performed by probabilistic
inference through the CTBN model.

Experimental results on a new audiovisual AU-coded dataset

improvement over the state-of-the-art visual-based AU recognition
method. The improvement is more impressive for those AUs,
whose visual observations are impaired during speech. More
importantly, the experimental results on the challenging subset
have demonstrated the effectiveness of utilizing audio information
for recognizing speech-related AUs under real world conditions,
where the visual observations are not reliable. Furthermore, the
proposed CTBN model also outperformed the other baseline meth-
ods employing audio signals, thanks to explicitly modeling the
dynamic interactions between phonemes and AUs in the context
of human communication.

In the future, we plan to extend the audiovisual database to
include continuous and emotional speech, while extensive labeling
workload is expected for AU annotation. The framework learned
from the enriched database is expected to capture more compre-
hensive relationships in natural human communication. Under the
contexts of emotion, more AUs especially the upper-face AUs
can be modeled. In addition, it is expected to be more robust to
imperfect phoneme measurements by modeling the relationships
in the words.
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