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Anytime Control under Practical Communication Models
Wanchun Liu, Daniel E. Quevedo, Yonghui Li, and Branka Vucetic

Abstract—We investigate a novel anytime control algorithm for
wireless networked control with random dropouts. The controller
computes sequences of tentative future control commands using
time-varying (Markovian) computational resources. The sensor-
controller and controller-actuator channel states are spatial- and
time-correlated, and are modeled as a multi-state Markov process.
To compensate the effect of packet dropouts, a dual-buffer mech-
anism is proposed. We develop a novel cycle-cost-based approach
to obtain the stability conditions on the nonlinear plant, controller,
network and computational resources.

Index Terms—Control over communications, nonlinear systems,
stability of nonlinear systems, Markov fading channels.

I. INTRODUCTION

During past decades, significant attention has focused on
embedded or networked control systems that have limited and
time-varying controller’s computation capability due to high
requirements on multitasking operations. In particular, assuming
constant and limited computational resources, bounds on compu-
tational time of specific optimization algorithms for achieving
stability were derived in [1], [2]. For time-varying computa-
tional resources, a dynamic computation task scheduling method
was proposed for model predictive controllers [3]. On-demand
computation scheduling of control input based on plant states
were investigated for periodic, event-triggered and self-triggered
policies in [4]–[6], respectively.

Another stream of research considers anytime algorithms for
robust control and making efficient use of time-varying com-
putational resources. In general, an anytime algorithm can pro-
vide a solution even with limited computational resources, and
refines the solution when more resources are available. In the
pioneering work [7], an anytime control system was proposed,
where the number of updated states varies with the available
computation time known to the controller a priori. In [8], an
anytime control algorithm for a multi-input linear system was
proposed for the scenario when the computation availability is
unknown a priori. The main idea was to first calculate the most
important component of the control vector and then calculate
the less important ones as more computational resource becomes
available. In [9], a sequence-based anytime control method was
proposed, which can calculate a tentative sequence of future
control input for as many time steps as allowed by the available
computational resources at each time step. The pre-calculated
control sequence can compensate for the time steps when no
computational resource is available for control calculations. Fol-
lowing this work, sequence-based anytime control systems with
Markovian processor availability, event-triggered sensor updates
and multiple control laws were investigated in [10]–[12], respec-
tively. In [7]–[10], the sensor-controller and controller-actuator
channels were assumed to be perfect and error-free. In [11]
and [12], the sensor-controller channel was assumed to have
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independent and identically distributed (i.i.d.) packet dropouts2,
i.e., only binary-level (on-off) channel states, were considered,
while the controller-sensor channel was assumed to be perfect.

Motivation. The existing work of anytime control [7]–[12]
cannot effectively handle the fully distributed networked control
scenario, where both the sensor-controller and controller-actuator
communication links are wireless. Moreover, the existing research
only considered simple wireless channel models, which cannot
capture the key features of practical wireless channels that are
time-varying and correlated [14]. Therefore, anytime control
design and analysis for fully distributed networked control system
in practical wireless channels are critical in practice, but also
present new challenges.

Novelty and contributions. In this work, we consider for the
first time the sequence-based anytime control of a wireless
networked control system (WNCS) in a generalized dual imper-
fect channel, where the sensor-controller and controller-actuator
channel states are spatial- and time-correlated and are modeled
as a multi-state Markov process. Different from most of the
existing works [9]–[12], where only the controller has a buffer
to keep the calculated sequence of control inputs, we propose
to use anytime control with buffers at both the controller
and the actuator nodes. The latter is used to compensate
for dropouts in the controller-actuator channel. Moreover, the
available computational resource of the controller is allowed to be
time-correlated, modeled as a multi-state Markov process. Such a
dual-channel-dual-buffer anytime control system has practical
advantages but brings significant challenges to its analysis due
to the complex system state updating rule, compared to previous
setups. We propose a novel cycle-cost-based approach to derive
sufficient conditions for stochastic stability of the overall WNCS.
Our stability conditions are stated in terms of plant dynamics,
network dynamics, buffer properties and computational resource
dynamics. We further show that, under suitable assumptions,
the conditions derived guarantee robust stability when plant
disturbances are taken into account.

The remainder of the paper is organized as follows: Section II
presents the system model of anytime control in the dual-channel-
dual-buffer WNCS. Section III develops the stability condition.
Section IV provides robust stability analysis. Section V draws
conclusions.

Notation: Sets are denoted by calligraphic capital letters, e.g.,
A. A\B denotes set subtraction. Matrices and vectors are denoted
by capital and lowercase upright bold letters, e.g., A and a,
respectively. E [A] is the expectation of the random variable A.
The conditional probability Prob [A|B] = 0 if Prob [B] = 0.
(·)> is the matrix transpose operator. |v| is the Euclidean norm
of vector v. N and N0 denote the sets of positive and non-
negative integers, respectively. Rm denotes the m-dimensional
Euclidean space. [A]j,k and [v]j denote the element at the jth
row and kth column of a matrix A, and the jth element of
a vector v, respectively. λmax(A) denotes the spectral radius

2Note that i.i.d. packet dropout channel is very commonly considered in the
literature of networked control [13].
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Fig. 1. The dual-channel-dual-buffer WNCS.

of A. diag{v} denotes the diagonal matrix generated by the
vector v. {v}N0

denotes the semi-infinite sequence {v0, v1, · · · }.
A function φ : R≥0 → R≥0 is of class-K∞ (φ ∈ K∞) if it
is continuous, strictly increasing, and zero at zero. 0i and 0i×j
denotes the all-zero i× i and i× j matrices, respectively. A = 0
indicates that A has all zero elements.

II. ANYTIME CONTROL IN A DUAL-CHANNEL-DUAL-BUFFER
WNCS

We consider a WNCS consisting of a plant system, a remote
controller and a wireless network placed between the plant and
the controller. A sensor sends its measurements of the plant to
the controller, and the controller computes and sends control
commands to a remote actuator via the wireless network as
illustrated in Fig. 1. The dual wireless channel (i.e., the sensor-
controller and controller-actuator channels) setup is different
from [9]–[11], which assumed either perfect transmissions in
two channels or a single (imperfect) wireless channel from the
sensor to the controller. Each sampling period of the plant,
denoted by Ts, is divided into four phases: sensor-controller (S-
C) transmission, command computation, controller-actuator (C-
A) transmission and implementation of control as illustrated in
Fig. 2.

We consider a process-noise-free discrete-time non-linear plant
model

x(t+ 1) = f(x(t),u(t)), (1)

where x(t) ∈ Rls and u(t) ∈ Rlu are the plant state and the
control input at time t. Note that a more practical model with
process noise will be investigated in Section IV.

As a consequence of stochastic computational resources at the
controller and packet dropouts in the sensing and control channels
(which will be described later in more detail), the plant may
have to operate in open loop for arbitrarily long time intervals.
This may lead to performance degradation and potential loss of
stability. Thus, throughout this work we will analyze the stability
conditions of the considered system where the stability is defined
as follows.

Definition 1. The process-noise-free dynamical system (1) is
stochastically stable, if for some ψ ∈ K∞, the expected value∑∞
k=0 E [ψ(|x(k)|)] <∞.

Our standing assumption is that the plant is globally control-
lable (in the idealized closed loop case):

Assumption 1 ( [9]–[11]). There exist functions V : Rls →
R≥0, ψ1, ψ2 ∈ K∞, a constant ρ ∈ (0, 1), and a control policy
κ : Rls → Rlu , such that for all x ∈ Rls

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|)
V (f(x, κ(x))) ≤ ρV (x).

Assumption 2 ([9]–[11]). There exists α > 0 such that

V (f(x,0)) < αV (x),∀x ∈ Rls .

The initial plant state satisfies

E [ψ2(|x(0)|)] <∞,
where ψ2 ∈ K∞ as in Assumption 1.

A. Dual Markov Fading Channels

We consider wireless fading channels for the S-C and C-A
transmissions [15]–[17], where wireless channel status varies with
time due to multi-path propagation and shadowing caused by
obstacles affecting the radio-frequency (RF) wave propagation.
The time-varying channel conditions can be modeled as Markov
processes [14]. Furthermore, in practice, the two channel con-
ditions can be correlated, named as spatial correlation, which is
caused by the same environment obstacles [18].

For wireless packet transmissions, there exists a fundamental
tradeoff between reliability, i.e., the packet drop probability,
and data rate, which determines the amount of information bits
that a packet can carry [19]. For a fixed channel condition,
increasing the data rate of a packet can lead to a higher packet
drop probability. For a good channel condition, one can reduce
the packet drop probability while maintain the fixed data rate.
Alternatively, one can increase the data rate while maintaining
the packet drop probability [20]. In this work, we will keep the
data rate fixed for the S-C transmissions, since there is nothing
gained from aggregating past sensor measurements in the state
feedback case. However, it is well known that sending control
sequences can be beneficial to compensate for packet dropouts.
To accommodate this in a fading channel environment, we allow
C-A transmissions to contain packets of varying data rate. The
rates depend on the channel condition and provide a guaranteed
packet-dropout probability. Thus, a longer control sequence can
be transmitted to the actuator under a better channel condition
with the same reliability.

C-A channel. At time slot t, the controller can at most transmit
B(t) ∈ B , {0, 1, · · · , B̄} commands to the actuator with
a guaranteed packet drop probability γ̄. In other words, B(t)
denotes the C-A channel quality. In this sense, B(t) can be treated
as the capacity of the channel under the packet drop probability
requirement γ̄. Let γ(t) = 1 and γ(t) = 0 denote the successful
and failed transmissions in time slot t.

S-C channel. At time slot t, the S-C channel power gain takes
values from {h1, h2, · · · , hB̄′}. Let B′(t) ∈ B′ , {1, 2, · · · , B̄′}
denote the index of the channel power gain. Thus, B′(t) denotes
the S-C channel quality. Let γ′(t) = 1 and γ′(t) = 0 denote
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Fig. 2. A communications-computing-control process.

the successful and failed transmissions in time slot t. The packet
drop probability at time t is

γ̄′(t) = g(hB′(t)) ∈ {g(h1), g(h2), · · · , g(hB̄′)},
where g(·) is the packet drop probability function in terms of the
channel power gain.

Then, we assume that the joint C-A and S-C channel condition
{(B,B′)}N is a time-homogeneous Markov process, and the state
transition probability is given as

pi,j , Prob [(B(t+ 1), B′(t+ 1)) = bj |(B(t), B′(t)) = bi] ,

∀bi, bj ∈ B × B′.
(2)

Remark 1. Our current channel model jointly considers both
the spatial-correlated S-C and C-A channels, the time-correlated
fading channel conditions and variable data rate requirements.
To the best of our knowledge, this has never been considered
in the literature of WNCSs and is more general than existing
models. For example, independent dual channels with i.i.d. packet
dropouts were considered in [21], which is a special case of our
model when the fading channels degrade to static ones and the
channels’ spacial correlation is perfectly canceled.

B. Anytime Control with Dual Buffers

When considering perfect transmission between the controller
and the actuator, as in [9]–[11], the system only needs one buffer
at the controller to store the computed control commands. If
imperfect transmissions are taken into account, it is convenient to
include a command buffer at the actuator to provide robustness
against packet dropouts, see e.g. [22] for a general packetized
predictive control method3. Clearly, the dual-buffer system intro-
duces a more complex state updating process.

Let Λc and Λa denote the length of the controller’s and
the actuator’s buffer, respectively. Then, the buffer state at the
controller after its transmission phase is denoted as

~bc(t) , [bc,1(t)>,bc,2(t)>, · · · ,bc,Λc(t)>]>,

where bc,i(t) ∈ Rlu ,∀i ∈ {1, 2, · · · ,Λc}. The buffer state at
the actuator right after the C-A transmission but before the
implementation of a control command, i.e., the pre-control buffer,
is denoted as

~ba(t) , [ba,1(t)>,ba,2(t)>, · · · ,ba,Λa
(t)>]>,

where ba,i(t) ∈ Rlu ,∀i ∈ {1, 2, · · · ,Λa}. In general, the
buffers ~ba(t) and ~bc(t) keep the calculated sequences of control
command, and the buffer updating rules will be given in the
following part.

3Markovian communication and computational resources were not considered
in [22].

The control input is the first element in the actuator’s buffer,
i.e.,

u(t) = ba,1(t),

which can be treated as the previously predicted control command
for the current time slot. The buffer state at the actuator right after
the control implementation, i.e., the post-control state, is

~b′a(t) , Sa~ba(t),

where the buffer shift matrices are defined as

Si ,


0lu Ilu 0lu · · · 0lu

...
. . . . . . . . .

...
0lu · · · 0lu Ilu 0lu
0lu · · · · · · 0lu Ilu
0lu · · · · · · · · · 0lu

 ∈ RΛilu×Λilu , i = c or a.

Let N(t) denote the number of calculated tentative future
control commands at time t. The process {N}N is a time-
homogeneous Markov process with the transition probability

qi,j , Prob [N(t+ 1) = j|N(t) = i] , i, j ∈ N , (3)

where N , {0, 1, · · · , N̄}. It is assumed that N̄ ≤ Λc.
The controller’s operations are described as
1) If γ′(t)N(t) > 0, the controller has a new update from

the sensor and is available for computation. In this case,
it discards all the existing commands in its buffer and
generates a sequence of N(t) control commands to control
the plant in time slots t to (t + N(t) − 1). The sequence
of tentative controls is

~u(t) = [u1(t)>,u2(t)>, · · · ,uN(t)(t)
>]>.

The buffer state before transmission is written as

[~u(t)>,0>lu×1, · · · ,0>lu×1︸ ︷︷ ︸
Λc−N(t)

]>.

Specifically, the controller calculates the control sequence
based on the anytime control algorithm proposed in [9],
which is rewritten as

ui(t) = κ(x′i(t)), i = 1, · · · , N(t)

x′i(t) =

{
x(t), i = 1

f(x′i−1(t),ui−1(t)), i = 2, · · · , N(t)

where κ(·) is defined in Assumption 1.
Considering the C-A channel capacity and the actuator’s
buffer length, the controller transmits min{B(t), N(t),Λa}
commands to the actuator. If the transmission is successful,
the buffer shifts by min{B(t), N(t),Λa} steps. Otherwise,
the controller erases its buffer. This is because the first
computed control command u1(t) cannot be implemented
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in the current time slot t, and the rest of computed control
commands, which are calculated based on the successful
implementation of the first control command, become use-
less. It is clear that at time instances where the actuator
has run out of buffer contents, we have ~ba(t) = 0 and
u(t) = 0 6= u1(t). For the case that ~ba(t) 6= 0, the
predicted control input u(t) is equal to currently calculated
control command u1(t) only in the perfect process-noise-
free scenario, and u(t) 6= u1(t) in general.

2) If γ′(t) = 0, the controller does not have a new update
from the sensor. In this case, it does not generate any
new control command. If N(t) = 0, the controller does
not have the computational resource to generate any new
control command.
In these two cases, if the plant is out of control in the
previous time slot, i.e., ~ba(t−1) = 0, the controller erases
its buffer due to the same reason in case 1); otherwise, the
controller sends the buffered commands to the actuator as
much as it can, subject to the constraints of the C-A channel
capacity and the actuator’s buffer length.

The actuator’s operations are described as
1) If γ(t) = 0, the actuator’s buffer is shifted by one step, i.e.,

~ba(t) = Sa~ba(t−1), since the first command in the buffer
of the previous time slot was used for control.

2) If γ(t) = 1 and γ′(t)N(t) > 0, the actuator erases the
previous commands and stores the received ones. This
is because the newly calculated control commands are
expected to perform better than the previous calculated
commands, especially when the process noise has a large
variance. 4

3) If ~ba(t − 1) = 0 and γ′(t)N(t) = 0, no operation on the
actuator’s buffer is required as there is no new commands
transmitted.

4) If ~ba(t−1) 6= 0, γ′(t) = 1 and γ′(t)N(t) = 0, the actuator
shifts its buffer by one step due to the same reason in 1)
and stores the received commands in the buffer right after
the existing commands.

Let λc(t) and λa(t) denote the effective buffer lengths at the
controller and the actuator, respectively. Intuitively, λc(t) and
λa(t) jointly determine the closed-loop performance of plant, as
a larger λc(t) and a larger λa(t) indicate that the plant will be
delivered tentative control values for a longer time. Based on
the controller’s and the actuator’s operations, the actuator is not
necessary to have a larger buffer than the controller. Thus, we
assume that Λa ≤ Λc.

Let L(t) denote the number of tentative commands to be
transmitted. Based on the controller’s operations, L(t) can be
written as

L(t)=


min{B(t), N(t),Λa}, if γ′(t)N(t) > 0

min{B(t), λc(t− 1),Λa − λa(t− 1)}, if γ
′(t)N(t) = 0,

λa(t− 1) 6= 0

0, otherwise.
(4)

4Note that when the number of tentative future commands in the newly received
packet is less than the previous ones, we still need to erase all the previous
commands, not just part of them. The reason is that each buffered control
command at the actuator was calculated assuming the successful implementation
of the previously calculated control command. Thus, if the first few control
commands at the actuator’s buffer are removed (i.e., cannot be applied for control),
then the rest of the buffer is of little use.

Then, the buffer-updating rules based on the controller’s and
the actuator’s operations are

~bc(t)=



S
L(t)
c

[
~u(t)

0

]
, if γ′(t)N(t) > 0, γ(t) = 1

0, if γ′(t)N(t) > 0, γ(t) = 0

0, if γ′(t)N(t) = 0, λa(t− 1) = 0

S
L(t)
c

~bc(t− 1), if γ′(t)N(t)=0, λa(t− 1)6=0, γ(t)=1
~bc(t− 1), if γ′(t)N(t)=0, λa(t− 1) 6=0, γ(t)=0

(5)
and

~ba(t)=



Sa~ba(t− 1), if γ(t) = 0[
[u1(t)>, · · · ,uL(t)(t)

>]>

0

]
, if γ′(t)N(t)>0, γ(t)=1

0, if γ′(t)N(t)=0, ~ba(t)=0[ba,2(t−1)>, · · · ,ba,λa(t−1)(t)
>]>

[bc,1(t)>, · · · ,bc,L(t)(t)
>]>

0

, if γ′(t)N(t)=0,

~ba(t) 6=0, γ(t)=1.

(6)
From (5) and (6), the updating rules of the effective buffer

lengths λc(t) and λa(t) are

λc(t) =



N(t)− L(t), if γ′(t)N(t) > 0, γ(t) = 1

0, if γ′(t)N(t) > 0, γ(t) = 0

0, if γ′(t)N(t) = 0, λa(t− 1) = 0

λc(t+1)−L(t), if γ′(t)N(t)=0, λa(t−1) 6=0,γ(t)=1

λc(t− 1), if γ′(t)N(t)=0, λa(t−1)6=0,γ(t)=0
(7)

and

λa(t)=



max{λa(t−1)−1,0}, if γ(t) = 0

L(t), if γ′(t)N(t) > 0, γ(t) = 1

0, if γ′(t)N(t)=0, λa(t− 1)=0

λa(t− 1) + L(t)− 1,
if γ′(t)N(t)=0, λa(t− 1) 6=0,

γ(t) = 1.
(8)

III. STABILITY OF THE ANYTIME CONTROL SYSTEM

Based on the anytime control method described in (4), (5) and
(6), and following the established stability analysis framework
adopting stochastic Lyapunov functions [9]–[11], to investigate
the stability condition of the system (1), we only need to focus on
the plant events that the actuator runs out of control commands,
i.e., λa(t) = 0,∀t ∈ N0. However, since the process {λa}N0

has
an infinite memory and is not a Markov process, the methods
in [9]–[11] are not directly applicable. Instead, we shall analyze
the control system through the aggregated Markov process {Z}N0

defined as

Z(t) , (λc(t), λa(t), B(t+ 1), B′(t+ 1), N(t+ 1))

∈ Xc ×Xa × B × B′ ×N , t ∈ N0,
(9)

where Xc , {0, 1, · · · ,Λc} and Xa , {0, 1, · · · ,min{Λa, N̄}}.
Assume that Z(t),∀t ∈ N0, belongs to the finite set S ,
{s0, s1, · · · , sS} with cardinality S. Different from [10], which
only needs to analyze an aggregated process of two processes,
we need to investigate the aggregation of five processes, where
both {λc}N0 and {λa}N0 are correlated with {B,B′, N}N0 .
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Since the control process is divided by the open-loop events
with λa(t) = 0, we define K = {kn}n∈N0 as the sequence of
time steps with λa(t) = 0. We name the time sequence between
kn and kn+1 as the (n + 1)th cycle of the process, ∀n ∈ N0.
Then, the number of time steps between consecutive elements of
K is

∆n+1 = kn+1 − kn. (10)

Without loss of generality, let the set S0 , {s0, s1, · · · , sS0} ∈
S with cardinality of S0 denote the subset of S consisting of
all the states with λa(t) = 0, and hence Z(kn) ∈ S0,∀n ∈ N0.
In [9]–[11], the set S0 has only one state. In our scenario, S0 > 1
introduces more challenges in analyzing the process {kn}n∈N0

.
The state transition process of {Z}N0 is illustrated in Fig. 3.

In what follows, we study the properties of {Z}N0 and
{Z(kn)}n∈N0 and then analyze the stability condition.

A. Properties of {Z}N0
and {Z(kn)}n∈N0

For ease of analysis, we need the following assumption about
the aggregated process {(B,B′, N)}N0 .

Assumption 3. {(B,B′, N)}N0
∈ B × B′ ×N is an irreducible

and aperiodic (IA) Markov process.

Note that wireless fading channel conditions are commonly
modeled as IA Markov processes [14], [15], [23], [24], thus it is
reasonable to consider an IA Markov process {(B,B′)}N0

∈ B×
B′. Also the computation availability {N}N0

∈ N is commonly
modeled as an IA Markov process [10]. Since an aggregation of
IA Markov processes is still an IA Markov process [25], it is
reasonable to consider the IA Markov process {(B,B′, N)}N0

.
For the initial state of {Z}N0

, it is practical to assume that both
buffers are empty:

Assumption 4. Let λc(0) = λa(0) = 0, B(0) = B0 ∈ B,
B′(0) = B′0 ∈ B′ and N(0) = N0 ∈ N .

Lemma 1. Consider Assumptions 3 and 4. Then {Z}N0
is an IA

Markov process.

Proof. See [26, Page 5].

From Lemma 1, {Z}N0
has a unique stationary distribution.

We shall denote the state transition probability of {Z}N0 as per

vi,j , Prob [Z(t+ 1) = sj |Z(t) = si] ,∀si, sj ∈ S, t ∈ N0.

Note that vi,j can be numerically calculated based on (2), (3), (7)
and (8), though it does not have a closed-from expression due to
the complexity introduced by the dual-buffer updating process (7)
and (8).

Let V ∈ RS×S denote the state transition probability matrix,
i.e., [V]i,j = vi,j , and

V =

[
V0,0 V0,1

V1,0 V1,1

]
(11)

where V0,0 ∈ RS0×S0 , V0,1 ∈ RS0×(S−S0), V1,0 ∈ R(S−S0)×S0

and V1,1 ∈ R(S−S0)×(S−S0).

Lemma 2. {Z(kn)}n∈N0 is an IA Markov process under As-
sumptions 3 and 4. The state transition probability matrix is

Ṽ ,
∞∑
l=1

D(l) ∈ RS0×S0 ,

where

D(l) =

{
V0,0, l = 1

V0,1V
l−2
1,1 V1,0, l > 1

The stationary distribution of si ∈ S0, πi, is the unique solution
of

π>Ṽ = π>,

where π , [π1, π2, · · · , πS0
]>.

Proof. See [26, Page 5].

B. Analysis of the Stability Condition

Similar to [9]–[11], the stability of the WNCS depends on the
statistics of {∆n}n∈N in (10), which denotes the time duration
between consecutive open-loop events. Different to [9], [10],
in the considered case, the process {∆n}n∈N is not i.i.d. For
WNCS with a single channel, in [11] an event-triggered setup
was considered, leading to {∆n}n∈N which is not i.i.d. However,
our current setup is different from [11]. In particular, {∆n}n∈N
is formed by the first return time of a set of states in S0 rather
than a single state (as in [11]) . Therefore, the approach in [11]
cannot be adopted directly. In the following, we propose a novel
cycle-cost-based approach to obtain sufficient stability conditions.

Lemma 3. The plant is stochastically stable if
∞∑
n=1

E [Ξ(n)] <∞, (12)

where
Ξ(n) = αnρ

∑n
i=1(∆i−1),∀n ∈ N, (13)

and ρ and α were defined in Assumptions 1 and 2, respectively.

Proof. From Assumptions 1 and 2, and Definition 1, the plant is
stable if we can prove that

E

[ ∞∑
t=0

V (x(t))

]
<∞.

By using Assumptions 1 and 2, we have

kn+1−1∑
t=kn

V (x(t)) ≤

1 + α

kn+1−kn−2∑
l=0

ρl

V (x(kn))

<

(
1 +

α

1− ρ

)
V (x(kn)),

and hence
∞∑
t=0

V (x(t)) ≤
(

1 +
α

1− ρ

) ∞∑
n=0

V (x(kn)).
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Then, it is easy to obtain that

V (x(kn)) ≤ αnρ
∑n

i=1(∆i−1)V (x(0)).

Since E [V (x(kn))] ≤ αnE
[
ρ
∑n

i=1(∆i−1)
]
E [V (x(0))] and

E [V (x(0))] <∞, (12) is proved.

From Lemma 3, to find the stability condition of the system,
we only need to investigate the process {Ξ}N. However, {Ξ}N is
not Markovian, whereas the underlying process {Z(kn)}n∈N0

is.
In the following, we investigate two stability conditions, with and
without exploring the state transition properties of the underlying
process. The results are stated in Theorems 1 and 2, respectively.

Before proceeding, we need the technical lemma below.

Lemma 4. The following inequality holds

E [Ξ(n+ 1)] <

(
α

ρ
max

i,j∈{1,··· ,S0}
ri,j

)
E [Ξ(n)] ,∀n ∈ N,

where

ri,j , E
[
ρ∆n+1 |Z(kn) = si, Z(kn+1) = sj

]
=

∑∞
l=1 ρ

l[D(l)]i,j

[Ṽ]i,j
<∞, i, j ∈ {1, · · · , S0},

and D(l) and Ṽ are defined in Lemma 2.

Proof. From (13), it can be shown that

Ξ(n+ 1) = Ξ(n)
α

ρ
ρ∆n+1 ,

and hence

E [Ξ(n+ 1)] = E

[
Ξ(n)

α

ρ
ρ∆n+1

]
=
α

ρ

S0∑
i=1

S0∑
j=1

E
[
Ξ(n)ρ∆n+1 |Z(kn) = si, Z(kn+1) = sj

]
× Prob [Z(kn) = si, Z(kn+1) = sj ]

≤ α

ρ
max

i,j∈{1,··· ,S0}
ri,j

S0∑
i=1

S0∑
j=1

E [Ξ(n)|Z(kn) = si, Z(kn+1) = sj ]

× Prob [Z(kn) = si, Z(kn+1) = sj ]

=
α

ρ
max

i,j∈{1,··· ,S0}
ri,jE [Ξ(n)] ,

where

ri,j , E
[
ρ∆n+1 |Z(kn) = si, Z(kn+1) = sj

]
=

∞∑
∆n+1=1

ρl
Prob [∆n+1 = l, Z(kn+1) = sj |Z(kn) = si]

Prob [Z(kn+1) = sj |Z(kn) = si]

=

∑∞
l=1 ρ

l[D(l)]i,j

[Ṽ]i,j
,

(14)
and ri,j is bounded due to the fact that

∑∞
l=1[D(l)]i,j < 1 and

ρ < 1.

Using Lemmas 3 and 4, it is straightforward to have the
following result.

Theorem 1. Suppose that Assumptions 1-4 hold. The system (1)
is stochastically stable if

Ω′ ,
α

ρ
max

i,j∈{1,··· ,S0}
ri,j < 1.

Remark 2. For the special case with S0 = 1, i.e., there exists
only a single state in S leading to no control being applied,
Lemma 2 shows that the processes {Z(kn)}n∈N0

is i.i.d. and so
is the process {∆n}n∈N. Such a special case is identical to that
of [10], and we see that the stability condition in Theorem 1
reduces to

Ω′ =
α

ρ

∞∑
l=1

ρlProb [∆n = l] < 1,

which is identical to that of [10].

Remark 3. The sufficient condition in Theorem 1 is obtained by
considering the worst case scenario of the state transitions, i.e.,
considering the pair of states si and sj such that it has the largest
conditional expectation E

[
ρ∆n+1 |Z(kn) = si, Z(kn+1) = sj

]
.

However, such a method does not take into account the state
transition probabilities in Ṽ defined in Lemma 2. Thus, the
sufficient condition in Theorem 1 is conservative.

The following lemma is needed to obtain a less conservative
stability condition in Theorem 2.

Lemma 5. Assuming that {Z}N0 evolves in the steady state, for
any arbitrarily small ε > 0, there exist µ > 0 and K > 0 such
that

E [Ξ(n)] < µ
(α
ρ

(λmax(U) + ε)
)n−1

,∀n > K,

where U ,
[
U>1 U>2 · · · U>S0

]> ∈ RS2
0×S2

0 ,

Ui ,


r1,if

>
1 0 · · · 0

0 r2,if
>
2 · · · 0

... · · · . . .
...

0 · · · 0 rS0,if
>
S0

 ∈ RS0×S2
0 ,

and
[
f1 f2 · · · fS0

]
, ZṼZ−1 and Z = diag{π}.

Proof. See [26, Appendix A].

From Lemmas 3 and 5, it is straightforward to derive the
following result.

Theorem 2. Suppose that Assumptions 1-4 hold. System (1) is
stochastically stable if

Ω ,
α

ρ
λmax(U) < 1.

Remark 4. This stability condition has consid-
ered the effect of all the conditional expectations
E
[
ρ∆n+1 |Z(kn) = si, Z(kn+1) = sj

]
and the state transition

probability matrix of {Z(kn)}n∈N, i.e., Ṽ. Using Perron-
Frobenius theorem [27], since U is non-negative, we have
λmax(U) ≤ maxi∈{1,··· ,S0}

∑S0

j=1[U]i,j ≤ maxi,j∈{1,··· ,S0} ri,j .
Thus, the sufficient condition Theorem 2 is less restrictive than
that in Theorem 1.

C. Numerical Example for Stability Condition Calculation

We set the buffer lengths Λc = Λa = 2, the maximum
number of calculated control commands per time step N̄ = 2,
the maximum number of commands that can be transmitted via
the C-A channel B̄ = 2, the number of channel states of the
S-C channel B̄′ = 2, and the packet drop probabilities in the two
states as 0.2 and 0.01. We assume that ρ = 0.8. The Markov



7

state transition probability matrices of the C-A and S-C channel
state (B(t), B′(t)) ∈ {0, 1, 2} × {1, 2}, and the processor’s
computational resource N(t) ∈ {0, 1, 2} are

M =


0.24 0.16 0.06 0.04 0.30 0.20
0.04 0.36 0.01 0.09 0.05 0.45
0.12 0.08 0.06 0.04 0.42 0.28
0.02 0.18 0.01 0.09 0.07 0.63

0 0 0.30 0.20 0.30 0.20
0 0 0.05 0.45 0.05 0.45

 ,

and

N =

0.1 0.2 0.7
0 0.6 0.4

0.1 0.3 0.6

 .
Thus, the process Z(t) defined in (9) has 3×3×3×2×3 = 162

states. Using the state transition rules of λc(t) and λa(t) in (7) and
(8), and the channel and computational resource state transition
probabilities (2) and (3), the state transition matrix of Z(t) can
be calculated. Due to the space limitation, the matrix is presented
in [28] with 72 transient states (highlighted in yellow), and thus
Z(t) has S = 162−72 = 90 recurrent (effective) states including
S0 = 54 states with λa(t) = 0 (highlighted in red). By removing
the transient states, the 90 × 90 state transition matrix V of the
effective states can be easily obtained. Due to the space limitation,
it is not possible to show the calculation of the stability conditions
based on the 90×90 matrix V. So we only present the comparison
result of the stability conditions in Theorems 1 and 2:

max
i,j∈{1,··· ,S0}

ri,j = 0.8� λmax(U) = 0.0016,

showing that the sufficient stability condition in Theorem 2 is
less restrictive than Theorem 1.

For ease of illustration, we will show the calculation of the
stability conditions based on a randomly generated (small) V
with S = 4 and assume that S0 = 2, where

V =


0.10 0.10 0.10 0.70
0.30 0.20 0.10 0.40
0.60 0.20 0.10 0.10
0.90 0.05 0.02 0.03

 ∈ R4×4,

and thus V0,0, V0,1, V1,0 and V1,1 are obtained directly from
(11).

Using Lemma 2, the state transition matrix of {Z(kn)}n∈N0

and its stationary distribution are obtained as

Ṽ =

[
0.8378 0.1622
0.7546 0.2454

]
, (15)

and
π = [0.8231 0.1769]>. (16)

Taking (15) and (16) into (14), we have ri,j = [R]i,j , where

R =

[
0.6511 0.7323
0.6971 0.7673

]
. (17)

Taking (15), (16) and (17) into the definition of U in Lemma 5,
we have

U =


0.3695 0.0716 0 0

0 0 0.0165 0.0054
0.4156 0.0805 0 0

0 0 0.0181 0.0059

 . (18)

By applying (17) and (18) onto Theorems 1 and 2, respectively,
we have

max
i,j∈{1,··· ,S0}

ri,j = 0.7673 > λmax(U) = 0.3731.

IV. ROBUSTNESS TO PROCESS NOISE

In this section, we investigate the stability condition of the
plant system below with process noise:

x(t+ 1) = f(x(t),u(t),w(t)), (19)

where w(t) ∈ Rls is a white noise process, which is independent
with the other random processes of the system.

For ease of analysis, we consider uniform bounds and conti-
nuity as follows.

Assumption 5 ( [10]). There exists βx, βu, βw, βV , βκ, ρ, α
and η ∈ R>0, such that, ∀x, z,w ∈ Rls and ∀u,v ∈ Rlu the
following are satisfied

|f(x,u,w)− f(z,v,0)| ≤ βx|x− z|+ βu|u− v|+ βw|w|
|V (x)− V (z)| ≤ βV |x− z|
|κ(x)− κ(z)| ≤ βκ|x− z|
V (f(x, κ(x),w)) ≤ ρV (x) + η|w|
V (f(x,0,w)) ≤ αV (x) + η|w|.
When considering unbounded process noise, the stability con-

dition in Definition 1 cannot be satisfied. Thus, we consider the
following stability condition in terms of the average cost [10].

Definition 2. The dynamical system with process noise (19) is
stochastically stable, if for some ψ ∈ K∞, the average expected
value lim sup

T→∞
1
T

∑T
k=0 E [ψ(|x(k)|)] <∞.

Theorem 3. Suppose that Assumptions 1-5 holds. The sys-
tem (19) is stochastically stable if Ω < 1.

Proof. See [26, Appendix B].

Remark 5. Theorem 3 shows that the stability condition for the
process-noise-free case holds for the process-noise-present one
as well under Assumption 5, which is in line with [10]. Note that
in the case of Markov jump linear systems, stability conditions
for noise-free cases are equivalent to conditions for noisy-cases
as well, see Theorem 3.33 of Chapter 3 of [29].

V. SIMULATION RESULTS

We present simulation results of the proposed dual-buffer
anytime control algorithm and the baseline single-buffer algo-
rithm [10], where the S-C and C-A channels are modeled as
multi-state Markov chains. The system parameters are the same
as in the numerical example in Section III. We consider an open-
loop unstable constrained plant model of (19) in the presence of
noise [11]:[

x1(t)
x2(t)

]
=

[
x2(t) + u1(t)

−sat(x1(t) + x2(t)) + u2(t)

]
+

[
w1(t)
w2(t)

]
,

where

sat(µ) =


−10, if µ < −10

µ, if µ ∈ [−10, 10]

10, if µ > 10
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Fig. 4. Simulation of |x(t)| with different initiations.

and the process noise w1(t) and w2(t) are independent zero-mean
i.i.d. Gaussian and E

[
w1(t)2

]
= E

[
w2(t)2

]
= 0.1. We take the

control policy as κ(x) = [−x2, 0.505sat(x1 + x2)]>.
In Fig. 4, we show the simulation of |x(t)| with 800 time steps

for both the dual-buffer anytime method and the baseline method.
It is clear that the dual-buffer method significantly outperforms
the baseline especially when the initial process state x(0) is far
from the origin. Therefore, adding the command buffer at the
actuator can effectively overcome the effect of packet dropouts,
leading to significant control performance improvement.

VI. CONCLUSIONS

We have studied an anytime control algorithm for dual-channel-
dual-buffer WNCS with random computational resources over
correlated channels. We have proposed a novel approach to
derive sufficient conditions for stochastic stability in the case of
nonlinear plant models with disturbances. The stability conditions
are stated in terms of plant dynamics, network dynamics, buffer
properties and computational resource dynamics. Our numerical
results have shown that the proposed dual-buffer anytime control
system can provide significant control performance improvement
when compared to the conventional single-buffer system as it
effectively overcomes the effect of packet dropouts. In future
work, we will consider optimal control sequence design. In
addition, we may include an extension to large-scale WNCSs with
multiple plants and controllers and that need to share network and
communication resources.
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