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Graph Distances and Controllability of Networks
A. Yasin Yazıcıoğlu, Waseem Abbas, and Magnus Egerstedt

Abstract—In this technical note, we study the controllability of
diffusively coupled networks from a graph theoretic perspective.
We consider leader-follower networks, where the external control
inputs are injected to only some of the agents, namely the leaders.
Our main result relates the controllability of such systems to the
graph distances between the agents. More specifically, we present
a graph topological lower bound on the rank of the controllability
matrix. This lower bound is tight, and it is applicable to systems
with arbitrary network topologies, coupling weights, and number
of leaders. An algorithm for computing the lower bound is also
provided. Furthermore, as a prominent application, we present
how the proposed bound can be utilized to select a minimal set
of leaders for achieving controllability, even when the coupling
weights are unknown.

I. INTRODUCTION

Networks of diffusively coupled agents appear in numerous
systems such as sensor networks (e.g., [1]), distributed robotics
(e.g., [2]), power grids (e.g., [3]), social networks (e.g., [4]),
and biological systems (e.g., [5]). A central question regarding
such networks is whether a desired global behavior can be
induced by directly manipulating only a small subset of the
agents, referred to as the “leaders” in the network. This
question has motivated numerous studies on the controllability
of networks. In particular, there has been a large interest in
relating the network controllability to the structure of the inter-
action graph. In this technical note, we relate the controllability
of diffusively coupled agents with single integrator dynamics
to the distances between the nodes on the interaction graph.

Various graph theoretic tools have recently been utilized
to provide some topology based characterizations of network
controllability. Some of the graph theoretic constructs that are
widely employed for this purpose include equitable partitions
(e.g., [6], [7]), maximum matching (e.g., [8], [11]), centrality
based measures (e.g., [13], [14]), and dominating sets (e.g.,
[15]). Recently, the graph distances have been used to ac-
quire further insight on how the network structure and the
locations of the leaders influence the network controllability
[16], [17], [18]. The graph distances, which rely purely on the
shortest paths between the nodes, provide a computationally
tractable and perceptible characterization of the graph struc-
ture. Thus, the distance-based relationships reveal some innate
connections between the network topology and the network
controllability.

The main contribution of this technical note is a distance-
based tight lower bound on the dimension of the controllable
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subspace (Theroem 3.2). The bound is generic in the sense
that it is applicable to systems with arbitrary network topolo-
gies, coupling weights, and number of leaders. Based on the
distances between the leaders and the followers, we first define
the distance-to-leaders (DL) vectors. Then, we define a certain
ordering rule and derive the lower bound as the maximum
length of the sequences of the DL vectors that satisfy the rule
(Section III). An algorithm to compute the proposed bound is
also presented in Section IV.

A prominent attribute of the proposed bound is that, unlike
the dimension of the controllable subspace, it does not depend
on the coupling weights. Thus, the bound is useful in many
applications, particularly when the information about the net-
work is incomplete. As an example, in Section V, we present
how the bound can be used in leader selection for achieving the
controllability of any given network, even when the coupling
weights are unknown. Finally, some conclusions are provided
in Section VI.

II. PRELIMINARIES

A. Graph Theory

A graph G = (V,E) consists of a node set
V = {1, 2, . . . , n} and an edge set E ⊆ V × V . For an
undirected graph, each edge is represented as an unordered
pair of nodes. For each i ∈ V , let Ni denote the neighborhood
of i, i.e.,

Ni = {j ∈ V | (i, j) ∈ E} (1)

A path between a pair of nodes i, j ∈ V is a sequence of
nodes {i, . . . , j} such that each pair of consecutive nodes are
linked by an edge. The distance between the nodes, dist(i, j),
is equal to the number of the edges that belong to the shortest
path between the nodes. A graph is connected if there exists
a path between every pair of nodes. A graph is weighted if
there is a corresponding weighting function w : E 7→ R+. The
adjacency matrix, A, of a weighted graph is defined as

Aij =

{
w(i, j) if (i, j) ∈ E
0 otherwise. (2)

For any adjacency matrix A, the corresponding degree matrix,
∆, is defined as

∆ij =

{ ∑
k∈Ni Aik if i = j

0 otherwise,
(3)

The graph Laplacian, L, is defined as the difference of the
degree matrix and the adjacency matrix, i.e.,

L = ∆−A. (4)
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B. Leader-Follower Networks

A network of diffusively coupled agents can be represented
as a graph, where the nodes correspond to the agents, and the
weighted edges exist between the coupled agents. For such a
network G = (V,E), let the dynamics of each agent i ∈ V be

ẋi =
∑

j∈Ni

w(i, j)(xj − xi), (5)

where xi denotes the state of i, and w(i, j) ∈ R+ represents
the strength of the coupling between i and j.

In a leader-follower setting, the objective is to drive the
overall system by injecting external control inputs to some of
the nodes, which are called the leaders. The set of leaders
can be represented as L = {l1, . . . , lm} ⊆ V , where, without
loss of generality, the leaders are labeled such that lj < lj+1.
For any leader-follower network, a global state vector x can
be obtained by stacking the states of all the nodes. Without
loss of generality, let x ∈ Rn, and let u ∈ Rm be the control
input injected to the leaders. Then, the overall dynamics of
the system can be expressed as

ẋ = −Lx+Bu, (6)

where B is an n×m matrix with the following entries

Bij =

{
1 if i = lj .
0 otherwise. (7)

For the system in (6), the controllable subspace consists of
the states that can be reached from x(0) = 0 in any finite time
via an appropriate choice of u(t). The controllable subspace
is the range space of the controllability matrix, i.e.,

Γ =
[
B (−L)B (−L)2B . . . (−L)n−1B

]
. (8)

III. LEADER-FOLLOWER DISTANCES AND
CONTROLLABILITY

In this section, we present a connection between the con-
trollability of networks and the distances of the nodes to the
leaders on the interaction graph. More specifically, we utilize
such distances to define a tight lower bound on the dimension
of the controllable subspace, i.e. the rank of the controllability
matrix. First, we provide some definitions prior to our analysis.

Definition 3.1 (Distance-to-Leaders (DL) Vector): For each
node i in a network with m leaders, the DL vector di ∈ Rm
is defined as

di,j = dist(i, lj), (9)

where di,j denotes the jth entry of di, and lj denotes the jth

leader for j ∈ {1, 2, . . . ,m}.
In our analysis, we utilize a specific sequence, which we define
as a pseudo-monotonically increasing sequence, of the DL
vectors. For any vector sequence D, let Di be the ith vector
in the sequence, and let Di,j denote the jth entry of Di.

Definition 3.2 (Pseudo-Monotonically Increasing (PMI) Se-
quence): A sequence D of vectors, where each vector is in
Rm, is a PMI sequence if for every Di there exists some
α(i) ∈ {1, 2, · · · ,m} such that

Di,α(i) < Dj,α(i), ∀i < j. (10)

Condition (10) simply means that if Di is the ith vector in
the sequence with Di,α(i) being its α(i)th entry, then the
corresponding (i.e. α(i)th) entries of all the subsequent vectors
in the sequence should be greater than Di,α(i).

Example – Consider the network shown in Fig. 1. For this
network, one can build a PMI sequence of five DL vectors as

D = (D1, D2, D3, D4, D5) = (d1, d6, d5, d3, d4)

=

([
0
3

]
,

[
3
0

]
,

[
2
1

]
,

[
1
2

]
,

[
2
2

])
,

where, for each Di, the α(i)th entry that satisfies (10) is
encircled. For instance, consider D1, for which α(1) = 1
and D1,1 = 0. Note that the first entries of all the subsequent
vectors are greater than 0. Similarly, for the second vector D2,
α(2) = 2 and D2,2 = 0. Note that Dj,2 > 0 for j > 2, and so
on. For this example, another PMI sequence of five DL vectors
could be build as (d1, d3, d6, d5, d4), where α(1) = α(2) = 1
and α(3) = α(4) = α(5) = 2.

[
0
3

]

[
1
3

]

[
2
2

]

[
1
2

]

[
2
1

]
[

3
0

]

1

6

2 3

4 5

Fig. 1. A leader-follower network with two leaders (shown in gray), l1 = 1
and l2 = 6. Each node i has its DL vector di given next to itself.

For any connected G = (V,E) and any set of leaders
L ⊆ V , let DL denote the set of all PMI sequences of the
corresponding DL vectors. Furthermore, let δL denote the
length of the longest sequence in DL, i.e.

δL = max
D∈DL

|D|. (11)

In the following analysis, we show that, for any weighting
function w : E 7→ R+, the rank of the resulting controllability
matrix is lower bounded by δL.

Lemma 3.1. Let G = (V,E) be a connected graph. Then, for
any weighting function w : E 7→ R+,

[(−L)r]ij

{
= 0 if 0 ≤ r < dist(i, j),
6= 0 if r = dist(i, j), (12)

where dist(i, j) is the distance between i and j on G.

Proof: Using (4), (−L)r can be expanded as

(−L)r = (A−∆)r = Ar +

r−1∑

m=0

(−1)r−mSm, (13)

where Sm denotes the sum of all matrices that can be
expressed as a multiplication of m copies of A and r − m
copies of ∆. For instance, if r = 2, then S0 = ∆2 and
S1 = A∆ + ∆A. Note that, for w : E 7→ R+, any matrix
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that can be represented as such a multiplication has only non-
negative entries since ∆ and A have only non-negative entries.
Moreover, ∆ is a diagonal matrix and, for any connected
graph, it has only positive entries on the main diagonal. As
such, it does not alter the signs of entries when multiplied by
a matrix. Hence,

[Sm]ij = 0⇔ [Am]ij = 0. (14)

Using (13),

[(−L)r]ij = [Ar]ij +

r−1∑

m=0

(−1)r−m[Sm]ij . (15)

Since A is the adjacency matrix of a weighted graph with
positive edge weights, [Ak]ij is equal to a positive scalar times
the number of walks of length k from node i to node j. Hence,
[Ak]ij = 0 for all 0 ≤ k < dist(i, j), and [Adist(i,j)]ij 6= 0
for any connected graph. Consequently, (14) and (15) together
imply (12).

Theorem 3.2. Let G = (V,E) be a connected graph, and let
L ⊆ V be the set of leaders. Then, for any weighting function
w : E 7→ R+, the controllability matrix Γ satisfies

rank(Γ) ≥ δL, (16)

where δL is defined in (11).

Proof: For any connected G = (V,E) and any set
of leaders L, let {d1, d2, · · · , dn} be the corresponding DL
vectors. Let D = (D1, D2, · · · , DδL) be a PMI sequence of
maximum length. Now, consider vectors of the form

(−L)rpbα(p), (17)

where α(p) is the index of Dp as per the definition of a PMI
sequence (Definition 3.2), rp = Dp,α(p), and bα(p) denotes
the α(p)th column of the input matrix B. If Dp corresponds
to the DL vector of node i, i.e. Dp = di, then rp = di,α(p).
As a result of Lemma 3.1, ith entry of the vector in (17) is
non-zero. Also, for any node j with dj,α(i) > di,α(i), the jth

entry of the vector in (17) equal to zero. Using this along with
the definition of PMI sequences, we conclude that the n× δL
matrix
[

(−L)r1bα(1) (−L)r2bα(2) . . . (−L)rδL bα(δL)

]
,
(18)

has a full column rank since each column contains the left-
most non-zero entry in some rows. Note that for every
p ∈ {1, 2, . . . , δL}, we have rp = Dp,α(p) ≤ n − 1 since
the distance between any two nodes is always smaller than or
equal to n − 1. Hence, each column of the matrix in (18) is
also a column of Γ. Consequently, rank(Γ) ≥ δL.

Since (16) holds for any weighting function w : E 7→ R+,
the proposed lower bound is closely related to the notion
of strong structural controllability. A network is said to be
structurally controllable if and only if there exists w : E 7→ R+

such that the resulting controllability matrix is of full rank
[9]. Furthermore, a network is said to be strongly structurally
controllable if and only if for any w : E 7→ R+, the resulting
controllability matrix is of full rank [10]. In this regard, the

dimension of controllable subspace in the sense of strong
structural controllability can be defined as the minimum of the
ranks of all controllability matrices obtained by using arbitrary
weighting functions w : E 7→ R+ [12]. Accordingly, δL is
essentially a lower bound on the dimension of controllable
subspace in the sense of strong structural controllability.

We also emphasize that the lower bound in Theorem 3.2 is
tight, i.e., there exist G = (V,E), L ⊆ V , and w : E 7→ R+

such that rank(Γ) = δL. Any cycle graph with two adjacent
nodes being the leaders, or any path graph with a leaf node
being the leader are some of the examples that satisfy (16) with
equality. In these two examples, rank(Γ) = δL follows from
the fact that both cases lead to δL = n, where n is the total
number of nodes in the graph. In the remainder of this section,
we present the connections between the proposed lower bound
and some closely related distance-based measures, namely the
maximum distance to the leaders and the number of unique
DL vectors.

For networks with a single leader, any PMI sequence of
the DL vectors consists of one dimensional vectors with
monotonically increasing entries. Hence, for such networks,
δL is equal to one plus the maximum distance to the leader,
which was indeed proposed in [16] as a lower bound of the
controllability matrix for single-leader networks. An extension
to the case of multiple leaders was later presented in [17] by
taking the maximum of this value among all the leaders, i.e.

µL = max
i∈V,j∈L

dist(i, j) + 1. (19)

The relationship between µL and δL can be seen through
the following observation: If one considers only the PMI
sequences that satisfy (10) for some fixed entry, i.e. α(1) =
. . . = α(|D|), then the longest PMI sequence in this con-
strained set, D∗L ⊆ DL, has length µL. Hence, one can
conclude that the following inequality holds for any leader-
follower network:

rank(Γ) ≥ δL ≥ µL. (20)

In light of (20), while the two quantities are equal for single-
leader networks, the proposed lower bound δL is richer than
µL in capturing the controllability of networks with multiple
leaders. In fact, since the maximum distance between any two
nodes in a graph is the diameter of the graph by definition,
µL is always less than or equal to one plus the diameter of
the graph, even when every node is a leader. In general, the
difference between δL and µL depends on the graph topology
and the leader assignment. For instance, the example in Fig. 1
yields δL = 5 and µL = 3. Numerical comparisons of the
bounds for Erdös-Renyi and Barabási-Albert graphs with two
leaders are illustrated in Fig. 2. In this figure, each point on
the plot corresponds to the average value for 50 randomly
generated cases (each case is a randomly generated graph and a
pair of randomly assigned leaders). The results indicate that δL
provides a significantly better utilization of the graph distances
in the controllability analysis of multi-leader networks, even
when the network has only a pair of leaders.

The proposed lower bound is also closely related to the
number of unique DL vectors. For any connected G = (V,E)
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Fig. 2. Comparison of the lower bounds for two randomly selected leaders
on Erdös-Renyi random graphs with 50 nodes in which any two nodes are
adjacent with the probability p; and Barabási-Albert graph with 50 nodes in
which each new node is connected to m existing nodes through a preferential
attachment strategy.

and any leader set L ⊆ V , let υL be the number of unique DL
vectors. Note that, due to (10), each vector in a PMI sequence
has an entry that is strictly smaller than the corresponding
entries of all the following vectors in that sequence. Hence,
a PMI sequence cannot contain two identical vectors. Conse-
quently, the proposed lower bound is always less than or equal
to the number of unique DL vectors, i.e.

υL ≥ δL. (21)

The relationship in (21) facilitates a deeper understanding
for potential applications of the proposed lower bound. For
instance, for any k ∈ {1, . . . , n}, having υL = k is a necessary
condition to have δL = k. Hence, it is possible to conclude that
a network is completely controllable as per the proposed lower
bound, only if each follower has a distinctive DL vector. The
relationships in (20) and (21) may naturally yield the question
of whether υL can capture rank(Γ) better than δL and µL.
In the following result, we show that there is no such universal
relationship between rank(Γ) and υL.

Proposition 3.3. For leader-follower networks, the number of
unique DL vectors, υL, is not a universal bound of rank(Γ).

Proof: We prove this statement by providing some exam-
ples both for rank(Γ) > υL and for rank(Γ) < υL.

1) A path graph with uniform edge weights is controllable
from any single node if and only if the the number of nodes
is a power of two, i.e. n = 2k for some k ∈ N [19]. Note that,
for a path graph with a single leader, δL = n if and only if
the leader is a leaf node. Hence, for any n = 2k, if a non-leaf
node is the only leader of a path graph with uniform edge
weights, then rank(Γ) > υL.

2) A cycle graph with uniform edge weights is controllable
from any pair of nodes if and only if the the number of nodes
is a prime number [19]. Consider any cycle graph of n nodes
such that n is an odd composite number. For such a graph
with two leaders, the clockwise and counterclockwise paths
between the leaders have different lengths. Hence, any pair
of nodes that have equal distances from one of the leaders
have different distances from the other leader, i.e. υL = n.
Furthermore, in light of [19], there exists a pair of nodes
that render the system uncontrollable if they are assigned as

the leaders. If such a pair is assigned as the leaders, then
rank(Γ) < υL.

We would like to conclude this section with a remark
regarding the application of the presented results to directed
networks.

Remark 3.1 (Directed Networks) The formulation in (1)-(8)
is applicable to directed networks with the interaction graph
G = (V,E), where each (i, j) ∈ E denotes that i is influenced
by j as in (5). For such a network, powers of the adjacency
matrix A have the property that [Ar]ij = 0 for all 0 ≤ r <
dist(i, j) and [Adist(i,j)]ij 6= 0, where dist(i, j) is the length
of the shortest directed path from i to j. Hence, by using the
corresponding DL vectors as in (9), the results in both Lemma
3.1 and Theorem 3.2 can be extended to strongly connected
networks (i.e., there exists a directed path from every node to
every other node).

IV. AN ALGORITHM FOR COMPUTING THE LOWER BOUND

In this section, we present an algorithm to compute the
proposed lower bound, δL. Note that the main contribution
of this work is the lower bound itself, and the algorithm in
this section is provided to facilitate some practical use of our
result.

Let S = {d1, d2, . . . , dn} be the set of all DL vectors for a
given leader-follower network. Given these vectors, we present
an iterative way of generating the longest PMI sequences. Let
Cp be the set of all DL vectors that can be assigned as the pth

element of such a sequence D. According to these definitions,
C1 = S. Once a vector from Cp is assigned as the pth element
of the sequence, Dp, and an index α(p) satisfying (10) is
chosen, the resulting Cp+1 can be obtained from Cp as

Cp+1 = {di ∈ Cp | di,α(p) > Dp,α(p)}. (22)

In order to obtain longer sequences, this iteration must
be continued until Cp = ∅. However, in general there are
too many possible sequences that can be obtained this way,
and it is not feasible to find the maximum length for PMI
sequences by searching among all these possibilities. Instead,
we present a necessary condition for a PMI sequence to
have the maximum possible length. This necessary condition
significantly lowers the number of sequences to consider.

Lemma 4.1. Let D be a PMI sequence of DL vectors with
the maximum possible length, then its pth entry, Dp, satisfies

Dp,α(p) = min
di∈Cp

di,α(p). (23)

Proof: For the sake of contradiction, assume that this is
not true for a PMI sequence D with the maximum length.
Then, there exists a DL vector dj ∈ Cp such that dj,α(p) <
Dp,α(p). By the construction of a PMI sequence, dj can not
be added to this sequence after Dp. However, dj can be
added right before Dp while keeping all the other parts of
D the same since dj,α(p) can be selected to satisfy (10) in
the resulting sequence. Hence, it is possible to obtain a longer
PMI sequence, which leads to the contradiction that D does
not have the maximum possible length.



5

In light of (22), as far as the sequence length is concerned,
the only important decision at each step p in building a PMI
sequence satisfying (23) is the choice of α(p). Based on this
observation, we propose Algorithm I for computing the lower
bound.

Algorithm I
1: initialize: C1 = {{d1, d2, . . . , dn}}; p = 1
2: while Cp,y 6= ∅ for some y ∈ {1, · · · , |Cp|} do
3: q = 1
4: for i = 1 : |Cp| do
5: if Cp,i 6= ∅ then
6: for j = 1 : m do
7: Cp+1,q = {dt ∈ Cp,i | dt,j > min

ds∈Cp,i
ds,j}

8: q = q + 1
9: end for

10: end if
11: end for
12: p = p+ 1
13: end while
14: return p− 1

In Algorithm I, the variable Cp is the multiset, where
each element Cp,i is the Cp resulting from (22) for specific
choices of α(1), . . . , α(p − 1), subject to the corresponding
PMI sequences satisfying (23). The main while loop iterates as
long as there exists a longer PMI sequence that satisfies (23).
Note that for each Cp,i 6= ∅, there are m (number of leaders)
different Cp+1,q , each corresponding to a particular choice of
α(p). As such, Algorithm I computes δL by generating no
more than mδL elements Cp,i.
Proposition 4.2. Given the DL vectors for any connected
leader-follower network, Algorithm I returns δL.

Proof: By combining (22) and (23) (line 7 of Algorithm
I), at each step p, Algorithm I builds all the possible Cp+1 that
correspond to the PMI sequences of p vectors satisfying (23).
Hence, when Cp,y = ∅ for every y ∈ {1, · · · , |Cp|}, there is not
a longer PMI sequence that satisfies the necessary condition
in Lemma 4.1. Consequently, Algorithm I always returns the
length of the longest PMI sequence, δL.

Note that, in light of Remark 3.1, Algorithm I can also be
used to compute the proposed lower bound for any directed
network with a strongly connected interaction graph.

For a sample run of Algorithm I, consider the network in
Fig. 1. For this example, the algorithm terminates after the
fifth iteration of the while loop, and δL = 5. The resulting
flow of Algorithm I can be represented via a tree diagram as
illustrated in Fig. 3.

C1,1

C2,1 C2,2

C3,1 C3,2 C3,3 C3,4

C1 :

C2 :

C3 :

Fig. 3. An illustration of the flow of Algorithm I for the network in Fig. 1.

In Fig. 3., each node Cp,i at a given level p > 1 corresponds

to an element of Cp that is computed in the (p− 1)st iteration
of the while loop. The left child of a node Cp,i is obtained
from Cp,i by deleting all the DL vectors whose first entries
are equal to the minimum value of the first entries among all
the DL vectors in Cp,i, i.e., obtained from Cp,i as per (23) and
(22) for α(p) = 1. Similarly, the right child of a node Cp,i
is obtained by following the same procedure for α(p) = 2.
Accordingly, the elements in the first three levels are

C1,1 =


 0

3

 ,

 1

2

 ,

 1

3

 ,

 2

1

 ,

 2

2

 ,

 3

0

 ;

C2,1 =


 1

2

 ,

 1

3

 ,

 2

1

 ,

 2

2

 ,

 3

0

 ;

C2,2 =


 0

3

 ,

 1

2

 ,

 1

3

 ,

 2

1

 ,

 2

2

 ;

C3,1 =


 2

1

 ,

 2

2

 ,

 3

0

 ;

C3,2 = C3,3 =


 1

2

 ,

 1

3

 ,

 2

1

 ,

 2

2

 ;

C3,4 =


 0

3

 ,

 1

2

 ,

 1

3

 ,

 2

2

 .

V. DISTANCE-BASED LEADER SELECTION FOR
CONTROLLABILITY

One of the main attributes of the proposed lower bound
δL is its independence of the edge weights. In contrast,
rank(Γ) depends on the values of the edge weights unless
there is some constraint such as all the weights being equal.
Consequently, computing δL typically requires significantly
less information about the overall system. This minimality of
the required information makes the lower bound attractive in
many applications such as leader selection for controllability.

Leader selection problems typically require finding a leader
set L that optimizes a system objective such as robustness,
mixing time, or controllability (e.g., [20], [21], [22], [23]).
For instance, consider the problem of finding a minimum
number of leaders that render a given network controllable
under the resulting leader-follower dynamics. If the edge
weights are known (or if they are known to be identical),
then the rank of the controllability matrix can be computed
for any set of leaders. Hence, a possible, yet not scalable,
way to find a minimal set of leaders for controllability is
to execute an exhaustive search. Note that, aside from the
complexity issues, the rank computation is not applicable if
the edge weights are unknown and arbitrary. In such cases,
the leader selection problem needs to be solved by leveraging
the structural properties of the interaction graph.

One approach to achieving controllability under arbitrary
coupling weights is to choose the minimal L that achieves
structural controllability (e.g., [8]). Structural controllability
implies that the selected leaders provide complete control-
lability for some, not all, weighting functions w : E 7→ R+.
Hence, this approach may fall short in some applications,
especially when there are constraints on the admissible edge
weights. For instance, if all the edge weights in a network are
equal by design, then it is known that a complete graph is not
controllable by any single leader [6] whereas a single leader is
enough to achieve structural controllability [8]. Alternatively,
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the notion of strong structural controllability can be employed
in the leader selection (e.g., [11]). In this regard, the proposed
bound δL can be used to ensure that the dimension of the
controllable subspace is not smaller than some desired value,
k ∈ {1, 2, . . . , n}, for any w : E 7→ R+ by formulating the
leader selection problem as

minimize
L∈2V

|L|

subject to δL ≥ k,
(24)

In light of Theorem 3.2, any element in the feasible set of
the problem in (24) renders rank(Γ) ≥ k for any weighting
function w : E 7→ R+. Note that the problem in (24)
is always feasible, i.e., for any given G = (V,E) and
k ∈ {1, 2, . . . , n}, there always exists some L ⊆ V such that
δL ≥ k. Indeed, the feasibility can be shown by considering
the trivial case, L = V . In that case, for each DL vector, the
entry that contains the distance of the corresponding node
from itself satisfies (10) for any sequence of the corresponding
DL vectors. Consequently, any sequence of the DL vectors
is a PMI sequence if L = V , and δV = n. Note that the
feasibility would not be guaranteed if the problem was posed
by using µL instead of δL since µL is always upper bounded
by one plus the graph diameter. An example, where the leaders
were assigned by solving (24) for k = n, is illustrated in
Fig. 4. For this example, the leaders were selected through an
exhaustive search by first looking for a single-leader solution
and incrementing the number of leaders until a solution exists.
Algorithm I was used to compute δL for each candidate L.
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Fig. 4. A graph of 15 nodes, G = (V,E), and a minimal selection of leaders
(shown in gray), L = {2, 6, 9, 12, 14, 15}, such that δL = 15. The network
is completely controllable via L for any weighting function w : E 7→ R+.

VI. CONCLUSION

In this technical note, we presented that the distances
between the leaders and the followers on the interaction graph
contain some fundamental information about the controllabil-
ity of the leader-follower networks. In particular, we used the
distance-to-leaders (DL) vectors to derive a tight lower bound
on the dimension of the controllable subspace. The proposed
bound is applicable to networks with arbitrary interaction
graphs and weighting functions w : E 7→ R+. We also
provided some connections between the proposed lower bound
and a pair of closely related distance-based measures, namely
the maximum distance from the leaders and the number
of distinct DL vectors. While the results were presented
for undirected networks, we also showed how they can be
extended to directed networks. Furthermore, we presented

an algorithm for computing the lower bound. The proposed
bound may find its applications in various networked control
problems, especially when the edge weights are unknown. As
a prominent application, we presented how it can be utilized
to find a minimal set of leaders that ensure the controllability
of a leader-follower network with a given interaction graph
under any weighting function w : E 7→ R+.
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