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Sufficient statistics for linear control strategies

in decentralized systems with partial history

sharing

Aditya Mahajan and Ashutosh Nayyar

Abstract

In decentralized control systems with linear dynamics, quadratic cost, and Gaussian disturbance

(also called decentralized LQG systems) linear control strategies are not always optimal. Nonetheless,

linear control strategies are appealing due to analytic and implementation simplicity. In this paper, we

investigate decentralized LQG systems with partial history sharing information structure and identify

finite dimensional sufficient statistics for such systems. Unlike prior work on decentralized LQG systems,

we do not assume partially nestedness or quadratic invariance. Our approach is based on the common

information approach of Nayyar et al, 2013 and exploits the linearity of the system dynamics and

control strategies. To illustrate our methodology, we identify sufficient statistics for linear strategies in

decentralized systems where controllers communicate over a strongly connected graph with finite delays,

and for decentralized systems consisting of coupled subsystems with control sharing or one-sided one

step delay sharing information structures.

I. INTRODUCTION

With the increasing applications of networked control systems, the problem of finding the

best linear control strategy for decentralized systems with linear dynamics, quadratic cost,

and Gaussian disturbances (henceforth referred to as decentralized LQG systems) has received

considerable attention in recent years [1] (and references therein).

In centralized LQG systems, linear control strategies are globally optimal, the best linear

control strategies are characterized by the solution of a Riccati equation, the best linear control

is a function of the controller’s estimate of the state of the plant and this estimate is updated using

Kalman filtering equations. In contrast, the problem of finding the best linear control strategies

for decentralized LQG systems has the following salient features:
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1) In general, linear control strategies are not globally optimal, i.e., there may exist non-

linear control strategies that outperform linear strategies as is illustrated by the Witsen-

hausen counterexample [2] and memoryless control in Gaussian noise [3]. Linear strategies

are globally optimal only when the controller has specific information structure such as

static [4], partially nested [5], or stochastically nested [6] information structures and their

variations.

2) In general, the problem of finding the best linear control strategies is not convex. It may

be converted to a convex model matching problem only when the sparsity pattern of the

plant and the controller have specific structure such as funnel causality [7] or quadratic

invariance [8] and their variations.

3) In general, the best linear control strategy may not have a finite dimensional sufficient

statistic, i.e., it may not be possible to represent the best linear controller by a finite set

of estimates that are generated by recursions of finite order as is illustrated by the two

controller completely decentralized system considered in [9]. The best linear strategies are

known to have a finite dimensional sufficient statistic only for specific examples [10]–[17].

Note that all of these examples have partially nested information structure and some of

these examples have quadratic invariant sparsity structure. It is generally believed that the

best linear control strategies in partially nested and quadratic invariant systems will have

finite dimensional sufficient statistic.

In this paper, we investigate the third aspect of decentralized LQG systems described above,

viz., whether finite dimensional sufficient statistics for linear control strategies can be identified

for some subclass of decentralized LQG systems. In particular, we investigate decentralized

LQG systems with partial history sharing information structure [18], which is a generalization

of several well-known information structures of decentralized control. The partial history sharing

model, in general, is not partially nested or quadratic invariant. Our main results for this model

are presented in Section III and and can be summarized as follows:

1) we identify finite dimensional sufficient statistics for the best linear control strategy; and

2) we show that the update equation of these sufficient statistics is similar to Kalman filter

updates.

In Section IV, we apply these results to decentralized control systems in which the controllers
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communicate along a strongly connected graph with finite delay between any pair of controllers.

In Section V, we show that these results can be also applied to models that are not partial history

sharing, but can be converted to one by using a person-by-person approach.

To the best of our knowledge, these are the first sufficient statistics results for best

linear strategies in decentralized LQG systems that are neither partially nested nor quadratic

invariant. Our results suggest that the form of the sufficient statistics is a consequence of linearity

of system dynamics and control strategies rather than partial nestedness or quadratic invariance

of the information structure.

Our solution methodology is based on the common information approach developed in [19]

and used in [18] for decentralized control systems with partial history sharing. However, our

results cannot be derived directly using the results of [18]. For a general decentralized system

with partial history sharing, the results of [18] provide the structure of globally optimal control

strategies and a dynamic programming decomposition. In this paper, we exploit linearity (of

control strategies and of the underlying decentralized system) to address only the problem of

finding the structure of best linear strategy. We do not address the problem of computing the

best linear strategy. This narrower focus allows us to get simpler results than in [18].

Even with finite dimensional sufficient statistics, the problem of computing the best linear

strategies is, in general, a non-convex optimization problem unless the system is quadratically

invariant; and even if the best linear strategy is identified, it is globally optimal only if the

system is partially nested. Nonetheless, when the system is either partially nested or quadratic

invariant, it may be possible to use finite dimensional sufficient statistics to compute best linear

or globally optimal strategies. For example, an approach similar to ours was used in [17] to

identify sufficient statistics for best linear control strategies (that were also globally optimal)

for a two player decentralized LQG team [17] that is partially nested and quadratic invariant.

The authors of [17] then exploited the partial nested nature of the system to identify explicit

expressions for the best linear control strategies.

Notation

Uppercase letters denote random variables/vectors and lowercase letters denote their realiza-

tion. Bold uppercase letters denote matrices. P(·) denotes the probability of an event and E[·]

denotes the expectation of a random variable. R denotes the set of real numbers.
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For a sequence of (column) vectors X , Y , Z, . . . , the notation vec(X, Y, Z, . . . ) denotes the

vector [Xᵀ, Y ᵀ, Zᵀ]ᵀ. The vector vec(X1, . . . , Xt) is also denoted by X1:t.

The notation A = diag(B,C,D) denotes a block diagonal matrices with blocks B, C, and D

on the diagonal. Aᵀ denotes the transpose of a matrix and Tr[A] denotes the trace of a matrix.

The notation 0n×m denotes a n×m all zeros matrix; In denotes a n× n identity matrix. We

omit the subscripts when dimensions can be inferred from context.

For any two random vectors X and Y , we say that X is a sub-vector of Y , and denote it by

X ⊂ Y if the set of all components of X is a subset of the set of all components of Y . More

formally, X ⊂ Y if there exists a row-stochastic binary matrix P (i.e., all its elements are 0 or

1 and each row has a single 1) such that X = PY .

II. PROBLEM FORMULATION

A. Model

Consider a linear dynamic system with n controllers and a partial history sharing information

structure [18]. We follow the same notation as [18] and, for completeness, restate the model

below.

The system operates in discrete time for a horizon T . Let Xt ∈ Rdx denote the state of the

system at time t, U i
t ∈ Rdiu denote the control action of controller i, i = 1, . . . , n at time t, and

Ut denote the vector vec(U1
t , . . . , U

n
t ).

The initial state X1 has a probability distribution N (0,Σx) and evolves according to

Xt+1 = AtXt + BtUt + W 0
t (1)

where At and Bt are matrices of appropriate dimensions and {W 0
t }Tt=1 is a sequence of i.i.d.

zero-mean Gaussian random variables with probability distribution N (0,Σw0).

As in [18], at any time t, each controller has access to three types of data: the current

observation Y i
t , the local memory M i

t , and the shared memory Z1:t−1. The details of the infor-

mation structure will be described later. We use Yt to denote vec(Y 1
t , . . . , Y

n
t ) and Mt to denote

vec(M1
t , . . . ,M

n
t ).

We restrict attention to linear control strategies and assume that controller i’s strategy is of

the form:

U i
t = Ki

tZ1:t−1 + Gi
tY

i
t + Hi

tM
i
t (2)
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where Ki
t, Gi

t, and Hi
t are matrices of appropriate dimensions. The collection of {(Ki

t,G
i
t,H

i
t)}Tt=1

is referred to as the control strategy of controller i.

Combining (2) for all controllers, we can write

Ut = KtZ1:t−1 + GtYt + HtMt, (3)

where Kt = [K1 ᵀ
t | · · · | K

n ᵀ
t ]ᵀ, Gt = diag(G1

t , . . . ,G
n
t ) and Ht = diag(H1

t , . . . ,H
n
t ).

At time t, the system incurs a quadratic cost `(Xt, Ut) given by

`(Xt, Ut) = Xᵀ
t QXt + Uᵀ

t RUt (4)

where Q is positive semi-definite and R is positive definite matrices of appropriate dimensions.

We are interested in choosing control strategies of all controllers to minimize

E
[ T∑
t=1

`(Xt, Ut)
]
, (5)

where the expectation is with respect to the joint probability measure on (X1:T , U1:T ) induced

by the choice of the control strategies.

B. Partial history sharing information structure

As described earlier, controller i has access to three types of data at time t: the current

observation Y i
t , the local memory M i

t , and the shared memory Z1:t−1. These variables are given

as follows:

1) The current local observation Y i
t ∈ Rdiy of controller i is given by

Y i
t = Ci

tXt + W i
t (6)

where Ci
t is a matrix of appropriate dimensions and {W i

t }Tt=1 is a sequence of i.i.d. zero-

mean Gaussian random variables with probability distribution N (0,Σwi). The random

variables in the collection {X1,W
j
t , t = 1, . . . , T, j = 0, 1, . . . , n}, called primitive random

variables, are mutually independent. Combining (6) for all controllers, we can write

Yt = CtXt + W 1:n
t ,

where W 1:n
t = vec(W 1

t , . . . ,W
n
t ) and Ct = [C1 ᵀ

t | · · · | C
n ᵀ
t ]ᵀ.

October 16, 2018 DRAFT



6

2) The local memory M i
t ∈ Rdim of controller i is a subvector of the history of its local

observations and actions:

M i
t ⊂ {Y i

1:t−1, U
i
1:t−1} (7)

At t = 1, the local memory is empty, which we will represent by the convention M i
1 := 0.

3) In addition, all controllers have access to a shared memory Z1:t−1, where Zt = vec(Z1
t , . . . , Z

n
t ).

The shared memory Z1:t−1 is a subset of the history of observations and actions of all

controllers:

Z1:t−1 ⊂ {Y1:t−1, U1:t−1}. (8)

At t = 1, the shared memory is empty, Z0 := 0; at each time Zt ∈ Rdz .

The local and shared memories are updated as follows: After taking the control action at

time t, controller i sends a subvector Zi
t of its local information {M i

t , Y
i
t , U

i
t} to the shared

memory. We assume that the protocol of choosing the subset Zi
t is pre-specified. After sending

data Zi
t to the shared memory, controller i updates its local memory according to a pre-specified

protocol such that M i
t+1 ⊂ {M i

t , Y
i
t , U

i
t} \ Zi

t , which ensures that the contents of the local and

shared memories do not overlap.

The process of generating the new local memory M i
t+1 and Zi

t described above can be written

in terms of the following equations:

M i
t+1 = Pi

mm,tM
i
t + Pi

my,tY
i
t + Pi

mu,tU
i
t (9)

and

Zi
t = Pi

zm,tM
i
t + Pi

zy,tY
i
t + Pi

zu,tU
i
t , (10)

where Pi
∗∗,t are matrices that satisfy the following properties:

A1. Each entry of Pi
∗∗,t is either 0 or 1.

A2. The matrix Pi
mm,t Pi

my,t Pi
mu,t

Pi
zm,t Pi

zy,t Pi
zu,t


is doubly stochastic (that is, each row and column sum is 1).

Note that the Pi
∗∗,t matrices are specified a priori based on the memory update protocols of

the system. Also note that properties A1 and A2 are a consequence of these memory update
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protocols. We refer the reader to [18] for several examples of partial history sharing information

structures.

Combining (9) for all controllers we get

Mt+1 = Pmm,tMt + Pmy,tYt + Pmu,tUt (11)

where Pmm,t = diag(P1
mm,t, . . . ,P

n
mm,t), Pmy,t = diag(P1

my,t, . . . ,P
n
my,t), Pmu,t = diag(P1

mu,t, . . . ,P
n
mu,t).

Similarly, combining (10) for all controller gives

Zt = Pzm,tMt + Pzy,tYt + Pzu,tUt (12)

where Pzm,t = diag(P1
zm,t, . . . ,P

n
zm,t), Pzy,t = diag(P1

zy,t, . . . ,P
n
zy,t), Pzu,t = diag(P1

zu,t, . . . ,P
n
zu,t).

An example of the above model is the delayed sharing information structure [20], in which

the shared memory consists of k steps old observations and control actions all controllers, i.e.,

Z1:t−1 = vec(Y1:t−k, U1:t−k) and the local memory consists of the observations and actions taken

at t − k + 1, . . . , t − 1, i.e., M i
t = vec(Y i

t−k+1:t−1, U
i
t−k+1:t−1). In particular, when the delay

k = 2, then M i
t = vec(Y i

t−1, U
i
t−1), Zi

t = vec(Y i
t−2, U

i
t−2), and the equations for generating M i

t+1

and Zi
t can be written as

M i
t+1 = 0M i

t +

I

0

Y i
t +

0

I

U i
t

and

Zi
t = IM i

t + 0Y i
t + 0U i

t .

C. Generalized partial history sharing information structure

We now describe the generalized version of the partial history sharing information structure.

As in the original partial history sharing model, controller i has access to three types of data

at time t: the current observation Y i
t , a shared memory Z1:t−1 that is available to all controllers

and local memory M i
t with M i

1 := 0 and Z0 := 0. The difference between the original model

and the generalized one lies in the memory update rules. In the partial history sharing model,

the local and shared memories are updated according to (11) and (12), where P∗∗,t are block

diagonal matrices and Pi
∗∗,t satisfy properties A1 and A2. In generalized partial history sharing

information structure, the local and shared memory update rules still satisfy (11) and (12), but
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we allow P∗∗,t to be arbitrary matrices. We will describe examples of this information structure

in Section IV.

Remark 1 In some cases, the local memory M i
t is always empty. In such systems, the update

equations (9)-(12) can be replaced by

Zi
t = Pi

zy,tY
i
t + Pi

zu,tU
i
t , (13)

Zt = Pzy,tYt + Pzu,tUt (14)

D. Problem formulation

We are interested in the problem of finding the best linear control strategies. Specifically:

Problem (P1) For the model described above, given horizon T , the matrices At, Bt, Ci
t, Q, R,

the covariance matrices Σx, Σwi , and the protocols for updating the local and shared memory,

find a control strategy of the form (2) that minimizes the expected total cost given by (5).

One of the difficulties for Problem (P1) is that the shared memory Z1:t−1 available to all

controllers is increasing with time; consequently, the size of the gain matrices Kt in (3) is

increasing as well . We identify appropriate sufficient statistics X̆t (to be defined later) that have

the same dimension as vec(Xt, Yt,Mt) and show that the optimal controller is of the form

Ut = K̃tX̆t + GtYt + HtMt.

Furthermore, X̆t may be updated in a manner similar to Kalman filtering updates.

III. MAIN RESULTS

A. A sub-problem and the induced centralized system

The main idea of the proof is as follows. Arbitrarily fix the matrices (G1:T ,H1:T ). Consider

the sub-problem of finding the best choice of matrices K1:T to minimize the total expected cost

given by (5).

Following [18], we introduce a new decision maker—the coordinator—that sequentially ob-

serves the process {Zt}Tt=1 and chooses actions Ũt = vec(Ũ1
t , . . . , Ũ

n
t ) where

Ũ i
t = Ki

tZ1:t−1. (15)
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The controllers of the original system are passive agents that generate U i
t according to

U i
t = Ũ i

t + Gi
tY

i
t + Hi

tM
i
t . (16)

Combine (15) and (16) in vector form to write

Ũt = KtZ1:t−1, (17)

Ut = Ũt + GtYt + HtMt; (18)

where Gt and Ht are block diagonal matrices and Kt is a stacked matrix as defined earlier.

As in [18], the optimization problem at the coordinator is equivalent to a partially observed

centralized stochastic control problem, which we call the coordinated system. Define the state

X̃t and the observation Ỹt of this coordinated system as:

X̃t = vec(Xt, Yt,Mt), (19)

Ỹt = Zt−1. (20)

Then the control action Ũt of this system is chosen according to (17) which is a linear functional

of the observation history.

The coordinated system is a centralized system LQG system with linear dynamics, linear

observations, quadratic cost, and Gaussian disturbance. In particular:

1) The coordinated system has linear dynamics which may be written as

X̃t+1 = ÃtX̃t + B̃tŨt + F̃tWt (21)

where Wt = vec(W 0
t ,W

1
t+1, . . . ,W

n
t+1), and Ãt, B̃t, and F̃t are matrices of appropriate

dimensions that are obtained by combining (1), (6), (11), (17), and (18) and are given by

Ãt =


At BtGt BtHt

CtAt CtBtGt CtBtHt

0 Pmy,t + Pmu,tGt Pmm,t + Pmu,tHt

 , (22)

B̃t =


Bt

CtBt

Pmu,t

 , and F̃t =


I 0

0 I

0 0

 ; (23)

where the blocks in the first column of F̃t have dimensions compatible with W 0
t and the

blocks in the second column have dimensions compatible with vec(W 1
t , . . . ,W

n
t ).
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2) The observations are linear in the state and the control and may be written as

Ỹ1 = 0 (24)

Ỹt = C̃tX̃t−1 + D̃tŨt−1, t > 1 (25)

where C̃t and D̃t are matrices of appropriate dimensions given by

C̃t =
[
0 Pzy,t + Pzu,tGt Pzm,t + Pzu,tHt

]
, (26)

D̃t = Pzu,t. (27)

3) The per-step cost is quadratic in the state and control action and may be written as

`(Xt, Ut) = ˜̀(X̃t, Ũt) =
[
X̃ᵀ
t Ũᵀ

t

]Q̃t Ñt

Ñᵀ
t R̃t

X̃t

Ũt

 (28)

where Q̃t, Ñt, R̃t are obtained by combining (4) and (18) and are given by

Q̃t =


Qt 0 0

0 Gᵀ
tRtGt Gᵀ

tRtHt

0 Hᵀ
tRtGt Hᵀ

tRtHt

 (29)

Ñt =


0

Gᵀ
tRt

Hᵀ
tRt

 and R̃t = Rt. (30)

Recall that we assume that (G1:T ,H1:T ) are fixed. The auxiliary matrices Ãt, C̃t, Q̃t and Ñt

defined above depend on Gt and Ht.

B. Characterization of the optimal controller

The coordinated system defined above is a centralized partially observed LQG system. There-

fore, based on the standard results in linear stochastic control [21], the optimal coordination

strategy is characterized as follows:

Theorem 1 Define X̆t as the estimate of the state X̃t:

X̆t = E[X̃t | Ỹ1:t, Ũ1:t−1]

Then, we have
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1) Kalman filtering update: The initial value of the state estimate is given by X̆1 = 0. For

t > 1, the state estimate may be updated as follows

X̆t+1 = ÃtX̆t + B̃tŨt + ÃtP̃tC̃
ᵀ
t [C̃tP̃tC̃

ᵀ
t ]
−1(Ỹt+1 − C̃t+1X̆t − D̃t+1Ũt) (31)

where

P̃t = E[(X̃t − X̆t)
2 | Ỹ1:t, Ũ1:t−1],

which may be computed a priori by solving the following forward Riccati equation:

P̃1 = diag(Σx,0dy×dy ,0dm×dm)

P̃t+1 = ÃtP̃tÃ
ᵀ
t + Σ̃W − ÃtP̃tC̃

ᵀ
t [C̃tP̃tC̃

ᵀ
t ]
−1Ãᵀ

t P̃tC̃t

where dy =
∑n

i=1 d
i
y, dm =

∑n
i=1 d

i
m, and Σ̃W is the covariance of F̃tWt which is given

by

diag(Σw0 ,Σw1 , . . . ,Σwn ,0)

where 0 is a square matrix of dimension same as Mt.

2) Separation result: The optimal action of the coordinator is given by

Ũt = K̃tX̆t (32)

where the gain matrices {K̃t}Tt=1 are given by

K̃t = −[R̃t + B̃ᵀ
tSt+1B̃t]

−1Λt

where

Λt = Ñt + B̃ᵀ
tSt+1Ãt

and the matrices {St}Tt=1 are given by backward Riccati equations:

ST = Q̃T

St = Ãᵀ
tSt+1Ãt + Q̃t −Λᵀ

t [R̃t + B̃ᵀ
tSt+1B̃t]

−1Λt

3) Performance: The performance of the above strategy is given by

J =
T∑
τ=1

Tr[P̃tQ̃t + (Σ̃W + ÃtP̃tÃ
ᵀ
t − P̃t+1)St+1] 2
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Note that the matrices (K̃1:T ,S1:T , P̃1:T ) obtained above depend on the choice of the matrices

(G1:T ,H1:T ).

Since any linear strategy in the coordinated system can be implemented in the original system

and vice versa, the above result gives the following structure of best linear strategies in the

original system.

Theorem 2 In Problem (P1), the best linear control strategies are of the form

Ut = Ũt + GtYt + HtMt

= K̃tX̆t + GtYt + HtMt. (33)

where Gt = diag(G1
t , . . . ,G

n
t ), Ht = diag(H1

t , . . . ,H
n
t ),

X̆t = vec(X̂t, Ŷt, M̂t)

= E[vec(Xt, Yt,Mt) | Z1:t−1, Ũ1:t−1],

and the evolution of X̆t, the gain matrices K̃t and the system performance are the same as in

Theorem 1. 2

Remark 2 Let K̃t = [K̃1 ᵀ
t | · · · | K̃n ᵀ

t ]ᵀ. Then, the control action of each controller may be

written as

U i
t = K̃i

tX̆t + Gi
tY

i
t + Hi

tM
i
t .

Note that each controller is using its local information (Y i
t ,M

i
t ) and an estimate X̆t based on

the common information Z1:t−1. 2

Remark 3 Note that for a given choice of (G1:T ,H1:T ), Theorem 1 identifies the optimal K̃i
t

matrices and the associated cost. In order to find the best linear control strategies, we need to

optimize the cost given in Theorem 1 with respect to (G1:T ,H1:T ) — which may be a non-convex

optimization problem. 2

C. An equivalent representation of X̆t

In Theorem 2, it is possible to replace the estimate X̆t by a lower dimensional estimate S̆t

defined as

S̆t := E[vec(Xt,Mt) | Z1:t−1, Ũ1:t−1].
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Given the definition of X̆t in Theorem 1, we immediately have that

S̆t =

I 0 0

0 0 I

 X̆t (34)

Furthermore, since Yt is related to Xt through (6) and the primitive random variables are mutually

independent, it follows that Ŷt = CtX̂t and therefore,

X̆t =


I 0

Ct 0

0 I

 S̆t (35)

Equations (34) and (35) imply that X̆t can be replaced by S̆t as a sufficient statistic of common

information in Theorems 1 and 2. In particular, using (32) and (31), we get

Ũt = K̃t


I 0

Ct 0

0 I

 S̆t (36)

and

S̆t+1 =

I 0 0

0 0 I

[
Ãt


I 0

Ct 0

0 I

 S̆t + B̃tŨt+

ÃtP̃tC̃
ᵀ
t [C̃tP̃tC̃t]

−1(Ỹt+1 − C̃t+1


I 0

Ct 0

0 I

 S̆t − D̃t+1Ũt)

]
(37)

We can now state an equivalent version of Theorem 2.

Theorem 3 In Problem (P1), the best linear control strategies are of the form

Ut = Ũt + GtYt + HtMt

= L̃tS̆t + GtYt + HtMt. (38)

where Gt = diag(G1
t , . . . ,G

n
t ), Ht = diag(H1

t , . . . ,H
n
t ),

S̆t = vec(X̂t, M̂t) = E[vec(Xt,Mt) | Z1:t−1, Ũ1:t−1],
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the evolution of S̆t is given by (37), the gain matrices

L̃t = K̃t


I 0

Ct 0

0 I

 ,

the matrices K̃t, P̃t and the system performance are the same as in Theorem 1. 2

D. Generalization to models with common observations

In some cases, in addition to the shared memory, controllers may also have a common

observation Y com
t about the state of the system given as

Y com
t = Ccom

t Xt + W com
t ,

where W com
t , t = 1, 2, . . . , T is a sequence of i.i.d. Gaussian variables that are independent of

the all the other primitive random variables. Each controller can select its action according to a

linear control law of the form

U i
t = git(Y

i
t ,M

i
t , Z1:t−1, Y

com
1:t ).

The methodology of Theorem 1 can easily be adapted for this model by allowing the coordinator

to choose action Ũt = vec(Ũ1
t , . . . , Ũ

n
t ) based on the shared memory and the history of common

observations. That is,

Ũ i
t = Ki

t vec(Z1:t−1, Y
com
1:t ). (39)

Following the same arguments as before, the coordinator’s problem once again becomes a

classical LQG problem, thus establishing the result of Theorem 1 for this case with X̆t now

defined as

X̆t = E[(Xt, Yt,Mt) | Z1:t−1, Y
com
1:t , Ũ1:t−1]

E. Salient features of the result

The above structural result shows that in the best linear strategy, the control action at each time

depends on the current local observation, the current local memory, and a common information
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based estimate of the system state and the local memories of all controllers. Thus, the sufficient

statistic is finite dimensional.

Unlike prior work on structural results for decentralized control problems, our result relies on

the linearity of the decentralized system and of control strategies and not on partial nestedness

or quadratic invariance.

The result basically follows from two simple observations: (i) under linear strategies, control

actions can be viewed as superposition of two components—a local information based component

and a common information based component; and (ii) once the matrices for calculating the local

information based component have been fixed, the problem of choosing the common information

based component reduces to a centralized LQG problem.

F. Comparison with [18]

For decentralized control system with partial history sharing information structure, it is shown

in [18] that the sufficient statistic of the shared memory Z1:t−1 is given by the posterior probability

distribution on (Xt,Mt). In contrast, the result of Theorem 3 shows that when attention is

restricted to linear strategies, the sufficient statistic is given by the conditional mean S̆t of

(Xt,Mt). Therefore, the structural results of Theorem 1 simplifies the structural result of [18,

Theorem 4] for LQG systems with linear control strategies.

Although the methodology used in proving Theorem 1 and the solution methodology of [18]

are similar, it is not possible to derive the result of Theorem 1 by directly using the results of [18].

In [18], the coordinator solves a global optimization problem to determine how controllers should

use their local information. On the other hand, to prove the result of Theorem 1, we arbitrarily

fix the components of the control laws that use the local information and then find the structure

of the best response strategies at the coordinator.

This approach of fixing the part of control law that use the local information and identifying

the structure of coordinator’s strategy was also used for a two player partially nested problem

in [17]. In that paper, the authors used the structure of optimal linear strategies, along with the

partial nestedness of the problem, to explicitly derive the globally optimal control strategies.

In contrast to the approach of [18] which gives the structure of globally optimal control laws

and a dynamic programming decomposition, our approach only gives the structure of best linear

control laws. It is not possible, in general, to extend our approach to find the best linear control
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laws. The question whether the approach proposed in this paper simplifies for partially nested

teams warrants further investigation.

IV. DELAYED SHARING INFORMATION STRUCTURE

In this section, we illustrate our results using the specific example of delayed sharing infor-

mation structures. We consider two cases: (i) one with symmetric delays where the observations

and actions of any controller are available to all other controllers after a delay of k time steps and

(ii) the asymmetric delay case where the communication delay from controller j to controller i

is kij <∞.

A. Symmetric delays

In delayed sharing information structure, each controller’s observations and control actions are

shared with all other controllers after a delay of k ≥ 1 time steps [20]. The system dynamics,

local observations, and cost function are the same as in Section II-A.

In the language of partial history sharing model, the shared memory in this case consists

of all observations and control actions that are at least k time-steps old, that is, Z1:t−1 =

vec(Y1:t−k, U1:t−k); and the local memory consists of the observations and actions taken at

t− k + 1, . . . , t− 1, that is, M i
t = vec(Y i

t−k+1:t−1, U
i
t−k+1:t−1).

Therefore, the result of Theorem 3 applies to this model with

• the Pi
∗∗ matrices in the memory update equations (9) and (10) are given by

Pi
mm,t =


0diy×dim

0diu×dim

I(k−2)(diy+diu) 0(k−2)(diy+diu)×(diy+diu)



Pi
my,t =


Idiy

0diu×diy

0(k−2)(diy+diu)×diy



Pi
mu,t =


0diy×diu

Idiu

0(k−2)(diy+diu)×diu


Pi
zm,t =

[
0(diy+d

i
u)×(k−2)(diy+diu) I(diy+diu)

]
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and Pi
zy,t = 0 and Pi

zu,t = 0.

• and the estimate of Theorem 3 as

S̆t = E[vec(Xt,Mt) | Y1:t−k, U1:t−k, Ũ1:t−1].

Recall that the evolution of the sufficient statistic S̆t depends on the choice of matrices

(G1:T ,H1:T ) in the control strategy. Such a dependence is also present in the sufficient statistic

for optimal control laws for the general delayed sharing model [20]. Hence, restricting attention

to linear control strategies does not lead to a two-way separation of estimation and control in

delayed sharing information structures. However, as we show next, it is possible to have a one-

way separation (estimation does not depend on control) if we keep track of a subset of past

observations and control actions at the coordinator.

Corollary 1 The result of Theorem 3 for the symmetric delay sharing model may be simplified

as

Ut = Ũt + GtYt + HtMt

= L̃tSt + GtYt + HtMt. (40)

where

St = vec(X̂t−k+1|t−k, Ũt−k+1:t−1, Yt−2k+2:t−k, Ut−2k+2:t−k),

X̂t−k+1|t−k = E[Xt−k+1 | Y1:t−k, U1:t−k]

and X̂t+1|t is updated according to:

X̂1|0 = 0

X̂t+1|t = AtX̂t|t−1 + BtUt + AtPtC
ᵀ
t [CtPtC

ᵀ
t + Σw]−1(Yt −CtX̂t|t−1)

where Σw = diag(Σw1 , . . . ,Σwn) and Pt = E[(Xt − X̂t|t−1)
2 | Y1:t−1, U1:t−1], which can be

precomputed as follows:

P1 = Σx;

Pt+1 = AtPtA
ᵀ
t + Σw0 −AtPtC

ᵀ
t [CtPtC

ᵀ
t + Σw]−1CtPtA

ᵀ
t 2

See Appendix A for a proof. Corollary 1 shows that St is a sufficient statistic for (Y1:t−k, U1:t−k).

This sufficient statistic consists of three parts:
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1) A strategy-independent k-step window (Yt−2k+2:t−k, Ut−2k+2:t−k) of the history of obser-

vations and actions that are available to all controllers.

2) A strategy-independent estimate of the k-step delayed state Xt−k+1 based on the history of

common information. Note that the update of X̂t−k+1|t−k does not depend on the matrices

(G1:T ,H1:T ).

3) A strategy-dependent k-step window of the history of coordinated control actions Ũt−k+1:t−1.

This structure is similar to the optimal controller derived in [20, second structural result].

For the special case of delay k = 1, the result of Corollary 1 simplifies as follows.

Corollary 2 When the sharing delay k = 1, the optimal control strategies may be chosen

according to

Ut = Ũt + GtYt

= L̃tSt + GtYt. (41)

where
X̂t|t−1 = E[Xt | Y1:t−1, U1:t−1]

2

Corollary 2 is equivalent to the result obtained in [10], [11].

B. Asymmetric delays

In this model, controller i observes the observations and control actions of controller j with

a delay of kij <∞. The information available to controller i at time t consists of

I it = {Y i
1:t, U

i
1:t−1} ∪

⋃
j 6=i

{Y j
1:t−kij , U

j
1:t−kij}.

All delays are finite. For convenience, define kii := 1. Then, the information available to

controller i at time t can be written as

I it = {Y i
t } ∪

n⋃
j=1

{Y j
1:t−kij , U

j
1:t−kij}.

This information structure arises when controllers communicate along a strongly connected

graph with finite delay between any pair of controllers. The system dynamics, local observations,
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2

1 3

1 1

2

Fig. 1. An example of a system with asymmetric delayed sharing. The number on the arrows denote the delay in flow of

information.

and cost function are the same as in Section II-A. Similar models have been considered in [22]–

[25]. Note that unlike these models, we do not assume any sparsity structure on the matrices

At,Bt and Ct in the system model.

Such a model has the generalized partial history sharing information structure. As an illustra-

tion, consider the 3 controller system shown in Figure 1. Controllers 1 and 2 share information

with 1-step delay, controllers 2 and 3 share information with 1-step delay but controllers 1 and 3

share information with 2-step delay, that is,

k12 = k21 = 1, k23 = k32 = 1, k13 = k31 = 2.

The shared memory at time t is given by

Z1:t−1 = vec(Y 1
1:t−2, U

1
1:t−2, Y

2
1:t−1, U

2
1:t−1, Y

3
1:t−2, U

3
1:t−2);

the local memories are

M1
t = vec(Y 1

t−1, U
1
t−1),

M2
t = vec(Y 1

t−1, U
1
t−1, Y

3
t−1, U

3
t−1),

M3
t = vec(Y 3

t−1, U
3
t−1);

and the increment in shared memory at time t is

Zt = vec(Y 1
t−1, U

1
t−1, Y

2
t , U

2
t , Y

3
t−1, U

3
t−1).

October 16, 2018 DRAFT



20

The update of the local and shared memories may be written as (11) and (12) with

Pmm,t = 0

Pmy,t =



I 0 0

0 0 0

I 0 0

0 0 0

0 0 I

0 0 0

0 0 I

0 0 0



, Pmu,t =



0 0 0

I 0 0

0 0 0

I 0 0

0 0 0

0 0 I

0 0 0

0 0 I



Pzm,t =


I 0 0

0 0 0

0 0 I



Pzy,t =


0 0 0

0 I 0

0 0 0

0 0 0

 , Pzu,t =


0 0 0

0 0 0

0 I 0

0 0 0


Similar to the above example, the general model with asymmetric delays may be considered

as a special case of the generalized partial history sharing model. For that matter, define k∗j :=

maxi kij . Thus, k∗j is the delay after which controller j’s current information is available to all

other controllers. In the above example, k∗1 = k∗3 = 2 and k∗2 = 1.

Then, the common information available to all controllers at time t is

Z1:t−1 = vec(Y 1
1:t−k∗1

, U1
1:t−k∗1

. . . , Y n
1:t−k∗n , U

n
1:t−k∗n),

and the local memory of controller i is

M i
t = I it \ {Y i

t , Z1:t−1}

= vec(Y 1
t−k∗1+1:t−ki1 , U

1
t−k∗1+1:t−ki1 , . . . , Y

n
t−k∗n+1:t−kin , U

n
t−k∗n+1:t−kin).
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To facilitate writing the memory update equations of the form (9) and (10) for the general

asymmetric delay model, it is helpful to define the following vectors:

Lit = vec(Y i
t−k∗i +1:t−1, U

i
t−k∗i +1:t−1). (42)

Lit denotes the observations and control actions of controller i that have not yet been shared

with all controllers. Lit takes values in Rdil . Lit is always a sub-vector of M i
t . Note that Lit may

be distinct from M i
t in general (see the example above). More explicitly, the relation between

Lit and M i
t can be written as

Lit =
[
0(k∗i−1)(diy+diu)×

∑
j<i(k

∗
j−kij)(d

j
y+d

j
u)

I(k∗i−1)(diy+diu) 0(k∗i−1)(diy+diu)×
∑

j>i(k
∗
j−kij)(d

j
y+d

j
u)

]
M i

t

(43)

Define Lt = vec(L1
t , . . . , L

n
t ). Note that M i

t is a sub-vector of Lt. The explicit relation between

M i
t and Lt can be written as

M i
t = diag(Ji1, . . . , Jin)Lt, where Jij = [0(k∗j−kij)(d

j
y+d

j
u)×(kij−1)(djy+dju) I(k∗j−kij)(d

j
y+d

j
u)

] (44)

Furthermore, Lit has an update equation similar to (10):

Lit+1 = P̃i
`mL

i
t + P̃i

`yY
i
t + P̃i

`uU
i
t (45)

where

P̃i
`m =


0diy×dil

0diu×dil

I(k∗i−2)(diy+diu) 0(k∗i−2)(diy+diu)×(diy+diu)



P̃i
`y =


Idiy

0diu×diy

0(k∗i−2)(diy+diu)×diy



P̃i
`u =


0diy×diu

Idiu

0(k∗i−2)(diy+diu)×diu


The increment in shared memory can be written in terms of Lit as

Zi
t =

[
0(diy+d

i
u)×(k∗i−2)(diy+diu) I(diy+diu)

]
Lit (46)
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Therefore, the result of Theorem 3 applies to this model with

• The analogue of (11) obtained by combining (43), (45) and (44).

• The analogue of (12) obtained by combining (43) and (46).

• and the estimate of Theorem 3 as

S̆t = E[vec(Xt,Mt) | vec(Y 1
1:t−k∗1

, U1
1:t−k∗1

. . . , Y n
1:t−k∗n , U

n
1:t−k∗n), Ũ1:t−1].

Analogous to Corollary 1, we also have the following result in this model.

Corollary 3 Define k∗ = maxi,j kij . The result of Theorem 3 for the asymmetric delay sharing

model may be simplified as

Ut = Ũt + GtYt + HtMt

= L̃tSt + GtYt + HtMt. (47)

where

St = vec(X̂t−k∗+1|t−k∗ , Ũt−k∗+1:t−1, Yt−2k∗+2:t−k∗ , Ut−2k∗+2:t−k∗)

X̂t−k∗+1|t−k∗ = E[Xt−k∗+1 | Y1:t−k∗ , U1:t−k∗ ] 2

The proof is similar to the proof of Corollary 1 in Appendix A.

A 3 controller system with asymmetric delays (in particular, k21 = k32 = k13 = 1 and

k12 = k23 = k31 = 2) and a partially nested information structure is considerd in [25]. The

authors of [25] identify optimal control strategies whose structural form is similar to our result

above. Note that our results hold for any strongly connected communication graph with finite

delays.

V. MODELS THAT REDUCE TO PARTIAL HISTORY SHARING

The approach presented int his paper is also applicable to models that are not partial history

sharing as such but can be reduced to one by using a person-by-person approach [1]. We illustrate

this by means of two examples presented below.
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A. Coupled subsystems with control sharing

In the control sharing model considered in [26]1 the system consists on n-subsystems; each

subsystem has a co-located control station. Let X i
t denote the state of subsystem i and U i

t the

control action of controller i. Let Xt = vec(X1
t , . . . , X

n
t ) and Ut = vec(U1

t , . . . , U
n
t ). The system

dynamics are given by

X i
t+1 = Ai

tX
i
t + Bi

tUt + W i
t

where Ai
t and Bi

t are matrices of appropriate dimensions. Note that the next state of subsystem i

depends on the current state of subsystem i and the control actions of all controllers. The noise

processes {W i
t }∞t=1 are mutually independent and independent across time. The cost is quadratic

and given by (4).

Control station i observes the state of control station i and the one-step delayed control actions

of all controllers. Each controller has perfect recall. Therefore, action U i
t must be chosen based on

the data (X i
1:t, U1:t−1). It is shown in [26, Proposition 3] using a person-by-person approach that

there is no loss of optimality in shedding X i
1:t−1 and choosing U i

t based on the data (X i
t , U1:t−1).

We restrict attention to controllers that are linear functions of this data, i.e., controllers for the

form

U i
t = Ki

tU1:t−1 + Gi
tX

i
t

This model fits the general partial history sharing model described in Section II-A with

• the local memory M i
t is empty;

• the local observation Y i
t is X i

t ;

• the shared memory Z1:t−1 is U1:t−1

• the update of the shared memory given by (13) where Pi
zy = 0, Pi

zu = I and P∗∗ =

diag(P1
∗∗, . . . ,P

n
∗∗).

The results of Theorem 3 apply to this model with

S̆t = E[Xt | U1:t−1].

For this model, it is known that linear strategies are not globally optimal. The optimal non-

linear control strategy is given by the embedding of the observations in the control actions [27].

1The model presented here is simpler than the model described in [26]. The results also extend to the generalized models

considered in [26], but we restrict attention to the more simpler model for ease of exposition.
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B. One-sided one-step delayed sharing

Consider two coupled subsystems with one-sided one-step delayed sharing. Let X i
t denote the

state of subsystem i and U i
t denote the control action of subsystem i. Let Xt = vec(X1

t , X
2
t )

and Ut = vec(U1
t , U

2
t ). The dynamics are arbitrary and given by (1). At each time, controller 1

observes vec(X1
t , X

2
t−1): the current state of subsystem 1 and the one-step delayed state of

subsystem 2; controller 2 observes X2
t : the current state of subsystem 2. Thus, controller 1

chooses its control actions based on the data (X1
1:t, U

1
1:t−1, X

2
1:t−1, U

2
1:t−1) and controller 2 based

on (X2
1:t, U

2
1:t−1). The cost is quadratic and given by (4).

When A and B are lower block triangular, the model is partially nested [5]. Such a model

was considered in [16]. A minor variation of this model (which was also partially nested) was

also considered in [12], [15]. The sparsity assumptions on A and B are needed to prove global

optimality of linear strategies; but, as we show below, not to identify the sufficient statistics for

linear strategies.

The structure of controller 1 can be simplified by using a person-by-person approach. For

any arbitrary choice of control strategy for controller 2, the subproblem of finding the best

response strategy at controller 1 is a centralized stochastic control problem. It can be shown

that (X1
t , X

2
1:t−1, U

2
1:t−1) is an information state of this subproblem. Therefore, there is no loss

of optimality in choosing U1
t based on the data (X1

t , X
2
1:t−1, U

2
1:t−1). We restrict attention to

controllers that are linear functions of the available data, i.e., controllers of the form

U i
t = Ki

t vec(X2
1:t−1, U

2
1:t−1) + Gi

tX
i
t ;

This model fits the general partial history sharing model described in Section II-A with

• the local memory M i
t is empty;

• the local observation Y i
t is X i

t ;

• the shared memory Z1:t−1 is vec(X2
1:t−1, U

2
1:t−1);

• the update of the shared memory given by (13) where P1
zy = 0, P2

zu = 0, P2
zy = I, P2

zu = I,

and P∗∗ = diag(P1
∗∗, . . . ,P

n
∗∗).

The results of Theorem 3 apply to this model with

S̆t = E[Xt | X2
1:t−1, U

2
1:t−1, Ũ1:t−1].
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The above structural result is similar to the result obtained in [16]. However, unlike [16], our

model does not have a partially nested information structure. This suggests that the structure of

the best linear control law is a consequence of the linearity of control strategies rather than the

partially nested information structure.

VI. CONCLUSION

Linear control strategies for LQG systems are appealing due to their analytical and imple-

mentation simplicity. However, to fully leverage the advantages of linear strategies, we need

to identify finite dimensional sufficient statistics for best linear strategies that can be easily

updated. We identified such a result in Theorem 3 for decentralized systems with partial history

sharing information structures. The result relied on the linearity of the decentralized system and

is applicable to models that are neither partially nested nor quadratically invariant.

We focused on the partial history sharing model in this paper because it provides a common

model for decentralized systems where controllers’ local information remains finite dimensional

but the common information increases with time.

We showed that our results provide sufficient statistics for different variations of delayed

sharing information structures, including those with asymmetric delays that arise when controllers

communicate along a strongly connected graph.

We also showed that our approach is applicable to some decentralized systems where local

information is also increasing with time, provided one can first employ a person by person

optimality approach to find a preliminary sufficient statistic which ensures that local information

is finite dimensional.

We have focused only on finding the structure of best linear control strategies in this paper. It is

not possible, in general, to extend our approach to compute the best linear control strategies. Even

in the absence of a complete methodology to find the best linear strategies, the structural results of

Theorem 3 are useful because they restrict the solution space to search for best linear strategies.

Furthermore, as is the case with the sufficient statistics in centralized stochastic control, the

sufficient statistics of Theorem 3 allow us to formulate the problem of finding and implementing

the best linear control strategies over an infinite horizon.
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APPENDIX A

PROOF OF COROLLARY 1

To prove the result, we will argue that S̆t = vec(X̂t, M̂t) is a linear function of St for the

symmetric delay sharing model. Therefore, the control law of Theorem 3 can be written in the

form specified in Corollary 1.

Observe that according to the coordinated system dynamics in (21), (Xt,Mt) is a linear func-

tion of X̃t−k+1 = vec(Xt−k+1, Yt−k+1,Mt−k+1), Ũt−k+1:t−1 and W 0
t−k+1:t−1,W

1:n
t−k+1:t−1. There-

fore, by linearity of conditional expectation, (X̂t, M̂t) is a linear function of the following three

terms

1) E[vec(Xt−k+1, Yt−k+1,Mt−k+1) | Y1:t−k, U1:t−k, Ũ1:t−k].

2) E[Ũt−k+1:t−1 | Y1:t−k, U1:t−k, Ũ1:t−k].

3) E[Wt−k+1:t−1 | Y1:t−k, U1:t−k, Ũ1:t−k].

Consider each of these terms separately. Recall that in delayed sharing information structure

Mt−k+1 = vec(Yt−2k+2:t−k, Ut−2k+2:t−k) which are included in the right hand side of conditioning

in the first term. Therefore,

E[Mt−k+1 | Y1:t−k, U1:t−k, Ũ1:t−1] = vec(Yt−2k+2:t−k, Ut−2k+2:t−k). (48)

Furthermore, using (6)

E[Y i
t−k+1 | Y1:t−k, U1:t−k, Ũ1:t−1] = CiE[Xt−k+1 | Y1:t−k, U1:t−k, Ũ1:t−1]

= CiE[Xt−k+1 | Y1:t−k, U1:t−k] (49)

where we removed Ũ i
1:t−1 from the right hand side of conditioning because it is a function

of (Y i
1:t−k, U

i
1:t−k) which are included in the right hand side of conditioning. Combining (48)

and (49), we get that E[vec(Xt−k+1, Yt−k+1,Mt−k+1) | Y1:t−k, U1:t−k, Ũ1:t−k] is a linear function

of (X̂t−k+1|t−k, Yt−2k+2:t−k, Ut−2k+2:t−k), which is a sub-vector of St.

The second term E[Ũt−k+1:t−1 | Y1:t−k, U1:t−k, Ũ1:t−k] is simply Ũt−k+1:t−1 which is also a

sub-vector of St.
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Since the primitive random variables are independent, the third term E[Wt−k+1:t−1 | Y1:t−k, U1:t−k, Ũ1:t−k]

is 0.

Therefore, S̆t = vec(X̂t, M̂t) is a linear function of St, which implies the result of the corollary.
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