
ar
X

iv
:1

30
4.

25
81

v2
  [

cs
.S

Y
] 

 1
9 

A
pr

 2
01

3

STABILITY AND PERFORMANCE OF STOCHASTIC

PREDICTIVE CONTROL

DEBASISH CHATTERJEE AND JOHN LYGEROS

Abstract. This article is concerned with stability and performance of con-
trolled stochastic processes under receding horizon policies. We carry out a
systematic study of methods to guarantee stability under receding horizon
policies via appropriate selections of cost functions in the underlying finite-
horizon optimal control problem. We also obtain quantitative bounds on the
performance of the system under receding horizon policies as measured by the
long-run expected average cost. The results are illustrated with the help of
several simple examples.

1. Introduction

With the steady growth in the availability of fast computing machines, control
techniques that involve algorithmic selection of actions that minimize some per-
formance objective have gained prominence. Receding horizon predictive control,
which is based on such algorithmic selection procedures, has evolved over the years
into one of the most useful and applicable control synthesis techniques currently
available to a control engineer; see e.g., [11] for a survey of the modern theory
and applications in the deterministic setting. Stochastic versions of receding hori-
zon techniques initially evolved within the operations research community, see e.g.,
[6, 7], with inventory and manufacturing systems as primary application areas, and
have steadily filtered into the domain of control systems, with current applications
in financial engineering, process control, industrial electronics, power systems, etc.

While the deterministic and robust versions of receding horizon control tech-
niques have become standardized and are well-documented, the available literature
on the stochastic version still lacks a comprehensive and systematic treatment. Es-
pecially prominent in this regard is the matter of stability of control systems under
stochastic receding horizon control; indeed, most of the literature does not appear
to take advantage of the significantly developed and advanced results on stability of
Markov processes. Chief among the reasons for this discrepancy between the deter-
ministic and stochastic settings, perhaps, is the fact that the technical nature of the
arguments involved in the stochastic version of stability is significantly heavier than
its deterministic counterpart. Indeed, while the bare-essential arguments involved
in establishing Lyapunov stability of discrete-time deterministic dynamical systems
are only a few and are quite classical, the technical arguments and conditions in
the theory of stability of Markov chains is by far larger in number, and constitute
an active area of research even today. In addition to that, one has a diverse library
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of notions of stability that are peculiar to the stochastic setting, and are simply
non-existent in the deterministic or the robust setting.

This article is an attempt at bridging this gap—we connect receding horizon
control techniques to some of the principal elements of the theory of stability of
Markov processes. Motivated by, and in the spirit of [12, §3], first we systematically
develop a framework for studying stability of discrete-time controlled stochastic sys-
tems under receding horizon policies. We critically examine two approaches in this
connection, namely, ensuring stability by appropriate selection of the cost func-
tions, and by adjoining an appropriate constraint to the underlying finite-horizon
optimal control problem, before focussing on the former. Against the backdrop of
certain standard (and no-so-standard) conditions for stability of Markov processes,
we establish conditions on the cost functions such that these stability conditions
are satisfied. Thus, this selection procedure, by design, ensures that the closed-
loop system under the corresponding receding horizon control policy is stable. We
utilize theorems on stability of Markov processes off-the-shelf as to this end. As
such, the results pertaining to stability presented here should be regarded as rep-
resentative guidelines—rather than offer a set of stand-alone results, we provide a
general framework for establishing stability results. The details for specific appli-
cations must be worked out on a case-by-case basis, as we illustrate through several
examples.

In addition, we develop a framework for analyzing the performance of the closed-
loop systems under stochastic receding horizon control policies. Selecting a long-run
expected average cost derived from the underlying finite-horizon optimal control
problem as our performance index, we provide quantitative bounds on this perfor-
mance index under receding horizon policies and mild hypotheses. Observe that
receding horizon policies are extracted from a finite-horizon optimal control prob-
lem, and as such do not naturally offer any clue concerning the long-run expected
average costs that they incur. The relationship between stability and performance
is also explored here. In particular, we obtain a bound on the aforementioned per-
formance index under a receding horizon policy that also ensures stability in an
appropriate sense.

The layout of this article is as follows: §2 provides the description of the control
systems. Our results on stability under receding horizon control are contained in §3,
while performance bounds are provided in §4. Several examples illustrate our results
throughout §3 and §4. The proofs of our results are provided in the Appendices §A
and §B. The emphasis here is on conceptual clarity and a systematic presentation
sans heuristics. The setting, insofar as the system, the associated receding horizon
problem, and the results are concerned, is at an abstract level; this choice is targeted
at conveying the key ideas in a transparently clear fashion, without the overload of
excessive notation. In particular, the ideas presented here can be readily generalized
to the setting of Markov decision processes; we choose to stay with simpler notation
and technical requirements here. Numerical tractability of the underlying optimal
control problems, which is an integral aspect of receding horizon control techniques,
is not addressed here.

2. System description

Consider the discrete-time dynamical system given by the recursion

(2.1) xt+1 = f(xt, ut, wt), x0 given, t ∈ N0,
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where

◦ xt ∈ R
d, ut ∈ U ⊂ R

m, and wt ∈ W ⊂ R
p are the states, the control actions, and

the noise at time t;
◦ f : Rd × U × W −→ R

d is a measurable function;1

◦ U is the (nonempty) control set, assumed to be measurable and containing the
element 0 ∈ R

m;
◦ W ⊂ R

p is assumed to be a measurable set;
◦ (wt)t∈N0 is the process noise—a W-valued random process with the wt’s inde-

pendent and identically distributed.2

Let k be a positive integer. Recall that a k-stage (feedback) policy is a collection
π0:k−1 := (π0, π1, . . . , πk−1) of measurable functions πi : Rd −→ U for each i; we
set the t-th control action as ut = πt(xt). For the synthesis of control actions in a
receding horizon fashion, we consider given:

◦ a horizon N ∈ N,
◦ a cost-per-stage function c : Rd × U −→ [0, +∞[ and a final cost function cF :
R

d −→ [0, +∞[, both assumed to be measurable, and
◦ a class Π of feedback policies.

We introduce the N -horizon value function

(2.2) VN (x, π) := Eπ
x

[N−1∑

i=0

c(xi, ui) + cF (xN )

]

where the policies π belong to the class Π.3

Assumption. Without detailing the specifics,

(A1) we assume sufficient regularity of the process (wt)t∈N0 such that the cost (2.2)
is finite for all x ∈ R

d and all π ∈ Π. ♦

With these ingredients, the centerpiece of receding horizon control can be stated:
It consists of the N -horizon optimal control problem:

(2.3)

minimize VN (x, π)

subject to

{

π ∈ Π,

dynamics (2.1).

Assumption. In addition to (A1), we assume that

(A2) the minimization problem (2.3) is well-defined for all x ∈ R
d, i.e., for each

boundary value x ∈ R
d, there exists a policy π⋆ ∈ Π that solves (2.3). ♦

Conditions under which (A2) holds are of a technical nature, and well docu-
mented, e.g., in [6, Chapter 3].

1Henceforth “measurability” on Euclidean spaces will refer to “Borel measurability.”
2All random vectors are assumed to be defined on some underlying probability space, for which

P(·) is the probability measure, and E[·] is the expectation under P. The assumption that wt’s
are independent and identically distributed can be substantially weakened at the expense of some
notational clutter; we choose to stay with the simpler setting here.

3If ϕ : Rd −→ R is a measurable function, then E
π
x [ϕ(xt)] stands for the conditional expectation

of ϕ(xt) given x0 = x, where xt is the state at time t under the policy π; Px is the corresponding
conditional probability.
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We denote the optimal value function VN (x, π⋆) by V ⋆
N (x) for all x ∈ R

d. The
system (2.1) under the optimal policy generates the optimal state trajectory (x⋆

t )N
t=0

given by

(2.4) x⋆
t+1 = f(x⋆

t , π⋆
t (x⋆

t ), wt), x⋆
0 given, t = 0, 1, . . . , N − 1.

The technique of receding horizon control consists of applying the first element π⋆
0

obtained from the minimization problem (2.3) recursively, thereby generating the
receding horizon policy

(2.5) π̂ := (π⋆
0 , π⋆

0 , . . .).

To wit, given the state xt at time t, one solves the minimization problem (2.3) with
x = xt, obtains the optimal policy π⋆, applies the first element π⋆

0 of the policy,
moves to time t + 1, and repeats the preceding steps. The system (2.1) under the
policy π̂ generates the state trajectory (xt)t∈N0 via the recursion

(2.6) xt+1 = f(xt, π⋆
0(xt), wt), x0 given, t ∈ N0.

Observe that the process (xt)t∈N0 generated by (2.6) is Markovian, i.e., the proba-
bility distribution of the future state xt+1 at time t+1 is conditionally independent
of the past (xs)t−1

s=0 given the present state xt. Indeed, for S a Borel subset of Rd,
we have

(2.7)
P

(
xt+1 ∈ S

∣
∣ (xs)t

s=0

)
= P

(
f(xt, π⋆

0(xt), wt) ∈ S
∣
∣ (xs)t

s=0

)

= P
(
f(xt, π⋆

0(xt), wt) ∈ S
∣
∣ xt

)
.

The following sections will study aspects of both qualitative and quantitative be-
havior of the process (xt)t∈N0 generated by (2.6).

3. Stability under receding horizon control

Stability of the controlled process (xt)t∈N0 generated by the recursion (2.6) is a
desirable property in practice. There are two techniques in which stability can be
ensured:

(S1) By appropriate choice of cost functions: Stability of the controlled process
(xt)t∈N0 can be ensured by an appropriate selection of the cost-per-stage func-
tion c and the cost function cF . In the deterministic setting, conditions for
asymptotic stability in terms of the cost functions are standard, see e.g., [12,
§3] and [10] for details and further references. In the stochastic setting the aim
is to arrive at a Lyapunov-like inequality in terms of the cost functions, which
in turns ensures stability of the closed-loop system. While conceptually this
technique leads to an elegant analysis, there are two points worthy of note:
◦ For a control engineer, the selection of the cost functions c and cF is typically

dictated by the physics of the problem. In case the stability conditions are
not satisfied by the natural candidates c and cF , the engineer may be forced
to select cost functions that may have little to do with the particular physical
aspects of the plant.

◦ The applicability of predictive control is contingent upon numerical tractabil-
ity of the finite horizon optimal control problem (2.3). The extent of flex-
ibility in the choice of the functions c and cF is determined, therefore, by
cases where numerically tractable problems can be derived from (2.3). In
other words, applicability of this technique is limited by numerical tractabil-
ity of the problem (2.3). However, as we shall illustrate through examples,
more than one cost functions that ensure stability; there is, therefore, some
freedom which the control engineer can utilize to suit numerical tractability.
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In the deterministic setting, standard stability conditions under receding hori-
zon control require the existence of a stabilizing feedback controller inside a
certain terminal set, such that the terminal set becomes invariant for the con-
trolled system [12, §3]. In the stochastic setting, in general, even the weak-
est forms of stability (for instance, positive recurrence, existence of invariant
measures, etc,) require the existence of a certain “drift condition” outside a
bounded set [13]. This difference between the two settings is generally un-
avoidable for the lack of a notion analogous to invariance in the deterministic
setting; see also Remark 7 for a more specific discussion. For instance, in sys-
tems where there is non-zero probability of jumps in the state infinitely often
and the magnitude of the jumps is not bounded, the notion of deterministic
invariance does not make sense for any bounded subset of the state-space. Of
course, this assertion does not apply to systems subjected to bounded noise
where it may be possible to perform a robust analysis, but it does indeed ap-
ply to the standard benchmark case of a linear control system with additive
and independent Gaussian noise.

(S2) By adjoining an appropriate constraint to the optimal control problem (2.3): This
technique was first adopted in [1, 8, 9] in the context of receding horizon control
of linear stochastic controlled systems. It consists of adjoining a constraint
to the optimal control problem (2.3), so that the modified optimal control
problem stays feasible for all x ∈ R

d, and the resulting receding horizon policy
π̂ defined in (2.5) ensures stability. Observe that (i) the problem (2.3) where
one intends to adjoin the constraint is limited to a finite-horizon, while (ii)
the target of the constraint—attaining stability of the closed-loop system—
involves a necessarily infinite-horizon notion. Two points to note:
◦ It is imperative to ensure that the problem (2.3) with the new constraint is

feasible for all boundary values x; this necessarily imposes restrictions on
the type of admissible constraints.

◦ Adjoining a constraint to the problem (2.3) potentially shifts both the opti-
mal value and the optimizer π⋆ corresponding to the original problem (2.3).
Therefore, a trade-off between the performance and a certain desirable qual-
itative behavior of the closed-loop system may have to be accepted.

As will be evident from the above discussion, a systematic development of the
case (S2) is largely impossible due to the absence of a set of unifying objects
inherent to the optimal control problem (2.3). Since the constraints do not,
generally, depend on the cost functions, the details of the technique may differ
significantly between specific applications

In this article we focus on (S1); the relevant results are presented in §3.2.
Preparatory to that, in §3.1 we briefly recall certain basic aspects of the general
theory of stability of discrete-time Markov processes.

3.1. Review of the general theory of stability of discrete-time Markov

processes. The type of stability that we shall focus on here concerns boundedness
of sequences of the form

(
Ex[h(xt)]

)

t∈N0
, for appropriate functions h : R

d −→

[0, +∞[. For instance, consider h(z) = ‖z‖
p

for p > 1. In view of the fact that4

Ex

[
‖xt‖

p]
= p

∫ +∞

0

rp−1Px(‖xt‖ > r) dr,

boundedness of
(
Ex[‖xt‖

p]
)

t∈N0
implies that the conditional probability, given the

initial condition x0 = x, of the states being at a distance r from the origin decays

4This identity is an immediate consequence of Fubini’s theorem.
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faster than r−p as r grows large, uniformly over time t. In other words, we have
an assertion corresponding to the behavior of the tail of the conditional probabil-
ity distributions Px(‖xt‖ > r), t ∈ N0, uniformly over time t. The case of p = 2
is especially prevelant in the literature, and goes under the name of mean-square
boundedness. To understand the qualitative behavior of R

d-valued Markov pro-
cesses (xt)t∈N0 , the general strategy consists of studying the behavior of sequences
such as

(
Ex[h(xt)]

)

t∈N0
for “norm-like” functions h, and drawing appropriate infer-

ences concerning the former.

Recall that the process (xt)t∈N0 generated by (2.6) is Markovian in view of
(2.7). For discrete-time Markov processes, the theory of stability is extremely well-
developed, (see e.g., [13] for a book-length treatment,) and most of the standard
conditions for stability involve what is known as a “negative drift condition.”5 A
generic negative drift condition takes the following form:

(D) there exist measurable functions Ξ : Rd −→ [0, +∞[ and Υ : Rd −→ [0, +∞[,
and a bounded and measurable set K ⊂ R

d, such that

Ex[Ξ(x1)] − Ξ(x) 6 −Υ(x) for all x 6∈ K.

Depending on the properties of the functions Ξ and Υ, it may be possible to assert
the type stability of the process (xt)t∈N0 . Observe that the condition (D) closely
resembles Lyapunov stability conditions for deterministic discrete-time systems.

Perhaps the most well-known drift condition is contained in the following:

Proposition 1. Let (xt)t∈N0 be a Markov process. Suppose that there exist β > 0
and λ◦ ∈ [0, 1[, a measurable function V : R

d −→ [0, +∞[, and a compact set
K ⊂ R

d such that Ex[V (x1)] 6 λ◦V (x) for all x 6∈ K, and supx∈K Ex[V (x1)] = β.

Then Ex[V (xt)] 6 λt
◦V (x) + β(1 − λ◦)−1 for all x ∈ R

d and t ∈ N0.

The hypotheses of Proposition 1 imply

(3.1) Ex[V (x1)] − V (x) 6 −(1 − λ◦)V (x) for all x 6∈ K,

which is sometimes known as a “geometric drift condition.” The condition (3.1)
is strong—the expected value of the function V decreases by a fraction λ◦ in one
step for all boundary conditions x outside a compact set. See e.g., [13] for further
details, discussions, and applications of Proposition 1.

Among the weakest drift conditions, we have the following:

Proposition 2. Let (xt)t∈N0 be a Markov process. Suppose that there exist β, M, ε >

0, a measurable function V : Rd −→ [0, +∞[, and a compact set K ⊂ R
d such that

Ex[V (x1)] − V (x) 6 −β for all x 6∈ K, and(3.2)

E
[
|V (xt+1) − V (xt)|

2+ε
∣
∣ (V (xs))t

s=0

]
6 M for all t ∈ N0.(3.3)

Then for each x ∈ R
d the sequence

(
Ex[V (xt)]

)

t∈N0
is bounded.

Proposition 2 stipulates a constant negative drift (3.2) outside a compact set, as
opposed to a geometric negative drift in (3.1). The condition (3.2) is rather weak,
and the price for weakening the drift condition is the introduction of a uniform
bound (3.3) on the jumps of the process (xt)t∈N0 . In general, both the conditions

5General results dealing with stability but not relying on negative drift conditions are rare;
one example may be found in [4].
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(3.2) and (3.3) are necessary, and the (2 + ε) exponent in (3.3) is tight; see [14] for
details and (counter-)examples. An application of Proposition 2 to control of linear
systems may be found in [16], and to receding horizon control in [8].

Propositions 1 and 2 may be viewed as representing two extremes of the spectrum
of stability results involving negative drift conditions. We refer the reader to [13]
for other drift conditions and their corresponding assertions concerning stability.
Proposition 2 also highlights some of the features peculiar to stochastic control—
indeed, while in the deterministic setting, the drift (in terms of Lyapunov functions)
needs to be merely negative definite to ensure global asymptotic convergence of the
system, the stability assertions in the stochastic setting depend crucially on the
functional nature of the drift in addition to other conditions.

3.2. Stability under appropriate selection of cost functions.

Assumption. In addition to (A2), we stipulate that

(A3) there exist a measurable feedback control function g : Rd −→ U, a number
b > 0, and a measurable and bounded set K ⊂ R

d such that

((A3)-i) sup
z∈K

{

c(z, g(z)) − cF (z) + E
[
cF ◦ f(z, g(z), w0)

]}

6 b,

((A3)-ii) c(z, g(z)) + E
[
cF ◦ f(z, g(z), w0)

]
6 cF (z) for all z 6∈ K. ♦

Observe that ((A3)-ii) is a negative drift condition in disguise: indeed, it is
precisely

Ex[cF (xg
1)] − cF (x) 6 −c(x, g(x)) for all x 6∈ K,

where x
g
1 := f(x, g(x), w0); here the cost functions cF and c play the roles of the

functions Ξ and Υ in (D), respectively. (“Global” conditions, similar in spirit to
((A3)-ii), in the context of stochastic receding horizon control have been proposed
recently in [15].) However, since the stabilizing feedback g is not necessarily iden-
tical to π⋆

0 , the condition ((A3)-ii) does not guarantee stability under the receding
horizon control policy π̂. Nevertheless, from the boundedness condition ((A3)-i)
and the drift condition ((A3)-ii), both expressed in terms of the cost functions c

and cF , we can establish the following drift condition involving the optimal value
function V ⋆

N corresponding to (2.3), and under the receding horizon policy π̂:

Theorem 3. Consider the controlled system (2.1) with its accompanying data, and
the optimal control problem (2.3). Suppose that Assumption (A3) holds. Then

(3.4) for any x ∈ R
d, Ex

[
V ⋆

N (x⋆
1)

]
− V ⋆

N (x) 6 −c(x, π⋆
0(x)) + b,

where (x⋆
t )N−1

t=0 is the sequence generated by the recursion (2.4). In particular, under
the receding horizon policy π̂ derived from (2.3), the closed-loop process (xt)t∈N0

generated by (2.6) satisfies

(3.5) for any x ∈ R
d, Eπ̂

x

[
V ⋆

N (x1)
]

− V ⋆
N (x) 6 −c(x, π⋆

0(x)) + b.

Theorem 3 is the first of our two main results, and it is a representative statement
aimed at establishing a connection between receding horizon control and stability
of Markov processes. Observe that even though (3.5) does not resemble a negative
drift condition per se, a condition analogous to (D) can be extracted from (3.5)
under appropriate assumptions on the function c.6 Once such a procedure has been
carried out, one can apply appropriate results on stability of Markov processes, e.g.,

6Of course, (3.5) may not lead to a negative drift outside a bounded set, e.g., if the function c

is bounded above by b, and even if a negative drift condition can be extracted from (3.5), it may
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Propositions 1 or 2, to assert boundedness of the sequence
(
Eπ̂

x

[
V ⋆

N (xt)
])

t∈N0
. We

shall illustrate applications of Theorem 3 through our results and examples in the
sequel.

In general, analytical expressions of the optimal value functions V ⋆
N are difficult

to obtain; however, V ⋆
N can be bounded above and below in terms of the final cost

cF and the cost-per-stage function c, respectively, as follows:

Proposition 4. Consider the controlled system (2.1) with its accompanying data,
and the optimal control problem (2.3). Suppose that Assumption (A3) holds. Then

(3.6) for all x ∈ R
d,

c(x, π⋆
0(x)) + (N − 1) inf

(z,u)∈Rd×U

c(z, u)

+ inf
(z,u)∈Rd×U

E
[
cF (f(z, u, w0))

]
6 V ⋆

N (x) 6 cF (x) + Nb.

Proposition 4 can be employed in conjunction with Theorem 3 to arrive at sta-
bility conditions under additional hypotheses:

Proposition 5. Consider the controlled system (2.1) with its accompanying data,
and the optimal control problem (2.3). Suppose that Assumption (A3) holds. As-
sume further that the cost functions satisfy:

◦ lim
‖z‖→+∞

cF (z) = +∞,

◦ there exist measurable functions cs : Rd −→ [0, +∞[ and cc : U −→ [0, +∞[ such
that

c(z, v) = cs(z) + cc(v) for all (z, v) ∈ R
d × U,

and
lim

‖z‖→+∞
cs(z) = +∞,

◦ there exist a constant α ∈ [0, 1[ and a compact set K ⊂ R
d such that

cs(z) > αcF (z) for all z 6∈ K.

Then under the receding horizon policy π̂, the function V ⋆
N satisfies a geometric

drift condition outside some compact subset of R
d. In particular, for each x ∈ R

d

the sequence
(
Eπ̂

x

[
V ⋆

N (xt)
])

t∈N0
is bounded.

Example 6 (The LQ problem). Consider the controlled system (2.1) with f(x, u, w) =
Ax+Bu+w for matrices A ∈ R

d×d and B ∈ R
d×m. Let U = R

m and W = R
d. Let

w0 have a continuous density on R
d, E[w0] = 0, E[w0w⊤

0 ] = Σ for some non-negative
definite and symmetric matrix Σ ∈ R

d×d. Assume that the pair (A, B) is stabiliz-
able. Then, by [2, Proposition 11.10.5], for every symmetric and positive definite
matrix Q ∈ R

d×d there exists a matrix K ∈ R
m×d and a symmetric and positive

definite matrix P ∈ R
d×d such that (A + BK)⊤P (A + BK) − P = −Q. Consider

the policy π = (g, g, . . .), where R
d ∋ x 7−→ g(x) := Kx ∈ R

m, and define the
function R

d ∋ x 7−→ V (x) := x⊤P x ∈ [0, +∞[. Then it follows from Proposition 1
and standard arguments that the closed-loop process (xt)t∈N0 under the policy π

is stable in the sense that Ex[V (xt)] 6 λt
◦V (x) + β(1 − λ◦)−1 for all t ∈ N0,

λ◦ =
1

2

(

1 −
σmin(Q)

σmax(P )

)

,

K =
{

z ∈ R
d

∣
∣ x⊤P x 6 2

λ◦

trace(P Σ)
}

,

not be possible to assert boundedness of the sequence
(

E
π̂
x

[
V ⋆

N
(xt)

])

t∈N0
, e.g., if the conditions

(3.2) and (3.3) do not hold simultaneously.
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β = sup
z∈K

{
x⊤(A + BK)⊤P (A + BK)x + trace(P Σ)

}
,

where σmin(M) and σmax(M) denote the minimal and maximal singular values of
a matrix M .

In view of the above computations, we define a symmetric and non-negative
definite matrix R ∈ R

m×m such that K⊤RK 6 Q, where the relation “6” between
the preceding matrices denotes the standard matrix partial order among symmetric
non-negative definite matrices. Let us define cost functions c(z, u) := (1−α)z⊤Qz+
αu⊤Ru and cF (z) := z⊤P z for (z, u) ∈ R

d × R
m and α ∈ [0, 1]. Straightforward

calculations show that ((A3)-i) and ((A3)-ii) hold with g(z) = Kz and the preceding
definitions of c, cF , β, and the compact set K. Consider now the optimal control
problem (2.3) for a given N ∈ N and the control set U = R

m. By Theorem 3, we
see that a receding horizon controller derived from this optimal control problem
ensures that (3.5) holds. It is also possible to verify the hypotheses of Proposition
5 in this case, which implies that for each x ∈ R

d the sequence
(
Eπ̂

x

[
V ⋆

N (xt)
])

t∈N0

is bounded. △

While Example 6 is entirely standard, it highlights a few noteworthy features of
control of linear systems with affine noise, summarized in the following:

Remark 7.

a) In the context of linear systems, the condition (3.1) implies that at all states
x of large enough norm, the control action must be strong enough to achieve
this geometric decrease. In the absence of a bound on the magnitude of the
control actions, it is possible to synthesize linear feedback policies, such that
a geometric drift in terms of quadratic functions V is attained; for instance,
consider the feedback policy (g, g, . . .) with g(x) = Kx in Example 6.

b) If the control actions are bounded, a control policy whose elements are linear
maps of the states is inadmissible. In this case, if the noise has unbounded
support, e.g., wt is a zero-mean Gaussian with a given variance matrix, then
the following four cases appear naturally:
⊲ if the system matrix A has an eigenvalue outside the closed unit disc, with

no control policy is it possible to ensure a geometric drift condition with
quadratic Lyapunov functions V ;

⊲ if all eigenvalues of A are inside the open unit disc, then irrespective of the
feedback policy, a geometric drift condition can be found for a quadratic
Lyapunov function V , as illustrated in Example 6;

⊲ if A is Lyapunov stable, a constant (as opposed to geometric) negative drift
condition for the Lyapunov function V (z) := ‖z‖ was demonstrated in [16];
we provide a geometric drift condition under the same setting in Proposition
8 below;

⊲ if A is has eigenvalues on the unit circle but with unequal algebraic and
geometric multiplicities, the problem of stabilization under bounded controls
remains an open problem; see [5] for details.

c) Consider the scalar version of Example 6 with (wt)t∈N0 a sequence of mutually
independent standard normal random variables. Since

P
(

inf
t∈N0

wt = −∞ and sup
t∈N0

wt = +∞
)

= 1,

it is impossible to assert almost sure convergence of the states to any compact
set under any policy. For the same reason, it is also impossible to assert a
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statement of the form

P
(
∃ t0 ∈ N, K ⊂ R compact, such that xt ∈ K for all t > t0

)
> 1 − ε

for ε ∈ ]0, 1[ preassigned. In other words, under any feedback policy, almost
surely, there will be excursions of the states beyond any given compact set
infinitely often over an infinite time horizon. An identical assertion carries over
to the multidimensional case. ⊳

Preparatory to providing further examples illustrating Theorem 3, we establish
a stability result for a particular class of linear systems, as promised in Remark
7-b): Consider the controlled system

(3.7) xt+1 = Axt + But + wt, x0 given, t ∈ N0,

for given matrices A ∈ R
d×d, B ∈ R

d×m, and suppose that (wt)t∈N0 is a se-
quence of independent and identically distributed (i.i.d.) random vectors. Suppose
that pair (A, B) is controllable with reachability index κ.7 We define R(A, M) :=
(
Aκ−1M · · · AM M

)
for a matrix M with d rows. For a matrix M we let M+

denote its Moore-Penrose pseudoinverse. Let Umax > 0 be given, and suppose that
‖ut‖ 6 Umax for all t ∈ N0. For r > 0, we define the radial saturation function
R

d ∋ z 7−→ satr(z) := min{r, ‖z‖} z
‖z‖ if z 6= 0 and 0 otherwise. Let Id denote

the d × d identity matrix. The following proposition proposes a bounded control
function such that a geometric drift condition is attained:

Proposition 8. Consider the linear controlled system (3.7) with its accompanying
data, suppose that A is orthogonal, and that w0 is Gaussian with mean 0 ∈ R

d and

given variance Σ ∈ R
d×d. Let ρ := ln E

[

exp
(∥

∥
∥R(A, Id)

(
w⊤

0 · · · w⊤
κ−1

)⊤
∥
∥
∥

)]

.

Suppose that Umax > ρ, define V (x) := e‖x‖ for x ∈ R
d, and let K := {z ∈ R

d |
‖z‖ 6 2ρ}. Then under the control actions

(3.8)






uκt

...
uκ(t+1)−1




 := −R(A, B)+ satUmax

(
Aκxκt

)
, t ∈ N0,

the closed-loop process (xκt)t∈N0 is Markovian, and there exists λ◦ ∈ ]0, 1[ such that

E[V (xκ(t+1)) | xκt] 6 λ◦V (xκt) on the set {xκt 6∈ K}.

In particular, for each x ∈ R
d the sequence

(
Ex

[
e‖xt‖

])

t∈N0
is bounded, and the

conditionally probability distributions Px(‖xt‖ > r), t ∈ N0, have exponentially thin
tails uniformly over t ∈ N0.

Proposition 8 is of independent interest. Stability of (3.7) under bounded con-
trols was considered in [16], where the authors demonstrated that the same control
actions as in (3.8), but under weaker assumptions on the noise,8 led to a constant
negative drift of the function ‖·‖ outside a certain compact set of the closed-loop
sub-sampled process (xκt)t∈N0 . The technical tools in [16] relied on the consid-
erably involved results of [14]; in contrast, the proof of Proposition 8 that we
provide here relies only on the basic Proposition 1—namely, a geometric drift con-
dition expressed in terms of e‖·‖. Note that, Proposition 8 asserts boundedness of
(
Ex

[
e‖xt‖

])

t∈N0
, which is a stronger statement compared to, and indeed implies,

boundedness of
(
Ex

[
‖xt‖

2])

t∈N0
asserted in [16]. Compare, in particular, that the

7That is, rank
(

B AB · · · Aκ−1B
)

= d.
8To be precise, it was assumed that supt∈N0

E[‖wt‖4] < +∞. The result in [16], therefore,

applies to noise sequences (wt)t∈N0 more general than Gaussians.



STABILITY AND PERFORMANCE OF STOCHASTIC PREDICTIVE CONTROL 11

conditional distributions Px(‖xt‖ > r) have exponentially thin tails, by Proposi-
tion 8, if the maximum magnitude of the control actions is large enough, while the
main result of [16] asserts that the corresponding distributions have tails that decay
faster than inverse quadratically as r grows large.

Example 9. Consider the controlled system (2.1) with f(x, u, w) = x+u+w, where

x, u, w ∈ R. Let w0 have a continuous density on R, E[w0] = 0, E[|w0|
4
] < +∞.

Fix N ∈ N. Let us investigate the possibility of stability under a receding horizon
policy derived from the N -horizon optimal control problem9

(3.9)

minimize Eπ
x

[N−1∑

t=0

1R\[−2,2](xt) + ‖xN ‖

]

subject to







π ∈ Π where Π a class of Markovian policies,

πi(z) ∈ [−1, 1] for all i = 0, . . . , N − 1 and z ∈ R,

dynamics (2.1) with f(x, u, w) = x + u + w.

The cost-per-stage function c(z, u) = 1R\[−2,2](z) ensures that for each realization
of the random noise, the cost grows proprtionately to the duration that the state
stays out of the set [−2, 2]. The policy that solves the minimization problem (3.9)
drives the state inside [−2, 2] as fast as possible, and the final cost cF regulates the
final state close to 0. In the light of Proposition 2 (e.g., following the arguments
in [16],) it is not difficult to verify that the policy (g, g, . . .), with g(x) = − sat(x)
ensures that10

E
[
|xt+1|

∣
∣ xt

]
− |xt| 6 −1 on the set {|xt| > 2}, t ∈ N0.

Note that the closed-loop system is Markovian. One sees after standard computa-
tions that the optimal control problem (3.9) with K := {z ∈ R | |z| 6 2} verifies
both ((A3)-i) and ((A3)-ii). The selection of the cost-per-stage function c is not
unique; e.g., c(z, u) = 1

2

(
1R\[−2,2](z) + 1[−1,1]\[− 1

2 , 1
2 ](u)

)
works just as fine insofar

as the matter of satisfying ((A3)-i) and ((A3)-ii) is concerned. Numerical tractabil-
ity of the problem (3.9), even under the assumption that (wt)t∈N0 is a sequence
of independent and identically distributed standard normal random variables, is a
non-trivial matter. △

Example 10 (Example 9 continued). Consider the controlled system (2.1) with
f(x, u, w) = x + u + w, where x, u, w ∈ R. Let (wt)t∈N0 be a sequence of i.i.d.
Gaussian random variables with zero-mean and variance σ2 for some given σ > 0,

and define ρ := ln
(
σ

√
2
π

)
. Let Umax > ρ be given, and define λ◦ := eρ−Umax . Fix

N ∈ N. Let us investigate the possibility of stability under a receding horizon
policy derived from the N -horizon optimal control problem

(3.10)

minimize Eπ
x

[

(1 − λ◦)

N−1∑

t=0

e|xt| + e|xN |

]

subject to







π ∈ Π where Π a class of Markovian policies,

|πi(z)| 6 Umax for all i = 0, . . . , N − 1, z ∈ R,

dynamics (2.1) with f(x, u, w) = x + u + w.

Namely, we have the final cost cF (z) = e|z| and the cost-per-stage function c(z, u) =
(1 − λ◦)e|z|. By Proposition 8 it follows that ((A3)-ii) holds for some compact

9Here 1A(·) denotes the indicator function of the set A, defined as 1A(z) = 1 if z ∈ A and 0
otherwise.

10Here sat(·) is the standard saturation function defined as sat(z) = z for z ∈ [−1, 1], 1 if
z > 1, and −1 otherwise.
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K ⊂ R, and it is straightforward to verify ((A3)-i). Theorem 3 guarantees that
a receding horizon controller derived from (3.10) ensures (3.5). An extension to
the multidimensional case can be readily obtained with the technical support of
Proposition 8. It also follows from standard computations that the hypotheses of
Proposition 5 hold in this case, which implies that for each x ∈ R the sequence
(
Eπ̂

x

[
V ⋆

N (xt)
])

t∈N0
is bounded. △

4. Performance under receding horizon control

In this section we study performance of closed-loop systems under receding hori-
zon control. Our objective here is to arrive at quantitative bounds on the perfor-
mance of receding horizon policies over an infinite temporal horizon.

To this end, we must first select a performance index. We contend that the cost-
per-stage function c is a natural candidate with which performance at each time
step may be measured. For one, while the final cost cF plays an important role
in the problem (2.3), the first element π⋆

0 of the optimal control policy π⋆ enters
the function c but not cF ; since a receding horizon policy is constructed out of π⋆

0 ,
the function c is perhaps a more natural candidate compared to cF for measuring
performance at each time step. Moreover, the function c involves both the states
and the control actions, while cF involves only the states; as such, the expected
value of c(xt, ut) at time t reflects the performance measured with respect to both
the states and the control actions.

In the setting of the dynamical system (2.1) involving stochastic uncertainties,
typically, a sum of cost-per-stage functions over n steps grows with n rather quickly,
and the expected total cost

Ex

[+∞∑

t=0

c(xt, ut)

]

may not be suitable for measuring performance. For instance, in the case of the
standard optimal linear quadratic regulator, under the optimal policy the quantity
Ex

[∑n
t=0(x⊤

t Qxt + u⊤
t Rut)

]
grows linearly with n (under mild assumptions on the

non-negative definite states- and control-weight matrices Q and R, respectively);
consequently, the expected total cost over an infinite horizon is not bounded. A
more appropriate measure of performance is the long-run expected average cost,
measured in terms of the cost-per-stage function c, defined by

(4.1) lim sup
n→∞

1

n + 1
Ex

[ n∑

t=0

c(xt, ut)

]

.

This is the performance index that we adopt here. In particular, the quantity in
(4.1) is well-defined for the linear quadratic problem under mild hypothesis (stabi-
lizability of the underlying linear system). The intuition is clear: the quantity in
(4.1) measures the cost averaged over time and averaged across all possible realiza-
tions of the process (xt)t∈N0 . Observe that all phenomena that occur over a finite
temporal horizon, or are transient in the sense that they asymptotically die out, do
not affect the index (4.1).

We next provide our second main result—an estimate of performance under the
receding horizon policy π̂ in terms of the long-run expected average cost. It also
shows how stability of the closed-loop process influences the long-run expected
average cost.
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Theorem 11. Consider the controlled system (2.1) with its accompanying data,
and the optimal control problem (2.3). Let π̂ := (π⋆

0 , π⋆
0 , . . .) denote the receding

horizon policy derived from (2.3), and for a measurable feedback g̃ we define

(4.2) Tg̃(z) := c(z, g̃(z)) − cF (z) + E
[
cF ◦ f(z, g̃(z), w0)

]
, z ∈ R

d.

Then the following hold:

(11.i) If Assumption (A2) holds, then for every x ∈ R
d and k ∈ N,

(4.3)

Eπ̂
x

[ k∑

ℓ=0

c(xℓ, uℓ)

]

6 V ⋆
N (x) − Eπ̂

x

[
V ⋆

N (xk+1)
]

+

k∑

ℓ=0

Eπ̂
x

[

Eπ⋆[
Tg̃(xℓ+N )

∣
∣ xℓ

]]

.

(11.ii) If Assumption (A3) holds and

(4.4) lim
n→+∞

Eπ̂
x

[
V ⋆

N (xn)
]

n
= 0 for all x ∈ R

d,

then

(4.5) lim sup
k→+∞

1

k + 1
Eπ̂

x

[ k∑

ℓ=0

c(xℓ, uℓ)

]

6 b for all x ∈ R
d.

In particular, if for all x ∈ R
d the sequence

(
Eπ̂

x

[
V ⋆

N (xt)
])

t∈N0
is bounded,

then (4.5) holds.

Remark 12.

a) The estimate (4.3) in part (11.i) is quite general, and holds under the mild
hypotheses (A2) of a technical nature. The part (11.ii) follows from (11.i) under
the additional Assumption (A3), as will be evident from the proof of Theorem
11 presented in Appendix B.

b) We reiterate that the bound on the expected average cost in (4.5) corresponds
to the receding horizon policy π̂, not the stabilizing policy (g, g, . . .). Indeed,
although Assumption (A3) stipulates the existence of a stabilizing feedback g,
this feedback controller is never applied. From the proof of Theorem 11 one sees
that the condition (3.5) in Theorem 3 plays a crucial role in (11.ii).

c) The condition (4.4) is technical in nature. In most practical cases, one ensures
boundedness of

(
Eπ̂

x

[
V ⋆

N (xt)
])

t∈N0
with the help of Theorem 3, and consequently

(4.5) holds.
d) Theorem 11 provides a quantitative bound on the performance measured in

terms of the cost-per-stage function c. Since the stability conditions presented
in §3.2 also involve the function c, it is possible to establish a connection between
the performance bound (4.5) with the stability conditions in Assumption (A3).
In general, establishing such a connection may not be possible if stability under
the receding horizon policy π̂ is ensured by means of adjoining an appropriate
constraint, as discussed in (S2) above; indeed, such a constraint may have no
relation whatsoever to the cost functions c and cF . Nevertheless, the inequality
in (4.3) holds irrespective of whether Assumption (A3) is satisfied or not. Con-
sequently, if a constraint is adjoined to the problem (2.3) such that the process
(xt)t∈N0 under the receding horizon policy π̂ satisfies (4.4), and the sum on the
right-hand side of (4.3) increases at most linearly with k, then a bound on the
long-run expected average cost can be extracted. Naturally, these verifications,
which are likely to be case-specific, need additional analysis.
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e) A direct optimal control problem involving minimization of the long-run ex-
pected average cost criterion for dynamical systems, e.g.,

(4.6)

minimize lim sup
n→+∞

1

n + 1
Eπ

x

[ n∑

t=0

c(xt, ut)

]

subject to

{

π ∈ Π,

dynamics (2.1),

is generally difficult to solve both analytically and numerically—see [6, Chapter
5] for further details. The numerical value of the bound b in (4.5) on the perfor-
mance index (4.1) under the receding horizon technique may be employed as a
measure to decide whether to adopt a receding horizon strategy as an alternative
to a direct solution to the minimization problem (4.6). ⊳

Example 13 (Example 6 cont’d). Consider the linear system in Example 6 and the
selection of cost functions c and cF as in the final part of Example 6. Standard
computations, e.g., as in [6, Chapter 3], show that the function V ⋆

N is quadratic.
In conjunction with the final calculations in Example 6, this shows that (3.5) is
a geometric drift condition in this case. Proposition 1 implies, therefore, that
under receding horizon control derived from (2.3), for each x ∈ R

d the sequence
(
Eπ̂

x

[
V ⋆

N (xn)
])

n∈N0
is bounded. Finally, by Theorem 11 part (11.ii) we see that for

each x ∈ R
d

lim sup
n→∞

1

n + 1
Eπ̂

x

[ n∑

t=0

c(xt, ut)

]

6 β,

where β is the constant defined in Example 6. △

Example 14 (Example 9 cont’d). A direct application of Proposition 5 does not
appear to be possible. However, one can verify that for each x ∈ R

d the sequence
(
Eπ̂

x

[
V ⋆

N (xt)
])

t∈N0
is bounded by following the arguments in [16] with the support

of Proposition 2. This in turn implies by Theorem 11 that the long-run expected
average cost is finite under the receding horizon policy extracted from (3.9). △

Example 15 (Example 10 cont’d). In this case it is possible to directly apply Propo-
sition 5; we skip the standard computations needed to verify its hypotheses. Con-
sequently, the sequence

(
Eπ̂

x

[
V ⋆

N (xt)
])

t∈N0
is bounded. By Theorem 11 this implies

that the long-run expected average cost is finite under the receding horizon policy
extracted from (3.9). △

Appendix A.

This appendix collects our proofs of the results presented in §3.

Proof of Proposition 1. A proof of this proposition is standard; we include it merely
for completeness. The assertion follows from the Markovian property of (xt)t∈N0

and an iteration scheme as follows:

Ex[V (xt)] = Ex

[
E[V (xt) | xt−1]

]

6 Ex

[
λ◦V (xt−1)1Rd\K(xt−1) + β1K(xt−1)

]

6 λ◦Ex

[
V (xt−1)

]
+ βPx(xt−1 ∈ K)

...
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6 λt
◦V (x) + β

t−1∑

k=0

λt−1−k
◦ Px(xk ∈ K)

6 λt
◦V (x) +

β

1 − λ◦
. �

Proof of Proposition 2. This is a special case of [14, Theorem 1]. �

Proof of Theorem 3. From the last N − 1 elements of the optimal policy π⋆ we
derive the N -length policy π̃ := (π⋆

1 , . . . , π⋆
N−1, g), where g : R

d −→ U is the

feedback function in Assumption (A3). Let ṼN (x) := VN (π̃, x). Recall that the

sequence (x⋆
t )N−1

t=0 is generated by the recursion (2.4). Then, by optimality of the
policy π⋆,

Ex

[
V ⋆

N (x⋆
1)

]
− V ⋆

N (x)

6 Ex

[
ṼN (x⋆

1)
]

− V ⋆
N (x)

= Ex

[

E

[N−1∑

t=1

c(x⋆
t , π⋆

t (x⋆
t )) + c(x⋆

N , g(x⋆
N )) + cF

(
f(x⋆

N , g(x⋆
N ), wN )

)
∣
∣
∣
∣
x⋆

1

]]

− Ex

[N−1∑

t=0

c(x⋆
t , π⋆

t (x⋆
t )) + cF (x⋆

N )

]

= −c(x, π⋆
0(x)) + Ex

[

c(x⋆
N , g(x⋆

N )) + cF ◦ f(x⋆
N , g(x⋆

N ), wN ) − cF (x⋆
N )

]

.

If the condition (A3) holds, then the tower property of conditional expectations
implies that

Ex

[

c(x⋆
N , g(x⋆

N )) + cF ◦ f(x⋆
N , g(x⋆

N ), wN ) − cF (x⋆
N )

]

= Ex

[

E
[
c(x⋆

N , g(x⋆
N )) + cF ◦ f(x⋆

N , g(x⋆
N ), wN ) − cF (x⋆

N )
∣
∣ {x⋆

ℓ }N
ℓ=1

]]

6 Ex

[

b1{x⋆

N
∈K}

]

= bPx(x⋆
N ∈ K).

Substituting back we obtain

Ex

[
V ⋆

N (x⋆
1)

]
− V ⋆

N (x) 6 −c(x, π⋆
0(x)) + b,

which proves (3.4). The assertion (3.5) follows from the facts that π̂ = (π⋆
0 , π⋆

0 , . . .),
and that the closed-loop process is Markovian under π̂. �

Proof of Proposition 4. Fix x ∈ R
d. The first inequality c(x, π⋆

0 (x)) 6 V ⋆
N (x) fol-

lows immediately from the definition of V ⋆
N . We now prove the second inequality.

Let the sequence (xg
t )N

t=1 be defined by

x
g
t =

{

x if t = 0,

f
(
x

g
t−1, g(xg

t−1), wt−1

)
if t = 1, . . . , N.

In view of ((A3)-ii), we have

cF (x) − V ⋆
N (x) = cF (x) − c(x, g(x)) − V ⋆

N (x) + c(x, g(x))

> E
[
cF ◦ f(x, g(x), w0)

]
− V ⋆

N (x) + c(x, g(x)) − b

= E
[
cF (xg

1) − c(xg
1, g(xg

1))
∣
∣ x

g
0 = x

]
− V ⋆

N (x)

+ E
[
c(xg

1, g(xg
1))

∣
∣ x

g
0 = x

]
+ c(xg

0, g(xg
0)) − b
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> E
[
cF (xg

2)
∣
∣ x

g
0 = x

]
− V ⋆

N (x)

+

1∑

ℓ=0

E
[
c(xg

ℓ , g(xg
ℓ ))

∣
∣ x

g
0 = x

]
− 2b

...

> E
[
cF (xg

N )
∣
∣ x

g
0 = x

]
− V ⋆

N (x) − Nb

+

N−1∑

ℓ=0

E
[
c(xg

ℓ , g(xg
ℓ ))

∣
∣ x

g
0 = x

]
.

Since

N times
︷ ︸︸ ︷

(g, . . . , g) is a sub-optimal policy for the optimal control problem (2.3),

V ⋆
N (x) 6 E

[N−1∑

ℓ=0

c(xg
ℓ , g(xg

ℓ )) + cF (xg
N )

∣
∣
∣
∣
x

g
0 = x

]

,

and therefore, cF (x)−V ⋆
N (x) > −Nb. Since x is arbitrary, the assertion follows. �

Proof of Proposition 5. Fix x ∈ R
d. We know from Theorem 3 that

Eπ̂
x

[
V ⋆

N (x1)
]

− V ⋆
N (x) 6 −c(x, π⋆

0(x)) + b.

By hypothesis, c(x, π⋆
0(x)) = cs(x) + cc(π⋆

0(x)) > cs(x), and if x 6∈ K, then cs(x) >
αcF (x). Thus,

Eπ̂
x

[
V ⋆

N (x1)
]

− V ⋆
N (x) 6 −cs(x) + b 6 −αcF (x) + b if x 6∈ K.

In view of (3.6), we see that if x 6∈ K, then −αcF (x) + b 6 −αV ⋆
N (x) + b(1 + αN).

In other words,

Eπ̂
x

[
V ⋆

N (x1)
]

− V ⋆
N (x) 6 −αV ⋆

N (x) + b(1 + αN) for all x 6∈ K.

Since lim‖z‖→+∞ cs(z) = +∞, our hypotheses show that lim‖z‖→+∞ c(z, π⋆
0(z)) =

+∞, and from (3.6) it follows that lim‖z‖→+∞ V ⋆
N (z) = +∞. By definition of a

limit, therefore, there must exist an closed ball K ′ around 0 ∈ R
d of radius large

enough, such that V ⋆
N (z) > 2(α−1 + N) for all z 6∈ K ′. Substituting back we see

that
Eπ̂

x

[
V ⋆

N (x1)
]

− V ⋆
N (x) 6 −

α

2
V ⋆

N (x) for all x 6∈ K ′,

which is a geometric drift condition outside the compact set K ′. The particular
case follows from Proposition 1. �

Proof of Proposition 8. Fix t ∈ N0. The state recursion (3.7) shows that

xκ(t+1) = Aκxκt + R(A, B)






uκt

...
uκ(t+1)−1




 + R(A, Id)






wκt

...
wκ(t+1)−1






=: Aκxκt + R(A, B)uκt + R(A, Id)wκt.

Let λ̃ := ρ − Umax and let λ◦ := eλ̃; by hypothesis, λ̃ < 0 and λ◦ ∈ ]0, 1[. On the
event {‖xκt‖ > 2R}, we have

E
[
e‖xκ(t+1)‖

∣
∣ xκt

]

e‖xκt‖

= E
[

exp
(
‖Aκxκt + R(A, B)uκt + R(A, Id)wκt‖ − ‖xκt‖

)
∣
∣
∣ xκt

]

= e‖Aκxκt−satUmax (Aκxκt)‖−‖Aκxκt‖E
[
e‖R(A,Id)wκt‖

∣
∣ xκt

]
since A is orthogonal
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= e−UmaxE




exp






∥
∥
∥
∥
∥
∥
∥

R(A, Id)






w0

...
wκ−1






∥
∥
∥
∥
∥
∥
∥









 since (ws)s∈N0 is i.i.d.

= e−Umax+ρ

= λ◦ < 1 by hypothesis.

Since t is arbitrary, the first claim follows. By hypothesis, the control actions
(

u⊤
κt · · · u⊤

κ(t+1)−1

)⊤

depend only on xκt for each t ∈ N0. Thus, the process

(xκt)t∈N0 is Markovian under the control actions in (3.8), as can be seen by di-
rectly verifying (2.7). By Proposition 1 we see that for each x ∈ R

d the sequence
(
Ex

[
e‖xκt‖

])

t∈N0
is bounded. It remains to move from the κ-subsampled process

(xκt)t∈N0 to the original process (xt)t∈N0 . But standard arguments, along the
lines of the proof of the main theorem in [16], employing the triangle inequality
and monotonicity of the function e(·) shows that the sequence

(
Ex

[
e‖xt‖

])

t∈N0
is

bounded.

For x ∈ R
d let C = C(x) > 0 be such that supt∈N0

Ex

[
e‖xt‖

]
6 C. Then for all

t ∈ N0,

C > Ex

[
e‖xt‖

]
= Ex

[∫ ‖xt‖

0

er dr

]

+ 1

= Ex

[∫ +∞

0

1{‖xt‖>r}er dr

]

+ 1

=

∫ +∞

0

Px

(
‖xt‖ > r

)
er dr + 1 by Fubini’s theorem.

This shows that Px(‖xt‖ > r) must decay, for large values of r, faster than e−r

uniformly for all t ∈ N0, and the assertion follows. �

Appendix B.

This appendix contains our proof of Theorem 11. For two policies π0:k1−1 and
π′

0:k2−1 of length k1 and k2, respectively, we define their concatenation

π0:k1−1♯π′
0:k2−1 := (π0, . . . , πk1−1, π′

0, . . . , π′
k2−1).

Proof of Theorem 11. (11.i): We adapt certain ideas from [3] to the context of long-
run expected average cost. Suppose that Assumption (A2) holds, and fix n ∈ N.
Conditional on xn+1 = x′ ∈ R

d, by definition of optimality,

Eπ⋆

1:N−1♯g̃

[ n+N∑

ℓ=n+1

c(xℓ, uℓ) + cF (xn+N+1)

∣
∣
∣
∣
xn+1 = x′

]

> Eπ⋆

0:N−1

[ n+N∑

ℓ=n+1

c(xℓ, uℓ) + cF (xn+N+1)

∣
∣
∣
∣
xn+1 = x′

]

Conditional on xn = y, therefore,

Eπ⋆

0 ♯π⋆

1:N−1♯g̃

[(n+N−1∑

ℓ=n

c(xℓ, uℓ) + cF (xn+N )

)

− c(xn, un)

∣
∣
∣
∣
xn = y

]

+ Eπ⋆

0 ♯π⋆

1:N−1♯g̃
[

cF (xn+N+1) − cF (xn+N ) + c(xn+N , un+N )
∣
∣
∣ xn = y

]
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> Eπ⋆

0 ♯π0:N−1

[ n+N∑

ℓ=n+1

c(xℓ, uℓ) + cF (xn+N+1)

∣
∣
∣
∣
xn = y

]

,

which implies

Eπ⋆

0:N−1♯g̃

[n+N−1∑

ℓ=n

c(xi, ui) + cF (xn+N )

∣
∣
∣
∣
xn = y

]

+ Eπ⋆

0:N−1♯g̃
[

cF (xn+N+1) − cF (xn+N ) + c(xn+N , un+N)
∣
∣
∣ xn = y

]

> c(y, π⋆
0(y)) + Eπ⋆

0 ♯π⋆

0:N−1

[ n+N∑

ℓ=n+1

c(xi, ui) + cF (xn+N+1))

∣
∣
∣
∣
xn = y

]

.

Rearranging terms, conditional on xn = y, we get

c(y, π⋆
0(y)) 6 V ⋆

N (y) − Eπ⋆

0
[
V ⋆

N (xn+1)
∣
∣ xn = y

]

+ Eπ⋆
[

c(xn+N , g̃(xn+N )) − cF (xn+N )

+ E
[
cF ◦ f(xn+N , g̃(xn+N ), wn+N )

∣
∣ xn+N

]
∣
∣
∣ xn = y

]

.

Suppose now that the receding horizon policy π̂ is applied. Since the closed-loop
process (xt)t∈N0 under π̂ is Markovian, taking expectations under the policy π̂, we
get

Eπ̂
x

[
c(xn, π⋆

0(xn))
]
6 Eπ̂

x

[
V ⋆

N (xn)
]

− Eπ̂
x

[
V ⋆

N (xn+1)
]

+ Eπ̂
x

[
Eπ⋆[

Tg̃(xn+N )
∣
∣ xn

]]
,

whence, summing from n = 0 through n = k we arrive at

Eπ̂
x

[ k∑

n=0

c(xn, π⋆
0(xn))

]

6 V ⋆
N (x) − Eπ̂

x

[
V ⋆

N (xk+1)
]

+

k∑

n=0

Eπ̂
x

[
Eπ⋆[

Tg̃(xn+N )
∣
∣ xn

]]
,

as asserted.

(11.ii) Suppose that Assumption (A3) holds, and let g̃ = g. Fix x ∈ R
d. From

(4.3), it follows that

1

k + 1
Eπ̂

x

[ k∑

n=0

c(xn, π⋆
0(xn))

]

6
1

k + 1

(

V ⋆
N (x) − Eπ̂

x

[
V ⋆

N (xk+1)
])

+
1

k + 1

k∑

n=0

Eπ̂
x

[
Eπ⋆[

Tg(xn+N )
∣
∣ xn

]]

6
1

k + 1

(

V ⋆
N (x) − Eπ̂

x

[
V ⋆

N (xk+1)
])

+ b by Assumption (A3),

which implies that

lim sup
k→+∞

1

k + 1
Eπ̂

x

[ k∑

n=0

c(xn, π⋆
0(xn))

]

6 lim sup
k→+∞

V ⋆
N (x) − Eπ̂

x

[
V ⋆

N (xk+1)
]

k + 1
+ b

= b by hypothesis.

The final claim follows at once from the preceding. �
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