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Abstract— This paper proposesa simple analytical model called M
time-scale Mark ov Decision Process(MMDP) for hierarchically struc-
tured sequentialdecisionmaking processeswhere decisionsin eachlevel
in the M-level hierarchy are made in M different discrete time-scales.
In this model, the state spaceand the control spaceof eachlevel in the
hierarchy are non-overlapping with thoseof the other levels, respectvely,
and the hierarchy is structured in a “pyramid” sensesuchthat a decision
made at level m (slower time-scale)state and/or the state will affect the
evolutionary decision making processof the lower level m + 1 (faster
time-scale)until a new decisionis made at the higher level but the lower
level decisionsthemselhesdo not affect the transition dynamics of higher
levels. The performance producedby the lower level decisionswill affect
the higher level decisions. A hierarchical objective function is defined
suchthat the finite-horizon value of following a (nonstationary) policy at
level m + 1 over a decisionepoch of level m plus an immediate reward
at level m is the single-stepreward for the decision making processat
level m. From this we define “multi-le vel optimal value function” and
derive “multi-le vel optimality equation”. We discusshow to solve MMDPs
exactly and study some approximation methods, along with heuristic
sampling-basedschemesto solve MMDPs.

Index Terms— Mark ov decision processmulti-time scale,hierarchical
control, rolling horizon

I. INTRODUCTION

IERARCHICALLY structured control problems have been

studiedextensiely in mary contetsin variousareaswith mary
types of models. Two distinguishedhierarchical structuresstudied
in the literature are “multi-level structure”, where decisionmaking
algorithmsin different levels operatein different time-scales(see,
e.g.,[21]) and“multi-layer structure”,wherealgorithmsare divided
“spatially” and operateat the sametime-scale(see,e.g.,[12]).

This paperfocuseson control problemswith a particular multi-
level structure— hierarchically structued sequentialdecisionmak-
ing processeswheredecisiondn eachlevel in the hierarchyaremade
in different discretetime-scalesand the hierarchyis structuredin a
pyramid (bottom-uporganization)sense That is, decisionsmadein
the higherlevel affect the decisionmakingprocessof the lower level
but the lower level decisionsdo not affect the higher level (state
transition) dynamicseven thoughthe performanceproducedby the
lower level decisionswill affectthe decisionghatwill be madeby the
higherlevel. A usualapproacho the multi-level structuredproblems
is that a slow time-scalesubsystemays asidethe details of a fast
time-scaledynamicsby “average”behaior and then solvesits own
optimizationproblem.In particular the approachwith a pyramid-like
hierarchicalstructurewasusedin the perspectie of “performability”
and “dependability”in Trivedi et al's model [14] [23] even though
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controlsarenot involved in the model(seealso[13] [5] andchapter
11in [28] for usinga similar idea).

In this paperwe proposea simpleanalyticalmodelthatgeneralizes
Trivedi et al’s hierarchical model by incorporating controls into
the model, which we refer to as Multi-time scaleMarkov Decision
ProcesgMMDP). Themodeldescribesnteractionsbetweerlevelsin
a hierarchyin the pyramid senseHierarchicalobjective functionsare
definedsuchthat the (quasi-steadytate) performancemeasurethe
finite horizonvalue of following a given lower level policy, obtained
from the lower level over the decisionepochof the upperlevel will
affect the upperlevel decisionmaking. From this we define “multi-
level valuefunction” andthendrive “multi-level optimality equation”
for infinite horizon discountedreward and averagereward, respec-
tively. After discussinghe exact methodsfor computingthe optimal
multi-level valuefunction, we presentapproximationmethodssuited
for solving MMDPs and analyzeits performanceand discusshow
to apply somepreviously publishedon-line solution schemesn the
context of MMDPs.

This paperis organizedas follows. We start with some control
problem examplesto motivate the model proposedin the present
paperin Sectionll and presenta formal descriptionof MMDPs and
characterizeoptimal solutionsfor MMDPs in Sectionlll anddiscuss
solutionmethodologiesn SectionlV. We thendiscussrelevant work
of hierarchicamodelsrelatedto our modelin SectionV. We conclude
our paperin SectionVI.

II. MOTIVATING EXAMPLES
A. Productionplanning

Hierarchical production planning problemshave beenstudiedin
the operationgesearcHiteratureover mary years(see,e.g.,[28] for
references)We presenta simple productionplanning problemin a
manufcturingervironmentasthe first motivating example.We base
our discussioron the problemstudiedin [5].

The productionplanningproblemwe considerhereis divided into
two levels: “marketingmanagementlevel and“operational’level. At
the marketing managemenievel, we needto controlwhich family to
produceover each(slow time-scale)decisionepoch,wherea family
is a setof itemsconsuminghe sameamountof resourcesindsharing
the samesetup[5]. The upperlevel stateconsistsof (stochastically)
available resourcedor eachfamily and (stochastic)setupcostsfor
eachfamily, and some market-dependenfactors. The upper level
actionis to choosewhich family to produce.

At the operationallevel, we needto determineactual quantities
of the itemsin the family (the lower level actions)given stochastic
(Markovian) demandgor theitems,productioncapacity holding cost,
materialcost, etc., which will constitutea stateof the lower level.

The return at the operationallevel will be a function of the unit
selling price of the items,the inventoryholding costs,the setupcosts
of the (current)family, the productionquantity of theitems,etc.,and
a finite horizon expectedaccumulatedeturn at the operationallevel
will bethe one-stepreturnfor the managemertevel from which the
managemenlevel makes decisions We wish to develop a two-level
productionplan to maximizerevenueof the manufcturingsystem.



B. Call routing with buffer manajementor scheduling

In additionto inherentlyexisting hierarchicaland multi-time scale
control structurein problemsthemselesthatarisein mary different
contets, our modelis alsomotivatedby the obsenation madein the
networking literaturerecently The network traffic shavs fluctuations
on multiple time-scales— scaleinvariantburstinesgsee,e.qg.,[34]),
and this characteristidn the network traffic has beenwell-studied
by “long-rangedependent’or “self-similar” model. However, there
are several recentworks that investigatecthe effects of suchmulti-
time scaled behaior by certain relevant Markovian models that
approximatethe fluctuationsin the traffic (see,e.g.,[29] [32] [22]
andreferencegherein). The usualinterestsarein calculationsof the
buffer overflow probability distribution but are not concernedwith
developmentof analyticalmulti-time scaledcontrolsthatincorporate
given traffic modelsfor suchbehaiors of the network traffic even
though somenon-Marlovian model basedapproachesre available
(see,e.g.,[33] and [15]). For example,the slow time-scale(“call-
level”) relatesto the arrival anddeparturgrocesof video/wice calls
and the fast time-scale(“packet-level”) relatesto the paclet arrival
processof calls during their “lifetimes”. This different time-scaled
dynamicscausesfluctuationsin the traffic at different time-scales
and givesrise to a multi-time scaledgqueueingcontrol problem.

Considera simplecall-routingproblemwith buffer managemenar
scheduling.Thereis a network with L > 1 parallellinks betweena
pair of sourceanddestinationAt the source singleclass(voice)calls
arrive with an arrival rate accordingto Bernoulli processin a slow
time-scaleThe call's holding time is geometricallydistributedin the
slow time-scale.The call-level or upperlevel decisionprocesss to
eitherrejecta newly arrived call or route the newly arrived call to
oneof the L parallellinks if acceptedWe assumehatfor eachlink,
thereare (possiblyzero)crosstraffic (video) calls. For simplicity, the
video calls areinitially setup and do not depart(if we incorporate
the dynamicsof video call arrival and departureprocesswe would
have a three-leel decisionmaking processand the control process
in the highestlevel is to assignvideo callsamongL parallellinks or
reject).

It is assumedhat all voice calls have the sametraffic rate (i.e.,
bandwidthrequirement)and this is also true of the video calls. In
otherwords, the modelthat describegaclet (of the samesize with
the unit time in fasttime-scale)arrival processof the voice call is
the same.For example,if On/Of modelis used,eacharriving call
hasthe sameOn/Off modelparametersThis alsoholdsfor the video
calls. For instancewe may useMarkov modulatedBernoulli process
to modelvideo paclet arrival procesq11] andit is alsoassumedhat
all video calls sharethe samemodel parameters.

The upperlevel control stateconsistsof the numberof currently
pending voice and video calls at eachlink. The lower level state
consistsof the traffic statesfor voice traffic andvideo traffic andthe
numberof pacletsin the (finite FIFO) buffer for voice andvideo at
eachlink. The controlactionatthelower level is to controlthe queue
size,e.g.,via an admissioncontrol or droppingpaclets at eachlink
or schedulethesemulticlasspaclets.

We wish to develop a two-level control policy suchthatthe upper
level call admissioncontrol effectively balancesthe loads of each
link dependingon the performancanadeby the lower level queueing
control of the pacletsto maintaina desiredthroughput/delay

I11. MULTI-TIME SCALE MDP

We first presenthe two time-scaleMDP modelfor simplicity. The
M time-scalemodelwith M > 2 canbeextendedfrom thetwo time-
scalemodel without ary difficulty andwe will remarkon this issue
later.
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Fig. 1. Graphicalillustration of time evolution in the two time-scaleMDPs

A. The model

The upperlevel (slov time-scale)MDP has a finite state space
I and a finite action spaceA. At each (discrete) decision time
n € {0,1,2,...,} and at a statei,, € I, anaction X\, € A is
taken and i, makes transitionto a statei,+1 € I accordingto the
probability P*(in+1lin, An). Dependingon which action has been
taken at which statein the upperlevel MDP, the lower level (fast
time-scale)MDP over one-stepslow time-scaleperiodis determined
accordingly (what we meanby this will be clearerbelon). Every
MDP in the lower level sharesthe samestateand action space We
denotethe finite statespaceand the finite action spaceby X and
A, respectiely. We assumethat INX =@ andANA = 0. We
also assumethat every control action is admissibleat eachstatein
eachlevel for simplicity. We denotetime in the fast time-scaleas
t € {to,t1,t2,...} andt,7 =n, n=10,1,... andT is afixed finite
scalefactorbetweerslow andfasttime-scalesWe implicitly assume
thatt,r = n + ¢, wheree is a positve numberarbitrarily closeto
zero. That s, thereis an infinitesimal gap betweent,,» andn such
that a fast time-scaledecisionat time t,,r is madeslightly after a
slow time-scaledecisionat time n_ hasbeenmade.

Let theinitial statein thelowerlevel MDP bez € X andtheinitial
statein theupperlevel MDP be: € I (z¢, = x andip = ¢ atn = 0).
Over the time stepsof to, t1, ..., t7—1, the systemfollows the lower
level MDP evolution. At thestater atto, anactiona € A istakenand
x malestransitionto the next statey € X, which is the stateat time
t1, accordingto the probability P'(y|z,a,i, \) and a nonngative
and boundedreward of R'(z,a,, \) is incurredand this processs
repeatedht the statey at ¢1, and so forth until the time ¢r_1. That
is, the statetransitionfunction and the reward function in the lower
level MDP (over T-epoch)are inducedby the upperlevel stateand
decision.At time n = 1, anupperlevel action \; will betakenati;
(this will triggera new MDP determinationandstartingwith a state
z attr (determinedstochasticallyfrom P'(z|2s,._,, @ty , 0, Xo)),
the newly determinedlower level MDP evolves (over the next T'-
epoch).SeeFigure 1 for graphicalillustration of time evolution in
this process.

Throughoutthis paper we will usethe term “decisionrule” when
referringto infinite horizonandthe term “policy” whenreferringto
finite horizon. Define a lower level decisionrule d' = {z}}, n =
0,1,..., asa sequenceof T-horizon nonstationarypolicies defined
suchthat for all n, m}, = {¢t,7, - Pt(ny1yr_1 } IS @ SEqUENcES
functionswherefor all k > 0, ¢, : X x I x A = A. We will say
thata lower level decisionrule is stationarywith respecto the slow
time-scalen if #, = x!, for all n,n’ andwe will restrict ourselves
to only this classof decisionrules here. We will denotethe set of
all possiblesuch stationarydecisionrules with respectto the slow
time-scaleas D', and omit the subscriptn in 7r£b in this caseand
usethe time to, ..., t7_1 to refer the sequencef functionsof =! if
necessaryand denoteIl’ asthe setof all possiblesuchT-horizon



nonstationanypolicies 7!, We will alsoomit the subscripton ¢ if =
is stafionary(with respectto the fasttime-scale).

Given a lower level decisionrule d' € D' anda nonngative and
boundedimmediatereward function Z* definedover I x A for the
upper level, we definea function R* suchthat for all n > 0, for
z€X,in €I and, € A,

Ru(myin:)\n:ﬂ'l) =

tnt1)T—1
x
Ein,/\n{ >
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where o (tpr4+r) = r for all n with » = 0,1,...,7 — 1, and the
superscriptz on E signifies the initial state,z;,, = z, and the
subscriptin, A, On E signifiesthat, and A, for the expectation
are fixed. We will usethis notationalmethodthroughoutthe paper
Thefunction R* is simply the T-horizontotal expected(discounted)
reward of following theT’-horizonnonstationaryolicy «* giveni,, €

I and\,, € A startingwith statex € X with thezeroterminalreward
functiont plusanimmediatereward of takinganaction\,, atthestate
in, atthe upperlevel.

Thetotal expected(discountedyeward achieved by the lower level
T-horizon nonstationarypolicy ! with an immediatereward at the
upperlevel will actasa single-stepreward for the upperlevel MDP.
Define an upperlevel stationarydecisionrule d* asa function d" :
X x I — A andwe denoteD“ as the set of all possiblesuch
stationarydecisionrules. Given the initial statesr € X andi € I,
our goal is to obtain a decisionrule pair of &' € D' andd* € D*
thatachievesthe following functionalvaluedefinedover X x I: with
0<y<1,

V*(z,3) :=

max max E™
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wherewe will referto V* asthe two-level optimal infinite horizon
discountedvalue function
The secondfunctional value definedas our objective function is
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wherewereferto J* asthetwo-level optimalinfinite horizonaverage
value function We can see that from the definition of the upper
level decisionrule, the decisionsto be madeat the upperlevel must
dependon the lower level state which is theinitial statefor the lower
level MDP evolution over T-horizonin the fasttime-scale Theinitial

statez,,,,n = 1,2, ... is determinedstochasticallyby following the
policy . We will considerthe moregeneralcaseof determiningthe
initial statein alatersubsectiorio expandtheflexibility of our model.

1t is our assumptiorthat the initial statefor the next epochin the slow
time-scaledoesnot contritute the reward for the previous epoch.However, a
terminalreward canbe definedby a function over X, in which casewe need
to addthe terminal reward termin R%.

We also remark that even though we addedthe immediatereward
function Z* in the definition of R* to make our model description
morenatural,the function R' can“absorb”the functionZ* by newly
definingthe function R' itself as R (z, 4, A, 7') + £Z% (4, A) for a =
1 and R (z,4, A, ') + (;_—;T) T(i,\) for 0 < a < 1.

B. Optimality equations

For a given pair of 4 € I and X € A, definea setII'[s, A] of
all possibleT-horizon (lower level) nonstationarnpoliciesunderthe
fixed pair of the upperlevel statei andaction A:

Hl[i,)\]:z{ z)\]‘ i, A = {61, ..

Pim 1}
¢t X x {i} x {\} > A andk =0,.. T—1}

and let P, (w'[i, A]) the probability that a statey € X is reached
by T'-stepsstartingwith z by following the T'-horizon nonstationary
policy 7'[4, A]. Note that this probability can be obtainedfrom P*.

We now definean MDP that operatedn the slow time-scalen as
follows. The stateat time n is a pair of the lower level stateand
the upperlevel state,(z:,,,%-). An action at state(z,,,i,) is a
compositecontrol of A, € A andr'[in, An] € II'[in, An] (from our
assumptionthat ¢, = n*, 7'[in, An] Will be taken slightly after
A is taken). Obsere thatwe canview = asone-stepactionat the
slow time-scale.More precisely the admissibleaction set for state
(z+,r,tn) is definedasthe setgiven by

{(A, NINEA, T E H’[z‘n,)\]}.

The transition probability from (z¢,,%n) 10 (T4, 1)pstnt1) iS

determinedlirectly from PT and P*. Then,from the standardViDP

theory for this MDP, we can write Bellmans optimality equation
and an optimal decisionrule that achieves the unique optimal value
ateachstatecanbe derived. In otherwords,the upperlevel sequential
dynamicsis essentiallyjust an MDP with a reward function defined
via the lower level MDP dynamics.With a simple adaptationof the

standardvIDP theory(see,e.g,[1] [16] or [26]), thefollowing results
hold for MMDPs. Therefore,we omit proofs.

Theoem1: For all z € X andi € I,
max

V(i) = R (2,4, A, w'fi, X
(z,7) = max( l[i,A]eHl[i,)\]{ (z,3, A, [2, A])

AEA
oy 3 ST (i APl WV (y,J)})
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and V* is the unique solution to the above equation.Furthermore,
for eachpair of z andi, let the agumentsthat achieve the r.h.s of
this equatlonas)\* andw*[i, A] = {¢;, }, andsetd"(z,i) = A" for
d" andsetr’ suchthat ¢y, (z,i, \*) = 7, (2,4, \*) for d'. The pair
of d* andd' achiees V™.

Theoem 2: If thereexistsaboundedunction{ definedover X x I
anda constantg suchthatfor all z € X andi € I,

= ma.x( max {R“(m,i, A 7 [i, A])
AEA \7l[i,\]€II![,\]

+ 30 S PEE AP GG ) ).

yeEX jeI

g+ ¢(x,1)

then thereexists a decisionrule pair of d* € D* andd’ € D' that
achieves J*(z,4) andg = J*(z,4) for all z € X andi € I.

For the conditionsthat make the “if” part of the abose theorem
hold, refer to [1] or [16] for a substantialdiscussion.An optimal
decisionrule pair can be obtainedin a similar way to that statedin
Theoreml.



Even though we assumedfinite state spaceswith finite ac-
tion spaces,the issue of infiniteffinite state/action space and
bounded/unboundemward function canbe discussedrom the well-
knowvn MDP theory (see,e.g.,[1]).

C. Initialization function

So far we consideredthe case where z;,,,n = 1,2,... is
determinedby a T-horizon nonstationarypolicy. Consideringthe
more generalmodel, we definean initialization function§ suchthat
we determineor initialize z;_,.,n = 1,2,... by 4. This is motivated
by the specificnatureof a given problemor organizingbehaior in
a hierarchy

Here are some examplesof §. As before,d can be a function
definedover X x I x A suchthat for given z,4, A, d(z,7,\) is
a probability distribution over X. Given x € X, i € I and
A € A, we will use the notation of §(z,4, A)[y] to denotethe
probability definedon y € X by d(z,4, ). In the previous model
description,é(z, 4, \)[y] correspondgo PL, (7'[i, A]). We will also
usethenotations™ to explicitly expressthedependencen thelower
level policy = if thatis the case.Or § canbe definedsuchthat the
determinationof z.,_, dependson the statez:_,_,. For example,
for somez,y € X,i €I, A€ A,

6 (2,1, Nyl = Y PLT (76, \p(yl2),
zeX
wherep(y|z) denotesthe probability thaty succeeds.

For somecasesthe slow time-scaledecisionge.g.,“reset” control,
etc.)only will affectthenew initial lower level state.In this caseg is
definedover X x A suchthatd(z, ) givesa probability distribution
over X. Theveryideaof this 4 is parallelto the transitionstructurein
Markovian slowscalemodelgivenin [18]. Finally, the determination
of z¢ . can be independenof z; ,_1 or Bt 1y i.e., we can
considerthe statein the lower level be initialized basedon the upper
level currentstate: andthe next statej. ¢ is definedover I x I such
thaté(z, ) for somei, j € I givesa probability distribution over X .

With the introduction of 4, we simply needto rewrite the V*
equation(similarly to the J* case)by replacingP” with § in each
equationin Theorem1 and 2. In particular if the d-function is
independenbf «! (or we will saythatthe §-function is independent
of thelower level policies),thenwe canwrite the optimality equation
for V* as

V*(z,1) = max{

AEA

max (R“(x,i, )\,m))
wli,A]
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This special caseis very interestingbecausethe optimal finite 7'-
horizon value at the lower level will act as a single-stepreward for
the upperlevel (along with an immediatereward). The upperlevel
decisionmaler in this casedirects/determinea problemat eachtime
thatthe lower level decisionmaler needgo solve andthe lower level
decisionmaler seeksa “local” optimal solution for the T-horizon
and follows one of the optimal nonstationarypolicies that achieve
the solution. The decisionprocesf how to directa problemat each
time for the upperdecisionmalker will dependon the local optimal
performancenadeby thelower decisionmaler. In this sensethe case
hasa flavor of the underlyingphilosophyof the Staclelbeg (leader
follower) game(see,e.qg, [2]). This is not true in generalbecausea
éd-initialization function may dependon the lower level policy, where
in this casethe lower level decisionmaler needsto choosea policy
not only concernedwvith the local performanceof the policy but also
effects of the policy in the future performance.

We end this sectionwith a brief discussionon how to extend the
two time-scalemodel to M time-scalemodel with M > 2. The
transitionstructureof a particularlevel m depend®n (in general}he
statesandthe actionsof the slower time-scaldevelsn < m andthe
currentstateof m, andthe reward function of the level m is defined
with the statesand the actionsof the levels n < m, and an initial
stateand a policy of the m + 1 level. From thesetransition/revard
functions,we can define the multi-level optimal value function and
determinethe multi-level optimality equation.We note that for the
definition of theinfinite horizondiscountednulti-level optimalvalue,
the slowestlevel (m = 1) alwayshasthe discountfactorlessthan1.

IV. SOLVING MMDPs

The methodsof obtainingthe optimal decisionrule for eachlevel
in MMDPs are well-establishedvia the well-knovn MDP theory
We will pay attentionto the J-initialization function that depends
on the lower level policies and is definedover X x I x A such
that 6™ (z,4,A) forz € X, i € I, and X € A gives a probability
distribution over X. The discussionhere can be easily extendedto
otherd-functions.

A. Exactmethods

We first discussthe discountedcaseand then the averagecase.
Define an operator® such that for a (boundedand measurable)
function V' definedover X x I,

max

AEA \ wl[i,A]€TTH4,A]

(V) (z,i) = ma.x( {R"(m,i, X 7[i, )

1
S @I NP V) ) @
yEX jeI
for all z andi. Then, © is a «y-contraction-mappingin sup-norm.
For ary function V' definedover X x I, let ||V|| = sup,, ; [V (z, 9)|.
For ary boundedandmeasurabléwo functionU andV definedover
X x I, it is true that

lew) —eW)l <Allv -Vvi.

This implies that V* is unique from the well-known fixed point
theorem.Furthermorefor ary suchV,

O™"(V) - V* asn — oo,

wherethis methodis known asvalueiteration.

For the averagereward case,we assumehat (appropriatelymod-
ified) one of the ergodicity conditionsin the page56 of [16] holds.
Then, averagereward value iteration can be also applied.Let @ be
an operatorthat mapsa function V' definedover X x I to another
function definedover X x I given by

®(V)(z,i) = max(

max
7l [i, \ET[i,\]

+ 3 Y0 i NPl V() } )

yEX jEI

w . ir.
max {R (z,4, A\, 7[5, A])

4
for all x andi. Then,with an arbitrary (boundedand measurable)
function V' definedover X x I, for all z € X, € I,
" (V)(x,i) — " " (V)(x,i) — g asn — oo
andfor ary fixed statepairy € X andj € I,
3" (V) (x,1) — " (V)(y,j) = ¢(x,4) asn = oo,z € X,i € I.

We can also use “policy iteration” once R“ is determined.See,
e.g.,[26]. The runningtime-compleity of valueiterationis in poly-
nomialin | X||I|, |A|-|4|7'*!, and1/(1—) andin particularjustone



iterationtakes O((|X||7])? - |A| - |A|T'*"). For policy iteration,just
doing “policy improvement” steptakes O((| X ||1])? - |A] - |A|FX1).

See[20] for a detaileddiscussionincludingthe stateandactionspace
dependentime-compleity of the linear programmingapproachfor

solving MDPs. Therefore,applying the exact methodsfor solving
MMDPs is very difficult even with relatively small stateand action
spacesizes.In the next two subsectionsye studyapproximationand
heuristicmethodsto solve MMDPs.

B. Approximationmethods

There are numerousapproximationalgorithms to solve MDPs.
For details see the books by Puterman[26] or by Bertsekasand
Tsitsiklis [4]. In this section, we analyzethe performanceof an
approximation-basedchemefor solving MMDPs.

Our first approximationis on the é-initialization function. One of
the main difficulties to obtain an optimal decisionrule pair would
be the possibledependencef § on the lower level nonstationary
policies. Supposehatthis is the caseand considera ¢’ -initialization
function that is independentf the lower level policies and approx-
imatesthe given 6™ -initialization function with respectto a given
metric. Thenthereexists a uniquefunction V* definedover X x I
suchthatfor all z ands,

V* (i) = ma.x{

AEA

max
7l [i, \EM[i,\]

(R"(as, i, A]))
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Note that V* is the optimal value function for a nev MDP defined
with the reward function of max(R*(-)) andthe transitionfunction
definedwith ' and P*. We can boundthen [V*(x,7) — V*(x, 4)]
for all z and by Theorem4.2in Muller’s work [24] with a metric
calledthe “integral probability metric” on the differencebetweend’
and&’rl. Of coursejif the MMDP problemto solve is associatedavith
the lower level policy independens-function, we wouldn't needthis
approximationstep.
The secondapproximationis on the value of R* definedas

R(z,i,)) = (R*(2,,2,7'1i, X]))

max

wl[i,\]€TI![i,A]
andon V*(z, ). It will be oftenimpossibleto getthetrue R* dueto
alargestatespacesizeof thelower level andarelatively large T even
thoughtheoreticallywe canuse“backward induction”. Obtainingthe
true value of the function V* is alsoalmostinfeasiblein mary cases
with the similar reasonsSupposehatwe approximateR* by R such
that

sup |R*(z,4,\) —

,7,\

R(z,i,\)| < &

and V* by someboundedand measurabldunction U definedover
X x I suchthat

sup |V*(z,i) — U(=,i)] <e.

x,t

We will discussanexampleof suchR andU laterin this subsection.
Now definea stationary(upperlevel) decisionrule d* suchthat for
all z € X andi € I,

d“(z,i) € ang max(R(x, i, A)
AEA

30 378 (@i, VBIP G A)U(y,j)>-

yeX jel

_ Our goalis to boundthe performanceof the decisionrule d* from
V*. We definethe value of following the decisionrule d* given an
initialization function ¢’ as follows:

V.’L‘ Z)_Eml{z’y xtnT:ln:d (mfnT:ln))}:

where we used (by alusing the notation) Ej5 to indicate that
x4, 0,n = 1,2, ... is arandomvariabledenoting(lower level) stateat
timet,r determinedstochasticallyoy 6. We now stateaperformance
boundasa theorembelow.

Theoem3: If sup, ; , |R*(z,i,\) — R(z,i,A\)] < & and
sup, ; |[V*(x,3) — U(z, )| <e,
V" (2,4) = Ve, 8)] < 22575 for all o € X andi € I.

Proof: Let the agumentthat achieves the maximumin ther.h.s
of Equation(3) with replacingé’“l by &’ be Ay for afunctionU. We
will usethe notation®’ for this replacementFrom the contraction
mappingpropertyof the © operatoy for all z € X andi € I,

0 (V*)(2,i) — ©'(U)(w,8)| < v sup |V (x,i) — U(x,3)| < ye.
o (6)
We shaw that |©'(U)(z, i) — V(z,i)| < % forallz € X
andi € 1. It thenfollows thatfrom ©'(V*) = V*,
[V*(2,4) = V(w,i)| < 0/ (V*)(@,i) — ' (U)(w,9)|
+O'(U)(x,4) — V(z,9)|
< et red+y)+5K _ 276+ft’
1—v 1—7

which givesthe desiredresult.

Now, extendingthe proof idea of Theorem3.1 in [17] with the
given bound assumptionsand the bound of Equation(6), it can be
shawvn thatfor all I = 0,1, ..., andz € X,i € I,

o'(U)(x,i) < EF Zv

+7l+1E6’ [9 (U)(xt(l+1)T’il+1)]
+yed+) 4+ +4 (14 )
+a(1+y 4 +7). ©)

Since®’(U) is boundedthe secondermonther.h.s.of Equation(7)
corvergesto zeroas! — oo andthe first term becomesV (z, i) by
the definition and the last two termssumto M as! — oo.

It follows that ©'(U)(x,4) — V (z,i) < M This provesthe
upperboundcase.

As for the lower bound case,by the similar algumentsfor the
upperboundcase,we canthen shaw that @' (U)(z, ) — V (x,7) >
—2<0d)+r This concludesour proof. n

We remarkthat a relatedwork for this theoremcan be found in
Corollary 1 in [30] with the assumptiorof the finite statespaceand
the resultof the work only givesan upperbound.Our analysistakes
a totally differentapproachand can be appliedto Borel statespace
even though our proof shaws for the countablecase.Furthermore,
the resultgives not only a lower boundbut alsoa tighter bound(the
upperboundgivenin [30] is M) Oncewe boundV*(z, %) from
V*(x,7) by Mdller's work, we ha/e a boundfor the optimal value
function value of the original MMDP at z andi from V (z, 7). Now
we give an exampleof R. From now on, we assumethat the lower
level reward functionR' is definedsudh thatit absorbsthe upperlevel
immediatereward functionZ“ aswe discussedn the subsectiorll-
A. Our approximatiorusesalower level policy 7! thatguaranteethe
T-horizon total expecteddiscountedreward of following the policy
#! is within an error boundfrom the optimal finite-horizonvalue.

xtnT? in, d* (mtnTi 171))



The methodology of the example is the rolling horizon ap-
proadh[17] wherewe choosea horizon h < T and solve for the
optimal h-horizon total expecteddiscountedreward and we define
a (greedy)stationarypolicy with respectto the value function. We
begin by defining h-horizon total expecteddiscountedreward with
h=1,..,T for every givens € I and\ € A:

h—1
R} (%,%,A) = max Ef {ZatRl(mt, i’)‘(xt,i, )\),i,)\)},
t=0

wl[i,A]

8
where0 < a < 1 and Ry(z,i,A) = 0 for all z € X. We alsolet
R™ (z,3,\) = R“(x, i, \, w'[i, \]) definedin Equation(1) for every
i and A with 0 < o < 1 and Rmax = max, 4, R (2, a,4, \).

Proposition1: For every giveni € I and\ € A anda selectedh
in {1, ..., T}, definea lower level stationarypolicy 7'[i, A] as

"M x,i,\) € ang max(Rl(x,a,i, A)
a€cA
+a Y P'(ylw,a,i, N Rh_1(y,i, ,\))for all z € X.
yeX

Then,for all z,1, A,

heq _ T
0 < R*(z,4,\) — R”(wz)\)<M
Proof: The lower bound is from the deflnltlon of R*. Fix
arbitrary ¢ € I and A € A. Define an operatorQ that mapsa
(bounded)function V' definedover X to anotherfunction defined
over X given by

QV)(z) = max (R(a: a,i )\)+aZPl ylz,a,i, \)V(y ))

yeX (9)
It is well-known that R;, = Q"(Rg), whereQ" denotesthe succes-
sive applicationof the Q operatorby h times (see,e.g., [26] [16],
etc.). By the contraction mapping property of ©, (with ||f|| =

Sup.’v,'i,)\ |f(xa i) )‘)|)1

IRT — Rill < allRp_; — Rj_]
< - <a"|Rr_, - Ryl
< o"A4a+-+a" ") Riax
h_ T
< Bmnl@?—a7) (10)
11—«

Following the proofideaof Theorem3.1in [17], we canshawv that
forall w=0,1,...,7 — 1 andfor all x € X,

Z CttRl (xt; ¢i’/\(xta i) )‘)7 i7 A)

t=0
+aw+1Ei1>\[R; (.’L‘w+1, ia A)]

R;(m,l,)\) S Ef,)\

()

We let w = T — 1. It follows thenthat from the previous inequal-
ity (11), for all z,7 and A,
T _ . h
Ri(e,i, ) < B (2,0, 3) + Tmex0 02 00)
Therefore,we have thatfor all z,7 and A,

—R™(z,i,)) < R(z,i,\) — Rp(z,3,\)
Ruaxa™ (1 —ah)

1-o '
Combiningthe resultin Equation(10) with the previous inequality
we finally have that

R*(z,i,\)
+

Rmaxah(l — aT)

1
— R™ ) <
R (2,0, 3) < et

R*(x,i, )

= : : Rmaxah(l—aT) : "
or every given k > 0, letting k > —maxg———=— gives the
rolling horizon size for a desirederror boundfor R*. We remark
that by letting T — oo, the above result precisely gives the result
of Theorem3.1 in [17]. A similar approachcan be taken for the
upperlevel MDP. We canchoosea fixedrolling horizonfor the upper
level. The valuefunction definedby the horizonapproximates’* in
Equation (5), i.e., an example of U. If both levels use the rolling
horizonapproachwe have a two-level approximation We caneasily
drav an error boundof the two-level rolling horizon approachfrom
the resultsobtainedin this subsectionIn practice,getting the true
valueof R; will be alsodifficult eventhoughh is small dueto the
curseof dimensionality A way of getting away with a large state
spaceis to usea samplingmethodto approximateR;, (see[19] [6]).

For the averagereward case,we considerthe casewhere one of
the ergodicity conditionsin the page56 of [16] holds. Furthermore,
we assumethat the similar approximationto the first approximation
for the discountedcaseis doneby a §’-initialization function that is
independenbf the lower level policies. Thenthereexists a constant
§ anda function ¢ suchthatfor all z and,

(B* (@3, A, ', )

+ {(z,i) = max{ max
AEA Ui, \]€TIi,\]

+ 30 8 e VPGl V)

yeEX jeI
and that |§ — g| is boundedwith respectto the degree of the
approximationby ¢’ for 5

We focus on the secondapproximationfor the averagecase.We

WiII denote R}, definedin Equation (8) with o = 1 as R} and
R™ = R*(x,4, \, #'[i, \]) definedin Equation(1) with a = 1, and
the operator(2 in Eguatlon(p) with o = 1 as{). Supposethat we
approximateR* (= R7) by R asbeforesuchthat

sup |R* (]J,i, )‘) - R(xa i, )‘)l <k
andthatf is approximatedoy somefunction U definedover X x I
suchthat

S'llp |é($,’t) - U(.’E,l)l S €.

x,t
Define a stationary(upperlevel) decisionrule d“ suchthat for all
r€X andi € 1,

d“(z,i) € ang max(fz(m,i, )

AEA
+3° 378 (@i NP G, A)U(y,j)).
yeX jeI

The value of following the decisionrule d* given aninitialization
function ¢’ is definedas follows:

J(z,i) = hm —E“{ZthnT,zn, (mtnT,in))}.

We now statea performanceboundas a theorembelow.
Theoem4: Assumethat one of the ergodicity conditionsin the
page56 in [16] holds.If sup, ; y |R* (z,4, A) — R(z,i,\)| < & and

sup, ; |(2,8) — Uz, )| <

|§ — J(x,i)| < 2+ & for all z € Xandi € I.
Proof: Let the agumentthat achiezes the r.h.s of Equation(4)
with replacingé”l by &’ be Ay for a function U. We will usethe
notation®’ for this replacement.



Now, for all z € X andi € I,
CI)I(U)(x: Z) = R*(.’L‘, i: )‘U)
+ > 8 (@4, A0yl P (ili, Av)U (y, )
yeX jeI
by the definition of &’
< R(z,i,\v) + K
+ Y08 (@6, A0)[YIP (il Av)U (y, )
yeX jeI
by the given assumption
< R(z,i,d"(x,i)) + K
+ Y8 (@i, d (2, 0)) [P (ilé, 4" (2,6))U (y, 5)
yeX jel
by the definition of d“.

Under the ergodicity assumptionthere exists a stationaryproba-
bility distribution P over X x I for the inducedMarkov chain by
d*. Summingboth sideswith respectto P at the last inequality of
the abare equationswe have that

> P(2,0)® (U)(x,4) < Y Pla,i)R(x,i,d" (,1))

et Y P,d) (Z 38 (@i, d" (2. )]

yeX jel

<Pl d" (@)U (0.9))- 12)
The first term on the right side is equal to j(m,i) by Lemma
3.3 (bii) in [17], and the third term on the right side is equal to
>0 P(z,9)U(z, ) from the invariancepropertyof P.

Obsere thatif |{(x,i) — U(z,i)| < e for all z € X andi € T,
then|®' () (x,i) — @' (U)(x,i)| < e for all z € X andi € I. This
impliesthatfor all x € X andi € I,

o' ({)(w,i) —C(w,i) —2¢ < @' (U)(w,i) — U(a,4)
< () (,i) — (i) + 2
Therefore, rearrangingthe terms in Equation (12) and from the
previous obsenation,

J@i)+r > Y Pa,i)[® U)(x,i) - U,i)]

> Zp(wvi)[q"(f)(%i) —{(@,4)] — 2

= §-—2e

With the similar aguments,we can also shav that J(z,4) — x <
g+ 2e. ]

We nowv provide a counterpartresult to Proposition1 for the
undiscountedtase(a = 1) underan ergodicity assumption.

DefineC := {(z,a)|z € X,a € A}. For every given< € I and
X € A, we defineR!(¢,i,\) := R'(z,a,i,\) and P! (ylc, i, A) :=
P'(y|z,a,i,\) for all c € C.

Assumptionl: Thereexists a positive numbery < 1 suchthatfor
every giveni and J,

sup > |P'(yle,i,A) — P'(ylc',4, M| < 2,
c,c’ECyeX

We give a performancebound of the rolling horizon policy in
terms of spansemi-norm;for a boundedfunction V' defined over
X x I x A andfixedi € I and\ € A (with abusingthe notations),
sp(V) = sup,, V(z,4, A) —inf, V(z,14, A).

Proposition2: Assumethat the ergodicity condition 1 holds. For
every givens € I and A € A anda selectedh in {1, ..., T}, define
a lower level stationarypolicy #* as

" (z,i, \) € ang max(Rl (z,a,i,\)

a€A

+ Z P'(ylz,a,i, R} _1 (y, 1, /\)>for all z € X.
yeX

Then,for all 2 and A,

— axl W'  Rpax . 2" — V7)) Rinex
SpR* —R" )< T- 1=, + T2
Proof: We begin with a slightly modified version of Theorem
4.8(a)[16] by Lemmabelan. Seethe proof there.
Lemmal: Assumethattheergodicity conditionl holds.For every
giveni € I andX € A andh = 1,...,T, thereexists a constantj”

suchthatfor all z € X,

_ _ h—
@ Ri(x,i,A) = Rj_i(x,i,A) > = Hmax 4
— . ) . Vh_l %
(b) R?L(x’z) /\) - }Ehfll(x,% )‘) S #h_‘_l]
Fix i and\. Let py = =4 —FBmax 4 j* andpy = L Bmax 4 j*,

With a similar reasoningn the proof of Propositionl and with the
inequalityin Lemmal(a),we candeducehatfor all w = 0,1, ..., T—
1 andfor all z € X,

Rﬁ(x,z,)\) S E'Lm,A ZRl(xt,¢z’/\($t,Z,)\),Z, )‘)
t=0

+Ei A[Rh (Twt1,5,A)] — (w + 1)p1.
We let w = T — 1. It follows thenthat from the previous inequality
Ri(2,i,\) < R™ (2,3, \) + Ei \[R},(x1, i, \)] — Tpr.
By the samearmgumentswe have that
Ry (2,6,)) > R™ (2,6,A) + BiA[R) (r, i, )] — Tpa.
Combiningthe abore two inequalities,it follows that

21/h_1Rmax
1—

Now, from the spansemi-normcontractionpropertyof Q [16], we
have that

sp(Ry — R;,) <vspRy_y — Rj_y) <--- <v"spRy_p). (14)

SR, —R™)<T(pa—p1)=T- (13)

From Lemmal, we canalsodeducethatfor all z € X,
_Rmax(l _Vh) Rlnax(]- _Vh)

(1-v)? (1-v)?
Therefore, sp(R%_,) < %’Qﬂ. Combining Equation(13)

and (14) with the previous inequality we have the desiredresult:
L W' Rinax . 200" — V7)) Rimax

* DT < .
SR - R")<T 1—v + 1-v)?

Lk

+hj" < Rh(x,i,A) < +hj".

(15)

[ |

We remark that the abore result also gives a bound on the
finite horizon avelage reward by dividing the both hand sides of
Equation(15) by the horizonT'. In particular the result by letting
T — o in this casedoesnot coincideexactly with theresultobtained
in Theoremb.1in [17] — our resultis looseby a factorof 2 in terms
of spansemi-normeven though the upper bound part in Theorem
5.1 would be the same.This is becausethe lower bound on the
result of Theorem5.1 is O incorporatingthe fact that the infinite
horizon averagereward of ary stationarydecisionrule is no bigger



thanthe optimal infinite horizon averagereward, wherewe couldnt
take adhantageof the factin our proof steps.

Supposehatwe have a lower level policy dependeninitialization
function and we nowv know that the setof local optimal lower level
policiesthat solve the lower level MDP problemfor given: € I and
A € A. As we can obsere, a lower level decisionrule determined
from thesepolicies doesnot necessarilyachieve the optimal multi-
level valuebecaust is alocally optimal or greedychoice.However,
solving the optimality equationgivenin Theoreml, for example,is
difficult becausehe size of the setII'[i, A] is often huge.We should
somehw utilize the fact that we know the local optimal lower level
policies.To illustratethis, we studythe discountedcaseonly. For this
purposelet IT*[i, \] bethe setof «'[i, A]'s that solve the lower level
MDP problemfor giveni € I and X € A, i.e., achizing R*. We
thendefinea pair of upperandlower level decisionrules,d* andd’,
from the amumentsthat achieve the following equation:

max max
AEA \ml[i,A]€TT*[i,A]

1y 3 376 (@i, NP i A)V*(y,j)})

yeX jel

{R“(m, i, \, 7'[i, \])

such that we setd“(z,i) = A andsetd' = {#'}, where X and
74, 5\] are the agumentsthat achieve the above equation.We let
the two-level value of following the pair of d* andd' be V (z, ). It
is left for the readerto checkthatfor all z ands with 0 < a < 1,

* . of . ')’[I/Rmax(l — OfT)
0<Vi(z,i) —V(xyi) K —V———F,
where u is an ergodicity coeficient suchthat for ary z,z’ andsi, ¢’
andfor ary A\, X' andary =, «’ € IT',

33 (67 (@, i, NIl P (i, A)

yeX jel

—67 ($I7il7Al)[y]Pu(j|i’7)") S 2/1’

with 0 < u < 1. Note that we candefined* andd' with respectto
a boundedvaluefunction U thatapproximated”* anddrav anerror
boundfrom V* by usingthe abore resultwe just have dravn.

C. Heuristic on-line methods

The discussionso far dealt with “off-line” methodsfor solving
MMDPs. Eventhoughvariousapproximation/eactalgorithmscanbe
appliedfor somecontrol problemsijt will oftenrequireanalyzingand
utilizing certainstructuralpropertieson the problems,which might
be very cumbersomén mary interestingproblems.In this section,
we briefly discusshow to apply previously publishedtwo on-line
(sampling-basedheuristictechniquesn the contet of MMDPs.

The first example approachcalled “(parallel) rollout” is based
on the decision rule/policy improvement principle in the “policy
iteration” algorithm (see, e.g., [3] [8] [9]). We simulateor rollout
heuristic decision rule(s) available in on-line mannervia Monte-
Carlo simulation at eachdecisiontime and usethe estimatedvalue
of following the heuristicdecisionrule(s)to createan (approximate)
improved decisionrule with respectto the heuristicdecisionrule(s).
In particular parallelrollout is usefulif samplepathscanbe divided
in a way that a particularheuristicdecisionrule is nearoptimal for
particular systemtrajectories.The parallel rollout methodyields a
decisionrule that dynamically combinesthe multiple decisionrules
automaticallyadaptingto different systemtrajectoriesandimproves
the performance®f all of the heuristicdecisionrules.

We briefly discusshow to apply the rollout. Supposethat we
have a heuristic decision rule pair of d' for the lower level and
d* for the upperlevel. At eachdecisiontime n (in the slow time-
scale),we measurehe utility of taking eachcandidateactionA € A
as follows. We take a candidateaction (in an imaginary sense)
and then from the next step,we simulated’ and d* over a finite
samplinghorizon over mary randomly simulatedtraces,giving the
approximatevalue of following the decisionrule pair. The single-
stepreward of taking action A associatedvith the lower level quasi-
steadystateperformancas alsoestimatedy simulationby following
the decisionrule d'. The sum of the estimatedsingle-stepreward
(plus the immediatereward of taking A\) plus the estimatedvalue of
following the decisionrule pair d' andd* gives the utility measure
of the candidateaction A. At eachtime n, we take the action with
the highestutility measureAt the fasttime-scalewe just follow the
decisionrule d'.

The (parallel) rollout approachcan be referredas a lower bound
approachasthe value of following ary decisionrule pair is a lower
boundto the optimal value. On the other hand, the next example
called “hindsight optimization” [10] is basedon an upper bound.
Hindsight optimization can be viewed as a heuristic method of
adaptingthe (deterministic)optimal sample-pathbasedsolutionsinto
an on-line solution. Instead of evaluating a decisionrule pair by
simulationasin therollout, for eachrandomtraceof the systemthe
optimal action sequencéghat maximizesthe reward sumis obtained.
Theaverageover mary randomtraceswill give anupperboundonthe
optimal value.We usethe upperboundin the actionutility measure.
Thehindsightoptimizationapproachurnsout to be effective in some
problems(see,e.g.,[7] [35]) eventhoughthe questionof whenthis
approachs usefulis still open.However, we notethataslong asthe
ranking of the utility measure®f candidateactionsreflectswell the
true ranking (especiallythe highestone), theseheuristicmethodscan
be expectedto work well.

V. RELATED WORK

In this section,we compareseveral key papersthat canbe related
with our work in hierarchical modeling. We first discussa key
paperby Suttonet al. [31] becausehe papercites almostall of the
hierarchicalMDP works in (at least)artificial intelligenceliterature
andsomein the control literatureandgeneralizeshe previous works
by one framewvork. For mary interestingdecision problems(e.g.,
gueueing problems), the state spacesin different levels, (X and
I), are non-overlapping.Suttons work considersa multi-time MDP
modelin the dimensionof the action spaceonly (action hierarchy)
by defining “options or “temporally extended” actions. The state
spacesin different time-scalesare the samein Suttons model and
the option doesnot determineor changethe underlying reward or
statetransitionstructure.On the otherhand,in our model, the upper
level action A € A is nottemporallyextendedactionfrom the action
spaceof thelower level MDPsbut is a controlatits own right. We can
roughly saythat the lower level policies definedover differentupper
level stateand controlsare semi-Marlov options[31] thatdependon
the upperlevel stateand action.

A similar hierarchicalstructurein the dimensionof only action
spacewas studiedin the Markov slowscale model and the delayed
slowscale Model by Jacobsoret al. [18]. They considertwo level
action hierarchy where the upper level control is not necessarily
an option. However, the upper level control does not changethe
transitionand reward structureof the whole T'-horizon evolutionary
process.

The recentwork by Ren and Krogh on multi-mode MDPs [27]
studiesa nonstationaryMDP, where a variable called the system
operatingmode determinesan evolution of the MDP. However, the



transition of the modesoperateswith the sametime-scalewith the
lowerlevel MDP, makingthewholetransitiondynamicsof the system
operatesn theonetime-scaleandthe reward structureis definedover
the one time-scale.lt is our fundamentalassumptiorthat the upper
level decisionmakingprocessoperatesn a differentandslower time
scalethanthe lower level.

Even though the situation being consideredis totally different,
Pan and Basars work [25] considersa classof differential games
that exhibit possiblemulti-time scale separation.Given a problem
defined in terms of a singularly perturbed differential equation,
differently time-scaledgamesare identified and eachgameis solved
independenthandfrom this a compositesolutionis developed which
is an approximatesolution for the original problem.In our model,
the upperlevel MDP solution must dependon the solution for the
lower level MDPs. Finally, aswe mentionedbefore,we canview our
model as an MDP-basedextensionor a generalizationof Trivedi's
hierarchical performability and dependability model. In Trivedi's
work, the performancemodels(fasttime-scalemodel) are solvedto
obtainperformanceneasures$in our model,this measureorresponds
to the function value of R* with the lower level policy independent
é-function). These measuresare used as reward rates which are
assignedo statesof the dependabilitymodel (slow time-scale).The
dependabilitymodelis thensolvedto obtainperformabilitymeasures.
The lower level is modeledby a continuous-timeMarkov chainand
theupperlevel is modeledby a Markov reward procesgalternatiely,
generalizedstochasticpetri network can be used).We can seethat
if we fix the upperlevel and the lower level decisionrulesin our
modelwith the lower level policy independené-function,an MMDP
becomegqroughly) the model describedby Trivedi — in our model,
the lower level modelis alsoa Markov reward/decisionprocess.

V1. CONCLUDING REMARKS

In the evolutionary processof MDPs, the outcomeof taking an
action at a stateis the next state. Usually the matter of when
this outcomeis known to the systemis not critical as long as the
systemcomesto know the next statebeforethe next decisiontime.
However, this might be anissueon the MMDP model.In our model,
we assumedhat the next stateat the upperlevel is known at the
nearboundaryof the next time step(refer Figure 1), which is quite
reasonabléwe believe). If the effect of takingan action A € A ata
statei € I is immediate which is the next statej € I, P’(y|x,i, A)
will bepossiblygivenas P! (y|x, 7). Thisissueis the problemspecific
matterand needsto be resohed by the systemdesign.

We madethe assumptionthat action spacesat all levels in the
hierarchyare distinct. Even thoughwe believe that this is a natural
assumptionwe speculatethat for some applications,someactions
might be sharedby differentlevels. Our assumptiorcan be relaxed
(with addedcompleity to the model)sothatsomeactionsareshared
by differentlevelsaslong asary actiontakenata statein alevel does
not affect the higher level statetransitions.Developing a model for
the casewherea lower level actionaffectsthe higherlevel transitions
(in a differenttime-scale)is still an openproblem.

An extensionof our modelinto a partially observableMMDP is
straightforvard becausea partially obsenable MDP can be trans-
formed into an MDP with information state space(see, e.g., [1]).
We restrictedthe MMDP formulationto discrete-timedomainin the
presenfpaper Extendingthe modelinto a continuous-timedomainin
parallelto semi-MDP would not be difficult, wherein particular in
this casethe decisionepochT at the upperlevel would be a bounded
randomvariable.

Finally, it would beinterestingo extendour modelinto the Markov
gamesettingsmakingmulti-time scaledMarkov gamesThe “optimal

equilibrium value of game” over a finite horizon at the lower level
gamewill be usedasone-stepcost/revard for the upperlevel game.
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