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Neural System Identification with Spike-triggered

Non-negative Matrix Factorization
Shanshan Jia, Zhaofei Yu, Arno Onken, Yonghong Tian Senior Member, IEEE, Tiejun Huang Senior

Member, IEEE, Jian K. Liu

Abstract—Neuronal circuits formed in the brain are com-
plex with intricate connection patterns. Such complexity is
also observed in the retina with a relatively simple neuronal
circuit. A retinal ganglion cell receives excitatory inputs from
neurons in previous layers as driving forces to fire spikes.
Analytical methods are required to decipher these components in
a systematic manner. Recently a method termed spike-triggered
non-negative matrix factorization (STNMF) has been proposed
for this purpose. In this study, we extend the scope of the
STNMF method. By using retinal ganglion cells as a model
system, we show that STNMF can detect various computational
properties of upstream bipolar cells, including spatial receptive
field, temporal filter, and transfer nonlinearity. In addition, we
recover synaptic connection strengths from the weight matrix of
STNMF. Furthermore, we show that STNMF can separate spikes
of a ganglion cell into a few subsets of spikes, where each subset
is contributed by one presynaptic bipolar cell. Taken together,
these results corroborate that STNMF is a useful method for
deciphering the structure of neuronal circuits.

I. INTRODUCTION

NEURONAL circuits in the brain are highly complex.

Even for the retina, a relatively simple neuronal circuit,

the underlying structure, in particular, functional characteris-

tics, are still not completely understood. However, the retina

serves as a typical model for both deciphering the structure of

neuronal circuits [1], [2], [3], [4], [5], [6] and testing novel

methods for neuronal coding [7], [8], [9], [10], [11]. The

retina consists of three layers with photoreceptors, bipolar

cells, and ganglion cells, together with inhibitory horizontal

and amacrine cells in between, as illustrated in Fig. 1(A).

Ganglion cells (GCs), as the only output neurons of the retina,

send visual information via the optic tracts and thalamus to

cortical areas for higher cognition. Each ganglion cell receives

inputs from a number of excitatory bipolar cells (BCs) as

driving force to generate spikes (Fig. 1(B)).
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Due to the clear input-output relation, the retina is well

suited for studying encoding/decoding of stimulus (visual

optical image) with neuronal responses (spikes in retinal GCs).

For the purpose of system identification, characterizing its

neuronal circuit is not trivial. However, most methods for

deciphering neuronal circuits rely on certain experimental

techniques. Traditionally, one can detect the connection be-

tween neurons with single or multiple electrodes [12], [13].

With the advance of experimental techniques, large-scale

multielectrode array and calcium imaging can simultaneously

record hundreds or thousands of cells [14], [15]. Therefore, a

systematic method for analyzing these cells is highly desirable.

A recent work proposed such a method, termed spike-

triggered non-negative matrix factorization (STNMF), to ana-

lyze the underlying structural components of the retina [16].

Non-negative matrix factorization (NMF) has been proposed

to capture the local structure of a given dataset [17]. It is

widely used in computer vision [18], [19], signal process-

ing [20], [21], [22], machine learning [23], [24], [25], gene

expression [26], and neuroscience [27], [28], [29], [30], [31].

The ability to learn local parts from the whole dataset was

further improved by sparseness constraints [32], [33]. Such a

sparse coding is naturally related to the receptive field structure

of sensory neurons, which is typically found in the visual

system [34], [35].

In the recent study [16], by analyzing the spikes recorded

from the retinal GCs, STNMF was shown to identify physical

locations of subunit bipolar neurons of the previous layer

that are pooling to a target retinal GC. Here we significantly

extend this approach to demonstrate how STNMF can be used

for characterizing various functional properties of the retinal

circuit. It is difficult to demonstrate the power of STNMF

for a biological neuronal circuit, even the retina, as there are

many unknowns due to the limitations of current experimen-

tal techniques for measuring a complete map of the retina.

Therefore, in this study, we first use a clearly defined minimal

network model as proof of principle to explain STNMF, and

then demonstrate it with the retinal GC data.

The rest of this paper is structured as follows. First, we

explain the workflow of STNMF as a general framework for

system identification of neural network using a modeled retinal

ganglion cell in Sec. II. Sec. III shows a complete picture

of neural network components, including synaptic subunit

structures, synaptic connections, and their weights between

presynaptic BCs and postsynaptic GC. Then we demonstrate

a novel feature of STNMF for classification of all the spikes of

a GC into a few subsets of spikes, where each subset of spikes
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Fig. 1. Illustration of retinal neuronal network and ganglion cell model.
(A) Illustration of retinal network. Light signals come into the retina from
photoreceptors (rods and cones), transfer to bipolar cells, and then send the
output as spikes of the ganglion cell. In between, there are horizontal cells and
amacrine cells as inhibitory modulations. (B) A minimal neural network of one
ganglion cell consisted of a few bipolar cells as subunit components. System
identification is to uncover properties of these subunit components. (C) Model
illustration. Stimuli are a sequence of random black-white images in 8x8
pixels. The network has four subunits, where each one has a spatial filter
covering a 2x2 region indicated by the white color (1 in white, 0 everywhere
else), temporal OFF filter and threshold-linear nonlinearity. Summation of the
output of each subunit is pooling to a readout unit, passes the final nonlinearity,
and generates the activity as a spiking probability to determine actual spikes
according to Poisson process.

is mainly contributed by one presynaptic BC. When applying

STNMF to biological data of retinal ganglion cells, similar

results are found as for the artificial data with known ground-

truth. For each retinal ganglion cell, STNMF finds a set of

presynaptic BCs together with their contributed spikes. The

paper concludes with a summary and discussion in Sec.IV.

II. METHODS

For a biological neuronal circuit, even the retina as illus-

trated in Fig. 1(A), there are many unknowns. Thus, we use a

clearly defined minimal network model of the retinal ganglion

cell to explain the framework STNMF as a method of system

identification for neural network.

A. Ganglion cell models

A simulated ganglion cell in Fig. 1 is modeled by a

typical linear-nonlinear model that has been shown to capture

biological retinal neuronal responses [9], [16], [36]. The model

cell has four excitatory subunits with a size of 2 x 2 pixels

each. The setup of the model is equivalent to a neural network

with two layers: an input layer with four subunits and an output

layer with one single readout unit. Inhibitory neurons are not

modeled here, since they are barely triggered to show the effect

on the receptive field of the ganglion cell under the stimulation

condition of white noise.

Input stimuli are given by a sequence of random binary

black or white checkers. Similar to those filters in neurons,

each subunit has a static spatial filter and temporal filter. The

different subunits have different spatial locations, such that

each subunit can only “read” input stimuli at one specific

location, but ignores other parts outside of this location. After

input stimuli are convolved by these subunits with spatial and

temporal filters, filter outputs then pass a rectification stage in

the form of a threshold-linear nonlinearity. The outcomes of

all subunits are summed up with a weight for each subunit and

pooled to the output unit. Finally, the summation is rectified

by another threshold-linear nonlinearity with a higher positive

threshold to get the final output. Note that since the summation

is already positive, a higher threshold is needed to reduce

baseline activity and generate spare spiking activity. In the

end, a spike train is sampled from Poisson process.

Note that the current model is implemented for OFF-type

retinal ganglion cells with subunits having OFF polarity, i.e.,

the linear filter (as a multiplication of spatial and temporal

filter) prefers the negative part of stimulus images. One can

simply tell the polarity by fixing the spatial filter to be positive

(indicated in white, comparing to black-white stimulus in

Fig. 1(C)), and checking the dominant part (the first peak close

to spiking time) of the temporal filter to be positive or negative.

Such a model can be considered as a minimal network of

ganglion cells with four bipolar cells as subunit components.

The recent study [16] used STNMF to identify physical loca-

tions of subunit bipolar cells that are pooling to a target retinal

GC. However, no functional properties of the bipolar subunits

were uncovered there. Here we use this model to demonstrate

how STNMF can be used for characterizing functional prop-

erties of bipolar subunits, which includes spatial and temporal

filters, nonlinearities, synaptic connections and strengths, and

more importantly, subsets of ganglion cell spikes contributed

by each bipolar cell.

B. Spike-triggered analysis

The STNMF method is based on a simple and useful

method for system identification in visual neuroscience, so-

called “spike-triggered average (STA)” [7], which is similar
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to the first order kernel in the Volterra/Wiener kernel series

expansion [37]:

r(t) =

∫
R

k(τ)s(t− τ)dτ

+

∫
R2

h(τ1, τ2)s(t− τ1)s(t− τ2)dτ1τ2 + · · · .

(1)

When stimuli are Gaussian, both kernels k(τ) and h(τ1, τ2)
can be estimated by reverse correlation. Specifically, for the i-

th spike ri occurring at time ti, one collects a segment of

stimuli s(τ)i = s(ti − τ) that preceded that spike, where

the lag τ denotes the timescale of history, into an ensemble

of spike-triggered stimuli {s(τ)i}, then averages it over all

spikes to get the STA filter k(τ) = 〈s(τ)i〉i. When the

stimuli are spatialtemporal white noise, the 3D STA filter

can be decomposed by singular value decomposition to get

the principle temporal filter and spatial receptive field [38].

An illustration of the spatial receptive field of the GC model

obtained by STA is shown in Fig. 2.

C. Spike-triggered non-negative matrix factorization analysis

The procedure of STNMF analysis is similar to the one

described in [16]. Briefly, to reduce computation costs for

STNMF analysis, we first apply a pre-processing for spike-

triggered stimulus ensemble: for the i-th spike, the corre-

sponding stimulus segment s(τ)i is weighted averaged by

the temporal STA filter kt: s̄i = s(τ)i · kt(τ), such that

time dimension τ is collapsed. It results in a single frame of

stimulus image for the i-th spike, termed effective stimulus

image s̄i. With the ensemble of effective stimulus images

S = {s̄i}i for all spikes as in Fig. 2, one can apply NMF

directly in a similar way for face images [17]. Specifically,

S = (sij) is a N × P matrix with indices i = 1, · · · , N for

all N spikes, and j = 1, · · · , P for all P image pixels. We

use a semi-NMF algorithm [39] as

S ≈ WM (2)

where weight matrix W is N×K, module matrix M is K×P ,

and K is the number of modules. Both stimuli S and weights

W can be negative, but modules M are still non-negative.

The idea of semi-NMF can be understood from the per-

spective of clustering. One could consider the data matrix

S = (s1, · · · , sP ) as a collection of P vectors as columns.

Each vector sj is a sequence of effective stimulus images

at a specific spatial location since the number of pixels is

corresponding to the total space of an image. Suppose we

have K-means clustering on S with cluster centroids W =
(w1, · · · , wK). Thus each wk is a sequence of weights, in

which each individual weight wik is the strength between the i-

th spike-triggered (effective) stimulus image and the module k.

Larger wik means stronger correlation between the i-th spike

and the module k. Therefore, the matrix W reflects connection

weights between spikes and modules/subunits. Biologically,

this is equivalent to the synaptic weight from a presynaptic

neuron to a postsynaptic neuron. In this way, STNMF essen-

tially becomes a clustering method by connecting those spikes

average
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Fig. 2. Illustration of STNMF analysis. For each spike, there is an effective
spike-triggered stimulus image. Averaging of this ensemble yields a single
STA filter. STNMF reconstructs the image ensemble by approximating with
a set of modules and a matrix of weights, such that one of the modules is
strongly correlated to one of spikes/images indicated by stronger (black lines)
or weaker (gray lines) weights.

generated by subunits with a set of modules, such that each

module/subunit contributes its corresponding spikes locally at

a specific space as illustrated in Fig. 2.

If we let M = mkj denote cluster indicators, i.e., mkj = 1,

if sj belongs to the cluster k, mkj = 0, otherwise. We can

write the K-means clustering objective function as

FK−means =

P∑
j=1

K∑
k=1

mkj ‖ sj − wk ‖22=‖ S −WM ‖2F ,

(3)

where ‖ v ‖ denotes L2 norm of a vector v and ‖ A ‖ denotes

the Frobenius norm of a matrix A. The above objective can

be alternatively considered as an objective function for matrix

approximation. The difference is that M is not binary but non-

negative M ∈ R+. In addition, a sparseness constraint is added

on the columns of M [40], such that

F =‖ S −WM ‖2F +λ

P∑
j=1

‖ Mj ‖
2
1, (4)

where the sparsity parameter λ = 0.1 throughout the current

study, and ‖ v ‖1 is L1 norm of a vector v. The minimization

of F was implemented as an alternating optimization of W

and M using the NMF Matlab toolbox [41].

III. RESULTS

A. Subunit filters revealed by STNMF

We set up a minimal model of the retinal GC as in Fig. 1(C)

in order to investigate how upstream BCs affect spiking

activity of the target GC (see Methods for details). The GC

model has four subunits as excitatory BCs that have spatial and

temporal filters to compute stimulus. The final spikes of GC

are the only output of this model. With the input of stimulus

images and the output of GC spikes, the question is how

to achieve system identification to find those computational

components used by the model.

Similar to typical experimental protocols [7], [16], we use

visual stimuli consisting of a sequence of white noise as black
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Fig. 3. Exact subunit spatial filters revealed by STNMF. (A) STNMF faithfully
recovers the original subunits when K = 4. (Left) STNMF modules with the
parameter K = 2, 3, 4, 5 when subunits are homogeneous. (Inset) Receptive
field as spatial STA. Color bar indicates positive (red) and negative (blue). For
better visualization, STA is flipped as negative. (B) Heterogeneous subunits
by STNMF. (Top) Model subunits with small and big regions, but STA is
similar. (Bottom) STNMF modules with K = 3, 4. (C) Similar to (B) but
with model subunits overlapped in space.

and white checkers randomly distributed in space and time

domain. Under this stimulation, the receptive field of GC

can be computed from spiking response by a method named

spike-triggered average (STA) [7] (see Methods). The STA is

equivalent to an average characteristic of GCs, so the shape

of STA is a combination of all subunits in space as shown in

Fig. 2. Note that inhibitory neurons are not included in the

model as the surround of receptive field is barely triggered

under the white noise stimulation [16].

However, computations are done by the subunits of

the model in the first case. Extracting details of these

subunits can be achieved by another recently proposed

method, named spike-triggered non-negative matrix factoriza-

tion (STNMF) [16]. The framework of STNMF (see Methods)

is illustrated in Fig. 2. In the previous study [16], STNMF

was shown to identify spatial receptive fields of subunits

of modeled ganglion cells. Here we recap this finding and

additionally show that the working principle of STNMF is to

reveal underlying nonlinear computations of the network.

STNMF can be seen as a type of method for clustering (see

Methods). Similar to other clustering methods, the number

of clusters, here modules K, is unknown. As K is a free

parameter, one has to choose K before using STNMF. Similar

to the previous study [16], the number of meaningful subunit

STASTNMF

K=2

K=3

K=4

K=5

Fig. 4. Recovered subunit temporal filter for different subunits with K =
2, 3, 4, 5. (Inset) STA temporal filter. Same color as in Fig. 3(A).

modules obtained by STNMF is not changed when K is large

enough, i.e., larger than the actual number of subunits used in

the model (Fig. 3(A)). In other words, the result is convergent

when using a large K, which is also seen by the convergence

of Akaike information criterion when K is larger [42]. This

unique advantage of STNMF, together with the constraint

of non-negativity condition, distinguishes STNMF from other

traditional classification methods (see Methods).

With K = 4, STNMF finds the exact number and structure

of subunits. When K = 5, the extra subunit in Fig. 3(A) is

just noise with a low degree of coherence or auto-correlation in

space. This signature can be used to determine the number of

subunits when the actual number is unknown in real biological

data [16].

To test the robustness of STNMF, we apply perturbations

of the subunit structure to the model. The hypothesis is that

the underlying computation is corresponding to the subunit

structure. GC spiking responses are induced by subunit com-

putation. If STNMF only reflects the propertie of stimulus

images, such as using NMF for face images [17], without

taking into account spiking computation, then the change

of model subunits will not change STNMF subunit output.

Instead, when STNMF can capture the underlying computation

of the network, one would expect that STNMF captures the

change of the local structure of subunits. Therefore, we test

the hypothesis that subunits identified by STNMF are changed

when the computation of the network is changed.

We manipulate the spatial structure of subunits as in

Fig. 3(B, C). One perturbation is to have different sizes of

subunits. Fig. 3(B) shows the case where the network has

three subunits: two are in the same size, and one has a doubled

size. By analyzing spikes, a similar STA is obtained. However,

STNMF precisely captures three subunits, although they have

different sizes. Another perturbation is to have overlapped

space between subunits. Fig. 3(C) shows that the network has

three overlapping subunits. Similarly, the STA is a combination

of all subunits. STNMF, on the other hand, can recover all

three subunits separately. In all the cases, stimulus images are

the same, but spikes are different due to changes of subunits

and computations. Taken together, these results show that

STNMF indeed captures the computation within the network,

but not stimulus images themselves.
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Fig. 5. Subunit connection weights revealed by STNMF. (A) Nonlinearities
of each filter. (Left) Nonlinearity of STA filter. (Right) Nonlinearities of each
STNMF subunits with K = 2, 3, 4, 5. Same color as in Fig. 3(A). (B) STNMF
subunit weights. Each column of the weight matrix is corresponding to a
subunit. The sum of each column represents STNMF weight for each subunit.
(C) STNMF weights (green), nonlinearity gains (purple) and

connection weights (black) are identical.

After recovering spatial subunit filters, one can also obtain

the corresponding temporal filter for each subunit (Fig. 4).

Temporal filter can be computed with spatial filter obtained

by STNMF. A sequence of stimulus images is convolved by

each spatial filter and then summed over all pixels to get a one-

dimensional output. Spike-triggered analysis is then applied to

the output to find temporal filters.

Note that temporal filters of subunits are not obtained

by STNMF directly, since here the effect of time has been

removed during pre-processing of STNMF analysis. However,

it is possible to obtain both spatial and temporal modules

simultaneously (see [42]).

B. Subunit connection weight revealed by STNMF

Besides spatial and temporal filters for each subunit, there

is one last component in the model that needs to be identified:

connection weight of each subunit. For this purpose, we cal-

culate the nonlinearity of each subunit by using its spatial and

temporal filter and then averaged as a histogram mean [43].

To do so, stimuli are first convolved with spatial and temporal

filters to obtain a generator signal. It is then binned into 40

bins with variable bin sizes so that each bin contains the same

number of data points. Then the nonlinearity is displayed as

a histogram mean by plotting the average generator signal

against the average spike rate for each bin.

Fig. 5(A) shows that nonlinearities are changing with the

parameter K. When K = 4, all nonlinearities of four subunits

are overlapped, since subunit connection weights used in the

model are the same. Similarly, when K = 5, a weak (flat)

nonlinearity for the fifth subunit occurs due to noise. The

strength of nonlinearity can be characterized by the gain or

magnitude of nonlinearity. The gain reflects how much the

subunit contributes to spiking responses, so it is closely related

to the subunit weight.

As STNMF focuses on all the spikes, one expects that gain

can be revealed by STNMF. Indeed, we find the gain can be

extracted from the weight matrix of STNMF (Fig. 5(B)). By
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Fig. 6. Classification of spikes by STNMF. (A) Each spike can be seen
as a contribution from one subunit Mj . (B) Each spike is labeled with a
corresponding subunit according to the minimal value of STNMF weight
per row. Each column aligns with a subunit, and each row with a spike.
(C) Histogram of weight minimums from four subsets of spikes showing a
uniform distribution across four subunits. (D) SubSTA spatial and temporal
filters computed from one subset of spikes with STA analysis.

averaging each column of the weight matrix, one can obtain

a weight Wj for each subunit j. Interestingly, the weight

Wj is identical to the connection weight of subunit j. All

of these three measures, STNMF weight, nonlinearity gain,

and connection weight, are matched very well (Fig. 5(C)).

These results indicate that STNMF subunit weights provide

a good estimate for actual subunit connection weights. Such

information is difficult to obtain in biological data due to

limitations of experimental techniques [16].

C. Classification of spikes by STNMF

In the GC model, final spikes are contributed by four

subunits, thus, each spike could be induced by one subunit.

Inspired by the clustering viewpoint of STNMF, one may

wonder if STNMF can be used to classify all the GC spikes

to four subsets of spikes, where each subset is mainly, if not

completely, contributed by one specific subunit.

STNMF weight matrix is subunit-specific for every col-

umn, but it is also spike-specific for every row. As each

row corresponds to one individual spike, every spike can be
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labeled or classified according to one subunit as illustrated

in Fig. 6(A). Note that the model is designed for OFF-type

GCs, and since subunits are always non-negative, one can take

the minimal value per row in weight matrix wij , for instance

min(w1k) = minj(w1j) for the first row, i.e., the first spike

as in Fig. 6(B). The minimum index j is this spikes label for

the subunit k. The value of the minimum weight can measure

the contribution made by this subunit.

Now we can classify every spike into one specific k-th

subunit Mk since k = minj{1, 2, 3, 4}. For instance, for the

first spike, spike 1 is associated with the first row and the

minimum value is at the 3rd column. Therefore, the first spike

should be associated with the 3rd subunit M3 with k = 3.

After doing this loop for all rows/spikes, we can label each

spike with a specific subunit. For this particular model cell,

we obtain four subsets of spikes for four subunits respectively.

For every spike, there is a min(weight). The histogram of these

min(weight) shows that these weights are indeed uniformly

distributed across four subunits as in Fig. 6(C), meaning the

connection weight of every subunit is the same as in the model.

Then for each subset of spikes, we compute STA to get

spatial and temporal filters of each subunit as in Fig. 6

(D). These spatial filters are similar to STNMF subunits.

We name these filters as “subSTAs”. As subSTA reflects the

contribution of one subunit to GC spikes, one can test the

robustness of subSTA by modifying strength of the subunit

connection. We manipulate the connection weights of four
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Fig. 8. Effect of different temporal filters on STNMF results. (A) Hetero-
geneous temporal filters with different amplitudes (left) and delays (right).
Spatial STAs are similar. (B) STNMF subunit spatial and temporal filters. Note
both amplitude and delay changes are recovered by STNMF. (C) Matching
STNMF weight with nonlinearity gain and connection weight. (D) Spatial and
temporal filters of STNMF subSTA computed from each subset of spikes. Note
here the polarity of STNMF subSTAs is opposite to STNMF subunits that are
always positive.

subunits as [1.1, 0.9, 1.1, 0.9] and [1.2, 1.4, 0.6, 0.8]. Three

measures, STNMF weights, nonlinearity gains and connection

weights, are tightly matched (Fig. 7). As a result, the subSTAs

computed from subsets of spikes classified by STNMF are also

faithfully similar to the subunits used in the model.

With pre-processing of data for STNMF, we obtain the

ensemble of effective stimulus images, where temporal corre-

lation can be removed. Then the question is that whether the

results obtained by STNMF could be changed when temporal

filters in the model change. In order to test this, we use two

different perturbations for temporal filter: different amplitudes

and different delays (Fig. 8(A)). Similar to the previous study

[16], results are very robust. All properties of subunits, such

as spatial and temporal filters (Fig. 8(B)), and overlapped

STNMF weight, nonlinearity gain and connection weight

(Fig. 8(C)), are robust. In addition, the subSTAs obtained by

classified spikes are also faithfully reproduced. Using spatial

subSTAs, we obtain temporal components, which are closely

matched to subunit temporal filters designed in the model

(Fig. 8(D)).

D. Application of STNMF to real retinal data

We apply STNMF to retinal GC data published previ-

ously [16], [42]. Briefly, salamander retinal GCs were recorded

with a multielectrode array using similar stimulation of spa-

tiotemporal white noise as in the model above. An overview

of application of STNMF to one GC is shown in Fig. 9,

which is similar to pervious results [16]. Standard spike-

triggered analysis can get spatial receptive field, temporal
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Fig. 9. Overview of biological properties of a ganglion cell identified by
STNMF. (A) STA spatial filter, temporal filter, and nonlinearity. (B) STNMF
subunit spatial filters, temporal filters, and their nonlinearities. Circles are
outlines fitted with 2D Gaussian. (C) SubSTA spatial filters from subsets
of classified GC spikes. (D) Reconstructed STA spatial filter by fitting with
STNMF subunit (red), STNMF weights from weight matrix (green) and
STNMF subunit gain from nonlinearity (orange), respectively. These three
measures are highly correlated (right).

filter, and nonlinearity (Fig. 9(A)). For this particular cell,

STNMF can find nine subunits, i.e, BCs converged to this

GC. Computational properties of these BCs include spatial

receptive field, temporal filter, and nonlinearity (Fig. 9(B)).

All the spikes from this GC can be further classified into

nine subsets of spikes according to each subunit. Another STA

analysis can get subSTA spatial filter for each subunit. Similar

to above results, these subSTAs are highly matched to subunit

receptive fields identified by STNMF (Fig. 9(C)).

Synaptic strength of each subunit can be computed in three

different ways. 1) Weights of fitting GC receptive field with

all subunit receptive fields; 2) Subunit weights calculated from

weight matrix of STNMF as above; 3) Subunit gains calculated

from each nonlinearity of subunit. Synaptic strengths from the

last two measures can also be used to fit the GC receptive field,

which results in a similar result (Fig. 9(D, left)). Although

there is no ground-truth about actual synaptic weights between

BCs and the GC, all these three measures are highly correlated

as in Fig. 9(D, right).

Once all GC spikes are classified into subsets of BC spikes,

one can test if these BC spikes are contributed by one actual

bipolar cell. The dataset in [16] provides such a possibility as

there is one simultaneously recorded one bipolar cell with a

large population of ganglion cells. One example is shown in

Fig. 10(A) with the receptive fields of BC and GC. Again,

subunits identified by STNMF and subSTAs computed by

subsets of subunit spikes are highly overlapped. The 1st

subunit is highly overlapping with the recorded BC, which

indicates actual connection between BC and GC.

As GC spikes can be classified into subsets of spikes for
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Fig. 10. Subsets of spikes contributed by BC. (A) Receptive fields of BCs
and GC (top). STNMF subunit receptive fields (middle). SubSTA computed
from subsets of classified GC spikes. (B) Subsets of GC spikes classified
by STNMF. The 1st spike train is contributed by the BC together with the
original GC spike train. BC data taken from Ref. [16].

each BC in Fig. 10(B), one can test if there is a functional

connection between the 1st subunit and recorded BC, apart

from that they are physically located at the same place. To

explore this, we calculate correlation coefficient (CC) between

the BC membrane potential and subunit spike trains. We find

that there is stronger correlation between the 1st subunit and

BC (CC=0.14), compared to correlations of other subunits (

CC=0.02± 0.01,mean ± std).

Correlation coefficient is a measure of linear correlation,

which can miss non-linear correlation. To investigate whether

there is non-linear coupling between the BC membrane po-

tential and other subunits, additional measures of dependence

are needed. The relationship between subunits and the BC

membrane potential is complicated by the fact that subunit

activity consists of a discrete number of events (i.e. neuronal

spikes), whereas the BC membrane potential is a continu-

ous quantity. We analyze this relationship computing spike-

triggered average of the BC membrane potential, binning spike

trains into short time windows (33 ms) and modeling the joint

distribution of spike counts and membrane potential.

First, we calculate spike-triggered average of BC membrane

potential and find that it gives an amplitude for the 1st subunit

as 1.35 and other subunits as 0.14±0.08. Then, we also apply

vine copula with various parametric copula families, which is

a general statistical model of joint distributions representing

couplings between discrete signals, e.g. subunit spike counts,

and continuous signals, e.g. BC membrane potential. When

signals are mixed as discrete quantities or continuous quanti-

ties, vine copulas as models of the mixed joint distributions

is quite useful [44]. These models include various choices for

parametric bivariate copulas. Here, using Gaussian, student t

and rotated Clayton copula families, we use canonical vine to

extend these bivariate models to multivariate models [44]. We

fit these models to mixed data and use copula parameters to
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Fig. 11. Subunit spikes induced by bipolar cells but not driven by shared stimuli. (A-D) Correlated spikes between same subunits. (A) Pair of OFF-OFF
GCs with overlapping receptive fields and identical OFF-type temporal filters. (B) Subunits obtained by STNMF for this pair of GCs. Three green pairs of
subunits shared between these two GCs. (C) Three subsets of spikes corresponding to three pairs of BCs colored in green in (B). Original GC spikes are
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three subsets of spikes in (C). (E-H) Similar to (A-D) but uncorrelated spikes between different subunits for a pair of BCs with one OFF and one ON type
of GC. Three pairs of BCs colored in green are overlapped, but have different identities as ON and OFF BCs as indicated by their temporal filters in (E).
Correlations between BCs are close to zero.

quantify coupling strengths. For all copula families, coupling

strength of zero corresponds to independence. Here we find

that vine copula gives a coupling strength for the 1st subunit as

7.12 and other subunits as 0.19± 0.18. These results indicate

that subset of spikes from the 1st subunit is indeed contributed

by this specific BC.

Further investigation of coupling between subunits can be

done at the population level. For each GC, there are a few

subunits found by STNMF. One can look at pairs of two GCs,

such that there are some overlapped subunits as illustrated by

spatial receptive fields in Fig. 11(A), where one pair of GCs

with the same type of fast OFF GCs [16] is shown, together

with another pair of GCs with different cell types as fast OFF

and ON cells. Such information about cell types can be seen

by their temporal filters, where fast OFF GCs have identical

filter shape, and ON GC has positive polarity at its first peak

in Fig. 11(B,F).

For each GC, a few subunits revealed by STNMF are shown

in Fig. 11(C). There are considerable overlapped subunits

in a pair of GGs. When subsets of spikes are obtained by

STNMF, there is a possibility that correlation between spikes

is induced by overlapped spatial location, rather than produced

by the same BC. Since spikes driven by the same stimulus

input are highly correlated, in particular when spatiotemporal

white noise stimuli are replaced by spatially uniform white

noise [43], two trains of subunit spikes could be correlated

when these two subunits are located in the same space. As

a result, they read the same stimuli at this spacial location.

Such a possibility can be examined by a population analysis

of GCs.

For the same type of GCs with overlapped subunits, the

sample pair shown in Fig. 11(A) has three overlapped subunits
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in Fig. 11(B). Therefore, there are three shared subunit spike

trains from each GC in this pair as in Fig. 11(C). We find

that for each pair of overlapped subunits, their spike trains are

highly correlated as characterized by correlation coefficient

and vine copula coupling strength as in Fig. 11(D). However,

the result obtained from different types of GCs is different as

shown in Fig. 11(E-H). The sample pair shown in Fig. 11(E)

has one OFF cell and one ON cell. This pair also shows highly

overlapped subunits that have three spike trains classified by

STNMF for each GC. In contrast to the pair of the same cell

type, there is no correlation in subunit spike trains between

overlapped subunits. The biological view is that there are

ON BCs in ON GC and OFF BCs in OFF GC. Although

overlapped ON and OFF BCs are located in close-by spatial

location due to the 3D structure of the retina, they are driven

by the same stimulus but generate different spikes only when

stimuli present different parts: bright images for ON spikes v.s.

dark images for OFF spikes. As a result, these two spike trains

from ON and OFF BCs are not correlated. In other words, they

are decorrelated due to the uncorrelated stimuli.

Taken together, these results show that correlations between

subunit spikes are not driven by stimuli, but by the same

BC identified by STNMF. These results confirm and extend

the previous observation [16], where the identity of BC was

justified by subunit physical location only. Our results here

go one step further to show that the identity of BCs can be

detected by means of functional properties, i.e., subsets of GC

spikes contributed by the BC.

IV. DISCUSSION

In this study, we propose spike-triggered non-negative ma-

trix factorization as a useful method for system identification

of neuronal circuits. With a simple network model of retinal

ganglion cells with clearly defined subunit components, con-

nections and weights, STNMF is able to reveal all these struc-

tural components within the network. Furthermore, STNMF

allows us to classify the whole set of spikes of a ganglion cell

into a few subsets of spikes, such that each subset of spikes

is mainly contributed by one specific subunit. When applying

STNMF to the retinal data, biological network components

can be revealed. In particular, classification of ganglion cell

spikes shows that a subset of spikes is mainly contributed by

one bipolar cell that connects to the target GC.

Besides confirming what has been shown in the previous

study [16], where STNMF detected a layout of physical loca-

tion of bipolar cells, here we significantly extend the power of

the STNMF approach by analyzing STNMF weight matrix. As

a result, weight matrix reflects functional properties of bipolar

cells, including their synaptic weights and contributed spikes

for the downstream ganglion cell. Therefore, STNMF is useful

for uncovering relevant functional and structural properties of

neuronal circuits.

A. Neuronal circuit at single cell level

From the viewpoint of postsynaptic neuron, properties

of neuronal circuits revealed by STNMF include locations

of presynaptic neurons and their synaptic connections and

strengths/weights.

Structural components of single postsynaptic neuron are

revealed as a layout of presynaptic neurons. The organization

of such a layout could be complex or simple. Depending on the

type of neurons and animal species, the number of presynaptic

neurons could be very large or small. For instance, in the

cerebellum, Purkinje cells have a large dendritic tree with

thousands of presynaptic connections [45], whereas unipolar

cells have only one presynaptic fiber [46], and granular cells

have an average of four presynaptic fibers [47]. In salamander

retina that was used in the current study, there are a few bipolar

cells per ganglion cell [16].

Synaptic connections and weights are more difficult to

identify. Traditionally, direct measure these properties is es-

tablished by pairwise (or triple and more) electrodes recording

from pre- and post-synaptic neurons [12], [13]. Here we find

that STNMF can identify these properties using simulated

cells. Verification of this observation by experiments is possi-

ble for large-scale recordings of spiking and/or imaging of

calcium signal activity of a population of neurons, where

inferring connections between neurons is feasible, for example,

by means of graph theory or complex network analysis [48].

B. Classifying spikes of postsynaptic neurons

A postsynaptic neuron receives signal from a set of presy-

naptic neurons in multiple channels. Each presynaptic signal is

ubiquitous in that the information from input to output is trans-

formed in nonlinear fashion. Such nonlinearity is evidenced

by spiking activity of a neuron, where incoming signal with

mixed positive and negative signs is eventually transferred

to a sequence of digital spikes. Such a feature becomes a

fundamental principle of neuronal computation since spiking

mechanism was uncovered 60 years ago [49].

STNMF implements the analysis of every single spike for

one postsynaptic neuron. As a result, STNMF naturally labels

every spike to one of the presynaptic neurons during the

process of factorization. The relationship between spikes and

presynaptic neurons is encoded in the STNMF weight matrix.

Here we decoded this information and classified all the spikes

of a ganglion cell into a few subsets of spikes such that one

subset of spikes is corresponding to one presynaptic neuron.

In other words, these subsets of spikes are closely correlated

to activities of presynaptic neurons.

Although the activity of a bipolar cell in the retina is

traditionally viewed as graded signal without spikes, it could

still generate large deflections of the membrane potential that

is similar to a spike event [50], we find that there exists strong

correlation between its membrane potential and spikes. Both

are generated by the stimulus of white noise checkers with a

size of 30 µm. Therefore, it is possible, when stimuli are

strong enough, to trigger strong activity in BC membrane

potential, which, in turn, can produce spiking activity in the

connected GC. Indeed, one recent study found that one BC

could trigger ganglion cell spikes under white noise bars

stimulus by fitting a two-layer linear-nonlinear network similar

to the model used in our current study [51]. As for other parts
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of the brain, traditional view is that one presynaptic neuron

may not be enough to drive a postsynaptic neuron to fire a

spike. However, a caveat here is that dendritic spikes could be

larger than what we expected [52].

Simultaneous recording of upstream BC and downstream

GC in the retina is ideal to test the identity of subunits revealed

by STNMF [16]. Our current results go one step further to

uncover functional identity and potential contribution of BCs

for their downstream GCs. Recent advance in experimental

techniques make it possible to record simultaneously sig-

nals in soma and multiple dendrites with both imaging and

electrophysiology [53], [54]. This protocol could provide an

interesting test for the utility of STNMF.

C. System identification of neural networks

Retinal ganglion cells carry out visual computations from

stimulus to responses. One of the central problems is to find

encoding and decoding principles between stimulus and re-

sponse [55], for which a number of possible methods of system

identification have been proposed in both visual neuroscience

and computer vision [10], [56], [57].

Input-output relation of sensory information has been tra-

ditionally modeled by dynamic functions, for example, the

Laguerre-Volterra model [58], [59], or trainable network mod-

els through unsupervised (e.g., spike-timing dependent plas-

ticity) [60] or supervised learning [61]. In contrast, detailed

neuroscience knowledge provides a bottom-up approach with

neural network models [57], [62], whereas underlying network

structure needs to be cleverly designed by hand or selected

from a massive pool of possible network architectures [63].

It has been observed in neuroscience experiments that

specific features are encoded by specific neurons in visual

systems, and also in other sensory systems [64]. NMF itself

can be viewed as a generative model [65], whereas convo-

lutional neural network is supervised. However, both types

of methods can be used to extract underlying features from

data. Their potential usages for modeling input-output relation

is evident: local structure features play an important role in

computation [16], [66], [67]. Indeed, recent studies show that

some NMF variants can go beyond shallow layered networks,

like our modeled retina network with only two layers, to use a

framework of deep architectures [68], [69], [70], [71], [72] to

learn a hierarchy of attributes of given datasets. Combination

of NMF and deep convolutional neural network holds promise

to uncover hierarchical structures of neural networks [73],

[74], [75], [76], [77]. Therefore, further extension of our

current STNMF is likely to be fruitful for understanding deep

architecture of neuronal systems in the brain.
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