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Abstract

Autism spectrum disorder (ASD) is an age- and sex-related neurodevelopmental disorder that 

alters the brain’s functional connectivity (FC). The changes caused by ASD are associated with 

different age- and sex-related patterns in neuroimaging data. However, most contemporary 

computer-assisted ASD diagnosis methods ignore the aforementioned age-/sex-related patterns. In 

this paper, we propose a novel sparse multiview task-centralized (Sparse-MVTC) ensemble 

classification method for image-based ASD diagnosis. Specifically, with the age and sex 

information of each subject, we formulate the classification as a multitask learning problem, where 
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each task corresponds to learning upon a specific age/sex group. We also extract multiview 

features per subject to better reveal the FC changes. Then, in Sparse-MVTC learning, we select a 

certain central task and treat the rest as auxiliary tasks. By considering both task-task and view-

view relationships between the central task and each auxiliary task, we can learn better upon the 

entire dataset. Finally, by selecting the central task, in turn, we are able to derive multiple 

classifiers for each task/group. An ensemble strategy is further adopted, such that the final 

diagnosis can be integrated for each subject. Our comprehensive experiments on the ABIDE 

database demonstrate that our proposed Sparse-MVTC ensemble learning can significantly 

outperform the state-of-the-art classification methods for ASD diagnosis.

Keywords

ABIDE; autism spectrum disorder (ASD); diagnosis; high-order functional connectivity (FC); 
machine learning; multiview multitask (MVMT) learning; sparse multiview task-centralized 
(Sparse-MVTC) learning

I. INTRODUCTION

A. Background

AUTISM spectrum disorder (ASD) is a mental disorder characterized by the impairments 

including social and communication difficulties, restricted interest, and repetitive behavior. 

According to the report released by the centers for disease control and prevention, one out of 

68 American children suffer from ASD, which makes the disease an important public health 

issue and also financial burdens for both the family and the society [1].

In recent years, resting-state functional magnetic resonance imaging (rs-fMRI) has become a 

pivotal tool in understanding the mechanism of ASD, as the imaging technique is capable of 

identifying biomarkers potentially for ASD diagnosis and follow-ups [2]–[8]. It reveals the 

interactions between activities of individual brain regions when a subject is placed at the 

resting state. The brain activities are observed through the changes in the cerebral blood 

supply, which are referred to as the blood-oxygen-level dependent (BOLD) signals. Since 

the BOLD signals are sensitive to spontaneous and intrinsic neural activities within the 

brain, they are used for noninvasive and effective observations toward ASD at the whole-

brain level [9]. Specifically, functional connectivity (FC), which is defined as the correlation 

of temporal BOLD signals in different brain regions, exhibits the functional association of 

the structurally segregated brain regions [10]. In the literature, FC is often modeled as a 

network using the graph theory. A vertex in the network/graph is assigned to a specific brain 

region, and an edge between two vertices characterizes the FC between the corresponding 

brain regions. Since the pathology may disrupt the FC network, we are able to extract 

important biomarker information (i.e., features) from the FC network for the sake of 

understanding and diagnosing ASD.

Recent studies have discovered that ASD is an age- and sex-related neurodevelopmental 

disorder [11]–[14]. Alaerts et al. [15] investigated age-related FC changes in functional 

circuitry of posterior superior temporal sulcus (pSTS), and reported the complexity of 
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developmental patterns of the pSTS circuitry. Besides, Wiggins et al. [16], [17] observed that 

ASD patients differ from normal controls regarding their age-related changes in the FC of 

the default-mode networks. Moreover, ASD is far more prevalent in males compared to 

females, with the ratio from 3:1 to 4:1 [18]. Alaerts et al. [19] also found that males and 

females have different neural correlates with ASD, characterized by predominant hypo-

connectivity patterns in males but hyper-connectivity patterns in females.

The aforementioned studies are based on the conventional FC analysis, in which pairwise 

Pearson’s correlation coefficient is often calculated as the FC between brain regions. 

Although the Pearson’s correlation is easy to compute, it utilizes the mean regional BOLD 

time series to derive only a single scalar for measuring the FC, which ignores the complex 

and high-order interactions of the brain regions. In order to better reveal the hidden 

interactions within the BOLD signals, Zhang et al. [20] proposed high-order FC (HOFC), in 

which the connectivity of the brain regions is defined by the correlation of correlations. 
Specifically, given a region under consideration, its correlation feature vector is first 

calculated by following the conventional FC analysis method to measure its correlations 

with all other regions in the brain. After that, a high-level correlation is calculated between 

the correlation feature vectors (i.e., FC profiles) of a pair of regions, thus obtaining their 

HOFC. Conclusively, FC can directly reflect the temporal correlation of the BOLD signals, 

whereas the HOFC does not. On the other hand, HOFC integrates knowledge from more 

brain regions and thus provides higher-level functional interaction knowledge compared to 

the FC. In the context of neuroscience, HOFC focuses on the correlation of the 

topographical connectivity properties and has several advantages, i.e., more sensitive to 

group difference, able to better capture individual variability, and able to show more 

prominent modular structures [20]. Therefore, FC and HOFC have different statistical 

properties and can be complementary to each other in neural disease diagnosis.

B. Motivation

In order to account for the relationship of ASD with age and sex, one can partition subjects 

into different age/sex groups. Specifically, each group acts as a task, while computer-assisted 

ASD diagnosis upon all groups can be solved by multitask learning (MTL). The rationale is 

that, by learning upon multiple closely related tasks jointly, we are able to utilize task-task 

relationship and attain more precise classification for all groups [21]–[26]. Meanwhile, since 

FC and HOFC are complementary to each other for ASD diagnosis, they are often perceived 

as two different views that should be utilized simultaneously in the multiview learning 

(MVL) [27]–[29]. In this way, the multiview multitask (MVMT) learning scheme is derived 

for more accurate ASD diagnosis, such that individual learning tasks with coupled views of 

features can be jointly considered.

In the literature, several solutions to MVMT learning have been presented. He and Lawrence 

[30] proposed a graph-based iterative algorithm IteM2, which fully utilized information 

among the multiple tasks and multiple views for MVMT problems; Zhang and Huan [31] 

proposed regMVMT for MTL on the multiview data, in which both view-view co-

regularization and task-task similarity are considered simultaneously; Jin et al. [32] 

proposed CSL-MTMV for MTL on multiview data by utilizing shared structure learning. 
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Although these methods integrate MTL and MVL together, they still have several 

shortcomings that make them inapplicable to our problem. First, the time complex of IteM2 

is cubic to the number of tasks whereas regMVMT requires a large matrix to store the data, 

which makes both methods insufficient to be applied to large number of tasks. Second, both 

methods do not integrate feature selection in the learning criteria and, therefore, they cannot 

identify disease-related features in the neuroimaging applications. Third, regMVMT 
assumes that all tasks should be similar and CSL-MTMV ignores intertask relationship 

between task pairs, which is not appropriate in this paper.

The aim of this paper is to develop an efficient MVMT ensemble classification method for 

individualized ASD diagnosis. We group subjects into T individual groups/tasks according 

to their age/sex information, and utilize both views of FC and HOFC for the classification. 

In order to address the computation as well as joint feature selection issues in MVMT, we 

propose a novel sparse multiview task-centralized ensemble classification method (Sparse-

MVTC-E) in this paper. Sparse-MVTC-E utilizes a novel learning mechanism, namely, task-

centralized learning. Specially, at each turn, we first pick up one task as a central task and 

treat others as the auxiliary tasks. We then learn T classifiers, corresponding to the selected 

central task and the T — 1 auxiliary tasks, to classify subjects in all groups. The sparse 

learning-based classification utilizes the task-task and view-view relationships between the 

central task and each auxiliary task for better diagnosis. As each task can be regarded as a 

central task in turn, we can perform the above procedure for Z (Z ≤ T) times nonrepeatedly. 

In this way, we acquire Z classifiers for each group in the training stage. In the testing stage, 

we associate the subject with a specific group according to the age/sex information, and 

obtain the classification results from the Z classifiers corresponding to different groups/

tasks. Then, a selective ensemble strategy is utilized to derive the final diagnosis of the 

testing subject. Note that, in our method, the complex relationships between all tasks are 

decoupled by using the task-centralized learning mechanism; thus, the computational 

efficiency of the proposed method can be greatly improved. From the perspective of MTL, 

the central task and auxiliary tasks in Sparse-MVTC share common features, which can be 

considered as an inductive bias. Besides, the constraint upon the central-auxiliary relation in 

(4) also produces a specific inductive bias. Both biases act as regularizers for the 

optimization procedure [33]. The proposed Sparse-MVTC is therefore superior to the 

traditional single-task learning methods according to [33].

The rest of this paper is organized as follows. In Section II, we propose the Sparse-MVTC-E 

learning method for ASD classification. In Section III, we present the experimental results, 

as well as the discriminant FC and HOFC features, for ASD diagnosis. In Section IV, we 

discuss some related works with our studies. In Section V, we draw the conclusion of this 

paper.

II. METHOD

The notations used in this paper are summarized as follows. We denote matrices with 

boldface uppercase letters, vectors with boldface lowercase letters, and scalars with normal 

italic letters, respectively. Specifically, we denote the identity matrix as I, and its ith column 

vector as ei where the ith element is one and others are all zeros. Obviously, we can obtain 
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the ith row of a matrix X by the operation éi·X, and the jth column of X by the operation X · 
ej. We further denote the transpose operator, the trace operator, and the inverse of a matrix X 
as X′, tr(X), and X−1, respectively. We also use vec(X) to vectorize the matrix X to a single 

column vector.

Fig. 1 provides an overview of our proposed Sparse-MVTC-E classification framework. 

There are four main steps in the pipeline: 1) extraction of the FC and HOFC features; 2) 

subject grouping or task partitioning according to the age and sex information; 3) Sparse-

MVTC learning upon all tasks; and 4) an ensemble strategy to make the final diagnostic 

decision.

A. Sparse Multiview Task-Centralized Model

Assume that there are T supervised learning tasks for the data with V views. In the tth task (t 
= 1, 2,…, T), we have Nt training subjects {xi,yi}, i = 1,…Nt. We define 

xi = xi
1 ′, …, xi

V ′ ′ ∈ ℝD to be the vector to include all features of the V views for the ith 

subject. Each view has Dv features D = ∑v = 1
V Dv . yi ∈ − 1, 1  is the class label of xi (e.g., 

“−1” for healthy controls, and “1” for patients). Let Xt = x1, …, xNt
′ ∈ ℝ

Nt × D
 and 

yt = y1, …, yNt
′ be the data matrix and the training label vector for the tth task, respectively. 

The vector wt
v ∈ ℝ

Dv indicates the weights of all features in the vth view to linearly regress 

the labels in the tth task. We further define wt = wt
1 ′, …, wt

V ′ ′ ∈ ℝD and 

W = w1, w2, …, wT ∈ ℝD × T.

In our proposed task-centralized strategy, we select a certain central task from all tasks, and 

treat the others as the auxiliary tasks. Specifically, suppose that the tth (t = 1, 2,…,T) task is 

treated as the central task. The proposed task-centralized learning model can be formulated 

as the following optimization problem:

min
w

Lt xt, wt + ∑
s = 1
s ≠ t

T
Ls xs, ws + R wt; ws s = 1, s ≠ t

T (1)

where Lt(·) and Ls(·) are the loss functions for the central and the auxiliary tasks, 

respectively. R wt; wS S = 1, s ≠ t
T  enforces the regularization regarding the relationships 

between the central task and all auxiliary tasks in the multiview setting.

The task-centralized learning in (1) treats the central task and the auxiliary tasks with their 

separate loss functions. Several methods can be used for computing Lt(·) and Ls(·), including 

least squared error loss, hinge loss or logistic loss. In this paper, we use least squared error 

loss to compute Lt(·) and Ls(·) particularly
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Lt Xt, wt = 1
Nt

yt − ∑
v = 1

V
Xt

vwt
v

2

2
(2)

Ls Xs, ws = 1
NS

ys − ∑
v = 1

V
Xs

vws
v

2

2
, s = 1, 2, …, T , s ≠ t . (3)

The denominators Nt and Ns are the numbers of the training subjects in the respective central 

and auxiliary tasks.

The well-defined regularization can produce a better posed problem for optimization. In this 

multiview task-centralized learning model, we devise three parts for the regularization 

R wt; ws s = 1, s ≠ t
T  in (1), i.e., R = γR1 + ηR2 + θR3. These three terms (R1, R2, and R3) 

will be detailed below.

1) Central-Auxiliary Joint Feature Selection: In the classical sparse MTL, a small 

number of features are selected and then shared by all tasks [34], [35]. In these methods, the 

joint feature selection is often implemented by the l2,1 –norm regularization upon the 

weights of the features across all the tasks. In this paper of MVTC learning, however, we 

only consider the joint feature selection between the central and the auxiliary tasks. We 

propose the central-auxiliary joint feature selection strategy by introducing the following 

regularization into our Sparse-MVTC model:

R1 wt; ws s = 1, s ≠ t
T = ∑

s = 1
s ≠ t

T
cs, t ∑

v = 1

V
‖Ws, t

v ‖2, 1 (4)

where Ws, t
v = ws

v, wt
v ∈ ℝ

Dv × 2
, and cs,t measures the relationship between the two tasks.

If the tth central task and the sth auxiliary task are more similar, the joint feature selection 

using ∑v = 1
V ‖Ws, t

v ‖2, 1 across the two tasks should have a larger weight cs,t. To this end, we 

compute the coefficient cs, t = exp −‖Xt − Xs‖
2/σ2 , where 

Xt = 1/Nt ∑i = 1
Nt xi, Xs = 1/NS ∑ j = 1

Ns x j, and σ2 = 1/ Ns × Nt ∑i = 1
Ns ∑ j = 1

Nt ‖xi − x j‖
2 .

Minimizing (4) ensures joint selection of a small number of common features across the two 

tasks, by enforcing every auxiliary task to share the commonly selected features with the 

central task according to their varied similarity measures with respect to the central task. In 

this sense, the central-auxiliary joint feature selection strategy is quite different from the 

conventional l2,1-norm method.

Wang et al. Page 6

IEEE Trans Cybern. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2) Consistency of Central-Auxiliary Feature Weighting: The weights of the 

selected features are essentially important to derive the linear discriminant function that is 

capable of diagnosing a new subject. Although the improved joint feature selection 

regularization in R1 wt; wS S = 1, s ≠ t
T  requires each auxiliary task sharing similar features 

with the central task with different weights, we go one step further to ensure that, if the 

auxiliary task is highly similar with the central task, the weights learned for the selected 

features in the auxiliary task should also be similar with those in the central task. Otherwise, 

they will be less similar. In the multiview setting, we can formulate the above constraint as 

follows:

R2 wt; ws s = 1, s ≠ t
T = ∑

s = 1
s ≠ t

T
cs, t ∑

v = 1

V
‖ws

v − wt
v‖2

2
(5)

where cs, t = exp −‖Xt − Xs‖
2/σ2  is the coefficient of the term ‖ws

v − wt
v‖2

2
, both 

Xt = 1/Nt ∑i = 1
Nt xi and Xs = 1/NS ∑ j = 1

Ns x j are the average data vector in the tth and sth 

tasks, respectively, and σ2 = 1/ Ns × Nt ‖∑i = 1
Ns ∑ j = 1

Nt xi − x j‖
2. If an auxiliary task (the sth 

task) is similar with a central task (the tth task), Xt and XS will be similar and cs,t thus takes 

larger values. Intuitively, minimizing (5) makes wS
v and wt

v be close to each other in such a 

case. On the other hand, if the auxiliary task is unrelated with the central task, cs,t will take 

very small values and then wS
v and wt

v tend to be different. Conclusively, the introduction of 

cs,t allows less contribution of ∑v = 1
V ‖ws

v − wt
v‖2

2
 to the objective function if the sth task is 

less similar with the central one. The regularization also allows us to skip the assumption in 

many existing MTL methods such as IteM2 [30] and regMVMT [31] that all tasks should be 

similar. Equation (5) is also different from [ 36, eq. (2)], where the relatedness of all tasks 

are controlled by a fixed user defined value λ2 and should thus be in the same level. The 

relatedness of multiple tasks is various in our method and they are determined adaptively by 

the data distribution of different tasks.

3) Consistency Across Views: Although the conventional FC is widely used for 

biomarker identification in many neuroscience applications, HOFC shows its merit by 

providing additional pathology information effectively [20]. Therefore, we consider FC and 

HOFC as two different views of the same brain and take the relation between them into 

account. Since the discriminant functions for different views of a subject tend to yield the 

same classification results, the difference between the outputs of the two views should be 

minimized (i.e., a small value for ‖Xu
i wu

i − Xu
jwu

j‖2, u = 1, 2, …, T) . Therefore, with u for the 

task index, we derive the respective regularization term
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R3 wt; wS S = 1, s ≠ t
T = ∑

u = 1

T 1
Nu

∑
i, j = 1

V
‖Xu

i wu
i − Xu

jwu
j‖2 . (6)

In summary, we have the following overall regularization term:

R wt; ws s = 1, s ≠ t
T = γR1 wt; ws s = 1, s ≠ t

T + ηR2 wt; ws s = 1, s ≠ t
T

+ θR3 wt; ws s = 1, s ≠ t
T

(7)

where γ, η and θ are the non-negative scalar weights. In this way, we derive the final model 

for Sparse-MVTC as follows:

J wt, ws = ∑u = 1
T 1

Nu
‖yu − ∑v = 1

V Xu
vwu

v‖
2
2

+ γ ∑
s = 1
s ≠ t

T
cs, t∑v = 1

V ‖Ws, t
v ‖2, 1

+ η ∑
s = 1
s ≠ t

T
cs, t∑v = 1

V ‖ws
v − wt

v‖2 + θ∑u = 1
T 1

Nk
∑i, j = 1

V ‖Xu
i wu

i − Xu
jwu

j‖2 .

(8)

Notice that some existing works such as [30], [31], [34], and [35] use the similar 

regularizations. However, the view and task regularizations in (4) and (5) are indeed 

different from those in the conventional MTL settings. Besides, all these previous works 

used just one or two of these regularizations and did not put all of them together.

B. Solution to Sparse-MVTC—The solution to minWs, t
v ‖Ws, t

v ‖2, 1 [the second term in 

(8)] is equivalent to minws, t
v tr Ws, t

v′ Λs, t
v Ws, t

v , [37] where Λs, t
v (v = 1, …, V) is a Dv × Dv

diagonal matrix with the ith diagonal element λs, t
v

i
i
 being computed as

λs, t
v

i
i = 1

2‖ ei ′Ws, t
v ‖2

. (9)

Accordingly, optimizing min
Ws, t

v ‖Ws, t
v ‖2, 1 can be solved by optimizing Λs, t

v  and 

Ws, t
v in tr Ws, t

v′ Λs, t
v Ws, t

v .

Since the central task and the auxiliary tasks should be associated with different linear 

discriminant functions for classification in the proposed model, we treat them separately for 

optimization. Given Λs, t
v , we first fix wt and update wss for all auxiliary tasks. Next, we 
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compute wt when {ws, s = 1, 2,…,T, s ≠ t are fixed. After all weights are updated, we 

compute Λs, t
v  with (9). These processes iterate until the objective function converges. We 

present the implementation details of our algorithm in the following and provide its 

convergence proof in the Appendix.

The implementation of Sparse-MVTC is straightforward. For each auxiliary task, we 

calculate the matrices Ps
v and QS

v and the column vector rs
v for each view. Then we obtain ws 

as in (16) by computing the inverse of the matrix Ps + Qs . After that, we calculate the 

matrices Pt
v and Qt

v and the column vector rt
v for each view in the central task, and then 

obtain wt as in (23) by computing the inverse of the matrix Pt + Qt . Notice that both 

Ps + Qs  and Ps + Qt  are positive definite and hence reversible. The parameters γ, η, and θ 

can be determined using nested cross-validation.

C. Sparse-MVTC-E: Ensemble Solution to ASD Diagnosis—As different groups 

are treated as the central task in turn, we perform the Sparse-MVTC algorithm for Z (Z ≤ T) 
times. In this way, we are able to construct Z classifiers for each task. When there is a new 

test subject with its age and sex information available, we can easily identify the 

corresponding classifiers that are learned following the proposed Sparse-MVTC algorithm. 

The outputs of individual classifiers will be integrated by an ensemble scheme.

The selective ensemble algorithm GASEN [38] can be utilized for integrating multiple 

Sparse-MVTC classifiers. Specifically, we bootstrap-sample a validation dataset from the 

training set. Then, given two classifiers indexed by t1 and t2, we compute the correlation of 

the errors of their classification outputs by

Ct1t2
= ∑

i
p xi f t1

xi − yi f t2
xi − yi (24)

where f t1
xi  and f t2

xi  are the actual outputs of the two classifiers on the validation subject 

xi, respectively, yi is the ground-truth label of xi, and p(xi) is the possibility of xi’s 

occurrence in the validation dataset. Let α = α1, …, αT  record the weights for integrating 

individual classifiers. The optimal weights can be learned by optimizing

αopt = argmin
α

∑
t1 = 1

T
∑

t2 = 1

T
αt1

αt2
Ct1t2

. (25)

Finally, we select K classifiers and obtain the final decision by weighted voting. Note that 

the original GASEN proposed in [38] could select the number of classifiers automatically. 

For easy implementation, we only record the top K = 3 classifiers with the largest weights in 

our Sparse-MVTC-E implementation. In this way, the ensemble classifier Sparse-MVTC-E
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Algorithm 1

Sparse-MVTC

Input: Xt
v
, v = 1,…, V, t = 1,…, T; yt, t = 1,…, T; γ; η; θ; ε

Output: W

Set l = 0, and initialize wt
v(v = 1, …, V , t = 1, …, T) to generate the initial W with random values;

repeat

 Compute Λs, t
v , λs, t

v
i
i = 1

2‖eiWs, t
v ‖2

, v = 1, 2, …, V , s = 1, 2, …, T , s ≠ t

 for s = 1, 2, …, T , s ≠ t
 Compute Ps

v, Qs
v and rs

v(v = 1, 2, …, V) using Eqs. (10)–(12) for each auxiliary task, respectively;

Ps
v = (γcs, t Λs, t

v + ηcs, tI + 2θ 1
Ns

V(Xs
v)′ Xs

v) (10)

Qs
v = 1 − 2θ

Ns
Xs

v ′ (11)

rs
v = 1

Ns
Xs

v ′ys + ηcs, twt
v (12)

Compute ws with Eqs. (13)-(16):

Ps =
Ps

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Ps

v
(13)

Qs =
Qs

1Xs
1 ⋯ Qs

1Xs
V

⋮ ⋱ ⋮
Qs

VXs
1 ⋯ Qs

VXs
V

(14)
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rs = rs
1 … rs

V ′ (15)

ws = Ps + Qs
−1rs (16)

end for

 Compute Pt
v
, Qt

v
 and rt

v
 using Eqs. (17)-(19) for the central task, respectively

Pt
v = γ∑s = 1

s ≠ t

T cs, t Λs, t
v + η∑s = 1

s ≠ t

T cs, tI + 2θ 1
Nt

M Xt
v ′Xt

v (17)

Qt
v = 1 − 2θ

Nt
Xt

v ′∑i = 1
V Xt

iwt
i (18)

rt
v = 1

Nt
Xt

v ′yt + η∑s = 1
s ≠ t

T cs, tws
v (19)

Compute wt with Eqs. (20)-(23);

Pt =
Pt

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Pt

V
(20)

Qt =
Qt

1Xt
1 ⋯ Qs

1Xt
V

⋮ ⋱ ⋮
Qt

VXt
1 ⋯ Qt

VXt
V

(21)
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rt = rt = rt
1 … rt

V ′ (22)

wt = Pt + Qt
−1rt (23)

 Compute W(l) = w1, w2, …, wT ;

 if ‖W(l) − W(l − 1)‖2 > ε, l = l + 1, continue; else, abort;

end

can achieve better classification results than the average performance of Sparse-MVTC with 

different central tasks.

D. Time Complexity of Sparse-MVTC-E—The complexity of Sparse-MVTC-E is 

highly related to that of Sparse-MVTC. In Sparse-MVTC, both Pt + Qt and Ps + Qs  are (D 

× D) matrices, where D = ∑v = 1
V Dv is the total number of features. Although constructing 

these matrices is nontrivial, the real bottleneck of the Sparse-MVTC algorithm is the inverse 

of both matrices in (16) and (23), each of which has the time complexity of O(D3). There 

will be T inverse computation tasks for one run of Sparse-MVTC. If we select Z central 

tasks and the maximal iteration number is L, the time complexity of Sparse-MVTC-E will 

be O(LZTD3). Moreover, Sparse-MVTC-E can be easily parallelized by executing multiple 

Sparse-MVTC tasks simultaneously. In this way, the computation efficiency of Sparse-

MVTC-E can be further improved. On the other hand, the conventional MVMT methods 

such as regMVMT + [31] involve an inverse operation of a (TD × TD) matrix, which has the 

time complexity of O(L(TD)3), with L as the maximal iteration number. Therefore, Sparse-

MVTC-E requires less computation time and memory space, which makes our method 

efficient for the MVMT applications with many tasks.

III. EXPERIMENTS

A. Image Acquisition and Data Preparation

Our experiments are based on the autism brain imaging data exchange (ABIDE, http://

fcon_1000.projects.nitrc.org/indi/abide/index.html database, which includes rs-fMRI data 

from 1112 ASD patients and healthy controls from multiple imaging centers. In this paper, 

we consider rs-fMRI scans acquired from two different imaging centers (i.e., NYU and 

UM-1) of ABIDE. Both male and female subjects are included in this paper and their ages 

span from 6 to 40 years old. Since the rs-fMRI images in different imaging centers were 

acquired using different scanners and parameters, they should be treated as separate tasks in 

classification. Therefore, we partition the subjects into several groups according to their age, 

sex and imaging center information. Since subjects do not distribute uniformly according to 
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their ages, we group the subjects with different age gaps to make sure that each group has 

enough subjects for learning. Finally, we have 18 groups (tasks). The demographic 

information and the scanning parameters of all groups are summarized in Tables I and II, 

respectively.

We extract features from rs-fMRI with the data processing assistant for resting-state fMRI. 

Specifically, the first ten acquired rs-fMRI volumes of each subject are discarded. Then, 

slice timing and head motion correction are performed. All rs-fMRI images are normalized 

to the Montreal Neurological Institute space with the resolution of 3 × 3×3 mm3. Nuisance 

variable regression is further conducted [39]. The resulted rs-fMRI images are parcellated 

into 116 regions-of-interest (ROIs) according to the automated anatomical labeling (AAL) 

template [40]. The band-pass filtering (0.005–0.1 Hz) is applied to the rs-fMRI time series 

of each ROI. Scrubbing is further performed based on the filtered time series, and the 

volumes with 0.5-mm or larger frame-wise displacement are removed. Also, two volumes 

before and one volume after the volumes with excessive motion are removed. Finally, the 

subjects with fewer than 3-min remaining data after scrubbing are excluded. To measure the 

FCs between ROIs, pairwise Pearson correlation coefficients are computed to yield the 

values between −1 and 1 for every individual ROI pair. The above processing results in a 

116 × 116 FC matrix for each subject. After that, HOFC is computed according to [20] and 

[41].

B. Experimental Settings

In this paper, ASD diagnosis is performed by combining FC and HOFC, which are both 

extracted from rs-fMRI. For both FC and HOFC, the upper triangles of the connectivity 

matrices are utilized due to the symmetry of the matrices. These measures are reshaped into 

a vector with 6670 elements (corresponding to 6670 distinct region pairs). Prior to training, 

simple feature selection is conducted. Specifically, we select 300 FC features and 300 HOFC 

features using t-tests. All the features are further normalized regarding the z-score and used 

for subsequent computation.

We consider ASD diagnosis as the binary classification problem, by labeling ASD patients 

as +1 and the healthy controls as –1. We adopt a tenfold nested cross-validation strategy to 

evaluate the performance of our proposed method. Specifically, we divided each group in 

Table I into ten parts, one for testing and the others for training. Based on the training data of 

each fold, we select one central task in turn and use the rest as the auxiliary tasks. The above 

procedure iterates to pick up the central task nonrepeatedly, which results in T classifiers for 

ensemble learning upon a specific task. Moreover, the nested cross-validation consists of a 

fivefold inner loop, aiming to determine the optimal values for γ, η, and θ automatically. 

After obtaining T optimal classifiers for each task, we further utilize the selective 

ensembling strategy in Section II-C to find K = 3 best classifiers, and combine the outputs of 

these best classifiers for the testing subjects. In this way, the final result is produced for each 

testing subject. We repeat the above procedure for ten times to avoid the arbitrary bias of 

fold partition. We report the average of all ten repetitions as final outcome.

We use four metrics, including accuracy (ACC), sensitivity, specificity, and the area under 

the receiver operating characteristic curve (AUC), to quantitatively evaluate the 

Wang et al. Page 13

IEEE Trans Cybern. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



performances of all competing methods. To confirm whether our method performs 

statistically better in the comparisons, we perform paired t-tests on the ACCs of our method 

and other methods and report the p-values.

All the experiments were conducted on a computer cluster, which is a Linux-based 

computing system available to researchers across University of North Carolina at Chapel 

Hill.

C. Effect of the Regularization Terms in Sparse-MVTC—A well-defined 

regularization helps pose the optimization problem in Sparse-MVTC. To validate the 

regularization terms in our method, we compare the performances where the three terms in 

(8) are temporarily disabled (e.g., by setting γ, η, and θ to zero, respectively). Since there 

are 18 groups/tasks as in Table I, we denote Group 1 as the central task without loss of 

generality. The classification accuracies of Sparse-MVTC, as well as the contributions of 

individual regularization terms, are plotted in Fig. 2. We can observe that the three 

regularization terms in Sparse-MVTC can effectively improve the classification 

performance. Similar results can be observed when other groups are selected as the central 

tasks.

D. Comparing Sparse-MVTC-E With Popular Machine Learning Methods—In 

this section, we report the classification results of Sparse-MVTC-E with respect to a large 

number of tasks. The subjects coming from NYU and UM-1 are combined together and 

grouped into 18 tasks, with the details given in Table I. We pick up each group as a central 

task in turn to train Sparse-MVTC. In this way, we have Z = 18 classifiers. We also select 

the top K = 3 classifiers for the ensembling of each task.

We compare the performance of Sparse-MVTC-E with several popular classifiers, which are 

summarized in Table III. We particularly define the experimental settings for CSVC [42], 

M2SVC [43] and random forest (RF) as follows.

1) The image data from each group are trained and tested separately. In this case, 

there are T classifiers, each of which corresponds to an independent group. We 

denote these methods as CSVC-S, M2SVC-S, and RF-S, respectively.

2) The data from T groups are combined for joint training and testing. That is, there 

is a single and common classifier for all T groups. We denote these methods as 

CSVC-J, M2SVC-J, and RF-J, respectively.

3) The classifier is trained with a single training group and then transferred to all 

groups for testing. In this way, T classifiers can be acquired, while each testing 

subject can be tested for T times. We obtain the final classification result by 

majority voting. And we denote these methods as CSVC-E, M2SVC-E and RF-

E, respectively.

Besides, we also compare our method with IteM2, regMVMT, and regMVMT +, which are 

representative MVMT methods in [30] and [31].
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The Sparse-MVTC does not consider the relatedness among all the tasks simultaneously but 

find the relatedness to a central task. This is similar with a transfer learning strategy by 

improving the performance of a target task with some source tasks. To compare the 

performance of the task-centralized learning with the transfer learning, we further perform 

Sparse-MVTC in a transfer learning way, which is named as Sparse-MVTC-Tr. Specifically, 

we consider the central task as the learning task in the target domain and the auxiliary tasks 

as those in the source domains. We run Sparse-MVTC with different central tasks in turn 

and the final prediction results are obtained by combining the prediction results of different 

central tasks. We also show the performance of Sparse-MVTC, in which the ensemble 

learning is disabled and the final results were obtained by simply averaging all the outputs of 

the respective classifiers. For fair comparisons, the same tenfold nested cross-validation is 

applied to all competing methods.

Tables IV and V report the comparison results on this multicenter dataset, respectively, after 

10 repetitions of the tenfold nested cross-validation.

From both Tables IV and V, we found that the proposed Sparse-MVTC-E method achieved 

the best classification accuracy on both imaging centers, although these subjects were 

collected using different scanners and parameters.

CSVC combines the FC and HOFC features into a long vector, thus ignoring the correlation 

between them. On the contrary, M2SVC treats the FC and HOFC features as two views and 

fuses the multiview data for classification. Both of them are linear kernel methods and fail to 

consider the MTL settings. On the other hand, MTMFJL is a typical MTL method that 

jointly learns common features and parameters in related tasks. Different from these afore-

mentioned methods, our Sparse-MVTC-E learning method introduces both the task-task and 

view-view regularizations in the task-centralized learning mechanism, and obtains much 

better results than CSVC, M2SVC and MTMFJL. This fully demonstrates the superiority of 

the joint MVMT learning in Sparse-MVTC-E. Besides, Sparse-MVTC-E performs joint 

feature selection between the central task and each auxiliary task, thus providing useful 

information to help ASD diagnosis.

Note that CSVC-E, M2SVC-E and RF-E are the ensemble versions of CSVC, M2SVC, and 

RF, respectively. The experimental results suggest that they are not always better compared 

with the cases without ensembling. A possible reason is that the classifiers prior to selection 

and ensembling have weak generalization capability with insufficient training data. In the 

task-centralized strategy of our Sparse-MVTC-E learning method, the auxiliary tasks 

provide additional knowledge to the central task, which greatly improves the generalization 

capability of classifiers on all tasks and solves the computational bottleneck. Comparing the 

Sparse-MVTC-E with Sparse-MVTC (see Tables IV and V), we conclude that the utilization 

of the ensemble learning improves the final results significantly.

The IteM2, regMVMT, and regMVMT + also consider both task-task and the view-view 

relationships. However, these methods do not have l2,1-norm regularization; therefore, it 

could not select the discriminative FC/HOFC features jointly for the ASD diagnosis. We 

found that Sparse-MVTC-E significantly outperforms IteM2, regMVMT, and regMVMT + 
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in terms of diagnosis accuracy. This is because our method uses (5) to model the task 

relations whereas both IteM2 and regMVMT assume that all the tasks should be similar. 

Although regMVMT + learns the task relations adaptively, it depends on suitable 

initialization of the algorithm without providing prior knowledge on task relations. 

Moreover, the interaction between the tasks in regMVMT + are very complex and it is not 

easy for the algorithm to find the optimal solutions given too many tasks. Different from reg-
MVMT+, our method integrates prior knowledge on the task relations using 

cs, t = exp −‖Xt − Xs‖
2/σ2  and simplifies the interaction between the tasks using task-

centralized mechanism. These two factors help Sparse-MVTC-E to find better solutions than 

regMVMT +. On the other hand, Sparse-MVTC-E only involves the inverse of a 600 × 600 

matrix, which is more efficient than regMVMT and regMVMT +, with the latter two 

involving the inverse of a 10 800 × 10 800 matrix. Therefore, regarding the memory 

requirement, regMVMT and regMVMT + could not work efficiently on a computer with 

limited physical memory.

The iteration number L, the selected central task number Z and the total task number T have 

linear relations with the time complexity of Sparse-MVTC-E, which are often considered as 

ideal properties in algorithm analysis. Since the time complexity of Sparse-MVTC-E is 

cubic to the feature number D, we vary the total feature number of the two views from 300 

to 1200 and further compare the training time for Sparse-MVTC-E, regMVMT, and 

regMVMT + classifiers in Fig. 3. Given all 18 tasks to learn as in Table I, we plot the total 

training time of Sparse-MVTC-E when every task serves as the central task in turn. One may 

observe from the figure that Sparse-MVTC-E has the lowest training time when the total 

feature number becomes large, which fully demonstrates the advantages of the proposed 

method on the MVMT learning problems, especially with a large number of learning tasks 

and features.

To further demonstrate the superiority of the Sparse-MVTC-E over the Sparse-MVTC, we 

run Sparse-MVTC for multiple times with different central tasks selected; the results are 

plotted and compared in Fig. 4. Note that the classification results of Sparse-MVTC are 

slightly different as different central tasks were selected. The underlying reason is that 

different central tasks have different sizes and relationships with the auxiliary tasks, which 

makes the performance of Sparse-MVTC unstable. Using the selective ensemble strategy, 

the optimal classifiers can be selected by Sparse-MVTC-E. In this way, the outcomes of the 

Sparse-MVTC-E are generally more precise and stable.

E. Discriminative FC and HOFC—We report the most discriminative FC/HOFC 

features identified to separate the ASD patients from healthy controls. By checking the 

features selected by Sparse-MVTC in each cross-validation fold, we find that the selected 

FC/HOFC features are mostly stable yet with slight variation. Quantitatively, we summarize 

top 15/20 frequently selected FC/HOFC features over all cross-validation folds, and show 

them in Tables VI and VII, respectively. The number in the parenthesis indicates the index of 

the structural region in the AAL template.
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From both Tables VI and VII, we can conclude the following major characteristics of the 

discriminative FCs and HOFCs, in terms of their hemispheric distributions and attributions. 

First, neither FCs nor HOFCs contributed to accurate ASD diagnosis are limited to the same 

hemisphere, but across both hemispheres. Second, regarding the hemispheric distribution of 

the brain regions involved in the HOFCs, there are significantly more regions in the right 

hemisphere than in the left, which is consistent with the results reported in [45]. Third, 

regarding the brain regions related with these FCs and HOFCs, the selected regions include 

multiple cortical regions and subcortical structures, which have been found to be related 

with ASD in [7]. Fourth, we note several symmetric FCs and HOFCs between the left and 

right hemispheres. The symmetric connections of bilateral middle temporal gyrus with the 

amygdala in the right hemisphere can be found in both tables, which implies their important 

roles in ASD diagnosis.

As a summary, our proposed Sparse-MVTC-E method can find the most discriminative FC 

by utilizing FC and HOFC jointly. These evidences can be inferred by the modified l2,1-

norm sparse regularization term for the task-centralized learning. The selected FC are 

effective for ASD diagnosis with a joint multiview task-centralized classification.

IV. DISCUSSION

A. Comparing Sparse-MVTC With Transfer Learning

The proposed Sparse-MVTC works under the framework of MTL, and shares the spirit of 

inductive transfer learning [46]. However, the inductive transfer learning methods often 

focus on the target task only by transferring the knowledge from other (source) tasks. We 

note that Sparse-MVTC tries to learn the target and the source tasks simultaneously by 

utilizing their relationship, which is different from transfer learning. Moreover, the task-

centralized learning strategy in sparse-MVTC diversifies the tentative results for the 

subsequent ensemble learning in Sparse-MVTC-E, where the overall learning performance 

of individual sparse-MVTC methods can be improved.

One alternative ensemble solution other than the Sparse-MVTC-E is to perform Sparse-

MVTC in a way of inductive transfer learning. That is, one can select every task as the 

central task in turn, and run Sparse-MVTC for T times of all possible central tasks. The final 

result can then be obtained by simply combining the predictions associated with the different 

central tasks. However, this strategy requires Sparse-MVTC to be performed for T times, 

which introduces a heavy computation burden, especially with a large number of learning 

tasks. In the proposed Sparse-MVTC-E however, it is not necessary to call Sparse-MVTC 

for T times by selecting each task as the central task in turn. Instead, one can select Z (Z < T, 
especially when T is large) representative tasks as the central tasks and combine the results 

of Z individual Sparse-MVTC calls by ensemble learning. In this way, the efficiency of the 

whole learning process, as well as the final performance of the method, can be improved.

B. Comparison With Existing Multitask Neuroimaging-Based Diagnosis Methods

There are many reported works on neural disorder diagnoses using MTL [34], [35], [47]–

[49]. Wang et al. [35] proposed a joint classification and regression learning model to 
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identify the disease-sensitive-and-quantitative trait-relevant biomarkers from heterogeneous 

imaging genetic data. Similarly, Zhu et al. proposed a novel feature selection method by 

embedding the inherent relationships of the observations into a sparse MTL framework. Our 

proposed Sparse-MVTC-E method, while also falls in the category of MTL-based disease 

diagnosis, is different from the existing methods.

First: In the previous methods, each task is treated equally and the classification 

performance is effectively improved by utilizing the task-task relationships. We use a graph 

to describe the designs of the methods (see Fig. 5, where the vertices indicate tasks and the 

edges are for the task-task relationships considered in learning. In our task-centralized 

learning method, the graph is reduced to several trees, the root of which is the central task 

and the leaves are the auxiliary tasks. In this way, the computation of our method can be 

greatly simplified in the optimization process. By selecting the central tasks in turn, the 

selective ensemble procedure also helps to obtain better results.

Second: In the previous methods, the learning of each response variable is treated as one 

task and thus requires the same numbers of subjects in all tasks. In our proposed task-

centralized method, the classification of each age/sex group is regarded as a certain task. The 

number of the subjects can vary across different tasks, which makes our method more 

flexible than other methods.

Third: The task-task and view-view relationships are not considered simultaneously in the 

previous works. In our proposed method, both the task-task and view-view relationships are 

integrated seamlessly by regularization terms, so that both tasks and views become 

complementary to contribute toward the feature selection and the classification 

simultaneously. The comparison results of Sparse-MVTC, M2SVC, and MTMFJL in 

experimental section fully verify this conclusion.

V. CONCLUSION

ASD is a complex neurodevelopmental disorder, where the autism-related alterations in 

brain’s FC are different with respect to different age and gender. However, existing 

computer-assisted ASD diagnosis methods often focus on the relatively narrow age ranges 

(e.g., from late childhood to adolescence), ignoring the age-related changes of brain 

functions that occur over the course of development. They also fail to consider the sex 

differences of both ASD patients and healthy controls. Besides, these methods only utilize 

the conventional FC, without involving the high-level knowledge in the complex brain 

functional associations. To this end, we formulate the problem of ASD diagnosis as an 

MVMT learning problem, and propose a novel Sparse-MVTC-E learning method to solve 

the problem. using ABIDE datasets, we achieve a significant performance improvement for 

ASD classification compared with the state-of-the-art classification methods for ASD 

diagnosis.

The contribution of this paper can be summarized as follows.

1) Different from the conventional ASD studies that consider age-related changes 

or sex differences separately, this paper considers both factors for ASD 
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classification in a unified framework. To the best of our knowledge, this is the 

first work to consider the two factors in ASD diagnosis.

2) HOFC defined by correlations of correlations is utilized for ASD diagnosis, and 

several discriminant HOFC are discovered accordingly using our Sparse-

MVTC-E method.

3) Different from the conventional MVMT solutions that treat each task in the 

same way, this paper proposes a novel multiview task-centralized learning 

framework by treating the tasks as a central task and auxiliary tasks and 

handling them differently in the MTL model.

Compared with most recent MVMT methods, the overall complexity of our method is 

greatly reduced and the computation efficiency is thus improved, especially in the situation, 

where a large number of tasks and features are involved. Additionally, the utilization of 

ensemble learning further improves the performance of our method, which is based on the 

prediction results of multiple Sparse-MVTC classifiers.

Although our proposed method is successful on multitask ASD diagnosis using FC and 

HOFC, it considers only the inherent linear relationships inside the subjects. In the future 

work, we will develop the respective nonlinear versions for neuroimaging classification.
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APPENDIX

In the Appendix, we analyze the convergence property of Sparse-MVTC. Since the solution 

to min
Ws, t

v ‖Ws, t
v ‖2, 1 [for the second term in (8)] is equivalent to min

Ws, t
v tr Ws, t

v′ Λs, t
v Ws, t

v

[37], minimizing the objective function in (8) can be attained by optimizing Λs, t
v , wt and ws 

in the following:

J wt, ws , Λs, t
v = ∑

u = 1

T 1
Nu

‖yu − ∑
v = 1

V
Xu

vwu
v‖

2

2
+ γ ∑

s = 1
s ≠ t

T
cs, t ∑

v = 1

V
tr Ws, t

v′ Λs, t
v Ws, t

v

+ η ∑
s = 1,
s ≠ t

T
cs, t ∑

v = 1

V
‖ws

v − wt
v‖2 + θ ∑

s = 1

T 1
Ns

∑
i, j = 1

V
‖xs

iws
i − Xs

jws
j‖2 .

(26)
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In the next, we prove that Sparse-MVTC makes the value of the objective function in (26) 

decrease monotonically.

Theorem 1:

Given Λs, t
v , v = 1, …, V , and ws, s = 1, …, Ts ≠ t, for the case that the auxiliary tasks are fixed, 

(26) is minimized if and only if wt for the central task is computed from (20) to (23).

Proof:

By taking the derivatives of (26) with respect wt
v(v = 1, 2, …, V) and set them to zeros, we 

have

Pt
vwt

v + Qt
v ∑

i = 1

V
Xt

iwt
i = rt

v (27)

where Pt
v, Qt

v, and rt
v are computed with (17)−(19), respectively. For each view in the tth task, 

we can have an equation in the form of (27), and learn all wt
v jointly as

Pt + Qt wt = rt (28)

where Pt, Qt, and rt are the block matrices in (20)−(22). The analytic solution of 

wt
v(t = 1, …, T , v = 1, …, V) can be easily obtained from (23). This proves that (23) is the 

necessary condition of minimizing (26). On the other hand, the Hessian matrix of the 

objective function in (26) is in the form of

Ht =

Ht
1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ Ht
V

where Ht
v = 1/Nt Xt

v ′Xt
v + γ∑s = 1

s ≠ t

T cs, t Λs, t
v + η∑s = 1

s ≠ t

T cs, t + 2θ(V − 1) 1/Nt Xt
v ′Xt

v is positive 

definite for the central task when γ>0, η>0, θ > 0 and V ≥ 1. Thus, the Theorem 1 is proved.

Theorem 2 (Auxiliary Tasks):

Given Λs, t
v , v = 1, …, V , and wt, t = 1, …, T, for the case that the central task is fixed, (26) is 

minimized if and only if ws, s = 1, …, T , s ≠ t, for the auxiliary tasks are computed from (13) 

to (16).
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Proof:

Similarly, we may easily find that (16) is the necessary condition of minimizing (26). On the 

other hand, the Hessian matrix of the objective function in (26) is in the form of

Hs =

Hs
1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ Hs
V

where

Hs
v = 1

Ns
Xs

v ′Xs
v + γcs, t Λs, t

v + ηcs, tI + 2θ 1
Ns

(V − 1) Xs
v ′Xs

v

is positive definite for each auxiliary task when γ>0, η > 0, θ > 0 and V ≥ 1. Thus, the 

Theorem 2 is proved. ■

Lemma 1 [37]:

For any nonzero vectors u, ut ∈ ℝd, the following inequality holds:

‖u‖2 −
‖u‖2

2

2‖ut‖2
≤ ‖ut‖2 −

‖ut‖2
2

2‖ut‖2
. (29)

Theorem 3:

In each iteration, Algorithm 1 monotonically decreases the objective function value in (26).

Proof:

In the 1th iteration, l = 1, 2,…, (26) can be rewritten as follows:

J wt(l), wS(l) , Λs, t
v (l) = ∑

s = 1

T 1
NS

‖ys − ∑
v = 1

V
Xs

vws
v(l)‖

2

2
+ γ ∑

s = 1
s ≠ t

T
cs, t ∑

v = 1

V
tr Ws, t

v (l)′ Λs, t
v (l)Ws, t

v (l)

+ η ∑
s = 1
s ≠ t

T
cs, t ∑

v = 1

V
‖ws

v(l) − wt
v(l)‖2 + θ ∑

s = 1

T 1
Ns

∑
i, j = 1

V
‖Xs

iws
i (l) − Xs

jws
j(l)‖2 = J1 wt(l), ws(l) , Λs, t

v (l)

+ γ ∑
s = 1
s ≠ t

T
cs, t ∑

v = 1

V
tr Ws, t

v (l)′ Λs, t
v (l)Ws, t

v (l)

where
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J1 wt(l), ws(l) = ∑
s = 1

T 1
Ns

‖ys − ∑
v = 1

V
Xs

vws
v(l)‖

2

2
+ η ∑

s = 1
s ≠ t

T
cs, t ∑

v = 1

V
‖ws

v(l) − wt
v(l)‖2

+ θ ∑
s = 1

T 1
Ns

∑
i, j = 1

V
‖Xs

iws
i(l) − Xs

jws
j(l)‖2 .

(30)

From Theorem 1, we can infer that wt = Pt + Qt
−1rt is the local minimum of J(wt(l), 

{ws(l)}, Λs, t
v (l) ) when Λs, t

v , v = 1, ⋯, V and ws, s = 1, …, T , s ≠ t are fixed. Thus, we have

J wt(l + 1), ws(l) , Λs, t
v (l) ≤ J wt(l), ws(l) , Λs, t

v (l) (31)

From Theorem 2, we can infer that ws = Ps + Qs
−1rs is the local minimum of J(wt(l), 

{ws(l)}, J wt(l), ws(l) , Λs, t
v (l)  when Λs, t

v , v = 1, …, V, and wt are fixed. Thus, we have

J wt(l + 1), ws(l + 1) , Λs, t
v (l) ≤ J wt(l + 1), ws(l) , Λs, t

v (l) (32)

We can easily have

J wt(l + 1), ws(l + 1) , Λs, t
v (l) ≤ J wt(l), ws(l) , Λs, t

v (l) (33)
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J1 wt(l + 1), ws(l + 1) + γ ∑
s = 1
s ≠ t

T
cs, t ∑

v = 1

V
∑

d = 1

Dv

‖ ei ′Ws, t
v (l + 1)‖2

2

2‖ ei ′Ws, t
v (l)‖2

− ‖ ei ′Ws, t
v (l + 1)‖2

2 + ‖ ei ′Ws, t
v (l + 1)‖2

2 ≤ J1 wt(l), ws(l)

+ γ ∑
s = 1
s ≠ t

T
cs, t ∑

v = 1

V
∑
i = 1

Dv ‖ ei ′Ws, t
v (l)‖2

2

2‖ ei ′Ws, t
v (l)‖2

− ‖ ei ′Ws, t
v (l)‖2

2 + ‖ ei ′Ws, t
v (l)‖2

2 J1

wt(l + 1), ws(l + 1) + γ ∑
s = 1
s ≠ t

T
cs, t ∑

v = 1

V
tr Ws, t

v (l + 1)′ Λs, t
v (l)Ws, t

v (l + 1)

≤ J1 wt(l), ws(l) + γ ∑
s = 1
s ≠ t

T
cs, t ∑

v = 1

V
tr Ws, t

v (l)′ Λs, t
v (l)Ws, t

v (l) .

(34)

By substituting (9) into the above and also changing the trace form into the form of 

summation, we have

J1 wt(l + 1), ws(l + 1) + γ ∑
s = 1
s ≠ t

T
cs, t ∑

v = 1

V
∑

d = 1

Dv ‖ ei ′Ws, t
v (l + 1)‖2

2

2‖ ei ′Ws, t
v (l)‖2

≤ J1 wt(l), ws(l)

+ γ ∑
s = 1
s ≠ t

T
cs, t ∑

v = 1

V
∑

i = 1

Dv ‖ ei ′Ws, t
v (l)‖2

2

2‖ ei ′Ws, t
v (l)‖2

.

With a simple modification, we have (34) as shown at the bottom of the previous page. Since 

∑d = 1
Dv ‖ ei ′Ws, t

v (l)‖2
2 = ‖Ws, t

v (l)‖2, 1, with (29) and (34), we can easily arrive at

J1 wt(l + 1), ws(l + 1) + γ ∑
s = 1
s ≠ t

T
cs, t ∑

v = 1

V
∑

d = 1

Dv
‖ ei ′Ws, t

v (l + 1)‖2
2 ≤ J1 wt(l), ws(l)

+ γ ∑
s = 1
s ≠ t

T
cs, t ∑

v = 1

V
∑
i = 1

Dv
‖ ei ′Ws, t

v (l)‖2
2x

(35)

i.e.,
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J wt(l + 1), ws(l + 1) , Λs, t
v (l + 1) ≤ J wt(l), ws(l) , Λs, t

v (l) .

That is, the algorithm monotonically decreases the objective function value in (8), and the 

proposed iterative algorithm converges to its local optimum.
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Fig. 1. 
Framework of our Sparse-MVTC-E classification, which includes four main steps: 1) 

extraction of the FC and the HOFC features; 2) subject grouping or task partitioning 

according to both age and sex information; 3) Sparse-MVTC learning upon Z tasks; and 4) 

an ensemble strategy to make the final decision.
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Fig. 2. 
Comparisons of ACCs for Sparse-MVTC and its variants when turning off individual 

regularization term(s).
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Fig. 3. 
Training time for three different MVMT learning methods.
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Fig. 4. 
Comparison of accuracy for Sparse-MVTC-E and Sparse-MVTC, with different central 

tasks on imaging centers, i.e., NYU and UM-1. The green bar indicates the accuracy for 

Sparse-MVTC-E and the blue bars indicate the accuracies of Sparse-MVTC with different 

central tasks, respectively. The number on the x-axis under each blue bar denotes the 

respective central task ID of Sparse-MVTC.
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Fig. 5. 
(a) Full connection graph can be utilized to describe the relationships between tasks in the 

existing MTL frameworks, in which the tasks are correlated with each other. Each learning 

task is described by a rectangle in the figure, in which the dotted line and the solid line 

represent the true and computed separate planes of the classifier, respectively. (b) The tree 

structure can be utilized to describe the relationships between tasks in the proposed task-

centralized learning framework, in which the root of the tree is the central task and the 

leaves are the auxiliary tasks. The ensemble process enhances the performance of the 

classifiers and helps to obtain better results.
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TABLE I

DEMOGRAPHIC INFORMATION OF GROUPS IN NYU and UM-1

Imaging
center

Group
ID

Age
range Sex

Number
of

Subjects

Patients/
Controls

1 (6,12] F 12 3/9

2 (12,18] F 14 4/10

3 (18,40] F 11 4/7

4 (6,10] M 32 21/11

5 (10,12] M 27 14/13

NYU 6 (12,14] M 20 9/11

7 (14,16] M 17 6/11

8 (16,18] M 12 3/9

9 (18,22] M 13 4/9

10 (22,25] M 12 5/7

11 (25,40] M 13 5/8

12 (8,14] F 12 5/7

13 (14,20] F 12 2/10

14 (8,10] M 9 5/4

UM-1 15 (10,11] M 11 3/8

16 (11,12] M 10 6/4

17 (12,15] M 19 14/5

18 (15,20] M 23 7/16
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TABLE II

ACQUISITION PARAMETERS OF RS-FMRI IN NYU and UM-1

Center NYU UM-1

Make (model) Siemens Magnetom (Allegra) GE (Signa)

Voxel size (mm3) 3.0×3.0×4.0 3.438×3.438×3.0

Flip angle (deg) 90 90

TR(ms) 2000 2000

TE (ms) 15 30

Bandwidth (Hz/Px) 3906 NA

IEEE Trans Cybern. Author manuscript; available in PMC 2019 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 36

TABLE III

SUMMARY OF THE METHODS UNDER COMPARISON

Method Description Data preparation

CSVC-S

C-SVC in LibSVM. Linear kernel was 
adopted in C-SVC. FC and HOFC features of each subject were concatenated.CSVC-J

CSVC-E

M2SVC-S

Multi-modal classification proposed by 
Zhang et al. [43]. FC and HOFC features were regarded as different views inM2SVC.M2SVC-J

M2SVC-E

RF-S

Random forest algorithm in. The features from different views of each subject were concatenated.RF-J

RF-E

MTMFJL Multi-Task Model and Feature Joint Learning 
method proposed in [44]

Each group is regarded as one task. FC and HOFC features of each 
subject were concatenated into one view.

IteM2 MVMT method proposed by He et al. [30] FC and HOFC features were regarded as different views, respectively. 
Each group is regarded as one task.

regMVMT Regularized multi-view multi-task learning 
method proposed by Zhang et al. [31]

FC and HOFC features were regarded as different views, respectively. 
Each group is regarded as one task.

regMVMT+ Enhanced version of regMVMT proposed by 
Zhang et al. [31]

FC and HOFC features were regarded as one view, respectively. Each 
group is regarded as one task.

Sparse-MVTC-Tr Sparse-MVTC in a transfer learning way

FC and HOFC features were regarded as different views, respectively. 
The central task in Sparse MVTC is considered as the learning task in 
the target domain and the auxiliary tasks are considered as the learning 
tasks in the source domains.

Sparse-MVTC-E Our proposed ensemble classifier. FC and HOFC features were regarded as different views, respectively. 
Each group is regarded as one task.
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Table IV

CLASSIFICATION RESULTS ON NYU

Method ACC SEN SPE AUC p-value

CSVC-S 0.607 0.725 0.449 0.587 <le-3

CSVC-J 0.683 0.804 0.521 0.662 0.001

CSVC-E 0.600 0.958 0.118 0.538 <le-3

M2SVC-S 0.596 0.730 0.414 0.572 <le-3

M2SVC-J 0.675 0.756 0.565 0.661 0.001

M2SVC-E 0.603 0.979 0.097 0.538 <le-3

RF-S 0.584 0.679 0.456 0.568 <le-3

RF-J 0.650 0.766 0.494 0.630 <le-3

RF-E 0.577 0.910 0.128 0.519 <le-3

MTMFJL 0.656 0.762 0.513 0.637 <le-3

IteM2 0.557 0.552 0.564 0.558 <le-3

regMVMT 0.593 0.608 0.574 0.591 <le-3

regMVMT+ 0.612 0.629 0.590 0.609 <le-3

Sparse-MVTC 0.691 0.763 0.593 0.678 <le-3

Sparse-MVTC-Tr 0.672 0.752 0.564 0.658 <le-3

Sparse-MVTC-E 0.726 0.790 0.640 0.715
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Table V

CLASSIFICATION RESULTS ON UM-1

Method ACC SEN SPE AUC p-value

CSVC-S 0.552 0.737 0.314 0.526 <le-3

CSVC-J 0.661 0.719 0.588 0.653 0.006

CSVC-E 0.564 0.900 0.131 0.515 <le-3

M2SVC-S 0.605 0.689 0.498 0.593 <le-3

M2SVC-J 0.619 0.648 0.581 0.615 <le-3

M2SVC-E 0.562 0.915 0.110 0.512 <le-3

RF-S 0.597 0.724 0.433 0.579 <le-3

RF-J 0.633 0.679 0.574 0.627 0.003

RF-E 0.582 0.831 0.262 0.547 <le-3

MTMFJL 0.604 0.667 0.524 0.595 <le-3

IteM2 0.572 0.685 0.429 0.557 <le-3

regMVMT 0.594 0.715 0.438 0.576 <le-3

regMVMT+ 0.604 0.722 0.452 0.587 <le-3

Sparse-MVTC 0.672 0.706 0.629 0.668 <le-3

Sparse-MVTC-Tr 0.646 0.667 0.619 0.643 <le-3

Sparse-MVTC-E 0.714 0.743 0.677 0.710
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Table VI

COMMON REGION-TO-REGION FC SELECTED BY SPARSE-MVTC-E

ROI1 ROI2

1 Frontal_Inf_Tri_L (13) Parietal_Sup_L (59)

2 Supp_Motor_Area_L(19) Cerebelum_Crus2_L (93)

3 Frontal_Med_Orb_L(25) Cingulum_Post_R (36)

4 Frontal_Med_Orb_R (26) ParaHippocampal_L (39)

5 Rectus_L (27) Precuneus_R(68)

6 Cingulum_Post_L (35) Parietal_Inf_R (62)

7 ParaHippocampal_L (39) Pallidum_L (75)

8 ParaHippocampal_R (40) Putamen_L(73)

9 ParaHippocampal_R (40) Pallidum_L (75)

10 Amygdala_R (42) Temporal_Mid_L (85)

11 Amygdala_R (42) Temporal_Mid_R (86)

12 Amygdala_R (42) Temporal_Pole_Mid_R(88)

13 Putamen_R (74) Vermis_8(114)

14 Pallidum_R (76) Vermis_8(114)

15 Cerebelum_6_L_(99) Vermis_10(116)
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TABLE VII

COMMON REGION-TO-REGION High-Order FC SELECTED BY SPARSE-MVTC-E

ROI1 ROI2

1 Precentral_R (2) Cerebelum_9_L (105)

2 Frontal_Inf_Tri_L (13) Supp_Motor_Area_L (19)

3 Frontal_Inf_Tri_R (14) Rectus_R (28)

4 Hippocampus_R (38) Calcarine_L (43)

5 Hippocampus_R (38) Temporal_Mid_R (86)

6 ParaHippocampal_R (40) Pallidum_L (75)

7 Amygdala_L (41) Vermis_6 (112)

8 Amygdala_R (42) Temporal_Mid_L (85)

9 Amygdala_R (42) Temporal_Mid_R (86)

10 Parietal_Inf_L (61) Caudate_L (71)

11 SupraMarginal_R (64) Precuneus_L (67)

12 SupraMarginal_R (64) Precuneus_R(68)

13 Putamen_R (74) Vermis_8 (114)

14 Pallidum_L (75) Temporal_Pole_Mid_L (87)

15 Pallidum_L (75) Temporal_Pole_Mid_R (88)

16 Pallidum_L (75) Temporal_Inf_L (89)

17 Pallidum_L (75) Temporal_Inf_R (90)

18 Pallidum_R (76) Temporal_Inf_R (90)

19 Thalamus_R(78) Temporal_Inf_R (90)

20 Heschl_L (79) Temporal_Inf_R(90)
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