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Erasing, Transforming, and Noising Defense
Network for Occluded Person Re-Identification

Neng Dong, Liyan Zhang, Shuanglin Yan, Hao Tang and Jinhui Tang, Senior Member, IEEE

Abstract—Occlusion perturbation presents a significant chal-
lenge in person re-identification (re-ID), and existing methods
that rely on external visual cues require additional computational
resources and only consider the issue of missing information
caused by occlusion. In this paper, we propose a simple yet
effective framework, termed Erasing, Transforming, and Noising
Defense Network (ETNDNet), which treats occlusion as a noise
disturbance and solves occluded person re-ID from the perspective
of adversarial defense. In the proposed ETNDNet, we introduce
three strategies: Firstly, we randomly erase the feature map to
create an adversarial representation with incomplete information,
enabling adversarial learning of identity loss to protect the re-
ID system from the disturbance of missing information. Secondly,
we introduce random transformations to simulate the position mis-
alignment caused by occlusion, training the extractor and classifier
adversarially to learn robust representations immune to misaligned
information. Thirdly, we perturb the feature map with random
values to address noisy information introduced by obstacles and
non-target pedestrians, and employ adversarial gaming in the re-ID
system to enhance its resistance to occlusion noise. Without bells
and whistles, ETNDNet has three key highlights: (i) it does not
require any external modules with parameters, (ii) it effectively
handles various issues caused by occlusion from obstacles and
non-target pedestrians, and (iii) it designs the first GAN-based
adversarial defense paradigm for occluded person re-ID. Extensive
experiments on six public datasets fully demonstrate the effective-
ness, superiority, and practicality of the proposed ETNDNet. The
code will be released at https://github.com/nengdong96/ETNDNet.

Index Terms—Occlusion perturbation, adversarial representa-
tion, GAN-based adversarial defense.

I. INTRODUCTION

PERSON re-identification (re-ID) aims at matching the same
pedestrians from different cameras, providing technical

support for a series of intelligent security tasks such as pedes-
trian tracking, autonomous driving, and activity recognition [1]–
[3]. With the rapid development of the re-ID community, various
superior algorithms have emerged [4]–[8]. However, most of
these methods ideally assume that the whole body of each
pedestrian is visible, which is challenging to satisfy in real
scenarios due to the inevitable occlusion.

Empirically, occlusion mainly causes the following issues
[9]: i). Missing Information. Obstacles such as warning signs
can cause the loss of identity-related information, such as legs
and even the torso. ii). Position Misalignment. In case of

N. Dong, S. Yan, H. Tang, and J. Tang are with the School of Computer Sci-
ence and Engineering, Nanjing University of Science and Technology, Nanjing
210094, China (e-mail: neng.dong@njust.edu.cn; shuanglinyan@njust.edu.cn;
tanghao0918@njust.edu.cn; jinhuitang@njust.edu.cn).

L. Zhang is with the College of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing 210016, China (e-mail:
zhangliyan@nuaa.edu.cn).

Missing Information Position Misalignment Noisy Information

(a)

(b)
Fig. 1. (a) Challenges arising from occlusions, such as missing information,
position misalignment, and noisy information, impact the re-ID model. Con-
sequently, the re-ID model tends to prioritize local regions that are visible on
occluded images while disregarding obscured and misaligned parts. Moreover,
it may even allocate attention to noise areas associated with obstacles, leading
to erroneous identification results. (b) External tools may produce inaccurate
visual cues in complex scenes. For instance, obstacles with similar material
to clothing can be misidentified as the human body, and large obstacles can
restrict the amount of information available, thus posing challenges in pedestrian
detection. Moreover, external models may introduce noisy information from
non-target pedestrians when they struggle to perform on images containing
multiple pedestrians.

occlusion, the detected pedestrian box only contains a part
of the human body. Obviously, position misalignment occurs
when holistic and partial images undergo the same scaling. iii).
Noisy Information. Besides the loss of valuable information,
obstacles and non-target pedestrians introduce irrelevant noisy
information. Affected by these issues, the model tends to focus
only on locally visible regions in occluded images (neglecting
obscured and misaligned parts) and may even pay attention to
noise areas associated with obstacles (see Figure 1(a)). Existing
methods [10]–[12] often rely on external tools such as pose
key-points [13] and human semantics [14] to detect visible
pedestrian regions for identity matching. While effective, this
approach requires additional computation costs and only consid-
ers the issue of missing information. Moreover, the visual cues
produced by external tools may be inaccurate in complex scenes
(as shown in Figure 1(b)). Consequently, accurately locating the
visible areas of the target pedestrian becomes challenging for
the model, leading to errors in pedestrian identity matching.

Adversarial defense methods have gained significant attention
due to their ability to protect Deep Neural Networks (DNNs)
from noise perturbations [15]–[17]. Considering that occlusion
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can be regarded as a kind of noise disturbance to re-ID models,
it is plausible to protect re-ID models immune to occlusion per-
turbation from the perspective of adversarial defense. Previous
research has attempted to solve the problem of occlusion from
this perspective. For example, Huang et al. [18] generated adver-
sarial occluded samples by substituting a region of the original
images with all zeros, subsequently fine-tuning the re-ID model
to enhance the robustness of learned features. Similarly, Zhao et
al. [19] proposed an easy-to-hard erasing approach to generate
aggressive occluded data, which encourages the network to pay
attention to non-occluded regions. However, these methods rely
on generating adversarial samples to endow re-ID models with
the ability to defend against occlusion interference. On the one
hand, this way of generating adversarial samples increases the
training cost due to the expansion of the sample base. On the
other hand, the generated data can only simulate the issue of
missing information while ignoring position misalignment and
noisy information. Additionally, adversarial samples obtained
through perturbation on the original inputs are weakly aggres-
sive, while strongly aggressive adversarial examples are crucial
for training models with robust defense capabilities. Moreover,
the aforementioned methods focus on the information in non-
erased areas without enhancing its discriminability, which limits
performance improvement.

According to the findings in [20], the main culprit of the
vulnerability of DNNs is the adversarial disturbance acting on
sensitive features. Therefore, it is more effective to directly
apply various perturbations to pedestrian feature maps, which
not only eliminate the need for regenerative data but can also
be more aggressive than adversarial samples since feature maps
inherently contain rich semantic information. To distinguish
from the above adversarial samples, we refer to such adversarial
examples formed by perturbing feature maps as adversarial rep-
resentations. In addition, drawing inspiration from Generative
Adversarial Networks (GAN) [21], which use a generator to
produce samples and a discriminator to distinguish between
real and fake samples, we introduce a similar paradigm for
occluded person re-ID. For the person re-ID task, the proposed
paradigm mainly includes an extractor for learning pedestrian
representations and a classifier for identification. While the
classifier can accurately identify benign representations, it fails
to classify disturbed representations. However, if the represen-
tations learned by the extractor are robust enough, even when
affected by occlusion disturbances, the classifier can correctly
identify the adversarial representations as it does for benign
ones. Therefore, it is desirable to endow the re-ID system with
the ability to defend against occlusion perturbation through
an adversarial game between the feature extractor and identity
classifier. Notably, our proposed approach, unlike the previous
GAN-based adversarial defense paradigm [22], is specifically
tailored for person re-ID, an image retrieval task, and does not
require learning to generate adversarial perturbations for original
inputs.

Motivated by the above discussion, we propose an Erasing,
Transforming, and Noising Defense Network (ETNDNet) to
protect the re-ID system against occlusion perturbations. Specif-
ically, to address the issue of missing information, we employ

random erasing on the feature map to generate an adversarial
representation, which maximizes the identity loss to optimize
the classifier and simultaneously minimizes the loss to optimize
the feature extractor. By continuously confronting each other,
the feature extractor is driven to learn a robust representation
that deceives the classifier into correctly identifying the attacked
version, which indicates that the learned representation is im-
mune to information loss. Moreover, we randomly select an
area on the feature map and transform its pixels to another
area, simulating position misalignment. Similarly, training the
classifier enables it to identify the clean feature map accurately,
but fails to classify the perturbed one. And in turn, training
the feature extractor enables the classifier to assign the correct
identity category to the adversarial representation, thereby en-
suring that the feature map remains unaffected by misaligned
information. Recognition performance is negatively impacted
by noisy information from obstacles and non-target pedestrians,
yet limited studies have attempted to overcome this challenge.
To this end, we further apply random noise to the feature
map and accordingly train the re-ID model in an adversarial
way, enhancing the robustness of feature maps against noisy
information. Importantly, the above paradigm does not require
the introduction of redundant components, offering significant
advantages in terms of model simplicity.

The main contributions of this paper can be summarized as
follows:

• Without external auxiliary models and additional trainable
modules, we develop a simple yet effective adversarial
defense method to learn occlusion-robust pedestrian rep-
resentations, in which the first GAN-based adversarial
defense paradigm is designed for person re-ID tasks.

• Our proposed ETNDNet endows the re-ID system with
the ability to handle occlusion perturbations, alleviating
the adverse effects of missing information and position
misalignment on recognition performance. Particularly, our
approach effectively addresses the problem of noisy infor-
mation resulting from occlusions caused by obstacles and
non-target pedestrians, which has often been overlooked in
previous studies.

• We conduct extensive experiments on six public datasets
and compare the performance with existing state-of-the-
art methods to demonstrate the superiority of the proposed
method. Moreover, we evaluate the effectiveness and prac-
ticality of our ETNDNet through various aspects including
ablation studies and analysis of model complexity.

The remainder of this paper is organized as follows: The
related works are introduced in Section II; The details of the
proposed method are elaborated in Section III; The experimen-
tal comparison and analysis are reflected in Section IV; The
conclusion of the present paper is summarized in Section V.

II. RELATED WORK

A. Holistic Person Re-ID

Most existing re-ID studies assume that the pedestrian body
is holistic and can be used to learn a complete representa-
tion. Hand-crafted feature-based methods [23]–[25] adopt pre-
designed descriptors to capture pedestrian characteristics. For
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example, Farenzena et al. [23] computed maximally stable color
regions and recurrent high-structured patches to extract color
information and texture details, respectively. Liao et al. [24]
proposed a local maximal occurrence algorithm that models
salient representations to handle viewpoint and illumination
changes. Moreover, Li et al. [25] combined Gaussian of Gaus-
sian (GOG) features with dictionary learning to reduce domain
discrepancies across datasets. However, with the expansion of
data, the applicability of such methods becomes unsatisfactory
since they fail to exploit sample distribution adequately. To
overcome these limitations, deep learning-based methods [26]–
[30] have emerged. For example, Yi et al. [26] first introduced
deep neural networks (DNNs) for person re-ID and built a
siamese model to capture pedestrian similarities. Considering
the importance of fine-grained information in re-ID, Sun et
al. [27] developed a part-aware feature extraction method with
an adaptive partitioning strategy to align body parts. Li et al.
[31] exploited features from multiple camera views to enable
multi-view imaginative reasoning. Recently, additional tech-
niques such as BNNeck [4] and GeM [5] have been developed,
further advancing person re-ID tasks. Nevertheless, in crowded
scenes where pedestrians are often occluded by obstacles or
other persons, these methods struggle to achieve satisfactory
performance. To address this, our work focuses on solving the
occlusion problem in person re-ID while achieving excellent
recognition rates in holistic scenarios.

B. Occluded Person Re-ID

Compared with holistic re-ID, occluded person re-ID is more
practical and challenging, where the probe samples are occluded
and the gallery database contains both holistic and occluded
images. To encourage the model to focus on human body
parts, Zhuo et al. [32] simulated occluded samples of holistic
data using an occlusion simulator and introduced a co-saliency
branch to assist the feature extractor in capturing identity-related
information. Moreover, Kiran et al. [33] adopted a teacher-
student manner to match the distributions of intra- and inter-
class distances of occluded and holistic data, thereby separating
visible regions from occluded images. To extract discriminative
features of visible regions, He et al. [34] inserted a foreground-
aware pyramid reconstruction module that adaptively assigns
weights to body and occlusion parts. Despite their effectiveness,
learning occlusion-robust representations remains a significant
challenge for these methods. Our proposed ETNDNet falls into
the external model-free category, however, it endows the re-
ID model with the intrinsic ability to defend against occlusion
perturbations.

Recent studies have focused on guiding the re-ID model to
extract features from the visible region by utilizing external
tools. For example, Miao et al. [35] integrated a pre-trained pose
estimator into the re-ID model, generating pose-aware heatmaps
that indicate if specific body parts are occluded. Similarly, Gao
et al. [10] developed a pose-guided attention mechanism and
a visibility predictor to end-to-end match identities. To capture
high-order relation information of human parts, Wang et al. [11]
treated local features learned by keypoints as graph nodes to
model the topology structure of the human body. Leveraging the

intrinsic connection between re-ID and human parsing, Zhang
et al. [36] introduced a semantic branch to extract global and
local features simultaneously. Moreover, Zheng et al. [37] pro-
posed a pose-guided feature learning approach with knowledge
distillation to obtain semantics-aligned representation. Hou et
al. [12] performed person foreground segmentation and devised
a spatial region feature completion module to reason about
occluded areas. Nevertheless, the performance of these methods
largely relies on the accuracy of pose landmarks and body
parsing. Additionally, the use of the auxiliary model increases
computational costs and may compromise the accuracy of
visible cues. In contrast, our method overcomes these limitations
and achieves state-of-the-art performance.

C. Adversarial Attack and Defense

The application of DNNs has led to significant advancements
in various computer vision tasks [38]–[41]. However, Szegedy
et al. [42] discovered that even highly performing models may
produce incorrect inferences when imperceptible perturbations
are applied to images. Building on this observation, Good-
fellow et al. [15] introduced adversarial examples by adding
noise to original inputs using the fast gradient sign method.
Kurakin et al. [43] proposed a multi-step attack method that
iteratively classifies attacked samples into categories with the
lowest classification probabilities. For person re-ID tasks, recent
studies [44], [45] have demonstrated that the re-ID system is also
vulnerable to adversarial attacks, such as images of pedestrians
wearing different clothes or captured by different cameras,
which can lead to misidentification of individuals. Specifically,
Wang et al. [44] designed the advPattern algorithm to explore
the impact of clothing changes on recognition performance. To
maintain visual quality in adversarial examples, Wang et al.
[45] employed differentiable multi-shot sampling to control the
number of malicious pixels and proposed a novel perception
loss to ensure inconspicuous attacks.

To mitigate the interference of noise to DNNs, the concept
of adversarial defense has been introduced. Specifically, Zheng
et al. [16] proposed joint fine-tuning of pre-trained models
using clean samples and their corresponding distorted copies
to improve the accuracy of predicting adversarial examples.
Lyu et al. [17] developed a family of gradient regularization
techniques to constrain the optimization of DNNs and defend
against perturbations. Gao et al. [46] enhanced model robustness
by removing irrelevant features through a mask layer positioned
between the feature extractor and classifier. Building on these
studies, Wang et al. [47] proposed a multi-expert adversarial
attack detection approach to differentiate perturbed examples
for person re-ID tasks. Treating occlusion as a form of noise
perturbation, Huang et al. [18] and Zhao et al. [19] drove models
to extract robust features using brute-force adversarial defense
that requires perturbed examples. In contrast, our method gen-
erates reasonable adversarial representations to simulate various
occlusion perturbations and trains the feature extractor and
identity classifier using a novel GAN-based adversarial defense
paradigm, effectively defending the re-ID system against occlu-
sion interference.
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Fig. 2. Overview of the proposed ETNDNet. Given an input pedestrian image, we employ a feature extractor to extract the corresponding feature map. This
feature map is then forwarded to a classifier for identification purposes. To address the issue of recognition performance degradation due to missing information,
we introduce a random erasing technique to generate an adversarial representation with incomplete information and iteratively optimize the extractor and classifier
through a min-max game of identity loss to defend the re-ID model. Moreover, to mitigate the problem of position misalignment, we employ random pixel
transformations within the feature map, enabling adversarial training of the feature extractor and identity classifier. Furthermore, we simulate the effect of
occlusion by perturbing the feature map with random noise. This adversarial learning paradigm enhances the robustness of the feature map to noisy information.
During inference, we only leverage the baseline branch exclusively to extract features from both the query and gallery images to compute similarity scores.

III. THE PROPOSED METHODS

As illustrated in Figure 2, the proposed ETNDNet consists
of a baseline framework and an occlusion defense system. The
former is a standard re-ID model, which is trained to ensure
the discriminativeness of learned features. The latter includes
erasing defense, transforming defense, and noising defense mod-
ules. In these modules, we perturb the feature maps in different
manners to generate multiple adversarial representations that can
simulate various issues caused by occlusion, and accordingly
train the feature extractor and identity classifier in an adversarial
way to endow the re-ID model with the ability to defend
against occlusion perturbation, thereby promoting the occlusion
robustness of the learned features. In the following, we will
describe the key technologies of each part in detail.

A. Baseline Framework

We adopt the standard re-ID model as our baseline frame-
work, which is commonly employed for the occluded person
re-ID task. This model contains a feature extractor with ResNet-
50 [48] pre-trained on ImageNet [49] and an identity classifier
composed of a pooling layer, a normalization layer, and a fully-
connected layer. As illustrated in Figure 2, given a pedestrian
image x, the feature extractor is responsible for learning repre-
sentation, and the classifier is utilized to predict which identity
the person belongs to. Let E and W respectively represent the

feature extractor and identity classifier, we deploy the cross-
entropy loss to optimize them:

Lce(E,W ) =

N∑
i=1

−qilog(pi), (1)

where N is the number of pedestrians, pi denotes the prediction
logits of class i, qi is associated with the ground truth y:

qi =


1− N − 1

N
ϵ, y = i

ϵ

N
, y ̸= i

, (2)

where ϵ is a constant and set to be 0.1. The association is derived
from the label smoothing (LS) [50] technique, which effectively
avoids the risk of overfitting.

B. Adversarial Representations

The above baseline branch ensures the basic discriminability
of learned features. However, the model is vulnerable to occlu-
sion interference. As mentioned before, it is feasible to train
an occlusion-robust network from the perspective of adversarial
defense. In this process, generating reasonable adversarial ex-
amples to simulate occlusion issues is crucial. The adversarial
samples generated in [18], [19] can achieve this purpose. How-
ever, they are less aggressive and can only simulate the issue
of missing information. To this end, we apply perturbation on
pedestrian feature maps by erasing, transforming, and noising to
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generate multiple adversarial representations to simulate various
occlusion issues.

Erasing. We randomly erase the feature map to acquire an ad-
versarial representation with incomplete information, which can
simulate the issue of pedestrian identity information loss caused
by occlusion. Suppose the feature map is F ∈ RH×W×C , where
H , W , and C denote the height, width, and the number of
channels, respectively. Similar to [51], we first compute the
spatial size S = H×W of the feature map. Next, we randomly
initialize a proportion αe to determine the size Se = αe × S
of the erasing rectangle region Re, where αe ∈ [0.02, 0.4]. And
then, we arbitrarily take an aspect ration re and accordingly
compute the height He =

√
Se × re and width We =

√
Se/re

of Re, where re ∈ [0.3, 1/0.3]. Finally, we randomly select a
point (xe, ye) in F . If xe + We ≤ W and ye + He ≤ H ,
Re = (xe : xe + We, ye : ye + He) can be determined.
Otherwise, the above process is repeated until an appropriate
Re is selected. Let each pixel belonging to Re be 0, and the
adversarial representation Fe can be formulated as:

Fh,w
e =

{
0, if h, w ∈ Re

Fh,w, otherwise
. (3)

Transforming. Occlusion may cause the pedestrian infor-
mation at a certain position on the non-occluded image to
appear at another position on the occluded image. Therefore,
we randomly transform the feature map to simulate such a
position misalignment issue, which is an ability that the ad-
versarial samples do not possess. Firstly, we randomly initialize
a proportion αt and an aspect ratio rt to determine the height
Ht =

√
αtHW × rt and width Wt =

√
αtHW/rt of areas to

be transformed, where αt ∈ [0.02, 0.4] and rt ∈ [0.3, 1/0.3].
Next, arbitrarily choosing two points (xt1 , yt1), and (xt2 , yt2),
if xt1 + Wt ≤ W , yt1 + Ht ≤ H , xt2 + Wt ≤ W , and
yt2 +Ht ≤ H , two areas Rt1 = (xt1 : xt1 +Wt, yt1 : yt1 +Ht)
and Rt2 = (xt2 : xt2 +Wt, yt2 : yt2 +Ht) can be located. Ac-
cordingly, we transform the pixels of Rt1 to Rt2 for generating
an adversarial representation with misaligned information Ft.

Noising. The feature map extracted from an image occluded
by obstacles and non-target pedestrians often contains some
noise irrelevant to the target pedestrian, which is detrimental
to the re-ID system for identification. To this end, we further
perturb the feature map by noising to generate an adversarial
representation with noisy information. Specifically, with the
initialized αn, rn, and (xn, yn), we take a noising region
Rn = (xn : xn + Wn, yn : yn + Hn) and replace its pixels
with random values that follow a uniform distribution. The value
range of αn and rn, and the calculation way of Wn and Hn

are the same as the above erasing process. Let Fn denote the
adversarial representation, it satisfies the following formula:

Fh,w
n =

{
random.uniform(0, 1), if h, w ∈ Rn

Fh,w, otherwise
. (4)

Note that the erased, transformed, and noised regions are the
same for all images in a mini-batch, which prevents the model
from being hard to converge [19].

C. Adversarial Defense

Existing adversarial defense studies on person re-ID mainly
focus on training the model jointly with adversarial samples and
original inputs, which is time-consuming and poorly defensive.
Inspired by the adversarial training in GAN [21], which opti-
mizes a generator and a discriminator in an adversarial way to
encourage the former to generate fake samples that make the
latter can not distinguish them from the real ones. For person
re-ID, we expect the feature extractor to learn a sufficiently
robust representation whose perturbed version can be correctly
identified by the classifier as well. To this end, with the above
adversarial representations, we develop three modules with a
novel GAN-based adversarial defense strategy to overcome the
issues of missing information, position misalignment, and noisy
information caused by occlusion. No additional networks are
required, each module employs adversarial training between the
feature extractor and identity classifier, simple yet effective.

Erasing Defense. Compared to the clean feature map F that
can be correctly identified (Baseline Branch), the adversarial
representation Fe loses some identity-related cues due to the
information of Re being erased, leading the classifier into
misidentification. Therefore, we maximize the cross-entropy
loss to optimize identity classifier W :

argmaxLe
ce(W ) =

N∑
i=1

−qilog(p
e
i ), (5)

where pei is the probability that Fe is recognized as category y.
For the feature extractor E, we expect the learned feature map

F from it can well depict the pedestrian characteristics, even if
part of the information is lost, it can be correctly identified. To
achieve this goal, we utilize Fe to update the parameters of E
by minimizing the cross-entropy loss:

argminLe
ce(E) =

N∑
i=1

−qilog(p
e
i ). (6)

Transforming Defense. Given the adversarial representation
Ft, since its information at Rt2 is inconsistent with the informa-
tion at Rt2 on the feature map F , the classifier fails to accurately
identify the target pedestrian, which can be formulated as:

argmaxLt
ce(W ) =

N∑
i=1

−qilog(p
t
i), (7)

where pti is the prediction result of Ft belonging to the class i.
Conversely, if the feature map F enables the classifier to

correctly identify its attacked version Ft, it means that F is
not affected by the misaligned information. To this end, we
constrain E to satisfy the following formula:

argminLt
ce(E) =

N∑
i=1

−qilog(p
t
i). (8)

Noising Defense. In order to further endow F with the ability
to resist the interference of noisy information, similar to the
above processes, we utilize the perturbed representation Fn to
maximize the cross-entropy loss for optimizing W , and in turn,
minimizing the cross-entropy loss for optimizing E. Suppose
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that the probability of Fn being correctly classified is pni , the
above optimization strategy can be expressed as follows:

argmaxLn
ce(W ) =

N∑
i=1

−qilog(p
n
i ), (9)

argminLn
ce(E) =

N∑
i=1

−qilog(p
n
i ). (10)

Note that in all the above adversarial learning processes, the
feature extractor is fixed when training the identity classifier
and vice versa. Through continuous gaming and optimization
between them, the re-ID system is able to defend against the
perturbation of various occlusion issues. To gain a better un-
derstanding of the above adversarial game process, we take the
erasing defense module as an example to further illustrate. As
shown in Figure 3, assuming that the erased area on the feature
map is the part marked by the red box. Initially, we fix the
feature extractor and optimize the classifier by maximizing the
identity loss. This enhances the discriminative capability of the
classifier’s class prototype and improves its correct classification
threshold. Next, we fix the classifier and optimize the feature
extractor by minimizing the identity loss, which ensures that
even if the information is erased, the feature map extracted by
the feature extractor can be correctly identified by the classifier.
Achieving this requires ensuring that the model can focus on
non-erased areas with highly discriminative information (such
as the part marked by the blue box). Through continuous
adversarial gaming between the two, we can mine as much
discriminative information as possible, thus protecting the re-ID
model from the disruption caused by missing information due
to occlusion. Similarly, our transforming defense and noising
defense modules can also resist the interference of position
misalignment and noisy information.

D. Training and Inference

During the training stage, we utilize the baseline learning
module to extract discriminative features and three defense
modules to enhance the occlusion robustness of the features.
Correspondingly, the total loss can be formalized as:

Ltotal = Lce + λ1Le
adv + λ2Lt

adv + λ3Ln
adv, (11)

where Le
adv = argmaxLe

ce(W )+argminLe
ce(E), and Lt

adv and
Ln
adv are similar. λ1, λ2, and λ3 are hyper-parameters utilized to

control the relative importance of the three adversarial losses.
The training process is carried out in an end-to-end manner,
which is summarized in Algorithm 1.

In the test phase, we extract the feature map F and process it
with pooling and normalization. After that, the obtained feature
vector is used for inference.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to demon-
strate the effectiveness and superiority of the proposed method.
First, we introduce six public person re-ID datasets used in the
experiments. And then, we elaborate on the implementation
details and evaluation protocols. After that, we compare the

Fig. 3. Erasing defense module. Through an adversarial game between the
identity classifier and feature extractor, the model focuses on non-erased areas
with highly discriminative information (the part marked by the blue box).

Algorithm 1 Training process of the proposed ETNDNet
Input: A person image x and its corresponding ground-truth y.
Output: Trained re-ID model.

1: for i = 1; i < iteration; i++ do
2: Extract F ∈ RH×W×C by feature extractor E.
3: Initialize regions Re, Rt1 , Rt2 , and Rn.
4: Set each pixel in Re of F to 0 to generate adversarial

representation with incomplete information Fe.
5: Transform pixels in Rt1 to Rt2 of F to generate adver-

sarial representation with misaligned information Ft.
6: Replace each pixel in Rn of F with random value to

generate adversarial representation with noisy informa-
tion Fn.

7: Send F , Fe, Ft and Fn to identity classifier W for
identifying.

8: Optimize W by Eq.(1), Eq.(5), Eq.(7), and Eq.(9).
9: Optimize E by Eq.(1), Eq.(6), Eq.(8), and Eq.(10).

10: end for

recognition performance of our approach with the state-of-
the-art methods. Next, we verify the effectiveness of each
module and analyze the impact of the hyper-parameters on
the recognition rate. Finally, we further evaluate the proposed
method with a discussion part.

A. Datastes

Occluded-DukeMTMC [35] is a classical occluded per-
son database derived from DukeMTMC-reID [52]. It contains
15,618 training images of 702 pedestrians and 19,871 testing
images of 1,110 pedestrians. Due to various occlusions in both
query and gallery images, this dataset is quite challenging.

Occluded-REID [53] contains 2,000 images of 200 identities,
and each identity has five occluded images and five full-body
images. Following [19], [53], we take occluded images as the
queries and non-occluded images as the galleries, and randomly
select half of them for training and the rest for testing.
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TABLE I
DETAILS OF DIFFERENT PERSON RE-ID DATASETS. ’ID’: NUMBER OF

IDENTITIES. ’IMGS’: NUMBER OF IMAGES. ’O-DUKE’:
OCCLUDED-DUKEMTMC. ’P-DUKE’: P-DUKEMTMC-REID

Datasets
Train Test(ID/Imgs)

(ID/Imgs) Query Gallery
O-Duke 702/15,618 519/2,210 1,110/17,661

Occluded-REID 100/1,000 100/500 100/500
P-Duke 665/12,927 634/2,163 634/9,053

Market-1501 751/12,936 750/3,368 750/19,732
DukeMTMC-reID 702/16,522 702/2,228 1,110/17,661

MSMT17 1,041/32,621 3,060/11,659 3,060/82,161

P-DukeMTMC-reID [53] is another variant of DukeMTMC-
reID that targets occluded person re-ID task. It consists of
12,927 training images of 665 identities and 11,216 testing
images of 634 identities (2,163 occluded images in the query
set and 9,053 holistic images in the gallery set).

Market-1501 [54] consists of 12,936 training images, 3,368
query images, and 19,732 gallery images. All images are cap-
tured from 6 non-overlapping cameras deployed at the campus.
This dataset primarily targets the holistic person re-ID task due
to few images being occluded.

DukeMTMC-reID is widely used to evaluate the performance
of holistic person re-ID, which contains 36,411 images of 1,812
pedestrians collected from 8 cameras (408 distractor identities
only appear in one camera view). All images are divided into
16,522 training samples and 19,889 test samples (This dataset
is for research use only in this work).

MSMT17 [55] includes 126,441 images of 4,101 pedestrians,
in which 32,621 images of 1,041 identities are used for training
and the remaining are used for testing. This dataset is currently
the most challenging holistic person database due to the long
time span of sample collection.

More details about each dataset can be found in Table I.

B. Settings
Implementation Details: We conduct all experiments on one

GTX3090 with the Pytorch platform. All images are uniformly
resized to 256×128 and subjected to random flipping, padding,
cropping, and erasing to achieve data augmentation. The batch
size is set to 64, each batch contains 8 pedestrians and each
pedestrian has 8 images. We set the initial learning rate to 3×
10−4 and decrease it by a factor of 0.1 at the 40th epoch and
70th epoch. The size of the feature map is H = 16, W = 8,
and C = 2048. The hyper-parameters are set to λ1 = 0.1,
λ2 = 0.15, and λ3 = 0.1. We utilize the Adam optimizer [69]
to update the model parameters and train 120 epochs in total.

Evaluation Protocol: We follow the public evaluation indica-
tors to verify the performance of the proposed method, namely
Cumulative Matching Characteristics (CMC) and mean Average
Precision (mAP). Note that all experiments are performed in the
single query setting.

C. Comparison with State-of-the-art Methods
Experiments on occluded datasets: We first evaluate the

superiority of the proposed method on the three public oc-

cluded datasets, namely Occluded-DukeMTMC, Occluded-
REID, and P-DukeMTMC-reID. The comparison results are
shown in Table II and Table III, where we report the accuracy
of Rank-1, Rank-5, Rank-10, and mAP.

For Occluded-DukeMTMC, methods that rely on external
models have achieved satisfactory results. For example, RFCNet
[12] achieves 63.9% Rank-1 and 54.5% mAP by utilizing pose
and semantic information. However, this superior accuracy is
dependent on the reliability of external models and requires
significant computational resources. As shown in the table, in
the absence of auxiliary information, RFCNet only achieves
52.4% (-11.5%) Rank-1 and 44.8% (-9.7%) mAP. These results
demonstrate the heavy reliance of such methods on external
visual cues. In contrast, our method achieves comparable per-
formance to RFCNet without utilizing external models and
with minimal computational resources. Recently, model-free
methods without external models have gained attention, and our
proposed method falls into this category while having notable
advantages in terms of performance and model simplicity.
Specifically, the optimal ISP [61] predicts human body parts
using clustering, avoiding the need for a pre-trained semantic
parsing network, but it suffers from significant computational
complexity and inferior performance compared to our method
(52.3% vs. 54.7% mAP). Furthermore, Adver Occluded [18] and
IGOAS [19], which utilize adversarial defense by generating
aggressive samples, achieve only 44.5% and 60.1% Rank-
1 accuracy, and 32.2% and 49.4% mAP, respectively, while
our ETNDNet achieves 63.6% Rank-1 accuracy and 54.7%
mAP. These results highlight the stronger occlusion defense
ability of the model trained by our method. Additionally, the
attention mechanism is commonly employed by state-of-the-art
methods [64], [66] to extract feature maps containing crucial
pedestrian information. In our proposed ETNDNet, adversarial
representations formed by perturbing such feature maps are
more aggressive, and leveraging them for adversarial defense
enables the re-ID model to learn more robust features against
occlusions. To achieve this, we incorporate Non-Local [71]
into our backbone. As shown in Table II, our method (Ours*)
achieves superior performance, surpassing the aforementioned
methods (e.g., +1.2% mAP compared to FED [64]), further
demonstrating the effectiveness and superiority of our approach.

For Occluded-REID, we repeat the experiment 10 times as
in [19] and take the mean as the final result. As shown in
Table II, the proposed method achieves satisfactory results. For
example, compared with the optimal pose-guided based method
PGFL-KD [37], the proposed ETNDNet improves the Rank-
1 accuracy from 80.7% to 89.3%, and mAP from 70.3% to
81.5%. Compared with the optimal external model-free method
FED [64], Rank-1 and mAP of ours are improved by 3.0% and
2.2%. Moreover, IGOAS [19], which is based on adversarial
learning, the proposed ETNDNet surpasses it by 8.2% in Rank-
1 accuracy. Finally, for P-DukeMTMC-reID, as shown in Table
III, our method also outperforms state-of-the-art algorithms and
achieves significant improvements in mAP, such as 6.8% over
the optimal ISP [61].

According to the above results, the proposed method has
significant advantages for occluded person re-ID, which is
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TABLE II
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON OCCLUDED-DUKEMTMC AND OCCLUDED-REID. THE BEST RESULTS OF THE TWO

KINDS OF METHODS ARE MARKED IN BLUE, AND OURS ARE MARKED IN BOLD. ’EXT’ REPRESENTS EXTERNAL TOOLS, ’BAC’ INDICATES VISUAL BACKBONE
(’CNN’ DENOTES CONVOLUTIONAL NEURAL NETWORKS AND ’VIT’ REPRESENTS VISION TRANSFORMER). § DENOTES THE MODIFIED VERSION OF

MODELS THAT DO NOT USE EXTERNAL TOOLS. ‘*’ INDICATES THAT NON-LOCAL IS INCORPORATED INTO OUR BACKBONE. ’()’ INDICATES THE
PERFORMANCE WHEN TREATING MARKET-1501 AS THE TRAINING SET. ’-’ DENOTES THAT NO REPORTED RESULT IS AVAILABLE.

Methods Ref Ext Bac
Occluded-DukeMTMC Occluded-REID

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP
PGFA [35] ICCV’19 ! CNN 51.4 68.6 74.9 37.3 57.1 77.9 84.0 56.2
PVPM [10] CVPR’20 ! CNN 47.0 - - - 70.4 84.1 89.8 64.2

HOReID [11] CVPR’20 ! CNN 55.1 - - 43.8 80.3 - - 70.2
GASM [56] ECCV’20 ! CNN - - - - 74.5 - - 65.6
OAMN [57] ICCV’21 ! CNN 62.6 77.5 - 46.1 - - - -

Pirt [58] ACMM’21 ! CNN 60.0 - - 50.9 - - - -
PGFL-KD [37] ACMM’21 ! CNN 63.0 - - 54.1 80.7 - - 70.3
PGMANet [59] IJCNN’21 ! CNN 51.3 66.5 73.4 40.9 - - - -

RFCnet [12] TPAMI’21 ! CNN 63.9 77.6 82.1 54.5 - - - -
PEFB [60] TNNLS’21 ! CNN 56.3 72.4 78.0 43.5 - - - -
SORN [36] TCSVT’21 ! CNN 57.6 73.7 79.0 46.3 - - - -

Adver Occluded [18] CVPR’18 % CNN 44.5 - - 32.2 - - - -
PCB [27] ECCV’18 % CNN 42.6 57.1 62.9 33.7 66.6 89.2 - -

AFPB [53] ICME’18 % CNN - - - - 68.1 88.3 93.7 -
FPR [34] ICCV’19 % CNN - - - - 78.3 - - 68.0
ISP [61] ECCV’20 % CNN 62.8 78.1 82.9 52.3 - - - -
RE [51] AAAI’20 % CNN 40.5 59.6 66.8 30.0 65.8 87.9 - -

RFCnet§ [12] TPAMI’21 % CNN 52.4 68.3 73.4 44.8 - - - -
IGOAS [19] TIP’21 % CNN 60.1 - - 49.4 81.1 91.6 - -
ASAN [62] TCSVT’21 % CNN 55.4 72.4 78.9 43.8 82.5 92.2 - 71.8

CBDBNet [63] TCSVT’21 % CNN 50.9 66.0 74.2 38.9 - - - -
FED [64] CVPR’22 % VIT 68.1 79.3 - 56.4 86.3 - - 79.3
QPM [65] TMM’22 % CNN 64.4 79.3 84.2 49.7 - - - -

DRL-Net [66] TMM’22 % VIT 65.8 80.4 85.2 53.9 - - - -
OPR-DAAO [67] TIFS’22 % CNN 66.2 78.4 83.9 55.4 84.2 87.3 - 75.1

RTGTA [68] TIP’23 % CNN 61.0 69.7 73.6 50.1 71.8 94.6 99.0 51.0
Baseline - % CNN 52.5 69.3 75.0 44.6 87.8 95.3 97.5 79.5

Ours - % CNN 63.6 79.5 84.7 54.7 89.3 96.0 97.9 81.5
Ours* - % CNN 68.1 82.5 87.7 57.6 90.5 96.5 98.5 81.9

TABLE III
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART METHODS ON

P-DUKEMTMC-REID.

Methods Bac Rank-1 Rank-5 Rank-10 mAP
PCB [27] CNN 79.4 87.1 90.0 63.9
IDE [70] CNN 82.9 89.4 91.5 65.9

PVPM [10] CNN 85.1 91.3 93.3 69.9
PGFA [35] CNN 85.7 92.0 94.2 72.4

ISP [61] CNN 89.0 94.1 95.3 74.7
Baseline CNN 91.2 95.0 95.9 76.5

Ours CNN 91.6 95.1 96.2 79.2
Ours* CNN 92.7 95.6 96.6 80.7

mainly attributed to the fact that our adversarial representations
fully simulate perturbation caused by various occlusion issues
(missing information, position misalignment, and noisy infor-

mation), and the model trained by the developed GAN-based
adversarial defense has the ability to protect the re-ID system
from such disturbance, effectively overcoming the adverse effect
of occlusion issues on recognition performance.

Experiments on holistic datasets: To further evaluate the
superiority and practicality of our method, we compare with
the state-of-the-art methods on holistic re-ID datasets, i.e.,
Market-1501, DukeMTMC-reID, and MSMT17, and report
the comparison results in Table IV.

Although these three datasets are released for holistic person
re-ID, due to the changeable postures and complex backgrounds,
they still exist problems of information loss, information mis-
alignment, and noisy information. Therefore, our method is also
applicable and can further improve the recognition rate. Specifi-
cally, for Market-1501, our ETNDNet outperforms the state-of-
the-art GPS [79] in terms of Rank-1 accuracy. Additionally, the
integration of an attention mechanism into our framework led to
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TABLE IV
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON MARKET-1501, DUKEMTMC-REID, AND MSMT17.

Methods Bac
Market-1501 DukeMTMC-reID MSMT17

Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP
PTGAN [55] CNN - - - - - - 68.2 - 40.4
PGFA [35] CNN 91.2 - 76.8 82.6 - 65.5 - - -
PEFB [60] CNN 92.7 - 81.3 86.2 - 72.6 - - -
VPM [72] CNN 93.0 97.8 80.8 83.6 91.7 72.6 - - -

IGOAS [19] CNN 93.4 - 84.1 86.9 - 75.1 - - -
HOReID [11] CNN 94.2 - 84.9 86.9 - 75.6 - - -

IANet [73] CNN 94.4 - 83.1 87.1 - 73.4 75.5 85.5 46.8
BagTricks [4] CNN 94.5 - 85.9 86.4 - 76.4 - - -

MHSANet [74] CNN 94.6 - 84.0 87.3 - 73.1 - - -
SORN [36] CNN 94.8 - 84.5 86.9 - 74.1 - - -
OSNet [75] CNN 94.8 - 84.9 88.6 - 73.5 78.7 - 52.9
AGW [5] CNN 95.1 - 87.8 89.0 - 79.6 78.3 - 55.6
POS [76] CNN 95.0 98.3 86.2 94.6 88.7 76.7 - - -
PLIP [77] CNN 95.1 - 88.0 86.5 - 77.0 - - -

BPBreID [78] CNN 95.1 - 87.0 89.6 - 78.3 - - -
GPS [79] CNN 95.2 98.4 87.8 88.2 95.2 78.7 - - -
Baseline CNN 93.8 98.1 84.1 86.1 93.2 74.2 74.8 85.2 49.0

Ours CNN 95.3 98.2 87.2 88.5 94.7 77.9 80.9 89.3 56.6
Ours* CNN 95.7 98.5 88.7 89.3 95.3 78.8 82.7 91.1 58.0

a further improvement in recognition performance, with Rank-
1 being 0.5% higher than GPS and mAP being 0.7% higher
than PLIP [77]. As for DukeMTMC-reID, our ETNDNet also
surpasses most state-of-the-art methods. Moreover, MSMT17 is
currently the largest dataset, and it is relatively difficult due to
the large difference between positive and negative pairs. Existing
methods increase training samples (PTGAN [55]) or introduce
attention mechanisms (IANet [73], OSNet [75], and AGW [5])
to reduce the intra-class distance. Even so, our method with less
training cost achieves superior performance with 80.9% Rank-1
and 56.6% mAP, which is ahead of the state-of-the-art methods.

D. Model Analysis

Ablation Studies. We conduct ablation experiments to
demonstrate the contribution of each module in the proposed
ETNDNet, including erasing defense (ED), transforming de-
fense (TD), and noising defense (ND). All experiments were
performed on Occluded-DukeMTMC, which can better reflect
the effectiveness of modules. The Rank-1 accuracy and mAP
(%) are reported in Table V.

Effectiveness of ED. The developed ED is designed to protect
the re-ID system from missing information. As shown in Table
V, when deploying it to the baseline re-ID system, the Rank-
1 accuracy and mAP are improved from 52.5% to 58.7% and
from 44.6% to 49.7%, respectively. Moreover, compared with
NDNet, the Rank-1 and mAP obtained by ENDNet have also
been significantly improved. These results verify that our ED is
indeed able to promote the re-ID model to learn features that
are not disturbed by information loss, playing a positive role in
identifying occluded target pedestrians and can cooperate with
other modules to further improve the recognition performance.

Effectiveness of TD. The proposed TD strives to defend the
re-ID model for extracting features unaffected by misaligned
information. As shown in Table V, our TDNet promotes the
Rank-1 accuracy and mAP of the Baseline by a large margin.
And, when it is equipped on the above EDNet, the Rank-1
accuracy and mAP are improved from 58.7% to 62.1% and from
49.7% to 52.8%. These results demonstrate that our TD is also
beneficial to occluded person re-ID, effectively alleviating the
adverse impact of position misalignment caused by occlusion
on recognition performance.

TABLE V
ABLATION STUDIES OF THE PROPOSED ETNDNET.

Methods B ED TD ND Rank-1 mAP
Baseline ✓ 52.5 44.6
EDNet ✓ ✓ 58.7 49.7
TDNet ✓ ✓ 57.5 49.7
NDNet ✓ ✓ 58.0 48.8

ETDNet ✓ ✓ ✓ 62.1 52.8
ENDNet ✓ ✓ ✓ 62.3 52.6
TNDNet ✓ ✓ ✓ 59.0 51.2

ETNDNet ✓ ✓ ✓ ✓ 63.6 54.7
ETNDNet* ✓ ✓ ✓ ✓ 68.1 57.6

Effectiveness of ND. The proposed ND is dedicated to solving
the problem of occlusion noise introduced by obstacles and
non-target pedestrians, which is ignored in existing studies. As
shown in Table V, it also contributes to the improvement of
recognition performance, and when it is combined with other
modules, the formed framework can achieve higher accuracy.
Specifically, our NDNet increases the Rank-1 accuracy of the
re-ID baseline model by 5.5% and mAP by 4.2%. And, the
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(a) λ1 (b) λ2 (c) λ3

Fig. 4. The effect analysis on different hyper-parameters λ1, λ2, and λ3. Rank-1 accuracy and mAP are reported and red dots represent the optimal values.

performance of ENDNet and TNDNet is also higher than that
of EDNet and TDNet. These results confirm our ND is indeed
robust against the interference of noisy information.

Finally, when all modules are equipped, the developed ET-
NDNet can achieve the best recognition rates of 63.6% Rank-1
and 54.7% mAP. It follows that our three adversarial defense
modules are able to collaborate with each other, effectively
overcoming the negative effects of perturbation of various
occlusion issues on identification.

Parameter Analysis. Hyper-parameters λ1, λ2, and λ3 are
used to balance the relative importance of adversarial losses in
the above three adversarial defense modules. Here, we study the
influence of their different values on recognition performance.
Each parameter was tested with 11 different values and the
experimental results are illustrated in Figure 4. Note that when
one of the parameters is analyzed, the remaining two are fixed
at the optimal values.

The effect of λ1. From Figure 4, we can see that when λ1

increases from 0 to 0.1, both Rank-1 accuracy and mAP are
improved, and when λ1 = 0.1, our method achieves the best
recognition performance. This indicates that λ1 = 0.1 is an
optimal value for the proposed method. Moreover, we observe
that the recognition performance decreases as λ1 continues to
increase, which may be due to over-guaranteeing the robustness
of the learned features while destroying their discriminativeness.

The effect of λ2. The hyper-parameter λ2 is used to control the
relative importance of the adversarial loss in the proposed trans-
forming defense module. As shown in Figure 4, the performance
of the developed ETNDNet remains relatively stable when λ2

increases from 0 to 0.5. And, when λ2 = 0.15, the recognition
performance slightly exceeds the corresponding performance
achieved at other values of λ2. So, λ2 is set to 0.15 in all the
experiments.

The effect of λ3. In order to further improve the robustness
of the learned features, the ND is designed and the parameter
λ3 is used to control its importance. It can be seen that Rank-1
accuracy and mAP reach the peak when λ3 = 0.1, which further
confirms the validity of ND and the rationality of λ3 = 0.1.

E. Further Discussions
In this section, we further evaluate the proposed method. All

experiments were performed on Occluded-Duke with the same
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Fig. 5. (a) The effect of DropBlock and our erasing strategy on the performance
of our EDNet. (b) The performance impact of the adversarial game. ‘w/o game’
indicates the adversarial game is removed.

hardware (1 GTX3090 GPU, 8 CPU, and 32GB memory).
Erasing Strategy. In our erasing module, we perturb feature

maps with a random erasing strategy to form adversarial repre-
sentations with incomplete information. The strategy proposed
in [80] can also serve this purpose. However, since it fixes the
erased area’s size proportion and aspect ratio while different
obstacles have various sizes and shapes in real scenes, perturb-
ing feature maps by such strategy hinders the aggressiveness
of adversarial representations and ultimately limits recognition
performance improvement. As shown in Figure 5(a), when we
follow DropBlock [80] to fix the erased area’s size proportion
and aspect ratio to 0.3, the Rank-1 and mAP of our EDNet
dropped by 1.3% and 3.0%. Obviously, it is more appropriate
to adopt our random erasing strategy to perturb feature maps.

Defense Paradigm. In this paper, we design a novel GAN-
based adversarial defense paradigm to protect the re-ID system
from various occlusion disturbances, which is significantly dif-
ferent from the adversarial representation learning of IGOAS
[19]. Specifically, IGOAS employs an adversarial suppression
branch that implements a mean square loss between the feature
map and its masked version to make the model focus on
pedestrian information in non-erased areas. In contrast, our
GAN-based adversarial defense paradigm continuously plays an
adversarial game between the identity classifier and feature ex-
tractor, encouraging the model to focus on highly discriminative
information in non-disturbed areas. Particularly, in the devel-
oped defense paradigm, optimizing the feature extractor alone
without the adversarial game process is comparable to IGOAS’s
learning approach (that is, treating adversarial representations as
supervision signals to optimize the feature extractor, making the
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TABLE VI
MODEL COMPLEXITY ANALYSIS. PARAM: THE PARAMETER NUMBER OF

MODELS. FLOPS: THE NUMBER OF FLOATING-POINT OPERATIONS FOR AN
INPUT IMAGE. ‘IT’: THE INFERENCE TIME OF RETRIEVING ALL QUERIES.

Methods Param FLOPs IT Rank-1 mAP
HOReID [11] 163.2M 4.9 258s 55.1 43.8
IGOAS [19] 32.6M 4.6 49s 60.1 49.4
RFCnet [12] 25.6M 4.3 119s 63.9 54.5

OPR-DAAO [67] 58.2M 9.2 - 66.2 55.4
FED [64] 146.2M 11.0 98s 68.1 56.4

Ours(Baseline) 24.9M 4.1 25s 52.5 44.6
Ours(ETNDNet) 24.9M 4.1 25s 63.6 54.7
Ours(ETNDNet*) 25.1M 4.1 44s 68.1 57.6

model focus on pedestrian information in non-disturbed areas).
As demonstrated in Figure 5(b), removing the adversarial game
process reduces the mAP and Rank-1 accuracy by 4.8% and
5.9%, respectively, indicating the superiority of the learning way
in our GAN-based adversarial defense paradigm.

Model Complexity. To further demonstrate the practicality
of the proposed method, we conduct an analysis of the model
complexity and compare ours with four state-of-the-art methods.
The results are illustrated in Table VI, where we report the
parameter number of models (Param), the number of floating-
point operations for an input image (FLOPs), and the inference
time of retrieving all queries (IT). It can be observed that
existing state-of-the-art methods have a relatively large model
complexity. In comparison, our Param, FLOPs, and IT are
only 24.9M, 4.1, and 25s, thus the proposed ETNDNet has
a significant advantage in model simplicity. Moreover, our
method does not introduce any external modules with learnable
parameters. Therefore, it has the same model complexity as the
baseline, that is to say, our method improves the recognition
performance without increasing the computational burden, with
strong practicability. Additionally, incorporating Non-Local into
our backbone, ETNDNet* increases the number of parameters
by only 0.2M, but leads to significant performance improve-
ments, surpassing state-of-the-art methods.

Model Generalization Ability. We also evaluate the model
generalization ability of our algorithms, with the results pre-
sented in Table VII. Importantly, it should be noted that our
ETNDNet was not primarily tailored for domain generalization,
and its performance falls short of the state-of-the-art method
[81]. Nonetheless, in comparison to other occluded person re-
ID algorithms, our model demonstrates superior generalization
ability. To illustrate, for Market → Duke, our ETNDNet out-
performs HOReID by 1.6% and IGOAS by 0.2% in terms of
mAP. Furthermore, compared with the Baseline, our algorithm
yields a substantial enhancement of 6.0% in Rank-1 accuracy
and 4.1% in mAP. This observation underscores the efficacy of
the proposed algorithm in enhancing model generalization.

Adversarial Representation. Aggressiveness is an impor-
tant basis for judging the quality of adversarial examples. As
discussed earlier, our adversarial representations formed by
perturbing feature maps are more aggressive than adversarial
samples formed in [18], [19]. To demonstrate this, we test the

TABLE VII
PERFORMANCE COMPARISON OF MODEL GENERALIZATION ABILITY. A →

B DENOTES THE MODEL IS TRAINED ON DATASET A AND DIRECTLY TESTED
ON DATASET B.

Methods
Market → Duke Duke → Market
Rank-1 mAP Rank-1 mAP

QAConv [82] 48.8 28.7 58.6 27.2
SNR [81] 55.1 33.6 66.7 33.9

HOReID [11] 39.4 23.2 48.0 22.1
IGOAS [19] 41.5 24.6 48.7 22.2

Baseline 35.1 20.7 56.2 26.9
Ours 41.1 24.8 56.3 27.6

Ours* 48.3 30.6 60.1 30.2

ASB AR(E) AR(T) AR(N)

(a)

IGOAS(B) IGOAS(AS) Ours(B) Ours(AS)

(b)
Fig. 6. (a) The attack effect of the adversarial example and various adversarial
representations on the re-ID model. B: Baseline. AS: Adversarial Samples.
AR: Adversarial Representations. E: Erasing. T: Transforming. N: Noising. (b)
Comparison of the proposed method and IGOAS in model defense capability.

performance of the model trained by the baseline framework on
adversarial samples and various adversarial representations. The
experimental results are shown in Figure 6 (a). Firstly, compared
with the baseline, the adversarial samples reduce the mAP and
Rank-1 by 9.3% and 8.0%, while our adversarial representations
with incomplete information reduce the mAP and Rank-1 by
20.8% and 19.1%, which suggests that applying perturbation
on the feature map is indeed more aggressive. Secondly, the
adversarial representations generated by random transforming
simulate the issue of position misalignment caused by occlusion,
which is a capability that adversarial samples do not possess.
And, as can be seen from Figure 6 (a), they lead to the reduction
of the mAP and Rank-1 from 44.6% to 36.0% and from 52.5%
to 46.1%. Thirdly, our adversarial representations with noisy
information also reduce the recognition rate by a large margin
(-16.3% mAP and -16.5% Rank-1) and are more effective in
attacking the re-ID model than adversarial samples.

Model Defensive Capability. As we discussed above, the
model trained by our ETNDNet has a stronger model defensive
capability than IGOAS [19]. In order to further prove this,
during testing, we randomly erase the query and gallery samples
to further cheat the re-ID system and compare the recognition
performance obtained by our method and IGOAS. As illustrated
in Figure 6 (b), the performance that IGOAS achieved was
far from the results of its baseline model. Different from it,
the proposed ETNDNet gains a recognition rate comparable to
the baseline. This is mainly because our adversarial defense
strategy enables the re-ID model to pay close attention to as
many pedestrian body parts as possible. Even if the information
of a certain part is lost, the target pedestrian can still be correctly
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(a) (b) (c) (a) (b) (c)
Fig. 7. Visualization of regions that the model interest. (a) Original image. (b)
Heatmap gained by Baseline. (c) Heatmap gained by ETNDNet.

identified (as illustrated in Figure 7). The above qualitative and
quantitative analysis fully demonstrate that our method with the
developed novel GAN-based adversarial defense is valuable in
object re-identification and deserves further exploration.

Limitations. In the proposed ETNDNet, we perturb feature
maps by random erasing, transforming, and noising to form
adversarial representations that can simulate various issues
caused by occlusions. However, the erased, transformed, and
noised areas possibly overlap with occlusions. Additionally, the
shapes of obstacles and human bodies are often irregular, while
our erased, transformed, and noised areas are regular rectangles,
hindering the aggressiveness of adversarial representations and
ultimately limiting performance improvement. These limitations
prompt us to conduct further investigations in the future.

V. CONCLUSION

In this paper, from the perspective of adversarial defense, we
propose a simple yet effective framework named ETNDNet to
protect the re-ID system from various occlusion perturbations.
Specifically, we generate adversarial representations with in-
complete information, misaligned information, and noisy infor-
mation by erasing, transforming, and noising at feature maps to
simulate issues of missing information, position misalignment,
and noisy information caused by occlusion. Accordingly, we de-
velop a novel GAN-based adversarial defense approach to train
the feature extractor and identity classifier in an adversarial way,
thus overcoming the detrimental effects of the aforementioned
perturbations on the re-ID system. The proposed ETNDNet
exhibits superior results on six public re-ID databases, and
extensive experiments fully demonstrate its effectiveness and
practicability. In the future, we will further explore the potential
of adversarial attack and defense in object re-identification.
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