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Multi-View Coding for Image-Based Rendering
Using 3-D Scene Geometry
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Abstract—To store and transmit the large amount of image from about 20:1[3] to 300:1[19]. For storage and Internet trans-
data necessary for Image-based Rendering (IBR), efficient mission, higher compression ratios are desirable. Here, block-
coding schemes are required. This paper presents two different ,4ahtive coding and hierarchical disparity compensation tech-

approaches which exploit three—dimensional scene geometry . h b h to vield . fi di
for multi-view compression. In texture-based coding, images niques have been shown (o yield compression ratios exceeding

are converted to view-dependent texture maps for compression. 800:1 [20].
In model-aided predictive coding, scene geometry is used for Coding efficiency, decoding speed, and rendering quality can

disparity compensation and occlusion detection between images.pe increased considerably if 3-D scene geometry information
While both coding strategies are able to attain compression ratios is available [8], [21], [22]. This paper describes two different

exceeding 2000:1, individual coding performance is found to in which k led f t b loved
depend on the accuracy of the available geometry model. Exper- W&YS N WNICh Knowledge of scene geometry can be employe

iments with real-world as well as synthetic image sets show that t0 éncode multi-view imagery. In texture-based coding, scene
texture-based coding is more sensitive to geometry inaccuraciesgeometry is used to convert images to view-dependent texture
than predictive coding. A rate-distortion theoretical analysis of maps prior to compression [5], [23], [24], [8], [25]. These

both schemes supports these findings. For reconstructed approx- y;iay_dependent texture maps exhibit greater inter-map corre-
imate geometry models, model-aided predictive coding performs lation than the original images, making them more amenable

best, while texture-based coding yields superior coding results if . . o .
scene geometry is exactly known. to coding. In model-aided predictive coding, on the other

Index Terms—Geometry coding, image-based rendering (IBR), hand, images are successively estimated by employing scene

light field compression, model-based coding, multi-view coding geometry to -predict nE'.W.ViEWS from already encoded images
analysis, multi-view compression. [26]. The residual prediction error between the image estimate

and the actual image recording is additionally encoded [27].
By predicting multi-view images in a hierarchical fashion,
the image data is available in a multiresolution representation
ROM Internet museum tours and virtual city sightseeing t@uring decoding. Since the presented coding schemes aim
three—dimensional (3-D) product presentations and co@t highest compression performance for data storage and
puter games, Image-based Rendering (IBR) techniques carfia@smission purposes, the light field data is decoded off-line
used to create photo-realistic representations of remote reaior to using the images for rendering.
world or computer-generated places and objects [1]-[9]. VisualThe paper is organized as follows. After outlining multi-view
quality thereby depends on the number of scene images avéiilage data acquisition, the process for reconstructing and en-
able, and since hundreds to thousands of images are typicalging the geometry model is explained. Both the model-aided
necessary to obtain convincing rendering results [10], efficieand the progressive texture-based coding schemes are described.
multi-view coding technigques are needed to store IBR data, or@@ding results for real-world as well as synthetic image sets are
transmit multi-view imagery over a network, such as the publ@resented. For both codecs, the influence of scene geometry ac-
Internet. curacy on coding efficiency is experimentally investigated. A
In recent years, a number of multi-view compression scheniégoretical analysis of coding efficiency in the presence of ge-
have been developed specifically for use in conjunction wittmetry and image noise concludes the paper.
image-based rendering applications. Among the various coding
techniques employed are vector quantization [3], discrete cosine Il. MULTI-VIEW IMAGE ACQUISITION
transform (DCT) coding [11], wavelet coding [12]-[16] predic- 1 jnyestigate both multi-view coding schemes described
tive image coding [17]-{19], as well as approaches based pfye following sections, image sets have been acquired from
video coding standards [15]. To aphleve interactive rendenlﬂg{ee stuffed toy animalsGarfield, Mouse and Penguin
frame rates, these coders are designed to feature fast decogigd 1) cajibrated images are captured using a computer-con-
performance which, however, limits coding efficiency to a ranggy|jed turntable and a digital camera on a lever arm, acquiring

object appearance at 384288-pixel resolution and 24-bit
RGB color information per pixel. Image recording positions are

I. INTRODUCTION
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Fig. 1. Real-world test objects. Multi-view imagery is recorded from stuffe|
toy animals.

@ (b)

same viewpoints as the object images. As the turntable and
the camera arm are driven by stepper motors, image record
positions can be reproduced with sufficiently high accuracy for
calibration. For calibration, an analysis-by-synthesis method is = . . L
employed [28]: A synthetic computer model of the caIibratioﬁomam.Ing the object mto volume elemgntsqxe_ls). A vo.xel
body is automatically fit to the calibration images to determi C,)del 1S constructeq directly from multiple ca_llbrated Images
extrinsic as well as intrinsic camera parameters. The mode Fsl.g' 3). Reconstruction accuracy depends on image calibration

repeatedly rendered while an optical flow-based optimizatidh€ciSion. object surface characteristics, and voxel size. In the

algorithm varies camera parameters until the rendered moBE?Semed work, the discretized volume is comprise2of to

3 .
matches the actual image of the calibration object. 300° voxels, where the spatial extent of each voxel corresponds

To evaluate coding performance for the case of exactly knokh approxmately 1 pixel Wghe” projected into the image plane.
geometry, synthetic multi-view data sets are also used (Fig. 2 e reconstrgcﬂon of 800°-voxel model takes several hours
In the Spheredata set, the geometry model of a sphere approli-Ing aI_I 2_57 IMages on a conventional PC.
imation consisting of 8192 triangles is rendered from multiple T(_) eliminate the influence of nonmodelled background on
viewpoints. TheStar geometry model consists of 128 vertice§Odlng performance measurements, the reconstructed voxel

approximating a sphere of which 18 vertices protude by SO.F%(DdGIS are used to segment MBarfield, Mouse andPenguin

to form the spikes. Both geometry models are gray-scale td}129€s- For the synthetgpheremage set, no segmentation is
tured using a synthetic texture map exhibiting an inter-pixel ifecessary as t_he object S|Ih(_)uette exactly matchgs the geometry
tensity correlation of 0.98. The synthetic objects have diffuse odel prOJectlon. Exact object geometry is f”“’a"ab'e for the
reflecting surfaces (Lambertian reflection), while a direction p_herelmgg_es, whereas for the real-world image sets only
light source illuminates the objects always from the direction pite-precision geometry models can be reconstructed.

the camera (eye-light). Both synthetic image sets consist of 257

. ) : . . Rate-Constrained Geometry Coding
images, rendered from viewpoints spaced corresponding to the

2. Synthetic test image data. The diffusely reflecting models of (a) a
ereand (b) aStarare illuminated from the camera direction.

real-world image sets. A reconstructed volumetric model typically consists of mil-
lions of voxels. To efficiently compress and process object ge-
Ill. 3-D GEOMETRY RECONSTRUCTION ANDGEOMETRY ometry, a triangle-mesh description of the object’s surface is de-
CODING sirable. TheMarching Cubeslgorithm [36] is therefore used to

o ) triangulate the voxel model surface (Fig. 3). The resulting mesh

In geometry-based multi-view coding, scene geometry Musfj| contains hundreds of thousands of triangles, however, many
be encoded in addition to image data. This section descpbes th6re than are necessary to represent object geometry at the level
procedure for reconstructing 3-D scene geometry from image$accuracy of the reconstructed model. ConsequentlyPtbe
in the case of real-world image;, and for encoding the geome@’essive MeshegPM) algorithm [37] is employed to reduce
for both real-world and synthetic data sets. the number of triangles until the maximum distortion of the re-
sulting mesh corresponds to half the size of a voxel (Fig. 3). This
way, triangle mesh accuracy is matched to the original recon-

While for the computer-generategphereimage set exact structed voxel model, and the number of triangles in the mesh
3-D geometry is available, for the real-world objects geometiy reduced to approximately 10 000 triangles.
must be inferred from the recorded images. To reconstruct 3-DWhile better geometry accuracy can increase image coding
scene geometry directly from calibrated multi-view image datafficiency, it inevitably also increases geometry coding bit rate.
several volumetric algorithms have been proposed [29]-[32]p determine the point of best overall coding performance,
In contrast to methods that rely on distinct image featuréise geometry model must be encodable at different levels of
[33]-[35], volumetric reconstruction does not require thaccuracy and with correspondingly different bit rates. A number
explicit identification of correspondences between images. Fair progressive mesh-coding algorithms are known that allow
the presented experiments, tMulti-Hypothesis Volumetric trading off geometry reconstruction accuracy versus geometry
ReconstructiofMHVR) algorithm is used to derive 3-D scenecoding bit rate [37]-[40]. Unfortunately, these algorithms
geometry [32]. The algorithm is based on discretizing the spaercode only mesh connectivity in a progressive fashion, while

A. Geometry Reconstruction
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Fig. 3. Avoxel model is reconstructed from thtouseimage set, the surface is triangulated, the triangle mesh reduced, and the resulting geometry model is EMC
encoded. By decoding only a fraction of the bitstream, the accuracy of the reconstructed geometry model can be continuously varied, allondegcositmtra

bit rate for geometry accuracy. Model accuracy is expressed as the numberrotibid to quantize vertex coordinates. The maximum deviation of a vertex from

its original position i2—(»+1) relative to overall bounding-box size. From left to right: reconstructed voxel model; triangulated surface, decimated mesh; 8-bit
accuracy 95 183 bits; and 5-bit accuracy 33894 bits.

vertex coordinates are encoded with fixed accuracy. Especiae hierarchically ordered for encoding, yielding a multiresolu-
at coarse geometry resolution, most bit rate is spent for d@ien representation of the multi-view image set during decoding
pressing precise vertex positions, even though reconstrucéedl rendering.
geometry accuracy would require substantially less accurate
vertex coordinates. A. Model-Aided Prediction

In model-aided coding, an image is predicted by warping
C. Embedded Mesh Coding multiple reference images [42]. First, the geometry model is

TheEmbedded Mesh CodifEMC) alaorith vel rendered for the image viewpoint that is to be predicted. Each
eEmbedded Mesh Codi§MC) algorithm progressively image pixel is assigned its corresponding point on the surface

encodes mesh connectivity as well as vertex coordinates siml-v « 3 b hodel by determining the triangle index and the

taneously [41]. The geometry coding scheme is based on Verﬁ%ycentric coordinates within the triangle (Fig. 4). The geom-

connectivity and an oct-tree representation of vertex coordinagqﬁ/ model is then rendered for all reference image positions. For

by introducing multiple resolution levels. This way, EMC aIIo-eaCh pixel in the prediction image, the corresponding pixels in

ca:jes avallable_c_odmlg_ bf't rate G_zvenly between mesh connectivify yeference images are sought using the pixel’s triangle index
and vertex posmopa Information. ) and its barycentric coordinates. This way, pixels that are not
The EMC algorithm encodes vertex coordinates and Megaine in 4 reference image are automatically detected. A par-
conn_ectlwty S|multane_ously at contm_uously increasing Ieve_l ‘ﬁfally occluded image region is predicted only from those ref-
detail. The comple’Fe_bltstream cont.a.ms all |nformat|or_1 t_o faiths ance images that depict the respective region, and coinciding
fully reconstruct original vertex positions and connectivity. Buliyo| hredictions are averaged. Because multiple reference im-
EMC coding can also be interrupted atany point, yielding a ruy o5 are ysed for prediction, the number of completely invisible
cated bitstream that still allgws the ref:onstructlon ofan apprO)ngions is small. These regions are filled by interpolation using
mate geometry model. During decoding, the number of trianglgs,, itiresolution pyramid of the predicted image estimate: Also
and vertices as well as vertex positional accuracy increases cot\s\ . as push—pull interpolation [4], lower resolution versions

tinuously, yielding increasingly accurate object geometry. Thg ihe image are used to look-up the mean color value of the
decoding process can also be stopped at any point to obtain @z eighborhood around an unpredicted pixel position.
proximate geometry representations.

By using EMC in conjunction with multi-view coding B. Hierarchical Image Coding Order
schemes, geometry coding bit rate can be continuously vanedAS image recording positions are distributed on the hemi-

wh:jch enabl_e? opurpal alllaocauon Otfhb'tézﬁ%bﬁtwe%? gzc.)metté)ﬁhere around the scene (Fig. 5), they can be expressed in
and image information. Because the algorithm dIreClyherical coordinates with the origin at the scene’s center. To

encodes vertex connectivity instead of triangle connectiyit fliciently exploit similarities among the images, and at the
EMC can be u_sed tq encode polygonal meshes of arb'tr%'gme time span the entire light field recording hemisphere early
topology and dimension, regardless of whether the mesh

! . . oft during decoding, it was experimentally found that highest
orientable, regular, manifold, or nonmanifold. coding efficiency is achieved by encoding the images in the
following hierarchical order [20], [43]: The image closest to the
zenith of the hemisphere and four images evenly spaced around
the equator are intra-encoded using the block-DCT scheme

Given camera parameters and 3-D scene geometry, dispafidtyiliar from still-image compression (images A in Fig. 5). For
between images can be compensated and obscured image araels image, the DCT coefficients’ quantization paraméter
can be detected. Thdodel-Aided CodefMAC) relies on suc- is individually adjusted to ensure that the reconstructed image
cessively predicting image appearance by disparity compensaets a preset minimum reconstruction quality;,. The
tion and occlusion detection on a pixel basis [27]. The imagége intra-encoded images are arranged into four groups, each

IV. M ODEL-AIDED PREDICTIVE CODING
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all quadrants have been considered, each quadrant is divided
into four smaller subregions: the center image B and the polar
A image form together with each of the two mid-latitude
images C two triangular sub-quadrants, while the center image
B in conjunction with each of the equatorial A images and
the two closest C images represent two more quadrangular
subquadrants. Because each sub-quadrant’s corner images are
already encoded (the center image B, one corner image A, and
one or two mid-side images C), these images are available for
prediction of the center and side images of each subdivided
region. After the center and mid-side images of all subquadrants
have been encoded, each subquadrant is again subdivided in
the above-described fashion. Quadrant subdivision continues
recursively until all images are encoded. This way, an image
pyramid of ever-decreasing mutual recording distances is
established.

As all images are predicted from previously encoded im-
Fig. 5. Hierarchical multi-view coding order. Image recording positions al%ges’ a mu'_t"evel _hlerarch_y IS eStabIISh?d among the I_m‘jige
projected onto the hemisphere around the scene. The images closest to the z8@t@. The hierarchical coding order provides short prediction
alnd fOtUtroingciSn f\elfggeg\ci Eﬂgztrf;rn?(rﬁq i;ltreélge)r}gotiggi C({f;ﬂ(?fgrifn /;\r)]-eTflljz(i‘?ﬁeQSIances to yield best prediction results, and during decoding,
g:r?lisr images, and mid-sidgimages (images C) apre predicted from ?he C;ﬁﬁgltlple resomtlo_n levels of the image ;et can be progresswe_ly
and two corner images. Each quadrant is then subdivided and treated likevdggessed. For image-based rendering, the multiresolution
until all images have been encoded. representation allows adjusting rendering quality to available

computational resources. To eliminate ghosting artifacts during
consisting of the polar and two equatorial images, subdividirigndering, model-aided prediction can also be used to supple-
the hemisphere into four quadrants. In each quadrant, the im&g@nt multi-view imagery by providing disparity-compensated
closest to the central position (image B in Fig. 5) is predicted bytermediate image estimates [44], or by directly warping
model-aided disparity compensation (Section IV-A), using tHe-between viewpoints [21].
three corner images as reference. After prediction, the residual i
prediction error is DCT-encoded if image quality does not meSt €0ding Performance
the desired reconstruction qualify,;,,. Next, the three images The performance of the model-aided coder has been assessed
closest to the mid-positions of the quadrant’s sides (imagesu€ing multi-view imagery from real-world scenes as well as a
in Fig. 5) are predicted likewise using the just-encoded centymputer-generated image set (Section 1l). For encoding, the
image and the two closest corner images as reference. Aftaages are converted 86C,,C, color space, and the chromi-
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Fig. 6. Model-aided coding performance. Geometry-model accuracy is expressed in number of bits used to quantize vertex positions along each dimensi

nance components are downsampled by a factor of 2 both h@&ometry bit rate. The same approximate geometry model is op-

zontally and vertically. Fig. 6 illustrates the rate-distortion petimal at high as well as at very low coding bit rates, indicating

formance of the model-aided coder for the multi-view imagthat the benefits from better geometry accuracy outweigh the

sets. Reconstruction quality is expressed as the peak-signalbib+ate savings from using a more approximate geometry rep-

noise ratio (PSNR) averaged over all image pixels, whereas l@sentation even at high compression.

rate is given in bits per pixel (bpp). EMC geometry coding bit In contrast to the real-world test objects, the synth®fibere

rate is included in all curves. image set shows optimal coding results at 10- to 14-bit accurate
For theGarfieldimage set, coding bit rate ranges from 0.008§eometry. Because the original 8192-trian§fgheregeometry

bpp at 32.9 dB reconstruction PSNR up to 0.182 bpp at 42.0 dBodel is available, prediction quality can be expected to im-

Reconstruction quality of thHdouseimages varies from 32.7 dB prove with approximation accuracy until the exact rendering ge-

at 0.087 bpp to 42.3 dB at 0.218 bpp. TRenguinlight field ometry is recovered at 24-bit accurate vertex positions. At low

requires between 0.0067 bpp at 37.3 dB and 0.129 bpp at 4Bi0rates, 10-bit accurate sphere geometry achieves best coding

dB. The synthetiSpherdmages, finally, are encoded with 0.01results, while improved prediction quality using 12- and 14-bit

bpp at 36.4 dB and 0.133 bpp at 45.9 dB PSNR. approximate models subsequently over-compensates geometry
Different geometry approximations are evaluated to detareding bit rate at higher reconstruction quality.

mine best bit-rate allocation. Except for tBphereobject, best

coding p_erformgnce is obta!r.\ed if object geom(_etry is appro Reconstruction Quality

mated with 8-bit vertex positional accuracy. This corresponds

to the resolution of the reconstructed volumetric models which Fig. 7 depicts an image of tHdouseimage set that is en-

consist ofx 28 voxels along one side. More accurate vertex p@oded at different bit rates using the 8-bit accurate geometry

sitions do not improve prediction performance but only increaseodel. At 0.136 bpp overall coding bit rate and 40.1 dB PSNR,
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() (b) (d)

Fig. 7. Image from thdlouseset, MAC encoded with 8-bit accurate geometry at different bit rates. (a) Original image. (b) 0.136 bpp at 40.1 dB. (c) 0.018 bpp
at 34.0 dB. (d) 0.009 bpp at 32.7 dB.

the reconstructedlousemage shows only marginal differencesconnectivity-preserving mapping of object surface onto a rect-
from the original image set, visible merely in the finely texangular texture map is necessary, preserving texture correlation.
tured pants. When increasing the compression ratio, the palmtghe following, a suitable triangle mesh parameterization is
pattern washes out and becomes blurry. At 34.0 dB PSNR, cdescribed for objects that exhibit sphere-like topology.
responding to 0.018 bpp, the fine whiskers cannot be resolved ) )
anymore. At the lowest reconstruction PSNR of 32.7 dB, the sff- Geometry Model Generation for Texture Mapping
houette of the depicted object still shows up as a crisp outline.To parameterize the closed surface of a volumetric object
The mosquito artifacts outside the object’s silhouette are causg@h that a planar two—dimensional (2-D) texture map can be
by the block-based DCT scheme applied to encode the residgeherated, the surface must be cut once or several times, de-
error. pending on the body’s topological genus. For objects having
genus 0, which are topologically equivalent to a sphere, a simple
V. TEXTURE-BASED CODING rectangular surface parameterization can be obtained by starting

from the simple shape of attahedronFig. 8. By opening the

By transforming images of a 3-D object into texture MaP¥ctahedron along two edges from pole to pole and along two

disparity-induced differences between the images can be e"é'b’ges on the equator and only mildly distorting the shape of the

inated. If nonvisible regions are suitably interpolated, textuf&yiqyal triangles, the octahedron’s eight triangles are mapped
maps exhibit higher inter-map correlation than images becalb?ﬁo a planar square region while preserving triangle connec-

only reflection properties of the object surface can cause a‘Wlty for eight of the 12 octahedral edges [25]. In this manner,

remaining variation between texture maps generated from dify \,nambiguous, connected parameterization of the entire oc-

ferent viewpoints. Text.ure-base_d coding is inspirgd by View'df‘aihedral surface is obtained, yielding a rectangular, completely
pendent texture mapping techniques developed in IBR reseaﬁﬁgd texture map.

[23], [8], [25]. . ) To approximate the volumetric geometry model, the octahe-
In Progressive Texture-based Codi(TC), reconstructed yq, js placed at the center of the voxel model. Each vertex is

3-D object geometry is used to convert images to View-dg;,eq along its normal direction until it lies on the voxel model

texture maps. The progressive coding technique continuoUugly ,iie viertex normals are inferred from the orientation of the
increases attainable reg:ons(tjrucuon quah_tyf with gvanablle %.%'acenttriangles, and the new vertices are relocated to the voxel
rate. Because PTC is based on texture information, only t del surface. By repeated triangle subdivision, increasingly

image regions within the projected geometry model silhoueti . ate triangle meshes are obtained (Fig. 8), so thatafter
are encoded. Decoding of the progressive bitstream can be Jivisions. the mesh consists2f2" triangles [25].
interrupted at any point of time which allows trading rendering '

quality for frame-rate and, thus, adapting rendering perfoC. Texture Map Optimization

mance to available computational resources. To map the refined geometry meshes onto the texture plane,

the initial texture-map triangles are subdivided in the same way
as the geometry triangle mesh (Fig. 9). Each texture-map tri-
Object surfaces are most commonly described by piecewesggle corresponds to one geometry triangle. The texture-map
planar triangle meshes in computer graphics. While surfag@ngles are all identical, however, while the geometry trian-
texture can be easily parameterized over each triangle segies differ in size and shape. To minimize coinciding pixel map-
rately, individual triangle-texture patches are very inefficiergings, which limits attainable reconstruction quality, relative
to encode as correlation across adjacent triangles cannottdsdure-map triangle size is matched to their corresponding ge-
exploited. To achieve more efficient texture coding results,anetry triangle area by iteratively shifting texture-map vertex

A. Texture Map Generation
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Fig.8. Objectgeometry is initially approximated by fitting an octahedron to the voxel model. By triangle subdivision,Pefigeihgeometry models consisting
of 32, 128, 512, and 2048 triangles are generated.

e
7 »Nﬁ'@“‘“’é
S
el

e

Fig. 9. Texture-map triangles are subdivided equivalent to their geometry (@) (b)

mesh counterparts. Afterwards, the texture map is optimized to match the L .

relative triangle area to the geometry triangle size. F_lg. _10. Mapplng' image 'plxels _to_ the texture_ plane _Ieads _to unevenly
distributed texture information. Missing texture information is interpolated

from pixels within the texture map as well as from other maps. (a) Sparse
positions [25]. The resulting optimized texture-map triangléxture map. (b) Interpolated texture map.
have the same relative size as their corresponding geometry tri-
angles. Fig. 9 depicts an optimized texture map. The coding g&ial images. To avoid adverse effects from large texture maps
achieved by optimizing texture maps depends on target bit rate compression efficiency, a wavelet coding scheme is applied
and has been found to be more pronounced for finely texturedcompress the texture information. Because wavelet coding re-

objects. lies on texture information represented in the frequency domain,
bitstream size does not have to increase with map size in the spa-
D. Image-to-Texture Map Conversion tial domain. In the following, a texture interpolation scheme is

A well-known problem in texture mapping is aliasing due igresented that a}llowg filling in ur!defingq texel values such that
different resolutions in the image and the texture domain. @€ wavelet coding bit rate remains minimal.
circumvent aliasing artifacts and to guarantee exact reconstruc- .
tion, the texture domain is chosen significantly larger than tife SParse Texture Map Interpolation
pixel area covered by the object in the images. Since many mord he undefined texel values represent a large number of de-
texels are available than object pixels in the images, each textgrees of freedom that can be exploited to keep the bitstream
map is only sparsely filled. size to a minimum by matching the texture interpolation to the
The object pixels in the image are inversely mapped onteavelet coding scheme that follows. Because the four—dimen-
the texture plane to determine the corresponding texels’ cokional (4-D) SPIHT wavelet coding method (Section V-F) per-
values. To convert multi-view images into view-dependent teferms best if high-frequency coefficients are small relative to
ture maps, the geometry model is rendered, and each pixel indme frequency coefficients, undefined texels must be interpo-
the projected model silhouette is assigned its corresponding ded subject to the constraint that the applied wavelet trans-
ometry triangle and the relative coordinates within the triangliarm results in minimal high-frequency coefficient values and
Triangle number and coordinates determine the texel to whigkaximum low-frequency coefficients. For the 4-D Haar wavelet
the color value of the image pixel is copied. used, it can be shown that the mean value of the defined texels
By mapping image pixels onto the texture plane, the textuwgthin the region of support must be assigned to the undefined
maps are filled unevenly, as depicted in Fig. 10. Invisible triatexel positions in order to minimize the overall energy of the
gles cause empty texture map regions, triangles seen at a grahigh-frequency coefficients [45]. Texture interpolation is per-
angle lead to sparsely filled areas, while for face-on triangldsymed in all four dimensions. 2 texels from 2x 2 adjacent
different image pixels may be mapped onto the same texel. fBxture maps are considered, corresponding to the 4-D Haar
avoid coinciding pixel mappings, the texture map is chosen suitasis function’s region of support af texels. Those texels
ably large. within the 2%-texel region which have been assigned a color
By converting images into texture maps, substantially movalue during image-to-texture mapping (Section V-D) are av-
texels are introduced than there are object pixels in the origraged, and the so-far undefined texels among the 16 texels are
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assigned this average value. To interpolate larger undefined t@intly and progressively reconstructed. Bitstream decoding
ture regions, the texture-map array is downsampled by a factan be terminated at any arbitrary point to access a (lower
of 2 along all four directions, assigning to each downsampleghality) version of any texture map. Also, texture information
texel the previously determinet-texel region average value.is progressively reconstructed which allows continuous adjust-
Undefined texels in the downsampled texture-map array are theant of reconstruction quality versus decoding speed.
again interpolated from loca*-texel regions by taking again
the average of the defined texels. Downsampling and interpo
tion continues until all blank texture regions are filled. Fig. 1
depicts the sparse and the corresponding interpolated texturProgressive texture coding starts out by compressing the
map for one frontal image of tieenguin The blocky structures octahedron-based object geometry using the EMC algo-
in the interpolated map result from the Haar wavelet's square rthm (Section 11I-C). Object surface parameterization and
gion of support which for large undefined regions (such as tiexture-map optimization can be deduced from the encoded
penguin’s back in the example) shows up as blocks of uniforggometry model, so no additional mapping information needs
intensity, interpolated from texture maps that actually show the be encoded. For coder evaluation, 38 images of the
back side. Note, however, that these structures never becaBfield, Mouse Penguin andSpheredata sets are transformed
visible during rendering, since they are always on the invisibieto 256x 256-texel texture maps. For encoding, the texture
far side of the object. Instead, uniformly colored square areamps are converted t§C;,C, color space, and the chromi-
which are aligned with the Haar basis functions keep wavelegnce components are downsampled by a factor of 2 in both
coefficient coding bit rate at a minimum since they represedimensions. Each color channel is hierarchically decomposed
only low frequencies. into a 4-D pyramid of frequency subbands using the Haar
For image compression purposes, more efficient basis fungavelet (Section V-F). The coefficients are grouped into sets
tions than the Haar wavelet are known [46]. Unfortunately, reccording to the 4-D SPIHT coding scheme, and the array
optimal interpolation scheme could be derived for these maige progressively encoded starting with the highest-magnitude
complex wavelet basis functions because of their overlappiogefficient. As many bits are written out to the bitstream as the
region of support. The PTC codec therefore employs the simpleeset bit rate allows. Coding ends after all three color channels
Haar wavelet. have been encoded.
Fig. 11 depicts PTC performance for different object geom-
etry approximations, denoted by the number of triangles. Since
F. 4-D Wavelet Decomposition texture-based coding can encode only those image regions that
fall within the geometry model’s outline, reconstruction quality
Texture maps exhibit statistical properties very similar to cofs measured as the average PSNR of the reconstructed object
ventional images. In addition, texels at the same coordinatespinels only. Consequently, bit rate is measured with regard to
different texture maps display high correlation as they corrtiie number of reconstructed object pixels only, expresskitsn
spond to the same object surface point. The 4-D texture-mp@r object pixel(bpop). In the examples, the object silhouette
array allows exploiting intra-map as well as inter-map similacovers no more thass 15% of the total image size, i.e., approx-
ities by applying the one-dimensional Haar wavelet kernel seipaately 1.5x 10* pixels per silhouette. Note that this is consid-
arately along all four dimensions. After the entire texture-magrably smaller than the texture map size28f texels.
array has been transformed, the resulting low-frequency coef-At 25.1-dB reconstruction PSNR, ti@arfieldimages are en-
ficients, representing 1/16 of the original texture informatiorgoded at 0.0066 bpop, whereas 0.174 bpop allow reconstructing
are again wavelet-transformed along all four dimensions. By riéte images at 31.3 dB mean object-pixel PSNR. FoMbese
peated transformation of the low-frequency coefficients, a higmages, bit rate ranges from 0.007 bpop at 24.3 dB up to 0.192
archy of octave subbands is created. The resulting 4-D arraybglop at 29.9 dB. Th€enguinimages are encoded with 0.0076
wavelet coefficients constitutes a joint multiresolution represehpop at 28.6 dB and 0.212 bpop at 36.6 dB. Coding bit rate for
tation of all texture maps [45]. theSpheralata set ranges from 0.0087 bpop at 24.5 dB to 0.338
To compress the wavelet coefficient array, t8et Parti- bpop at 38.4 dB.
tioning in Hierarchical Trees (SPIHTgodec [46] is modified to
be applicable to the 4-D coeff.ic.ient field [47]. Ih the mpdifieq_L Reconstruction Quality
SPIHT codec, wavelet coefficients are considered in order
of importance, with large-magnitude coefficients encoded Fig. 12 depicts decoded images of (Barfield data set. The
early on, and small coefficient values considered later applied 2048-triangle geometry approximation clips the original
the bitstream. Reconstructed coefficients are at first coarselgject along the projected model silhouette. At 31.3-dB recon-
represented and then gradually refined as bitstream decodétirgiction PSNR and 0.173 bits per object pixel, only very fine
continues. Higher order statistical dependencies betwedstail of the fur texture is lost. With increasing compression,
wavelet coefficients in different subbands of the 4-D coefficiettiurriness increases and the Haar wavelet’'s nonoverlapping re-
array are exploited to encode the positional arrangementgibn of support causes a checkerboard effect of the textured sur-
the magnitude-ordered coefficients. The extended 4D-SPIHAce. At0.016 bpop and 26.9 dB PSNR, the reconstructed object
algorithm makes use of dependencies between subbands akemture is composed of irregularly shaped patches of uniform
all four dimensions. During decoding, all texture maps ailor.

. Progressive Texture-Based Coding Performance
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(@)

(b)

31.3 dB. (c) 0.059 bpop at 29.2 dB. (d) 0.016 bpop at 26.9 dB.

rate as well as reconstruction quality are restricted to tle@coded using the same octahedral geometry models for MAC

VI. CoDER COMPARISON

MAC coding schemes, reconstruction PSNR is measured only

(©)

(d)

Image from th&arfield image set, PTC encoded at different bit rates using the 2048-triangle geometry model. (a) Original image. (b) 0.173 bpop at

with respect to pixels that lie inside the model silhouette, and
To objectively compare model-aided and progressive tegeding bit rate is expressed bits per reconstructed object
ture-based coding performance, in the following coding biixel (bpop), corresponding to Section V-G. The image sets are

pixels within the projected geometry silhouette. In Fig. 13nd PTC. The MAC rate-distortion curves in Fig. 13 therefore
which depicts rate-distortion performance of the PTC ardiffer from Fig. 6.
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. PTC vs. MAC displacement in unit pixels when projected into the image
,,,,,,, A . plane. The radial displacement steps are chosen such that the
N B depicted curves in Fig. 14 correspond to a mean silhouette
= A _A,_—_‘.'—'M’:: .......... o mismatch of 1/16th, 1/8th, 1/4th, 1/2th, and 1 pixel.
Xy ,,9?_.','.? """"""""" Fig. 14 shows that PTC and MAC react differently to in-
aed Am‘ creasing geometry error. While at medium to high bit rates,
Sl o4 949 ry g
5] Ab’ - g PTC coding suffers a 1-2-dB decrease in reconstruction quality
j‘; b ‘g:‘l"e’ ,,,,,,,,,,,,,, e from one geometry approximation level to the next coarser level,
3 ﬁ yv-"“;v,,n&"" .\ the MAC encoder shows only marginal loss in reconstruction
Dl 0 N AT T ol Garfield (PTG quality for small geometry deviations. Even at the greatest ge-
(@) A Va’u' - 4 feld (PTC) . .
.| P B 'y CGarfield (MAC) ometry distortion level, MAC performance degrades only by
O 1 % . - f=- Mouse (PTC) )
O, vl @ Mouse (MAC) about 2 dB when compared to exact geometry. The experimental
o % & = A= Penguin (PTC) L .
” V,,';:Ff /N Penguin (MAC) results indicate that the progressive-texture coding scheme is
8 o ggﬂ::: Em@) very sensitive.even to small errors in objgct geometry.
‘ . ‘ . . To summarize, the texture-based coding scheme PTC is ob-

23
0

0.15 0.2 0.25 0.3

served to yield superior compression results if exact 3-D scene
geometry is available. For approximate geometry, however,
Fig. 13. Comparison of model-aided and progressive-texture codig@ding efficiency drops quickly, and predictive MAC coding
performance. attains better compression performance. In the next section, this
empirical result is investigated on a signal-theoretical basis.

The results depicted in Fig. 13 indicate that real-world objects
whosegeometrymodelsexhibitonly limitedaccuracyare more ef-
ficientlyencoded using model-aided compression. Athigh recon-
struction quality, the model-aided codec requires about 40% lesd he effect of geometry inaccuracy on the efficiency of the two
bit rate to encode thBarfield, Mouseor Penguindata set than the geometry-based coding schemes can be analyzed theoretically. A
progressive texture codec does. Only at the lowest bit rates detaistical signal processing framework for this analysis has been
PTCperformequallywellasMAC. Forthe synth&jgherémage developed [48], similar to that for motion-compensation errors
set, however, progressive-texture coding yields better coding igvideo compression [49], [50]. The theoretical analysis qualita-
sults at medium to high reconstruction quality, and model-aidégely explains the experimental results fromthe previous section.
coding performs only slightly better at low bit rates. The main ideas and results of the analysis are summarized here.

To investigate the performance differences of PTC and MAThe reader is referred to the Appendix for more details.
for real-world and synthetic images, additional experiments areln this analysis, a simple planar geometry is considered, pic-
conducted. For a broader experimental basis and to investigated in Fig. 15. With certain camera model assumptions, the
the influence of object shape, tB¢artest data set is introducedmulti-view image data set can be considered equivalent to a set
as a second synthetic image set, Fig. 2. The same texture mapiew-dependent texture maps, allowing for easy comparison
as for theSphereimages is used to texture ti8targeometry. of the texture-based and prediction-based schemes.

As these experiments focus on image-data coding performancelhe set of texture maps is treated as a random process, with
the following coding results do not include geometry codingorrelation both within a texture, and between textures of dif-

bit rate. Again, 256« 256-texel maps are used for progressivderent views. The correlation between view-dependent texture
texture coding. maps depends upon the geometry error, which is modeled as

Fig. 14 illustrates that if exact geometry is used for PTC arad random quantity. The texture-based and prediction-based
MAC coding, the progressive texture-based coder performs sigpding schemes are modeled as different transformations that
nificantly better than model-aided coding for both test data ses®ek to de-correlate the set of texture maps, allowing them
Coding gains are especially impressive for8tarimage setfor to be encoded efficiently. The two schemes are compared by
which PTC achieves up to 80% better compression at mediwonsidering the optimal independent encoding efficiency of the
to high reconstruction quality. At low bit rates, MAC performgesulting set of transformed images.
only slightly better than PTC for thBphereobject. Fig. 16 shows the numerical results from the analysis for an

To systematically examine the influence of small geometgrrangement similar to that in the previous sections. The coding
inaccuracies on PTC and MAC coding performance, the exadficiency, described by rate difference, is plotted against ge-
Sphereand Star geometry models are gradually distortedometry accuracy. For rate difference, in bits per pixel, a more
Due to the volumetric reconstruction algorithm’s implicihegative number indicates better coding efficiency. For geom-
shape-from-silhouette approach, the reconstructed geometdiny accuracy, described by the logarithm of the variance of the
models tend to be slightly too small. Therefore, the verticggometry error, a smaller number indicates a more accurate ge-
of the synthetic data sets are displaced randomly by a smathetry.
amount along the radial direction toward the object’s center.When the geometry model is approximate and not very ac-
Vertex displacements parallel to the object’s surface do nairate, the prediction-based scheme out-performs the texture-
significantly alter overall model geometry and are not consithased scheme. Here, coding performance is mainly affected by
ered. Geometry distortion is expressed as mean radial verte& amount of correlation between the texture maps, and the

"Bit Rate [bpop]

VII. THEORETICAL ANALYSIS
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well as the camera direction. Geometry Accuracy

i . ig.16. Rate-difference (bits/pixel) versus geometry accurla@y, (v 120)
prediction b_ased scheme is better able to encode the te_Xt@E?ne prediction-based scheme and the texture-based schemthe square
maps. For high geometry accuracy, the texture maps are higfyt of the variance of the geometry error. For high geometry accuracy, toward
correlated, therefore, image noise dominates the analysis titg-left of the plot, the curve for the texture-based scheme is below the curve

PR . . . he prediction-based scheme, indicating greater efficiency. Conversely, for
stead. The pl’edICtIOIjl based scheme is not as efficient a_ls the %gtgaccurate geometry, on the right side, the prediction-based scheme performs
ture-based scheme in the presence of uncorrelated noise. Tggé&:. In this graph, the ratio of noise variance to signal variangesis0.001.
results qualitatively agree with the observations from the exper-

imental results. - .
to be more efficient for real-world images. For computer-gen-

erated image sets, however, progressive texture coding achieves
significantly better compression than model-aided compression.

In this paper, two different coding schemes for multi-vievExperiments with synthetic images show that texture-based
image data were presented that rely on reconstructed, activedyling is more susceptible to small errors in object geometry
acquired, oa-priori known 3-D geometry of the depicted scenethan the prediction-based scheme. A rate-distortion theoretical
Both coding strategies apply 3-D scene geometry in differeabalysis is presented, explaining the relationship between
ways to either successively predictimages and encode the pred@smetry accuracy and coding efficiency for both schemes. The
tion error, or to convert multi-view imagery into view-dependerdnalysis confirms that for accurate geometry, the texture-based
texture maps prior to progressive wavelet coding. Compressiecheme is more efficient than the prediction-based approach,
ratios exceeding 2000:1 are observed for both coding schemglereas for less accurate geometry, the prediction-based scheme
In direct comparison, model-aided predictive coding is founid more efficient.

VIII. CONCLUSION
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APPENDIX 'i’
——— | D\(0.0) fi\ < e
A. Signal and Encoding Model "
In this analysis [48], a simplified model for the geometry o i _
the object is employed: a planar surface. A 2-D texture sign D@0 | —(x) 4
v(z,y) exists on this surface, viewed by cameras that have ] I ‘ .
direction vectorsq, ra, ..., rn. This arrangementis illustrated
in Fig. 15.
In addition, the surface is assumed to be Lambertian. All no I
Lambertian view-dependent effects are modeled as noise. 1 P
camerathatimages the scene uses parallel projection and sut Prlae) \z T

no band-limitation restriction due to imaging resolution limits.

; i i i ig. 17. Signalsc; are produced by shifting the original texture signal
. As a result of these qssumptlons, th? image Slgnal 1S essb@ﬁ(Ali, A,.) (described by the transfer functidi; (w., w,)) and adding
“aHY_th_e same WhEt_her in the texture or iImage plane. Therefokgnal-independent noise.. The signals:, are linearly transformed (matrix
prediction between images can be performed in the texture plameo give the signals;. Each signak; is then independently encoded.
instead of the image plane, making the comparison between the

texture-based and prediction-based approaches simpler.  B. Statistical Model

As illustrated in Fig. 15, the geomfetry error is_ modeled as aNThe texture signab is assumed to be wide-sense sta-
_offsetA_z of the pla_mar surface f_rqm its true position. When thﬁonary random process witipower spectral density (PSD)
image is back-projected from vieitonto the inaccurate geom-g, -, w,). If the set of transfer functions that represent the

et_ry,_ this results na tegtur@ that is a Sh'_fted version of the shift in the texture map is denoted by the column vector
original texture signab given by the equation

Dl e_j<wacArl+wyAyl)
cilw,y) = v — Agy = Ay) ni(z,y) (1) D; emin Arabioy By2)
D= : = : 4)
wheren; is the additive noise component that represents all non- l)lN e_j(%A,ch +wyAyn)

Lambertian view-dependent effects.
The shift, which depends only upon the camera’s viewirifgen the power spectrum of signals
directionr; = [ri. 7y 2] and the geometry errahz, is

_ H _ H
described by the equation Pee =D Ppy D7 + Py = Py DD™ + Py (5)

<

iz
Tiy

A rig where®,,,, represents the power spectrum of the noise vector
[AT} = Az { } (2) n=[nyny --- ny]* and the superscrigi denotes the com-
plex-conjugate transpose of the matrix. Note that kinthand
The shift is a linear operation that can be represented in tﬁe" ale matrlces of sizé/ x N. .
frequency domain as the transfer function The sr_nft amo_unt of each texture map can be conS|_dered a
stochastic quantity based on the random varidbie resulting
Di(wa,wy) = R (CI . 3) in the following expression:

Yi Tiz

The set of texture images, given in vector form

¢ = [c1 ¢2 -+ cn]T, represents the image data that is tavhere E{ DD} is defined by (7), shown at the top of the next
be encoded. Both the prediction-based and the texture-bagagde.
scheme take a linear transform ofto produce the set of P(w) represents the one-dimensional (1-D) Fourier trans-
imagese = [e1 ey ---en]”. This linear transformation matrix form of the continuous pdf of the random variakle, Q =
T appears in the transformation equatior= T'c. The model [w, w,|T anda; = [r. /7. 74y /7i2] 7.
assumes that the componentses, ..., ex are then indepen-  The power spectrum of the transformed sigeis
dently encoded.

Using the transforrf’, the correlation between images can be®ee = T ®c. T = @, T E{DD"} T" + T ,,,, T". (8)
reduced and therefore the entire image data set can be encoded
more efficiently. Th_e analys_is centers on the effects of using dht, Performance Measure
ferent transformation matrices. For the texture-based scheme, o
the transform matrix describes a 2-D Haar wavelet subband deJ0 compare the texture-based and prediction-based ap-
composition. In the prediction-based scheme, the difference B§oaches, the rate difference equation
tween the image to be predicted and a linear combination of its 1 /-w /r | Booi(w,,wy)

W ™ —T 0g2 <®

—) dw, dw, (9)

reference images is taken; the transform matrix describes thisARZ; = ,Ew )
ccit\Wz , Wy

prediction structure.
The block diagram in Fig. 17 illustrates the relationship bevhich represents the savings in bits per sample from encoding
tweenw, ¢, ande. the signale; instead of the signal;, is used. This formula is
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T 1 P(QT(a; —az)) ... ]P;(gi(al —an))
E{DDH} = ( (a:z —a1)) 1 ( (a? —an)) @
PQT(ay —ay)) P(QT(an —a2)) - 1

based on optimal encoding of a stationary, Gaussian signal alt should be noted that the analysis makes several assump-

high rate [51]. tions about the formation of the light field images, and further
The bit-rate savings is averaged over the entire set of imagassumes that these signals are Gaussian and are encoded at high
to obtain the overall rate difference rate. Inlight of these assumptions, comparisons between the the-
1 oretical and empirical results can only be qualitative, and apply
AR = NEfLRz* (10)  only to the higher bit rates of the experimental results. How-

ever, for synthetic as well as real-world data sets with approx-
imate geometry, the experimental and theoretical results agree
) ] ) ) that the prediction-based scheme is more efficient. For the syn-
In evaluating the rate-difference equation for various geofsetic multi-view data sets, with high geometry accuracy, both

etry accuracies, 256 views arranged in a regular fashion over {igry and experiments suggest that the texture-based scheme
hemisphere, similar to the arrangement in the experiments, A ore efficient.

used. For the random geometry ertor, a zero-mean Gaussian
probability density function (pdf) with varianee® is assumed.

All noise components are considered to be independent of
one another. In addition, the noise signal spectrum is assumed

to have the same shape as the image signal spectrum. The g} s g chen, “Quicktime VR — An image-based approach to virtual en-
sults do not change significantly even if a flat noise spectrum  vironment navigation,” irProc. ACM Conf. Computer Graphics (SIG-

is used instead, indicating that the shape of the noise spectrum GRAPH'95) Los Angeles, CA, Aug. 1995, pp. 29-38.

. - . . 2] L. McMillan and G. Bishop, “Plenoptic modeling: An image-based
is not critical. The noise and image spectrums are related by rendering system.” irProc. ACM Conf. Computer Graphics (SIG-

the equation®,,,,; (wz,wy) = a Po,(we,wy), Wherea is the GRAPH'95) Los Angeles, CA, Aug. 1995, pp. 39-46.
ratio of noise signal variance to image signal variance. The valud3] M. Levoy and P. Hanrahan, “Light field rendering,” Rroc. ACM Conf.

« = 0.001 is used in the numerical evaluation presented Computer Graphics (SIGGRAPH38Jew Orleans, LA, Aug. 1996, pp.
: : 31-42.

In Fig. 16, the rate. diﬁ?rence f(_)r th_e prediction- and tex- [4] s.Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumigraph,”
ture-based schemes in bits per pixel is plotted versus geom- in Proc. ACM Conf. Computer Graphics (SIGGRAPH'98lew Or-

r r : metr r is expr /19, leans, LA, Aug. 1996, pp. 43-54.
elry accuracy. Geometry accuracy is exp essdd@ U)' [5] P. Debevec, C. Taylor, and J. Malik, “Modeling and rendering architec-

a qua_ntlty used m motion-compensation anqu5|s for video com- ture from photographs: A hybrid geometry- and image-based approach,”
pression, where is the square root of the variance of the geom- in Proc. ACM Conf. Computer Graphics (SIGGRAPH'9B)ew Or-

etry errorAz. There are two main regions of the curve that are __ 'eans, LA, Aug. 1996, pp. 11-20.

. . . . [6] R. Szeliski and H.-Y. Shum, “Creating full view panoramic mosaics
interesting: the high geometry accuracy regime to the left and™ | {'c/vironment maps,” iBroc. ACM Conf. Computer Graphics (SIG-

the low geometry accuracy regime to the right. GRAPH'97) Los Angeles, CA, Aug. 1997, pp. 251-258.
In the low geometry accuracy region, the misalignment be-[7] H.-Y. Shum and L.-W. He, “Rendering with concentric mosaics,” in

_ : : _ Proc. ACM Conf. Computer Graphics (SIGGRAPH'9B)s Angeles,
tween textures due to the texture-map shifts dictates the perfor CA, Aug. 1999, pp. 299-306.

mance of the coding schemes. The prediction-based scheme presj b. wood, D. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. Salesin,
dicts from views that have similar viewing direction, therefore ~ and W. Stuetzle, "Surface light fields for 3D photography,Piroc. ACM

the relative misalignment is smaller than in the texture-based %’SS ggmz%“;fgggaphics (SIGGRAPH-2008Ew Orleans, LA, July

SChe_me which en_COdeS a_” views SimU|ta_neOU5|Y- A s_imilar g€0-[9] C.Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen, “Unstruc-
metric argument is used in [52] to explain the experimental re-  tured lumigraph rendering,” ifProc. ACM Conf. Computer Graphics

sults. A bit-rate difference of approximately 1/2 bits/pixel is ob- _ (SIGGRAPH01)Los Angeles, CA, Aug. 2001, pp. 425-432.
d between the prediction- and texture-based approach&s) J:7% €hai, X. Tong, S.-C. Chan, and H.-v. Shum, *Plenoptic sampling,
serve e p pp * in Proc. ACM Conf. Computer Graphics (SIGGRAPH’08)ew Or-

This corresponds to approximately a 3-dB difference in image leans, LA, Aug. 2000, pp. 307—318.
quality. [11] G. Miller, S. Rubin, and D. Ponceleon, “Lazy decompression of surface

. . - ealinn. light fields for precomputed global illumination,” ifroc. Eurographics
For very high geometry accuracy, there is very little misalign Rendering Workshop'9&/ienna, Austria, Oct. 1998, pp. 281—-292.

ment due to geometry error, so, instead, noise dominates the) 1. ihm, S. Park, and R. K. Lee, “Rendering of spherical light fields,”
analysis. The texture-based coding scheme employs an orthog- in Proc. 5th Pacific Conf. Computer Graphics and ApplicatioBsoul,
onal transform that preserves the noise variance. In the case of Korea, Oct. 1997, pp. 59-68. . - :

.. . ) ] P. Lalonde and A. Fournier, “Interactive rendering of wavelet projected
the prediction-based scheme, subtracting two or more indepen- " jignt fields,” in Proc. Graphics Interface’99Kingston, ON, Canada,
dent noise signals increases the noise variance, and therefore June 1999, pp. 107-114. _
degrades performance. This is why the texture-based scherf#g! Y- Wu. L. Luo, J. Li, and Y.-Q. Zhang, “Rendering of 3D wavelet com-
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