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Abstract—Community affiliation of a node plays an important
role in determining its contextual position in the network, which
may raise privacy concerns when a sensitive node wants to
hide its identity in a network. Oftentimes, a target community
seeks to protect itself from adversaries so that its constituent
members remain hidden inside the network. The current study
focuses on hiding such sensitive communities so that community
affiliation of the targeted nodes can be concealed. This leads
to the problem of community deception which investigates the
avenues of minimally rewiring nodes in a network so that a given
target community maximally hides from a community detection
algorithm. We formalize the problem of community deception
and introduce NEURAL, a novel method that greedily optimizes a
node-centric objective function to determine the rewiring strategy.
Theoretical settings pose a restriction on the number of strategies
that can be employed to optimize the objective function, which
in turn reduces the overhead of choosing the best strategy from
multiple options. We also show that our objective function is
submodular and monotone. When tested on both synthetic and 7
real-world networks, NEURAL is able to deceive 6 widely used
community detection algorithms. We benchmark its performance
with respect to 4 state-of-the-art methods on 4 evaluation metrics.
Additionally, our qualitative analysis on 3 other attributed real-
world networks reveals that NEURAL, quite strikingly, captures
important meta-information about edges that otherwise could not
be inferred by observing only their topological structures.

Index Terms—Community detection, community hiding, per-
manence, complex networks

I. INTRODUCTION

DETECTING communities from large networks has re-
mained as one of the major research problems in the last

two decades. Different heuristics, metrics, and optimization
techniques have been proposed to detect communities from
multiple types of networks [1]. However, of late, limited efforts
have been visible to understand how easily a community
detection algorithm can be deceived by minimal rewiring of
nodes.

In this paper, we ask a fundamental question: How do
we hide a target community from being exposed to a
community detection algorithm, assuming limited rewiring
operations are allowed? In other words, can a node or a
community disguise its positioning in the network in order
to escape detection [2]? We call this problem Hide and
Seek Community (HSC). Answering this question matters
since it helps the social network users in hiding their identity
from online surveillance1 [4]. It also helps law-enforcement

1Mislove et al. [3] showed how by breaking down Facebook user network
and attributes of certain users, it is possible to gather private data about other
Facebook users.

Fig. 1. Flow diagram showing the procedure of NEURAL.

organizations identify criminal acts deceiving online identity
[5]. This may also be useful for counter-terrorism units in
order to deploy spies into a terrorist network. The solution of
the current problem would help the spies determine who they
should start a new friendship with (edge addition) or which
existing friendship they should try to break (edge deletion) to
conceal their community identity. However, one may argue
that the same method can be misused by the adversaries.
Nonetheless, we believe that our investigation brings issues
to light for the plan of novel community detection methods
vigorous to deception strategies.

To date, the fundamental question stated above has got very
little attention as most of the focus has been concentrated
towards building efficient algorithms for community detection.
Nagaraja [6] made a pioneering attempt to examine the degree
of network information required by an attacker to infer the
community membership information. Recently, Waniek et al.
[2] proposed a heuristic-based solution to evade network
centrality analysis. Fionda and Pirrò [5] proposed a novel
metric and greedily optimized it to hide the members of
a target community from being detected by the community
detection algorithms. Liu et al. [7] proposed an approach to
maximally hide the entire community structure (as opposed to
a target community) with a minimum rewiring of the network
structure.
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Here, we pose the HSC problem as a constrained optimiza-
tion problem. The objective function is designed based on Per-
manence [8], a node-centric metric we proposed previously,
which has been proved to be highly effective in detecting the
entire community structure of a network. Permanence, being a
local metric, uses limited information of a node to determine
its community membership. We theoretically prove that only
two types of edge update operations (inter-community edge
addition and intra-community edge deletion) are useful for
rewiring nodes to optimize our proposed objective function.
We further show that the objective function is submodular
and monotone w.r.t. the required edge updates. Therefore,
we propose NEURAL (Network deception using permanence
loss), a greedy optimization algorithm to optimize the objec-
tive function. Given a network G, its community structure CS
obtained from a community detection algorithm CDA, and a
target community C whose constituent nodes VC need to be
concealed, NEURAL rewires nodes within the rewiring budget
β in such a way that CDA is unable to identify the original
community affiliation of VC (Fig. 1 shows a flow diagram).

Extensive experiments are conducted on both synthetic and
7 real-world networks. Six widely used community detection
algorithms are considered for deception. We compare NEU-
RAL with 4 state-of-the-art community deception methods.
The performance is measured based on 4 evaluation metrics
(two of them are proposed by us). Our quantitative analysis
shows that NEURAL significantly outperforms others across
all the datasets and all the evaluation metrics.

We further conduct a detailed qualitative analysis to explain
the physical significance of edges selected by the deception
methods on three attributed real-world networks – citation
network, terrorist network, and breast cancer network. Surpris-
ingly, we observe that NEURAL is able to capture important
meta-information of edges that otherwise could not be inferred
just by observing the topological structure of networks.

In short, our major contributions are four-fold:
• Novel objective function: Our proposed objective func-

tion is novel which considers minimum information of
nodes for network rewiring.

• Novel algorithm: We propose NEURAL, a novel greedy
optimization algorithm for community deception.

• Quantitative evaluation: We perform an extensive eval-
uation on multiple datasets and show that NEURAL
outsmarts existing approaches for hiding the target com-
munity within the specific budget.

• Qualitative evaluation: We further interpret the edges
selected for node rewiring by the deception methods and
show that NEURAL captures important meta-information
of edges in three real-world networks.

Reproducibility: The codes and datasets are available at:
https://github.com/mittalshravika/HideAndSeek-NEURAL.

II. RELATED WORK

Community Detection: There has been a plethora of re-
search in the detection of communities from a given network.
These include traditional clustering based algorithms such
as hierarchical clustering, partitional clustering and spectral

TABLE I
COMPARISON OF NEURAL WITH EXISTING METHODS.

ABBREVIATIONS: E+,−: EDGE ADDITION AND DELETION, NC: NODE
CENTRALITY, E→ C: EDGES CONNECTED WITH THE NODES IN THE

TARGET COMMUNITY C, QA: QUALITATIVE ANALYSIS.

Method Metric Strategy Knowledge QA
Nagaraja [6] Modularity E + NC No

DICE [2] Modularity E+,− E → C No
SADDEN [5] Safeness E+,− E → C No

NEURAL Permanence E+,− E → C Yes

clustering, which group nodes together based on a similarity
metric [9]. Another class of community detection algorithms
revolves around the optimization of metrics that define the
quality of a network partition, such as modularity [10], [11],
conductance [12], cut-ratio [13], etc. Few other methods are
based on random walks [14], information theory [15], [16],
and spectral algorithms [17], [18]. Algorithms that detect
overlapping communities have also been proposed [19], [20].
A detailed study of community detection algorithms can be
found in [21], [22].

Community Deception: Another area of interest that has
started revolving very recently is community deception i.e.,
hiding a target community or the entire community structure
from getting exposed to community detection algorithms.
Nagaraja [6] proposed a counter detection method for hiding
a community by adding edges under a certain budget. The
endpoints of edges to be added are chosen using vertex
centrality measures (degree centrality, eigenvector centrality,
and random initialization). Waniek et al. [2] proposed DICE,
an algorithm that deletes intra-community edges (disconnect
internal) and adds inter-community edges (connect external),
inspired by the functioning of modularity. The authors also
devised a metric to quantify the concealment of a target
community in the network. Fionda and Pirrò [5] referred to
the problem of hiding a community as community decep-
tion. They devised a greedy optimization algorithm (dubbed
SADDEN henceforth) to hide a target community based on
safeness gain, a new metric that they proposed to quantify
how safe a node is under adversarial attack. SADDEN requires
the knowledge of the local community rather than knowing
the entire community structure of the network to deceive
community detection algorithms. Along with this, the authors
proposed a metric, called deception score to quantify the effect
of the community deception algorithm on the network. They
also showed that their method outperforms modularity-based
approaches. Recently, Liu et al. [7] extended the problem of
hiding a target community to hiding the entire community
structure. They proposed an algorithm for community structure
deception based on information theory using network entropy
minimization.

We consider all the methods mentioned above (Nagaraja,
DICE, SADDEN) as baselines2 along with a random edge
rewiring method, except Liu et al. [7] as this method focuses
on the deception of the entire community structure (instead of
a single target community); moreover, the metric used in their

2To our knowledge, these are the only existing methods which attempted
to solve the HSC problem.
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method (community-based structural entropy) requires entire
community information.

How NEURAL is different from others? Table II sum-
marizes how NEURAL is different from the existing methods
for community deception. NEURAL uses Permanence as a
metric to determine how to update a given network efficiently
in order to hide the target community. We perform compre-
hensive evaluation on both synthetic and real-world networks
using four different evaluation metrics. We further perform a
qualitative analysis on 3 attributed networks to understand the
significance of the selected edges.

III. PROBLEM FORMULATION

A. Preliminaries

A network G = (V,E) is defined as an undirected graph
with V as the set of vertices and E as the set of edges. After
applying a community detection algorithm on G, we get CS =
(C1, C2, ...Ck) as the community structure. We only consider
communities that are non-overlapping. For community C ∈
CS, an intra-community edge 〈u, v〉 is defined such that u, v
∈ C, and an inter-community edge 〈u, v〉 is defined such that
u ∈ C and v ∈ C ′ where C ∩ C ′ = φ. Eintra(C) (resp.
Einter(C)) denotes the set of intra- (resp. inter-) community
edges corresponding to C.

B. Hide and Seek Community (HSC)

Our primary goal is to come up with an algorithm that, with
minimum edge rewiring, is able to hide a given target commu-
nity C from a community detection method. In other words,
the actual community membership information of nodes inside
C should not be revealed by the community detection method.
This is done by rearranging the structure of the network using
a certain number (β) of edge updates (which we call budget
for network rewiring). We also assume that each edge update
operation will incur a unit cost. One approach would be to
search through the entire space for possible edge updates
exhaustively and select the ones that are able to hide the target
community C the most. However, searching through this huge
space of all the possible combinations of edge updates would
become computationally expensive in case of large networks.
Along with this, such an exhaustive technique would require
the knowledge of the entire network and may also depend on
the type of community detection algorithm that we intend to
fool.

To avoid this, we introduce the problem, called Hide and
Seek Community to camouflage a target community C from a
community detection method.

Definition 3.1: (Hide and Seek Community) For a network
G = (V,E), the problem of Hide and Seek Community (HSC)
is to hide a target community C with the help of network edge
updates constrained by a parameter β. It can be posed as a
constrained optimization problem as follows:

argmax
E′(C)

F(C,E(C), β, E′(C)) (1)

where, E(C) = Eintra(C) ∪ Einter(C), E′(C) = (E(C) ∪
Eadd)\Edel, and Eadd (resp. Edel) indicates the set of edges to

be added (resp. deleted) to hide C such that |Eadd|+ |Edel| ≤
β.

IV. METHODOLOGY

We consider Permanence [8], [23], a node-centric metric3 to
design the objective function F in (1). We theoretically show
that limited edge update operations are required to maximize
the Permanence loss (our objective function). We also show
that Permanence loss is submodular and monotone w.r.t.
each of the edge update operations. Therefore, we propose
NEURAL, a greedy algorithm that makes use of Permanence
loss in order to hide a target community C. This section first
briefly describes Permanence, followed by the greedy strategy
used in NEURAL.

A. Permanence

Chakraborty et al. proposed Permanence [8], [23], a vertex-
centric metric that quantifies the containment of a node v in
a network community C. The formulation of Permanence is
based on three factors - (i) the internal pull I(v), denoted
by the internal connections of a node v within its own com-
munity, (ii) maximum external pull Emax(v), denoted by the
maximum connections of v to its neighboring communities,
and (iii) internal clustering coefficient of v, Cin(v), denoted
by the fraction of actual and possible number of edges among
the internal neighbors of v. The above three factors are then
suitably combined to obtain the Permanence of v as,

Perm(v,G) =
I(v)

Emax(v)
× 1

deg(v)
− (1− Cin(v)) (2)

Fig. 2 shows a toy example to calculate the Permanence value
of a node.

This metric indicates that a vertex would remain in its own
community as long as its internal pull is greater than the
external pull or its internal neighbors are densely connected to
each other, hence forming a near clique. The Permanence for
a network G is then defined as Perm(G) =

∑
v∈V Perm(v)

|V | .
The reasons behind choosing Permanence instead of other
community scoring metrics such as (local) modularity [24],
[25], conductance, cut-ratio [1] are two-fold: (i) Permanence
is a vertex-centric local metric which would enable us to
update edges incrementally in order to change the network
structure without looking into the entire network structure, and
(ii) Permanence has been shown to be superior to other local
and global scoring metrics for community detection [22].

B. Proposed Objective Function: Permanence Loss

Our proposed community deception method NEURAL (dis-
cussed in Section IV-D) aims to reduce Permanence of the
network for a target community C to be hidden from com-
munity detection algorithms. We propose to do so because
reducing Permanence of a vertex would disrupt its containment
in the original community, changing the community structure
of the network, making it difficult for detection algorithms to
identify the original communities. We search for edge updates

3Permanence can be also computed for an entire network.
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Fig. 2. A toy example demonstrating the calculation of Permanence for a
node, given the network and the community structure.

(addition/deletion of edges) by maximizing the Permanence
loss at every iteration, defined as,

Pl = Perm(G)− Perm(G′) (3)

where G represents the original network, and G′ represents the
modified network after updating edges (see Fig. 1) w.r.t. the
target community C, elaborated in Sections IV-C and IV-D.

In Section IV-C, we will show that Permanence loss will
be affected (positively) only due to the (i) intra-community
edge deletion, and (ii) inter-community edge addition. Readers
are encouraged to see supplementary where we show that
Permanence loss is submodular and monotone w.r.t. each
of the edge updates stated above.

C. Edge Updates

In this section, we describe four possible edge update
operations to maximise Permanence loss Pl in NEURAL —
inter- and intra-community edge deletion, and inter- and intra-
community edge addition.

1) Inter-community Edge Deletion:
Theorem 4.1: Deleting an inter-community edge 〈u, v〉

where u ∈ C and v ∈ C ′ such that C ∩ C ′ = φ, does not
result in Permanence loss.

Proof: In this proof, we show that deleting an inter-
community edge does not amount to Permanence loss. An
inter-community edge deletion just affects the Permanence
measure for u and v. We will only show the change in
Permanence for node u (same applies to v). There can be
two cases:
(i) Emax(u) does not change after edge deletion: In this
case, we assume that the maximum external connections for
node u remain the same after deleting 〈u, v〉. Deleting 〈u, v〉
would not change Cin(u). It would only decrease its degree
by 1. Therefore, for Permanence loss, we need to see whether
Pl = Perm(u,G)− Perm(u,G′) ≥ 0. This reduces to,

Pl =
I(u)

Emax(u)
×
[

1

deg(u)
− 1

deg(u)− 1

]
< 0

Therefore, no Permanence loss is possible in this case.
(ii) Emax(u) changes after edge deletion: In this case, we
assume that the deletion of edge 〈u, v〉 affects the maximum
external connections of node u. This is the case where C ′

is the only community that has the maximum external pull

for node u. As a result, along with degree, Emax(u) would
also decrease by 1. It would not change Cin(u). Therefore, for
Permanence loss, we need to see whether Pl = Perm(u,G)−
Perm(u,G′) ≥ 0. This reduces to,

Pl = I(u)

[
1

Emax(u)× deg(u)
− 1

(Emax(u)− 1)× (deg(u)− 1)

]
= I(u)

[
1− Emax(u)− deg(u)

Emax(u)× deg(u)× (Emax(u)− 1)× (deg(u)− 1)

]
< 0 (Emax(u) ≥ 1 and deg(u) ≥ 1 because of edge 〈u, v〉)

Therefore, no Permanence loss is possible in the case of
deleting an inter-community edge.

2) Intra-community Edge Deletion:
Theorem 4.2: Deleting an intra-community edge 〈u, v〉

where u, v ∈ C, always results in Permanence loss.
Proof: Here we show that deleting an intra-community

edge always results in Permanence loss. We will only show
the change in Permanence for node u (same applies to v).
Such an edge update would decrease the internal degree
and degree of node u by 1. It would not affect Emax(u)
(no external connections are being changed). We narrow our
search space such that, Cin(u) decreases after the deletion of
〈u, v〉. Therefore, for Permanence loss, we need to see whether
Pl = Perm(u,G)− Perm(u,G′) ≥ 0. This reduces to,

Pl =
1

Emax(u)

[
I(u)

deg(u)
− I(u)− 1

deg(u)− 1

]
=

1

Emax(u)

[
deg(u)− I(u)

deg(u)× (deg(u)− 1)

]
≥ 0 (as deg(u) ≥ I(u))

(4)

Therefore, deleting an intra-community edge 〈u, v〉 would
bring in Permanence loss in terms of nodes u and v.

The intra-community edge deletion would also affect the
Permanence measure for nodes that have both u and v as
their neighbors. If so, it would result in a change in their
internal clustering coefficient value with all the other factors
unchanged. For Permanence loss due to such a node w, we
need to see whether Pl = Perm(w,G)− Perm(w,G′) ≥ 0.
This reduces to,

Pl = (1− C′in(w))− (1− Cin(w)) = Cin(w)− C′in(w)

where C ′in(w) represents the updated internal clustering coef-
ficient of w. In the above equation, Pl > 0 since Cin(w) >
C ′in(w). For node w, the number of neighbors is intact, but the
edges between its neighbors get reduced by 1 after 〈u, v〉 is
deleted. As a result, the internal clustering coefficient reduces,
again resulting in Permanence loss. Therefore, deleting 〈u, v〉
would also bring in Permanence loss in terms of their common
neighbors.

3) Inter-community Edge Addition:
Theorem 4.3: Adding an inter-community edge 〈u, v〉

where u ∈ C and v ∈ C ′, such that C ∩ C ′ = φ, always
results in Permanence loss. The loss is more if C ′ is the
community that provides the maximum external pull for
node u.
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Proof: In this proof, we show that adding an inter-
community edge always causes Permanence loss. An inter-
community edge addition just affects Permanence for nodes u
and v. We will only show the change in Permanence for node
u (same applies to v). There can be two cases:
(i) Emax(u) does not change after edge addition: In this
case, we assume that the maximum external connections for
node u remain the same after adding 〈u, v〉. Adding 〈u, v〉
would have no effect on Cin(u). It would only increase its
degree by 1. So, for Permanence loss, we need to see whether
Pl = Perm(u,G)− Perm(u,G′) ≥ 0. This reduces to,

Pl =
I(u)

Emax(u)
×
[

1

deg(u)
− 1

deg(u) + 1

]
> 0 (5)

Therefore, there is a Permanence loss in the case of adding
an inter-community edge such that Emax(u) does not change
after edge addition.
(ii) Emax(u) changes after edge addition: In this case, we
assume that the addition of edge 〈u, v〉 affects the maximum
external connections of node u. This is the case where C ′ is
the community that has the maximum external pull for node
u. As a result, along with the degree, Emax(u) would also
increase by 1. It would not change Cin(u). Therefore, for
Permanence loss, we need to see whether Pl = Perm(u,G)−
Perm(u,G′) ≥ 0. This reduces to,

Pl = I(u)

[
1

Emax(u)× deg(u)
− 1

(Emax(u) + 1)× (deg(u) + 1)

]
= I(u)

[
1 + Emax(u) + deg(u)

Emax(u)× deg(u)× (Emax(u) + 1)× (deg(u) + 1)

]
> 0

(6)

Therefore, there is Permanence loss in the case of adding an
inter-community edge such that Emax(u) changes after edge
addition.

Theorem 4.4: The Permanence loss is more in case of
(6) (i.e., an edge added to the neighboring community
from where u experiences the maximum external pull) as
compared to (5).

Proof: Taking Permanence loss in (5) and (6), we get,

I(u)

[
1 + Emax(u) + deg(u)

Emax(u)× deg(u)× (Emax(u) + 1)× (deg(u) + 1)

]
≥ I(u)

Emax(u)
×
[

1

deg(u)× (deg(u) + 1)

]
⇒ deg(u) ≥ 0 which is true.

4) Intra-community Edge Addition:
Theorem 4.5: Adding an intra-community edge 〈u, v〉

where u, v ∈ C does not always ensure a loss in Perma-
nence.

Proof: Here we show that adding an intra-community
edge does not always result in Permanence loss. We will only
show the change in Permanence for node u (same applies to
v).

For this, we consider two parts of Permanence separately -
(i) ratio of internal-external pull, denoted by Perm(G)1, and
(ii) cohesiveness of internal neighbors, denoted by Perm(G)2.
(i) Impact on the ratio of internal-external pull: In this, we

Fig. 3. An example to demonstrate that Permanence loss in terms of
cohesiveness of internal neighbors of a node u may not always be positive.

consider the effect of adding an intra-community edge 〈u, v〉
on the internal-external pull factor of Permanence. This update
increases the internal degree and degree for node u by 1. It
has no effect on the maximum external connections Emax(u).
Therefore, for Permanence loss we need to see whether Pl1 =
Perm(u,G)1 − Perm(u,G′)1 ≥ 0. This reduces to,

Pl1 =
1

Emax(u)

[
I(u)

deg(u)
− I(u) + 1

deg(u) + 1

]
=

1

Emax(u)

[
I(u)− deg(u)

deg(u)× (deg(u) + 1)

]
≤ 0 (as I(u) ≤ deg(u))

Therefore, there is no Permanence loss w.r.t. the internal-
external pull (first part of (2)).
(ii) Impact on cohesiveness of internal neighbors: In this, we
consider the effect of adding an intra-community edge 〈u, v〉
on the cohesiveness of internal neighbors. Therefore, for Per-
manence loss, we need to see whether Pl2 = Perm(u,G)2−
Perm(u,G′)2 ≥ 0. This reduces to,

Pl2 = (1− C′in(u))− (1− Cin(u)) = Cin(u)− C′in(u)

where C ′in(u) represents the updated internal clustering coef-
ficient of u in G. Pl2 can be positive or negative depending on
how the connections between internal neighbors of u change
after introducing its new neighbor v. This is shown using a toy
example in Fig. 3. It can be seen that in the 1st case, Pl2 < 0,
while in the second case, Pl2 > 0.

By combining (i) and (ii), we conclude that intra-community
edge addition does not always ensure Permanence loss.

D. Proposed Algorithm: NEURAL

Since our objective function is submodular and monotone
w.r.t. the possible edge updates that affect Permanence loss
positively, we propose NEURAL, a greedy algorithm that
maximizes Permanence loss to rewire nodes within a given
budget in order to hide the target community.

NEURAL makes the use of certain edge updates discussed
in the previous section to rewire the network structure such
that the community detection algorithms are not able to
detect a target community C. Along with the network, it
takes as input β, indicating the budget or the maximum
number of edge updates that are allowed. The pseudo-code
of NEURAL is shown in Algorithm 1 (flow diagram in Fig.
1). At every iteration, it considers an edge update which
contributes towards the maximum loss in Permanence for the
network, hence greedily updating the original network. For
an edge addition, we only consider adding inter-community
edges following Theorems 4.3 and 4.5 as it has been shown
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that adding an intra-community edge does not guarantee a
loss in Permanence in all cases (lines 4-6 of Algorithm 1).
In the case of edge deletion, we only consider deleting intra-
community edges following Theorems 4.1 and 4.2 (lines 7-
9 of Algorithm 1). Deleting an inter-community edge does
not result in Permanence loss in any case; hence it is not a
favorable update. Since NEURAL follows a greedy strategy,
for the addition of all the competing inter-community edges,
the one which has the highest Permanence loss for the network
is considered. The same approach is followed for selecting the
best intra-community edge for deletion. In the end, a choice
between the best inter-community edge to be added and the
best intra-community edge to be deleted is made based on
which one contributes more to network Permanence loss (lines
10-13 of Algorithm 1).

Note that for computing the best network update at every
iteration, we only need node information for a subset of all
the nodes present in the network which reduces the amount of
network information being used.

E. Time Complexity of NEURAL

The time complexity of NEURAL is O(|VC |+|EC |), where
|VC | and |EC | represent the number of nodes and edges
(both intra-community and inter-community) in the target
community C, respectively. This is because, in order to search
for edge updates that best contribute towards the Permanence
loss for hiding C, we only need to go through the nodes and
edge connections in the target community as shown in Section
IV-C. Information about the rest of the network is not required.
We explore the running time complexity of NEURAL further
in supplementary.

Algorithm 1 NEURAL: Network Deception using Perma-
nence Loss
Input: (i) Network G, (ii) target community C, (iii) budget β
Output: Updated Network G′

1: Pl,add = 0
2: Pl,del = 0
3: while β > 0 do
4: addu,maxCommu = getBestNodeForAddition(C) (6)
5: addv = getBestExternalNodeForAddition(maxCommu)
6: Pl,add = getEdgeAdditionLoss(addu, addv)
7: intraEdge← getConnectingEdges(C)
8: delu, delv = getBestEdgeForDeletion(intraEdge) (4)
9: Pl,del = getEdgeDeletionLoss(delu, delv,C)

10: if Pl,add ≥ Pl,del and Pl,add > 0 then
11: G← (V,E ∪ {add u, add v})
12: else if Pl,del > 0 then
13: G← (V,E\{del u,del v})
14: end if
15: β = β − 1
16: end while
17: return G

V. EXPERIMENTAL SETUP

In this section, we start by briefly describing the datasets,
baseline methods, community detection methods we con-
sidered for deception, and the evaluation metrics. We then
elaborate on the experimental results and the case studies.

TABLE II
STATISTICS OF THE REAL-WORLD NETWORKS (|V | AND |E| REPRESENT

THE NUMBER OF NODES AND EDGES, RESPECTIVELY; 〈k〉 (kmax)
REPRESENTS THE AVERAGE (MAXIMUM) DEGREE OF NODES).

Network |V | |E| 〈k〉 kmax
Kar 34 78 4.59 17
Dol 62 159 5.13 12

Lesmis 77 154 6.60 36
Polbook 105 441 8.40 25
Adjnoun 112 425 7.60 49
Power 4,941 6,594 2.67 19
Dblp 317,080 1,049,866 4.93 343

A. Synthetic and Real-world Networks

We conduct experiments on two types of networks:
(i) Synthetic networks: We use LFR Benchmark [26] and
vary the following parameters to generate synthetic networks:
N , number of nodes and µ, the ratio of external connections
of a node to degree. The other parameters are set to default
as mentioned in the original implementation. Unless otherwise
stated, we consider the following setting to generate the default
synthetic network: N = 10, 000, µ = 0.4 (as suggested in [8]).
(ii) Real-world networks: We use seven real-world networks -
(1) Zachary’s Karate Club (Kar)4, (2) Dolphin social network
(Dol)4, (3) Les Miserables (Lesmis)4, (4) Books about US
Politics (Polbook)4, (5) Word adjacencies (Adjn)4, (6) US
Power Grid (Power)4 and (7) DBLP collaboration network
(Dblp)5. Table II summarises the statistics of the networks.

Note that we do not require the ground-truth community
structure since our primary aim is to deceive a community
detection algorithm so that after rewiring, the community
affiliation of target nodes remains unrevealed.

B. Baseline Methods

We compare NEURAL with four baseline methods:

1) Random algorithm updates the network by randomly
selecting the type of edge update (edge addition/deletion),
along with the end nodes.

2) Nagaraja algorithm [6] updates the network by adding
edges between nodes selected on the basis of vertex-
centrality measures.

3) DICE [2] updates the network by randomly adding inter-
community edges or deleting intra-community edges.

4) SADDEN [5] updates the network by maximizing the
safeness gain in every iteration of edge update based on
greedy optimization.

C. Community Detection Algorithms

We consider six diverse and widely used community de-
tection algorithms: Louvain (Louv) [27], WalkTrap (Walk)
[14], Greedy [28], InfoMap (Info) [15], Label Propagation
(Labprop) [29], and Leading Eigenvectors (Eig) [30]. Note
that none of these algorithms use Permanence as a metric
for optimization. Therefore, NEURAL is agnostic to the
underlying mechanism of these algorithms.

4http://www-personal.umich.edu/~mejn/netdata/
5http://snap.stanford.edu/data/
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TABLE III
COMPARISON ON THE DEFAULT LFR NETWORK, KEEPING β = 0.3|VC |,

WHERE VC IS THE SIZE THE TARGET COMMUNITY.

Method NMI MNMI CommS CommU
Random 0.99 0.97 1.13 0.15
Nagaraja 0.99 0.28 1.21 0.86

DICE 0.98 0.90 1.33 0.81
SADDEN 0.98 0.26 3.64 0.73
NEURAL 0.98 0.26 3.80 0.94

D. Evaluation Metrics

Here, we briefly describe the metrics used to evaluate the
community deception methods. ↑ (resp. ↓) indicates higher
(resp. lower) the value of the metric, better the performance.
(i) Normalized Mutual Information (NMI) ↓ [31]: To
check how much the deception methods are able to hide a
particular target community C in the network, we calculate
the NMI score between the original community structure of
the network, CS = (C1, C2, ...Ck) and the new community
structure obtained from a community detection algorithm on
the updated network, CS′ = (C ′1, C

′
2, ...C

′
k′). The metric

ranges from 0 (suggesting no overlap between CS and CS′)
to 1 (suggesting a complete overlap between CS and CS′).
(ii) Modified Normalized Mutual Information (MNMI) ↓:
For large networks, hiding a target community C may not
have a major effect on the other communities which are not
in immediate contact with C. As a result, to capture how
effective a deception method is in hiding C, we may need to
measure NMI between the community memberships of nodes
in the target communities and their immediate neighbors
before and after the edge updates. We call this metric MNMI.
Its range is same as that of NMI.
(iii) Community Splits (CommS) ↑: We propose this metric
to define the number of communities in CS′ containing the
nodes of the target community C in the updated network G′.
It ranges from 1 (all nodes in C remain in one community in
CS′) to |CS′| (all nodes in C get distributed into different
communities of CS′). The higher the value of CommS, the
wider would be the split of the nodes in C, thereby increasing
the deception of the target community.

CommS =
∑
C′

i∈CS′ h(C ′i, C); h(C
′
i, C) =

{
1 VC ∩ VC′

i
6= φ

0 VC ∩ VC′
i
= φ

where VC represents the set of nodes belonging to C, and VCi

represents set of nodes belonging to community Ci ∈ CS′.
(iv) Community Uniformity (CommU) ↑: We propose this
metric to capture how nodes in the target community C
get distributed among communities in the new community
structure CS′. It is obtained by calculating the entropy of
target community’s nodes present among the communities

in CS′ as follows: CommU =
∑
C′

iεCS
′ −
|VC,C′

i
|

|VC | log
|VC,C′

i
|

|VC | ,
where |VC,C′

i
| represents the number of nodes in C present

in C ′i ∈ CS′, and |VC | represents the total number of nodes
present in C. It ranges from 0 (when all nodes of C remain
in one community of CS′) to log |CS ′| (when all nodes of C
get distributed into different communities of CS′).

VI. QUANTITATIVE EVALUATION

Here we present the quantitative analysis of experimental
results on both synthetic and real-world networks.

Fig. 4. NMI, MNMI and CommS on the default synthetic network by varying
β in (a)-(c) and µ in (d)-(f), keeping β = 0.3|Vc|, where |VC | is the number
of nodes in the target community.

A. Evaluation on Synthetic Networks

We use the default LFR network, set the budget β as
the fraction of nodes in the target community C and vary
the fraction from 0.1 to 0.6. The result is averaged over 20
synthetic networks, 5 randomly selected target communities
and 10 runs for each target community. Figs. 4(a)-(c) show
that with an increase of β, NEURAL is able to hide C better
(NMI, MNMI scores decrease and CommS scores increase)
showing a parallel between the allowed budget and its effect
on community deception.

We further conduct experiments by varying the parameter
µ of LFR network from 0.1 to 0.9. Figs. 4(d)-(f) show that
with an increase in µ, the nodes in C are concealed more by
NEURAL (NMI, MNMI scores decrease and CommS scores
increase). The above observation matches the expectation that
it would be easier to hide a target community which has more
sparse intra-community connections than the inter-community
connections.

Table III shows that NEURAL delivers comparable (and
sometimes better) accuracy on the default synthetic network.

B. Evaluation on Real-world Networks

In case of experiments on real-world networks, we fix β
to 30% of the size of the target community C (i.e., β =
0.3|VC |). The results reported here are obtained by averaging
the performance considering each of the communities as
target community at a time and over 10 runs for each target
community.

For a compact visualization, we rank five competing com-
munity deception methods as follows: for each evaluation
metric and each community detection algorithm, we normalize
their scores (using min-max normalization) so that the best
performing method gets score 1. Now if a competing method
outperforms others by deceiving all the six community detec-
tion algorithms w.r.t. that evaluation metric, it will secure a
composite score of 6.
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Fig. 5. (Color online) Composite performance of the five competing community deception methods based on (a) NMI, (b) MNMI, (c) CommS, and (d)
CommU. Bars in each group (under each dataset) are ordered as follows: (1) Random, (2) Nagaraja, (3) DICE, (4) SADDEN, and (5) NEURAL (as shown
in Fig. (c)). Fig.(e) shows the composite performance of each competing method based on every evaluation metric averaged over all the datasets.

Figs. 5(a)-(d) show the composite performance across all
the evaluation metrics. Fig. 5(e) shows the composite per-
formance of individual competing methods averaged over all
the datasets. We observe that NEURAL outperforms others
with a significant margin - NEURAL achieves a compos-
ite score of 5.53 (averaged over all the evaluation metrics
and datasets), outperforming Random, Nagaraja, DICE and
SADDEN by 376.72%, 286.71%, 128.51%, and 26.54%,
respectively (see supplementary for the raw accuracy scores
over all the datasets). Note that SADDEN turns out to be
highly competitive, sometimes showing marginal improvement
over NEURAL. However, in general NEURAL is better than
others (Fig. 5(e)). We also consider hiding individual target
nodes instead of communities. Refer supplementary for the
same.

C. Non-uniform Budget for Edge Updates

Till now, we have reported the results with a unified budget
β for all the edge update operations. In this section, we
extend NEURAL with non-uniform budget wherein separate
budget constraints are applied to the two types of allowed
edge updates (as elaborated in Section IV-D): (i) βD for intra-
community edge deletion, and (ii) βA for inter-community
edge addition. Such an analysis could be useful in situations
wherein the costs incurred while deleting an intra-community
edge and adding an inter-community edge are different. We
perform experiments under two different settings of βD,
βA: (i) βD = 0.3β, βA = 0.7β, and (ii) βD = 0.3β,
βA = 0.7β (we fix β as default, i.e., 30% of the size of the
target community C). Tables IV and V provide raw accuracy
values (by averaging over all the communities) for NEURAL
and SADDEN (the best baseline, extending it in a similar
manner) on Karate real-world network (see supplementary for
others) for the two settings mentioned above. We observe that
NEURAL outperforms SADDEN in most cases.

VII. QUALITATIVE EVALUATION

To interpret the rewiring suggested by NEURAL and SAD-
DEN (top two methods), we further take three real-world

TABLE IV
ACCURACY OF TWO COMPETING COMMUNITY DECEPTION METHODS: (1)

S: SADDEN (BEST BASELINE), AND (2) N: NEURAL OVER KARATE,
SUCH THAT βD = 0.3β; βA = 0.7β

Comm. Det. NMI MNMI CommS CommU
Algo. S N S N S N S N
Louv 0.94 0.75 0.50 0.30 1.50 2.50 0.27 0.64
Walk 0.78 0.74 0.37 0.30 1.40 2.20 0.57 0.96

Greedy 0.77 0.64 0.35 0.31 2.00 2.67 0.61 0.74
Info 0.83 0.69 0.52 0.45 1.33 1.00 1.75 2.84

Labprop 0.84 0.00 0.09 0.00 1.50 4.00 1.56 0.40
Eig 0.95 0.82 0.41 0.32 1.50 1.50 1.53 1.64

TABLE V
ACCURACY OF TWO COMPETING COMMUNITY DECEPTION METHODS: (1)

S: SADDEN (BEST BASELINE), AND (2) N: NEURAL OVER KARATE,
SUCH THAT βD = 0.7β; βA = 0.3β

Comm. Det. NMI MNMI CommS CommU
Algo. S N S N S N S N
Louv 0.94 0.84 0.54 0.50 1.50 2.00 0.79 0.87
Walk 0.79 0.78 0.49 0.44 1.40 2.00 0.39 0.86

Greedy 0.81 0.66 0.34 0.31 2.10 2.67 0.66 0.74
Info 0.80 0.93 0.44 0.42 2.00 1.00 0.85 2.39

Labprop 0.68 0.65 0.43 0.13 1.33 1.67 1.76 1.45
Eig 0.92 0.89 0.45 0.33 1.25 1.75 0.95 2.33

attributed networks. Unless otherwise state, we only consider
deletion of edges (as addition of a new edge does not make
any sense for these networks). Louvain algorithm is used for
community detection, and the largest community is considered
as the target community.

A. Citation Network

We consider 6, 320 papers published in Physical Review
Journals as nodes and 10, 000 citation interactions (we ignore
directionality) among them as edges6. After hiding the target
community (largest community) we observe that NEURAL
tends to pick up those citation interactions (or edges) whose
age (defined by the difference between the publication years
of citing and cited papers) is relatively high (we believe that
these edges have much more importance in terms of keeping
the identity of the target community intact, being connected
to papers (or nodes) published earlier than most in literature).

6https://journals.aps.org/datasets



9

NEURAL performs better than SADDEN in terms of updating
more edges of such kind (Fig. 6(a)).

We further measure the correlation (Spearman’s ρ and
Kendall’s τ ) of 138 edges selected and ranked by NEURAL
and those ranked by their age (ground-truth) (similar corre-
lation for 138 edges returned by SADDEN). Table VI shows
that NEURAL outperforms SADDEN. Moreover, NEURAL
returns the top three edges based on their age present in
the target community within top 20 of the rank list, whereas
SADDEN is unable to return a single such edge within the
138 edges returned.

Fig. 6. (a) Age and (b) similarity score distribution of edges selected by
NEURAL and SADDEN from Citation and Terrorist networks, respectively.

B. Terrorist Network

We use the Global Terrorism Database7 to create a net-
work of terrorist group associations. This dataset consists of
191, 465 terrorist events around the world between 1970-2018.
In order to create the network, we compute the similarity
between two terrorist groups based on their activities. To
quantify similarity between two groups, we use five attributes:
(i) severity of the attack (number of casualties), (ii) attacking
strategy used in majority events, (iii) type of weapon used
in majority events, (iv) peak year of attacks, and (v) the
target type in majority events. Thus, two terrorist groups are
associated with a link if the similarity score is greater than or
equal to 2.5 (out of 5). This gives rise to a network having
3, 616 nodes as terrorist groups and 22, 141 unweighted edges
as association links among these groups.

After hiding the target community (largest community),
we observe that NEURAL first picks up those edges which
have higher similarity scores, removing a link between two
highly similar terrorist groups. NEURAL performs better
compared to SADDEN in terms of providing more edges
with high similarity scores (Fig. 6(b)). We further measure
the rank correlation between 93 edges returned and ranked by
NEURAL with those ranked by their similarity scores (ground-
truth) (similarly for 93 edges returned by SADDEN). Table
VI shows that NEURAL once again outperforms SADDEN in
terms of returning edges whose similarity score is high.

C. Breast Cancer Network

Breast cancer 8 is considered a leading cause of morbidity
and mortality among women worldwide. Above 12% of the
women in the United States are diagnosed with breast cancer
during their lifetime [32]. Alteration of gene regulation has
been widely studied in this context [33], with a special focus
on dynamic changes in gene co-expression modules. Under

7https://www.start.umd.edu/gtd/
8This analysis was conducted by two professional biologists.

TABLE VI
RANK CORRELATION FOR CITATION AND TERRORIST NETWORKS, AND

ACCURACY FOR BREAST CANCER NETWORK.

Method Citation Terrorist
Spearman’s ρ Kendall’s τ

SADDEN 0.12 0.21 0.00 0.07 Rank correlations are
NEURAL 0.16 0.41 0.06 0.29 statistically significant

Breast cancer with p-value> 0.8
MAP F1 score nDCG AUC

SADDEN 0.004 0.20 0.47 0.30
NEURAL 0.006 0.29 0.54 0.39

the Cancer Genome Atlas (TCGA) program, a community-
scale effort has been directed towards multi-omic molecular
profiling of breast tumors in hundreds of patients [34]. We
use Fragments Per Kilobase of transcript per Million mapped
reads (FPKM) normalized gene expression data from TCGA
to understand if disguising community affiliation plays a role
in the pathogenesis of critical diseases such as cancers. To
achieve this, we construct a control and a cancer-specific co-
expression network based on transcriptomic profiles of 1,097
normal (as controls) and 113 tumor samples obtained from
the TCGA repository. Both networks spanned the same set
of 1,000 genes (1,000 nodes). Two nodes are connected by
an edge when the Pearson’s correlation coefficient computed
across the entire spectrum of control/tumor samples qualifies
a cut-off value of 0.6 (12, 161 edges). Deleterious mutations
in cancer cause wide-spread loss-of-function events, which are
often manifested by changes in gene expression levels.

We employ NEURAL and SADDEN to retrieve co-
expressions (edges), whose disappearance fosters community
disintegration. NEURAL and SADDEN could pin-point 15
and 10 rewirings in the form of edge deletion, respec-
tively, which could be cross-validated w.r.t. the cancer-specific
network. Quite strikingly, 5 out of the 15 correctly pre-
dicted deletions by NEURAL, harbors BMP2 inducible kinase
(BPMP2K) as one of the nodes. We find definitive studies
implicating this molecule in breast cancer [35]. We fail to
find any literature support for the novel gene Z97832.2 that
was relatively enriched (3 out 10 rewirings) among SADDEN
predicted rewirings. We also measure how accurate NEURAL
and SADDEN are to predict the ground-truth edges w.r.t the
cancer-specific network. Table VI shows that NEURAL out-
performs SADDEN on four evaluation measures. To this end,
we conclude that NEURAL-led investigation of genome-scale
molecular networks holds significant promise in understanding
genetic diseases such as cancers.

VIII. CONCLUSION

This paper addressed the problem of community deception –
outwitting community detection algorithms from discovering
the community affiliation of nodes in a target community.
Our major contributions are as follows: (i) we formalized
the problem and called it Hide and Seek Community (HSC);
(ii) we proposed a novel objective function (Permanence
loss) which has been analyzed theoretically; (iii) we proposed
NEURAL, a novel greedy strategy to optimize Permanence
loss; (iv) NEURAL turned out to be more efficient than
the baselines; and (v) NEURAL unfolded different meta-
information of edges which would otherwise not have been
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possible to explain just by analyzing the network structure.
In particular, NEURAL showed promise in the analysis of
genome-scale molecular networks.
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IX. PERMANENCE LOSS IS SUBMODULAR AND
MONOTONE

In this section, we prove that the proposed objective function
is submodular and monotone w.r.t. the number of edge updates.

Theorem 9.1: Permanence loss Pl is submodular w.r.t.
the addition of an inter-community edge.

Proof: Let A be the set of inter-community edges that are
being considered to be added into the network G using The-
orem 4.3. Let x1 and x2 be two other such inter-community
edges where x1, x2 /∈ A. Pl(A ∪ {x1}) (resp. Pl(A ∪ {x2}))
represents the permanence loss due to the addition of the inter-
community edge set A∪{x1} (resp. A∪{x2}) (given by (6)).
Therefore,

Pl(A ∪ {x1}) + Pl(A ∪ {x2}) = 2
∑
iεA

Pl(i) + Pl(x1) + Pl(x2)

= Pl(A ∪ {x1, x2}) + Pl(A)

This shows that Permanence loss is submodular w.r.t. the
addition of an inter-community edge.

Theorem 9.2: Permanence loss Pl is submodular w.r.t.
the deletion of an intra-community edge.

Proof: Let A be the set of intra-community edges that are
being considered to be added into the network G using The-
orem 4.2. Let x1 and x2 be two other such intra-community
edges such that x1, x2 /∈ A. Pl(A∪{x1}) (resp. Pl(A∪{x2}))
represents the permanence loss due to the deletion of the set
of intra-community edges A ∪ {x1} (resp. A ∪ {x2}) (given
by (4)). Therefore,

Pl(A ∪ {x1}) + Pl(A ∪ {x2}) = 2
∑
iεA

Pl(i) + Pl(x1) + Pl(x2)

= Pl(A ∪ {x1, x2}) + Pl(A)

This shows that Permanence loss is submodular w.r.t. the
deletion of an intra-community edge.

Theorem 9.3: Permanence loss Pl is monotone w.r.t. the
addition of an inter-community edge.

Proof: Let A be the set of inter-community edges ob-
tained using Theorem 4.3. Let B be the set of inter-community
edges such that B = A ∪ {x1}, where x1 is another inter-
community edge considered to update the network for com-
munity deception. Since A ⊆ B, Pl(B) = Pl(A) +Pl(x1) ≥
Pl(A) using (6), which proves that the Permanence loss is
monotone w.r.t. to the addition of an inter-community edge.

Theorem 9.4: Permanence loss Pl is monotone w.r.t. the
deletion of an intra-community edge.

Proof: Let A be the set of intra-community edges ob-
tained using Theorem 4.2. Let B be the set of intra-community
edges such that B = A ∪ {x1}, where x1 is another intra-
community edge considered to update the network for com-
munity deception. Since A ⊆ B, Pl(B) = Pl(A) +Pl(x1) ≥

TABLE VII
SCORES OF TWO METHODS: (1) SADDEN, AND (2) NEURAL FOR

HIDING INDIVIDUAL TARGET NODES, AVERAGED ACROSS 20 DIFFERENT
RUNS.

Network Score (SADDEN) Score (NEURAL)
Kar 0.62 0.69
Dol 0.59 0.71

Lesmis 0.64 0.70
Polbook 0.71 0.75
Adjnoun 0.68 0.79
Power 0.54 0.68
Dblp 0.64 0.71

Fig. 7. Scalability analysis of NEURAL and SADDEN.

Pl(A) using (4), which proves that the Permanence loss is
monotone w.r.t. the deletion of an intra-community edge.

X. HIDING NODES RATHER THAN COMMUNITIES

In this section, we address a modified version of our
problem statement to hide individual target nodes instead of
communities. To hide nodes, we employ our proposed NEU-
RAL algorithm by treating nodes as singleton communities.
Since deleting an intra-community edge would be redundant
in case of a singleton community, NEURAL only focuses
on adding inter-community edges to hide target nodes. We
evaluate our methodology by selecting 0.3|V | nodes randomly
as targets for 7 real-world networks. Louvain algorithm is used
to extract community assignment. Table VII summarises the
probability scores of hiding the target nodes for NEURAL
and SADDEN (the best baseline). We observe that NEURAL
outperforms SADDEN by assigning a different community
label for more target nodes.

XI. SCALABILITY ANALYSIS

The discussion in Section IV-D has established that the time
complexity of NEURAL is O(|VC | + |EC |). To show this
empirically, we use the LFR Benchmark [26] for generating
synthetic networks with µ = 0.4. Louvain algorithm is
used for community detection, and the largest community is
considered as the target community such that |EC | lies within
the range 103 − 108. The results are averaged over 10 such
synthetic networks. We record the run times for two deception
strategies (based on greedy optimization): (i) SADDEN and
(ii) NEURAL (we fix β as default i.e., β = 0.3|VC |). Fig. 7
shows that the run time for NEURAL increases linearly with
|EC | thereby verifying the analytical time complexity shown
in Section IV-D (|EC | >> |VC |; O(|VC |+ |EC |) ≈ O(|EC |)).
We also observe that with an increase in |EC |, NEURAL
outperforms SADDEN in terms of its run time.
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TABLE VIII
ACCURACY OF THE FIVE COMPETING COMMUNITY DECEPTION METHODS: (1) NAG: NAGARAJA, (2) R: RANDOM, (3) D: DICE, (4) S: SADDEN, AND
(5) N: NEURAL OVER 7 REAL WORLD NETWORKS: (A) KARATE, (B) DOLPHIN, (C) LESMIS, (D) POLBOOKS, (E) ADJN, (F) POWER AND (G) DBLP.

(A) Karate
Comm. Det. NMI MNMI CommS CommU

Algo. Nag R D S N Nag R D S N Nag R D S N Nag R D S N
Louv 0.94 0.88 0.92 0.82 0.75 0.33 0.65 0.95 0.27 0.26 1.27 1.50 1.25 2.00 2.25 0.55 0.61 0.72 0.98 0.93
Walk 0.82 0.78 0.76 0.67 0.70 0.46 0.70 0.61 0.17 0.27 1.33 1.00 1.30 1.40 1.41 0.82 1.52 1.54 1.81 1.61

Greedy 0.82 0.82 0.78 0.77 0.72 0.25 0.85 0.73 0.25 0.24 1.58 1.67 2.33 2.00 2.67 0.53 0.43 0.59 0.58 0.71
Info 0.89 0.85 0.85 0.72 0.68 0.47 0.81 0.63 0.46 0.17 1.23 1.00 1.00 1.33 1.34 1.87 1.84 1.91 1.87 2.25

Labprop 0.29 0.76 0.64 0.52 0.00 0.33 0.35 0.54 0.10 0.00 1.49 1.33 1.75 2.00 6.00 0.97 0.57 0.64 0.41 1.31
Eig 0.94 0.89 0.91 0.83 0.82 0.38 0.64 0.73 0.30 0.33 1.02 1.00 1.50 1.75 1.25 2.12 0.98 1.96 1.07 2.14

(B) Dolphin
Comm. Det. NMI MNMI CommS CommU

Algo. Nag R D S N Nag R D S N Nag R D S N Nag R D S N
Louv 0.89 0.84 0.85 0.79 0.64 0.21 0.65 0.78 0.20 0.18 1.31 1.40 2.00 2.60 2.75 0.64 0.41 0.56 0.69 0.75
Walk 0.77 0.83 0.78 0.67 0.67 0.35 0.61 0.65 0.37 0.24 2.04 2.75 3.00 2.00 4.25 0.88 0.79 0.98 1.77 1.01

Greedy 0.91 0.89 0.85 0.81 0.77 0.31 0.55 0.54 0.20 0.27 1.36 1.50 2.00 2.75 2.50 0.78 0.54 0.76 0.67 1.04
Info 0.92 0.91 0.87 0.85 0.82 0.27 0.66 0.59 0.31 0.25 1.29 2.20 2.20 2.16 3.80 0.89 0.63 0.81 1.34 0.87

Labprop 0.69 0.71 0.73 0.76 0.67 0.11 0.74 0.36 0.12 0.07 1.69 2.50 1.33 2.25 1.75 1.60 1.10 1.25 0.41 2.00
Eig 0.84 0.84 0.88 0.83 0.82 0.21 0.86 0.73 0.23 0.16 1.65 1.00 1.50 1.80 2.00 0.66 0.64 0.87 1.48 1.03

(C) Lesmis
Comm. Det. NMI MNMI CommS CommU

Algo. Nag R D S N Nag R D S N Nag R D S N Nag R D S N
Louv 0.96 0.90 0.89 0.89 0.83 0.32 0.85 0.84 0.33 0.29 1.30 1.67 2.00 2.33 2.16 0.69 0.54 0.88 1.41 0.98
Walk 0.95 0.95 0.94 0.92 0.89 0.55 0.94 0.65 0.43 0.39 1.30 1.50 1.75 1.88 2.00 1.33 0.41 0.87 1.30 1.77

Greedy 0.90 0.92 0.91 0.87 0.82 0.37 0.65 0.78 0.33 0.32 1.30 1.50 1.75 2.00 2.20 0.77 0.66 0.78 0.85 0.98
Info 0.98 0.98 0.95 0.94 0.91 0.44 0.86 0.71 0.35 0.29 1.17 1.11 2.13 2.00 2.38 0.81 0.89 1.02 1.05 1.55

Labprop 0.69 0.74 0.78 0.69 0.60 0.36 0.68 0.53 0.28 0.16 1.47 1.86 2.50 2.00 2.67 0.14 0.44 0.41 1.37 0.55
Eig 0.97 0.96 0.91 0.91 0.95 0.95 0.94 0.73 0.34 0.41 0.96 1.17 2.70 1.75 1.25 1.49 0.45 0.97 0.49 1.82

(D) Polbooks
Comm. Det. NMI MNMI CommS CommU

Algo. Nag R D S N Nag R D S N Nag R D S N Nag R D S N
Louv 0.98 0.99 0.95 0.94 0.95 0.24 0.79 0.76 0.22 0.23 1.30 1.25 1.50 1.74 1.75 0.44 0.43 0.62 0.74 0.75
Walk 0.97 0.95 0.94 0.85 0.94 0.94 0.92 0.76 0.32 0.31 1.30 1.25 1.64 2.75 1.75 0.88 0.79 0.82 0.96 1.26

Greedy 0.97 0.93 0.92 0.95 0.91 0.73 0.70 0.83 0.28 0.31 1.12 1.50 1.80 1.25 2.00 0.23 0.34 0.63 2.56 0.95
Info 0.99 0.99 0.98 0.96 0.95 0.34 0.74 0.74 0.32 0.33 1.02 1.00 2.13 2.33 1.83 0.54 0.39 0.98 0.58 1.04

Labprop 0.87 0.81 0.80 0.78 0.73 0.21 0.67 0.59 0.23 0.17 1.50 1.00 3.00 1.67 3.33 0.47 0.48 0.43 2.88 0.52
Eig 0.94 0.92 0.93 0.91 0.92 0.26 0.74 0.63 0.19 0.18 1.57 1.25 1.50 2.25 1.75 0.61 0.66 0.76 0.26 0.84

(E) Adjn
Comm. Det. NMI MNMI CommS CommU

Algo. Nag R D S N Nag R D S N Nag R D S N Nag R D S N
Louv 0.74 0.74 0.71 0.62 0.64 0.23 0.73 0.72 0.25 0.22 2.73 2.86 3.23 3.86 4.14 0.89 0.77 0.85 1.03 1.10
Walk 0.97 0.99 0.95 0.95 0.94 0.73 0.85 0.79 0.73 0.69 1.22 1.16 2.00 1.44 1.32 0.60 0.41 0.45 0.64 0.83

Greedy 0.75 0.60 0.62 0.66 0.58 0.41 0.69 0.64 0.22 0.21 1.00 2.50 3.50 3.14 3.86 0.89 0.68 0.97 1.10 1.37
Info 0.50 0.45 0.51 0.57 0.42 0.24 0.73 0.65 0.02 0.05 1.75 1.00 1.16 1.50 2.50 0.92 0.62 0.89 0.78 1.08

Labprop 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 6.00 4.71 1.10 1.23 4.72 0.25
Eig 0.74 0.85 0.77 0.64 0.71 0.42 0.68 0.70 0.40 0.38 1.04 1.30 1.60 2.80 1.70 1.03 0.66 0.79 0.69 1.42

(F) Power
Comm. Det. NMI MNMI CommS CommU

Algo. Nag R D S N Nag R D S N Nag R D S N Nag R D S N
Louv 0.97 0.98 0.99 0.98 0.95 0.62 0.74 0.74 0.29 0.05 2.10 1.10 1.50 3.00 4.00 0.14 0.11 0.15 0.13 0.18
Walk 0.98 0.99 0.97 0.93 0.91 0.78 0.83 0.81 0.38 0.39 4.00 2.00 3.00 20.00 24.00 0.34 0.48 0.51 0.41 0.75

Greedy 0.97 0.98 0.96 0.94 0.93 0.86 0.83 0.81 0.03 0.07 2.50 2.50 4.00 3.00 6.00 0.63 0.98 1.10 0.12 1.15
Info 0.98 0.98 0.98 0.97 0.95 0.89 0.92 0.91 0.22 0.10 1.94 2.50 2.00 1.00 4.00 0.74 0.55 0.61 3.89 0.68

Labprop 0.94 0.97 0.92 0.91 0.90 0.84 0.87 0.86 0.38 0.27 4.00 3.00 5.00 7.00 8.00 1.05 1.05 1.14 1.24 1.74
Eig 0.95 0.95 0.93 0.76 0.87 0.54 0.54 0.48 0.08 0.04 3.22 1.50 4.00 3.00 7.00 0.45 0.45 0.62 0.66 0.72

(G) Dblp
Comm. Det. NMI MNMI CommS CommU

Algo. Nag R D S N Nag R D S N Nag R D S N Nag R D S N
Louv 1.00 0.99 0.99 0.98 0.97 0.39 0.42 0.35 0.28 0.31 3.75 3.50 4.25 5.00 5.33 0.08 0.05 0.10 0.15 0.16
Walk 1.00 0.99 0.97 0.97 0.94 0.40 0.53 0.49 0.37 0.36 14.25 10.00 16.00 20.00 24.25 0.28 0.28 0.35 0.41 0.47

Greedy 0.99 1.00 0.99 0.98 0.99 0.35 0.35 0.39 0.24 0.23 1.25 1.75 2.50 4.00 3.07 0.08 0.04 0.08 0.12 0.13
Info 0.99 1.00 0.99 0.99 0.98 0.32 0.29 0.35 0.22 0.19 1.25 1.00 5.25 2.00 4.00 0.98 1.11 2.01 2.15 2.09

Labprop 0.85 0.93 0.96 0.89 0.79 0.49 0.44 0.40 0.38 0.29 5.00 3.50 5.00 7.00 7.20 0.89 0.95 1.25 1.50 1.82
Eig 0.93 0.97 0.98 0.92 0.89 0.21 0.17 0.11 0.08 0.07 5.00 1.25 1.50 3.00 3.34 0.68 0.64 0.70 0.73 0.75
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TABLE IX
ACCURACY OF TWO COMPETING COMMUNITY DECEPTION METHODS: (1)

S: SADDEN (BEST BASELINE), AND (2) N: NEURAL OVER 4 REAL
WORLD NETWORKS: (A) DOLPHIN, (B) LESMIS, (C) POLBOOKS, (D)

ADJN, AND (E) POWER, SUCH THAT βD = 0.3β; βA = 0.7β , β = 0.3|VC |

(A) Dolphin
Comm. Det. NMI MNMI CommS CommU

Algo. S N S N S N S N
Louv 0.81 0.79 0.25 0.23 2.60 3.00 0.81 0.68
Walk 0.72 0.65 0.37 0.11 2.50 4.00 0.81 1.04

Greedy 0.86 0.78 0.32 0.27 2.25 2.75 0.66 1.11
Info 0.84 0.82 0.24 0.27 2.50 3.80 0.84 0.89

Labprop 0.75 0.69 0.15 0.10 1.80 2.50 0.92 1.56
Eig 0.81 0.78 0.22 0.16 2.00 2.20 1.04 1.13

(B) Lesmis
Comm. Det. NMI MNMI CommS CommU

Algo. S N S N S N S N
Louv 0.89 0.87 0.33 0.31 2.13 2.17 0.83 1.43
Walk 0.92 0.90 0.36 0.33 1.75 1.75 1.72 1.58

Greedy 0.88 0.81 0.33 0.32 2.20 2.60 1.05 1.09
Info 0.95 0.90 0.82 0.13 2.00 2.50 1.42 0.98

Labprop 0.73 0.61 0.82 0.24 2.17 2.60 1.02 1.07
Eig 0.95 0.90 0.72 0.13 1.38 1.88 1.42 1.46

(C) Polbooks
Comm. Det. NMI MNMI CommS CommU

Algo. S N S N S N S N
Louv 0.95 0.94 0.30 0.28 1.75 1.75 0.63 0.74
Walk 0.91 0.92 0.31 0.31 1.75 2.00 1.25 1.30

Greedy 0.92 0.91 0.32 0.31 1.75 2.00 0.76 0.95
Info 0.94 0.92 0.42 0.36 2.50 2.00 0.47 0.85

Labprop 0.89 0.81 0.35 0.23 2.00 2.10 0.23 0.26
Eig 0.92 0.90 0.20 0.18 1.75 1.50 1.16 1.80

(D) Adjn
Comm. Det. NMI MNMI CommS CommU

Algo. S N S N S N S N
Louv 0.63 0.62 0.25 0.23 3.71 4.00 0.95 1.09
Walk 0.96 0.94 0.37 0.31 1.60 1.48 0.55 0.88

Greedy 0.67 0.56 0.24 0.22 3.28 4.00 1.16 1.18
Info 0.57 0.48 0.02 0.06 1.50 2.50 0.78 0.94

Labprop 1.00 0.00 1.00 0.00 1.00 4.00 0.02 0.15
Eig 0.68 0.69 0.28 0.24 2.00 2.10 0.57 1.36

(E) Power
Comm. Det. NMI MNMI CommS CommU

Algo. S N S N S N S N
Louv 0.98 0.96 0.33 0.06 3.00 3.20 0.45 0.76
Walk 0.94 0.93 0.39 0.34 14.00 18.00 1.01 1.51

Greedy 0.95 0.92 0.05 0.10 3.00 5.00 0.62 0.89
Info 0.98 0.97 0.24 0.14 1.14 3.00 1.21 0.75

Labprop 0.92 0.89 0.35 0.26 6.50 5.00 0.81 1.02
Eig 0.81 0.88 0.12 0.06 3.50 4.00 0.61 0.77

TABLE X
ACCURACY OF TWO COMPETING COMMUNITY DECEPTION METHODS: (1)

S: SADDEN (BEST BASELINE), AND (2) N: NEURAL OVER 4 REAL
WORLD NETWORKS: (A) DOLPHIN, (B) LESMIS, (C) POLBOOKS, (D)

ADJN, AND (E) POWER, SUCH THAT βD = 0.7β; βA = 0.3β , β = 0.3|VC |

(A) Dolphin
Comm. Det. NMI MNMI CommS CommU

Algo. S N S N S N S N
Louv 0.91 0.80 0.22 0.15 2.40 3.00 0.67 0.69
Walk 0.71 0.66 0.34 0.09 3.00 4.00 0.89 0.97

Greedy 0.80 0.86 0.30 0.24 2.25 2.50 1.09 1.15
Info 0.87 0.85 0.24 0.23 2.67 3.00 1.02 1.14

Labprop 0.72 0.66 0.24 0.08 2.50 2.00 0.57 0.95
Eig 0.76 0.78 0.28 0.18 2.00 2.20 1.05 1.08

(B) Lesmis
Comm. Det. NMI MNMI CommS CommU

Algo. S N S N S N S N
Louv 0.90 0.86 0.32 0.30 2.33 2.33 0.90 1.04
Walk 0.95 0.94 0.31 0.24 1.75 1.88 1.70 1.52

Greedy 0.84 0.83 0.32 0.29 2.20 2.40 0.96 1.05
Info 0.95 0.94 0.68 0.51 2.00 2.00 1.15 1.19

Labprop 0.75 0.73 0.68 0.22 1.20 2.00 1.09 1.59
Eig 0.92 0.91 0.16 0.15 1.63 1.34 0.87 1.62

(C) Polbooks
Comm. Det. NMI MNMI CommS CommU

Algo. S N S N S N S N
Louv 0.90 0.90 0.29 0.27 2.00 2.00 0.88 0.89
Walk 0.90 0.92 0.35 0.34 2.00 2.10 0.66 0.73

Greedy 0.95 0.92 0.33 0.30 1.50 1.75 1.02 1.14
Info 0.96 0.91 0.38 0.27 2.17 2.19 0.81 0.88

Labprop 0.82 0.78 0.29 0.24 2.00 2.33 1.59 1.76
Eig 0.91 0.89 0.19 0.18 2.00 1.75 1.08 0.83

(D) Adjn
Comm. Det. NMI MNMI CommS CommU

Algo. S N S N S N S N
Louv 0.54 0.62 0.23 0.21 4.00 4.43 0.99 1.16
Walk 0.95 0.94 0.36 0.38 1.68 1.69 0.71 0.84

Greedy 0.65 0.63 0.26 0.24 3.57 3.86 1.06 1.21
Info 0.68 0.56 0.12 0.05 1.50 2.50 0.74 0.37

Labprop 1.00 0.00 1.00 0.00 1.00 3.00 0.04 0.10
Eig 0.69 0.73 0.27 0.21 2.30 2.70 0.96 1.38

(E) Power
Comm. Det. NMI MNMI CommS CommU

Algo. S N S N S N S N
Louv 0.98 0.96 0.34 0.09 3.50 5.00 0.65 1.21
Walk 0.93 0.96 0.38 0.34 10.00 24.00 1.32 2.44

Greedy 0.95 0.91 0.15 0.12 3.10 7.00 0.67 1.56
Info 0.98 0.96 0.29 0.12 1.10 2.00 1.03 0.55

Labprop 0.93 0.89 0.37 0.26 3.50 4.00 0.90 1.31
Eig 0.80 0.82 0.14 0.04 3.50 4.00 0.66 0.76


