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CADIAPLAYER:
A Simulation-Based General Game Player

Yngvi Björnsson and Hilmar Finnsson

Abstract—The aim of General Game Playing (GGP) is to
create intelligent agents that can automatically learn how to play
many different games at an expert level without any human
intervention. The traditional design model for GGP agents has
been to use a minimax-based game-tree search augmented with
an automatically learned heuristic evaluation function. The first
successful GGP agents all followed that approach. In here we
describe CADIAPLAYER, a GGP agent employing a radically dif-
ferent approach: instead of a traditional game-tree search it uses
Monte-Carlo simulations for its move decisions. Furthermore,
we empirically evaluate different simulation-based approaches
on a wide variety of games; introduce a domain-independent en-
hancement for automatically learning search-control knowledge
to guide the simulation playouts; and show how to adapt the
simulation searches to be more effective in single-agent games.
CADIAPLAYER has already proven its effectiveness by winning
the 2007 and 2008 AAAI GGP competitions.

Index Terms—Artificial intelligence, Games, Monte Carlo
methods, Search methods.

I. INTRODUCTION

From the inception of the field of Artificial Intelligence
(AI), over half a century ago, games have played an important
role as a test-bed for advancements in the field. Artificial
intelligence researchers have over the decades worked on
building high-performance game-playing systems for games
of various complexity capable of matching wits with the
strongest humans in the world [1], [2], [3]. The importance of
having such an objective measure of the progress of intelligent
systems cannot be overestimated, nonetheless, this approach
has led to some adverse developments. For example, the focus
of the research has to some extent been driven by the quest
for techniques that lead to immediate improvements to the
game-playing system at hand, with less attention paid to more
general concepts of human-like intelligence like acquisition,
transfer, and use of knowledge. The success of game-playing
systems has thus in part been because of years of relentless
knowledge-engineering effort on behalf of the program de-
velopers, manually adding game-specific knowledge to their
programs. The aim of general game playing is to take that
approach to the next level.

In General Game Playing (GGP) the goal is to create
intelligent agents that can automatically learn how to skillfully
play a wide variety of games, given only the descriptions of the
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game rules. This requires that the agents learn diverse game-
playing strategies without any game-specific knowledge being
provided by their developers. A successful realization of this
task poses interesting research challenges for artificial intelli-
gence sub-disciplines such as knowledge representation, agent-
based reasoning, heuristic search, computational intelligence,
and machine learning.

The two core components of any game-playing program are
search and evaluation. The former provides the ability to think
ahead, whereas the latter provides a mechanism for assessing
the merits of the game positions that arise during the search.
Domain-dependent knowledge plays an important part in both
components, in particular for game-position evaluation, un-
derstandably, but also for providing effective search guidance.
The main challenge faced by general game-playing systems,
as opposed to game-playing systems for playing one specific
game, is that the relevant game-specific knowledge required
for expert-level play, whether for the search or the evaluation,
must be effectively discovered during play.

The first successful GGP agents were all based on the tra-
ditional approach of using a minimax-based game-tree search
augmented with an automatically learned heuristic evaluation
function for encapsulating the domain-specific knowledge [4],
[5], [6]. However, instead of using a set of carefully hand-
crafted domain-specific features in their evaluation as high-
performance game-playing programs do, GGP programs typ-
ically rely on a small set of generic features (e.g. piece-
values and mobility) that apply in a wide range of games.
The applicability and relative importance of the features are
then automatically decided in real-time for the game at hand.
More recently, GGP agents using Monte-Carlo simulations for
reasoning about their actions have shown much promise [7].

Monte-Carlo search as a decision mechanism for game-
playing programs has in the last couple of years been shown
to be surprisingly effective in computer Go, dramatically
increasing the playing strength of such programs [8], [9].
Such an approach also offers several attractive properties for
general game playing agents. For one, it relies to a much lesser
extent on heuristic evaluation functions, even bypassing the
need for them altogether. This can be a real asset in GGP
as the different games the agents are faced with may require
disparate playing strategies, some of which may have never
been seen before. In such scenarios automatically learned
heuristic evaluation functions may fail to capture essential
game properties, resulting in the evaluations becoming highly
inaccurate, in the worst case, even causing the agent to strive
for the wrong objectives. In comparison to computer Go,
there are additional challenges in applying Monte-Carlo search
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to GGP. In particular, whereas in computer Go pre-defined
domain knowledge is extensively used to guide the simulation
playout phase, such knowledge must be automatically discov-
ered in GGP.

In here we describe CADIAPLAYER, our GGP agent. It does
not require any a priori domain knowledge nor does it use
heuristic evaluation of game positions. Instead, it relies exclu-
sively on Monte-Carlo based simulation search for reasoning
about its actions, but guided by an effective search-control
learning mechanism. The agent has already proven itself by
winning the last two international GGP competitions, thus
being the reigning GGP world-champion.

The main contributions of this paper are as follows, we:
(1) describe the design and architecture of a state-of-the-art
GGP agent, which established the usefulness of simulation-
based search approaches in GGP; (2) empirically evaluate
different simulation-based approaches on a wide variety of
games; (3) introduce a domain-independent enhancement for
automatically learning search-control domain knowledge for
guiding simulation playouts, and finally; (4) show how to adapt
the simulation searches to be more effective in single-agent
games.

The paper is structured as follows. In the next section we
give a brief overview of general game playing; thereafter we
discuss the architecture of our agent, followed by a detailed
discussion of its core component: the simulation-based search.
We highlight the GGP specific enhancements, including the
search-control learning technique used for improving the play-
out phase in a domain-independent manner. Next we present
extensive empirical results, before discussing related work and
finally concluding.

II. GENERAL GAME PLAYING

The Logic Group at Stanford University initiated the Gen-
eral Game Playing Project a few years back to facilitate further
research into the area, along with the annual GGP competition.
For this purpose they provide both a well-defined language
for describing games and a web-based server for running and
viewing general game playing matches.

A. Game Description Language

Games are specified in a Game Description Language
(GDL) [10], a specialization of KIF [11], a first-order logic
based language for describing and communicating knowledge.
It is a variant of Datalog that allows function constants,
negation, and recursion (in a restricted form). The expressive-
ness of GDL allows a large range of deterministic, perfect-
information, simultaneous-move games to be described, with
any number of adversary or cooperating players. Turn-based
games are modeled by having the players who do not have
a turn return a special no operation move. A GDL game
description uses keywords known as relations to specify the
initial game state, as well as rules for detecting and scoring
terminal states and for generating and playing legal moves. A
game state is defined by the set of propositions that are true in
that state. Only the relations have lexical meaning and during
competitions everything else is obfuscated. Following is a brief

(role xplayer)
(role oplayer)

(init (cell 1 1 b))
(init (cell 1 2 b))
...
(init (control xplayer))

(<= (legal ?w (mark ?x ?y))
(true (cell ?x ?y b))
(true (control ?w)))

(<= (legal oplayer noop)
(true (control xplayer)))

...
(<= (next (cell ?m ?n x))

(does xplayer (mark ?m ?n))
(true (cell ?m ?n b)))

(<= (next (control oplayer))
(true (control xplayer)))

...
(<= (row ?m ?x)

(true (cell ?m 1 ?x))
(true (cell ?m 2 ?x))
(true (cell ?m 3 ?x)))

...
(<= (line ?x)

(row ?m ?x))
(<= (line ?x)

(column ?m ?x))
(<= (line ?x)

(diagonal ?x))
...
(<= (goal xplayer 100)

(line x))
(<= (goal xplayer 0)

(line o))
...
(<= terminal

(line x))

Fig. 1. A partial Tic-Tac-Toe GDL description.

overview of GDL, using the partial Tic-Tac-Toe description in
Figure 1 as a reference. A complete GDL description for Tic-
Tac-Toe is provided in the appendix.

The role relation lists the players participating in the game;
arbitrary many roles can be declared, that is, a game can
be single-player (i.e. a puzzle), two-player, or multi-player.
However, once declared the roles are fixed throughout the
game. In our Tic-Tac-Toe example two players are defined,
xplayer and oplayer. The init relation states the facts that are
true in the initial state, and they are added to the knowledge-
base. Here a game state is represented by the board position,
initially all cells are empty, and whose turn it is to move.
The true relation is used in GDL to check if a fact is in the
knowledge-base.

The legal and next relations are used to determine legal
moves and execute them, respectively. In Figure 1 the player
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having the turn can mark any empty cell on the board
(variables in GDL are prefixed with a question mark), whereas
the opponent can only play a no-op move (recall that GDL
assumes simultaneous moves from all players). Moves are
executed by temporarily adding a does fact to the knowledge-
base stating the move played, and then call the next clause to
determine how the resulting state looks like. Figure 1 shows
for one of the players, the next relations for updating the cell
played into and the turn to move; symmetrical next relations
are needed for the other player, as well as relations for stating
that the untouched cells retain their mark (see appendix). The
facts that the next call returns are added to the knowledge-
base, replacing all previous state information stored there
(the temporary does fact is also removed). This knowledge
representation formalism corresponds to the closed-world as-
sumption; that is, the only true facts are those that are known
to be so, others are assumed false.

The terminal relation tells if a game position is reached
where the game is over, and the goal relation returns the value
of the current game state; for terminal states this corresponds
to the game outcome. The goal scores are in the range [0−100],
and if a game is coded to provide intermediate goal values
for non-terminal positions, then GDL imposes the restriction
that the values are monotonically non-decreasing as the game
progresses. Examples of such a scoring system are games
where players get points based on the number of pieces
captured. In Figure 1 user-defined predicates are also listed,
for example line, row, column, and diagonal; arbitrary many
such predicates are allowed.

The official syntax and semantics of GDL are described in
[10].

B. GGP Communication Protocol

The Game Master (GM) is a server for administrating
matches between GGP agents. It does so via an HTTP-based
communication protocol. Before a game starts the GGP agents
register with the server. Each new match game gets a unique
identification string. Play begins with a start message being
sent to all the agents, containing the match identifier, the GDL
game description, the role of the agent, and the time limits
used. After all players have responded, play commences by
the GM requesting a move from all players; subsequent move
requests sent by the GM contain the previous round moves of
all players. This way each player can update its game state
in accordance with what moves the other players made. This
continues until the game reaches a terminal state. If a player
sends an illegal move to the GM, a random legal move is
selected for that player.

The time limits mentioned above for preparing and playing
are positive integer values called startclock and playclock. The
value for them is presented in seconds and the startclock indi-
cates the time from receiving the rules until the game begins,
and the playclock the time the player has for deliberating each
move.

More details, including the format of the HTTP message
contents can be found in [10]. A full description of the GM
capabilities is given in [12].

Fig. 2. Overview of the architecture of CADIAPLAYER.

III. ARCHITECTURE

An agent competing in the GGP competition requires at
least three components: an HTTP server to interact with the
GM, the ability to reason using GDL, and the AI for strate-
gically playing the games presented to it. In CADIAPLAYER
the HTTP server is an external process, whereas the other two
components are integrated into one game-playing engine. An
overview of its architecture is shown in Figure 2.

The topmost layer of the figure is an HTTP server which
runs the rest of the system as a child process and communi-
cates with it via standard pipes. Every time a new game begins
a new process is spawned and the old one is suspended.

The game-playing engine is written in C++ and can be split
up into three conceptual layers: the Game-Agent Interface,
the Game-Play Interface and the Game-Logic Interface. The
Game-Agent interface handles external communications and
manages the flow of the game. It queries the Game-Play
interface for all intelligent behavior regarding the game. In the
Game-Logic interface the state space of the game is queried
and manipulated.

A. Game-Agent Interface
This layer manages the game flow by interacting with and

executing command requests from the GM. It also includes a
game parser for building a compact internal representation for
referencing atoms and producing KIF strings, both needed by
the Game-Play interface. The parser also converts moves sent
from the GM into the internal form. Upon receiving a new
game start message, the agent saves the GDL description in
the message to a file.
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B. Game Play Interface

This is the main AI part of the agent responsible for its
move decisions. The design for the play logic – called Game
Players – uses a well-defined interface allowing different
Game Player implementations to conveniently plug into the
layer and use its services. We have experimented with different
search algorithms. For the two-player and multi-player games
we have concentrated on simulation-based search approaches,
but for the single-agent games we have also experimented with
different systematic search approaches, including A* [13] and
memory-enhanced IDA* [14].

C. Game Logic Interface

The Game-Logic interface encapsulates the state space of
the game, provides information about available moves, and
tells how a state changes when a move is made and whether
the state is terminal and its goal value. It provides a well-
defined interface for this called a Game Controller.

Once initialized by the Game Agent layer, it spawns an
external process for translating the previously saved GDL file
description into Prolog code, using an external custom-made
tool (see the File System box in Figure 2). The generated code
is — along with some pre-written Prolog code — compiled
into a library responsible for all game-specific state-space
manipulations. We use YAP Prolog [15] for this, mainly
because it is free for academic use, reasonably efficient, and
provides a convenient interface for accessing the compiled
library routines from another host programming language. The
game controller calls the YAP runtime engine via its C-code
interface, including loading the compiled Prolog code at run-
time and querying it for accessing and manipulating necessary
game state information.

IV. SEARCH

The search procedure is at the heart of CADIAPLAYER.
In contrast to previous successful GGP agents, which build
on minimax-based alpha-beta game-tree search, our agent
uses Monte-Carlo simulations for its move decisions (for
games we use the terms move and action interchangeably).
Thus, instead of doing a lookahead search and evaluating the
resulting leaf nodes, it plays out a large number of complete
games and, based on the result, picks the most promising
continuation to play. However, as this approach is potentially
computationally costly, it is critical to focus the simulations on
the most relevant lines of play while still allowing for adequate
exploration.

A. UCT Game Tree

The Upper Confidence Bounds applied to Trees (UCT) algo-
rithm [16] is a generalization of the UCB1 [17] algorithm that
can be applied to game trees. The algorithm uses simulations
to gradually build a game tree in memory where it keeps track
of the average return of each state-action pair played, Q(s, a).
It offers an effective and sound way to balance the exploration
versus exploration tradeoff.

During a simulation, when still within the tree, it selects the
action to explore by:

a∗ = argmaxa∈A(s)

{
Q(s, a) + C

√
lnN(s)
N(s, a)

}
The Q function is the action-value function as in an MC

algorithm, but the novelty of UCT is the second term — the
so-called UCT bonus. The N function returns the number of
visits to a state or the number of times a certain action has
been sampled in a certain state, depending on the parameters.
If there exists an action in A(s), the set of possible actions
in state s, that has never been sampled and has therefore no
estimated value, the algorithm defaults to selecting it before
any previously sampled action. The UCT term builds a level
of confidence into the action selection, providing a balance
between exploiting the perceived best action and exploring
the suboptimal ones. When an action is selected, its UCT
bonus decreases (because N(s, a) is incremented), whereas
the bonus for all the other actions increases slightly (because
N(s) is incremented). The C parameter is used to tune how
aggressively to consider the UCT bonus. The parameter can
vary widely from one domain (or program) to the next, in the
extreme even being set to zero. Because some programs do
not rely on the UCT bonus at all, the term Monte-Carlo Tree
Search (MCTS), instead of UCT search, is now commonly
used to refer collectively to methods building a game tree in
this manner.

The Monte-Carlo game tree that is built in memory stores
the necessary statistics. However, its size must be managed
to counteract running out of memory. The parts of the tree
that are above the current state are deleted each time a non-
simulated action is played. Also, for every simulated episode,
only the first new node encountered is stored [9]. An overview
of a single UCT simulation is given in Figure 3. The start state
is denoted by S, the terminal state with T , and N is the new
state added to the model after the simulation finishes. As GDL

Fig. 3. Conceptual overview of a single UCT simulation.
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Algorithm 1 search(ref qValues[])
1: if isTerminal() then
2: for all ri in getRoles() do
3: qV alues[i]← goal(i)
4: end for
5: return
6: end if
7: playMoves← ∅
8: for all ri in getRoles() do
9: moves← getMoves(ri)

10: move← selectMove(moves, StateSpaces[i])
11: playMoves.insert(move)
12: moves.clear()
13: end for
14: make(playMoves)
15: search(qV alues)
16: retract()
17: for all ri in getRoles() do
18: qV alues[i]← γ ∗ qV alues[i]
19: update(playMoves[i], qV alues[i], StateSpaces[i])
20: end for
21: return

rules require a move from all players for each state transition,
the edges in the figure represent a set of moves. When the
UCT border has been passed, the default tie-breaking scheme
results in random play to the end of the episode. Because
better actions are selected more often than suboptimal ones,
the tree grows asymmetrically. Consistently good lines of play
are grown aggressively, sometimes even to the end of the
game, whereas uninteresting branches are rarely explored and
will remain shallow.

B. Opponent Modeling

To get the best performance out of MCTS we must model
not only the role CADIAPLAYER plays, but also the ones
of the other players. So for each opponent in the game
a separate game-tree model is used. Because GGP is not
limited to two-player zero-sum games, the opponents cannot
be modeled simply by using the negation of our return value.
Any participant can have its own agenda and therefore needs
its own action-value function. All these game-tree models
work together when running simulations and control the UCT
action selection for the player they are modeling.

Algorithm 1 shows how the opponent modeling is com-
bined with UCT/MC in CADIAPLAYER. The function make
advances the game, retract reverts the game to its previous
state and search is a recursive call. The discount factor γ
is set slightly less than one, or 0.999, for the algorithm to
prefer earlier rather than later payoffs, as longer playouts
have higher uncertainty. A conservative discounting value was
chosen as more aggressive discounting increases the risk of
shorter lines of play becoming more attractive than superior,
although longer, lines of play. The StateSpaces array stores
the different models. The functions selectMove and update
use the corresponding model to make move selections and

updates (based on the UCT rule). The update function builds
the game-tree model and is responsible for adding only one
node per simulation. When the time comes to select the best
action CADIAPLAYER’s model is queried for the action in the
current state with the highest Q(s, a) value.

C. Playouts

The UCT algorithm provides an effective mechanism for
focusing the Monte-Carlo simulations towards relevant lines
of play. However, except towards the end of the game, the
largest part of each simulation playout occurs outside of the
tree (below the UCT border in Figure 3), where by default
a move is chosen uniformly at random because of a lack of
criteria for discriminating between the moves. The same even
holds true in the UCT tree when choosing among unexplored
actions for which no information has been gathered. In general,
because both players play equally uninformed there is useful
information to be gained even from such random simulations:
the player having the better position will win more often in
the long run. However, this can be problematic for games
characterized by having only one good move, and can lead
to a behavior where a simulation-based agent plays too “opti-
mistically”, even relying on the opponent to make a mistake.

In Figure 4 we see an example position from the game
Breakthrough. The game is played on an 8 by 8 chess or
checkers board. The pieces are set up in the two back ranks,
Black at the top and White at the bottom. White goes first
and the players then alternate moving. The pieces move one
step forward into an empty square either straight or diagonally,
although captures are done only diagonally (i.e. as in chess).
The goal of the game is to be the first player to reach
the opponent’s back rank. It is Black’s turn to move. Our
agent would initially find it most attractive to move the far
advanced black piece one square forward (b4-b3). However,
this is obviously a bad move because White can capture the
piece with a2-b3; this is actually the only good reply for
White as all the others lead to a forced win for Black (b3-
a2 followed by a2-b1). Simulations that choose White’s reply
at random (or highly exploratory) have problems with a move
like this one because most of the simulation playouts give
a positive return. The UCT algorithm would gradually start
to realize this, although a number of simulations may be
required. However, if this move were played in the playout
phase it would continue to score well (there is no memory)
and erroneous information would propagate back into the UCT
tree. Special pre-programmed move patterns, or ones learned
offline, are used in computer Go to detect many of such only-
reply moves. In GGP programs, however, this must be learned
effectively during online play.

One way to add bias into the action-selection criteria in a
domain independent way is to exploit the fact that actions
that are good in one state are often also good in other
states. For example, in our example above White capturing
on b3 will likely continue to be the best action even though
the remaining pieces would be positioned slightly differently.
The history-heuristic [18], which is a well-established move-
ordering mechanism in chess, is based on this same principle.
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Fig. 4. Breakthrough game position.

In an improved version of our agent [7], in addition to the
action-values Q(s, a), the agent also keeps for each action
encountered its average return independent of the state where
it was played, i.e. Qh(a). This value is used to bias which
unexplored action to investigate next, both in the MC playout
phase and when encountering nodes in the UCT tree having
unexplored actions. This is done using Gibbs sampling as
below:

P(a) =
eQh(a)/τ

Σnb=1e
Qh(b)/τ

where P(a) is the probability that action a will be chosen in
that state — actions with a high Qh(a) value are more likely.
The Qh(a) value of an action that has not been explored yet is
set to the maximum GGP score (100) to bias towards similar
exploration as is default in the UCT algorithm. One can stretch
or flatten the above distribution using the τ parameter (τ → 0
stretches the distribution, whereas higher values make it more
uniform).

D. Single-Agent Games

In the 2007 GGP competition a rudimentary version of
the memory-enhanced IDA* [14] search algorithm was used
as the Game Player for the single-agent games. However, if
no (partial) solution was found on the startclock then the
agent fell back on using the UCT algorithm on the playclock.
For the 2008 GGP competition a scheme for automatically
deriving search-guidance heuristics for single-agent games was
developed, using a relaxed planning graph in a similar manner
as heuristic search-based planners do [19]. The heuristic was
used to guide a time-bounded A*-like algorithm on both
the startclock and the playclock. In the preliminaries we
initially used this scheme alongside UCT, picking the move
from whichever method promised the higher score. However,
the scheme was not yet in its prime and proved neither
sufficiently efficient nor robust enough across different games,
and was consequently suspended. Instead, we made several
small adjustments to UCT to make it better suited to handle
single-agent games.

First, the absence of an adversary makes play deterministic
in the sense that the game will never take an unexpected
turn because of an unforeseen move by the opponent. The
length of the solution path therefore becomes irrelevant and
the discount parameter unnecessary and possibly even harmful;
no discounting was thus done (γ = 1.0).

Secondly, when deciding on a move to send to the GM,
the best one available may not be the one with the highest
average return. The average can hide a high goal if it is
surrounded with low goals, while leading the player down
paths littered with medium goals. We therefore also keep track
of the maximum simulation score returned for each node in the
UCT tree. The average score is still used for action-selection
during simulation playouts, but the move finally played at the
root will be the one with the highest maximum score.

Finally, we add the entire simulation path leading to a better
or equal solution than previously found to the game-tree, as
opposed to only growing the tree one node at a time as the
multi-player UCT variant does. This guarantees that a good
solution, once found, is never forgotten. The effect of this is
clearly visible in Figure 5.

Overall UCT does a reasonable job on simple single-agent
puzzles, or where many (or partial) solutions are available.
However, on more complex puzzles with large state spaces it is
helpless; there is really no good replacement for having a well-
informed heuristics for guidance. The work on automatically
finding informed heuristics by problem relaxation is thus still
a work in progress.

E. Parallelization

One of the appeals of simulation-based searches is that
they are far easier to perform in parallel than a traditional
game-tree search because of fewer synchronization points.
CADIAPLAYER supports running simulations in parallel, and
typically uses 4-12 CPUs concurrently. The UCT tree is
maintained by a master process and whenever crossing the
UCT border, falling out of the tree, it generates and delegates
the actual playout work to a client process if available,
otherwise the master does the playout. To better balance the
workload a client may be asked to perform several simulations
from the leaf position before returning. This parallelization
scheme is based on ideas presented in [20]. Further work
on parallelization schemes for Monte-Carlo tree search are
presented in [21], [22].

As we typically run CADIAPLAYER on a cluster of work-
stations using distributed memory, one would ideally have
to broadcast the Qh(a) values to all the slave processes.
However, for more complex games we have found this not
to be cost effective, and thus each slave maintains its own set
of Qh(a) values calculated only based on results from local
simulations.

V. EMPIRICAL EVALUATION

The UCT simulation-based approach has already proved
its effectiveness against traditional game-tree search players.
In the preliminary rounds of the 2007 competition, played
over a period of 4 weeks, the agent played a large number
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Fig. 5. Visualization (3D) of our enhanced UCT tree for single-player games made from real data when playing Knights Tour. The numbers show goals at
terminal states with better or equal score to the best one currently known at the time.

of match games using over 40 different types of game. It
won the preliminaries quite convincingly. For example, in the
second half of the tournament where somewhat more complex
games were used (and the technical difficulties had been ironed
out) it scored over 85% of the available points, whereas the
closest competitors all scored well under 70%. CADIAPLAYER
also came out on top in the 2008 preliminaries. Fewer games
were played that year and the scores were closer. The GGP
competition finals held at the AAAI conference use a knockout
format with only a handful of games each round, in part
to provide some excitement for the audience. As mentioned
before, CADIAPLAYER won the finals both in 2007 and 2008,
although a luck factor inevitably plays some role when only
a handful of games are played in a knockout tournament.

In the remainder of this section we evaluate the effectiveness
of different simulation-based search approaches. The objective
of the experiments is fourfold: to demonstrate the benefits of
UCT over standard MC in the context of GGP, to evaluate
the effectiveness of our biased action-selection scheme, to see
how increasing the number of simulations affects the quality
of play, and to investigate the effects of the modifications we
made to the single-agent search.

A. Experimental Setup

We matched different variants of the agent against each
other. They were all built on the same software framework to
minimize the impact of implementation details, and differed
only in the simulation approach being evaluated. We use CPuct
to refer to a version of CADIAPLAYER using random action
selection when the UCT border is crossed and CPimp to refer
to the current CADIAPLAYER with the playout enhancements.
The value of the UCT parameter C is set to 40 (for perspective,

possible game outcomes are in the range 0-100). In the result
tables that follow, each data point represents the result of a
250-game match between two players alternating roles; both
the winning percentage and a 95% confidence interval are
provided. The matches were run on dedicated Linux based
dual processor Intel(R) Xeon(TM) 3.20GHz CPU computers
with 2GB of RAM. Each agent used a single processor. For
each game, both the start- and the playclocks were set to 10
seconds. Most of the GDL descriptions of the games can be
downloaded from the official GGP game server at Stanford.

B. UCT vs. MC

In here we contrast the performance of our UCT player
against two different MC players. The benefits of UCT over
standard MC are twofold: a more informed action-selection
rule and caching of already expanded game-tree nodes and
actions. We investigate the contributions of these two factors
independently, thus the two baseline MC players. The former,
MCorg, uses a uniform random distribution for action selection
for the entire playout phase, and then chooses the action at the
root with the highest average return. The latter, MCmem, uses
identical action-selection mechanism to the first (i.e. highest
average return) but is allowed to build a top-level game tree,
adding one node per simulation, as CPuct does.

Eight different two-player games were used in the experi-
ments: Connect-4, Checkers, Othello, Breakthrough, Amazons
Small (6x6), Pentago, Quarto, and TCCC (an interesting
hybrid of Tic-Tac-Toe, Checkers, Chess, and Connect-4 that
was played at the 2008 GGP competition finals).

The match results are shown in Table I. The UCT player
outperforms both baseline players by a large margin in all
eight games, with an impressive average winning percentage
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TABLE I
RESULTS OF UCT AND MC MATCHES IN %.

Game Player MCorg MCmem CPuct Average
Connect-4 MCorg N/A 29.0 (± 5.00) 6.8 (± 3.08) 17.9 (± 3.33)

MCmem 71.0 (± 5.59) N/A 15.8 (± 4.44) 43.4 (± 4.31)
CPuct 93.2 (± 3.08) 84.2 (± 4.44) N/A 88.7 (± 2.73)

Checkers MCorg N/A 14.6 (± 4.08) 6.8 (± 2.87) 10.7 (± 2.51)
MCmem 85.4 (± 4.08) N/A 31.2 (± 5.37) 58.3 (± 4.12)
CPuct 93.2 (± 2.87) 68.8 (± 5.37) N/A 81.0 (± 3.22)

Othello MCorg N/A 39.8 (± 5.99) 23.2 (± 5.12) 31.5 (± 3.78)
MCmem 60.2 (± 5.99) N/A 26.6 (± 5.36) 43.4 (± 4.28)
CPuct 76.8 (± 5.12) 73.4 (± 5.36) N/A 75.1 (± 3.71)

Breakthrough MCorg N/A 38.0 (± 6.03) 9.6 (± 3.66) 23.8 (± 3.74)
MCmem 62.0 (± 6.03) N/A 18.4 (± 4.81) 40.2 (± 4.30)
CPuct 90.4 (± 3.66) 81.6 (± 4.81) N/A 86.0 (± 3.04)

Amazons Small MCorg N/A 41.2 (± 6.09) 15.6 (± 4.37) 28.4 (± 3.91)
MCmem 58.8 (± 6.09) N/A 21.8 (± 4.99) 40.3 (± 4.25)
CPuct 84.4 (± 4.37) 78.2 (± 4.99) N/A 81.3 (± 3.32)

Pentago MCorg N/A 38.4 (± 5.99) 11.0 (± 3.74) 24.7 (± 3.73)
MCmem 61.6 (± 5.99) N/A 26.6 (± 5.39) 44.1 (± 4.31)
CPuct 89.0 (± 3.74) 73.4 (± 5.39) N/A 81.2 (± 3.35)

Quarto MCorg N/A 40.6 (± 5.69) 9.8 (± 2.82) 25.2 (± 3.45)
MCmem 59.4 (± 5.69) N/A 11.4 (± 2.94) 35.4 (± 3.83)
CPuct 90.2 (± 2.82) 88.6 (± 2.94) N/A 89.4 (± 2.03)

TCCC MCorg N/A 44.0 (± 6.14) 10.8 (± 3.86) 27.4 (± 3.90)
MCmem 56.0 (± 6.14) N/A 18.6 (± 4.78) 37.3 (± 4.22)
CPuct 89.2 (± 3.86) 81.4 (± 4.78) N/A 85.3 (± 3.09)

ranging from just over 75% up to about 90%. It is also of
interest to note that the added memory is helpful, although the
main benefit still comes from the UCT action-selection rule.
However, the usefulness of retaining the game tree in memory
differs between games and is most beneficial in Checkers.
This is likely because of its low branching factor (because of
the forced-capture rule), resulting in large parts of the game
tree being kept between moves. Another benefit of having
a game tree in memory is that we can cache legal moves.
This speeds up the simulations when still in the tree, because
move generation — a relatively expensive operation in our
GGP agent — is done only once for the corresponding states.
We measured the effect of this on a few games, and CPuct
and MCmem perform on average around 35% (Othello) to
approximately 100% (Checkers, Connect-4) more simulations
than MCorg does. The added number of simulations explains
some of the performance increase.

C. Biased Action-Selection Enhancement

The following experiment evaluates the biased action-
selection enhancement. The τ parameter of the Gibbs distribu-
tion was set to 10 (based on trial-and-error on a small number
of games). The result is shown in Table II.

The new action-selection scheme offers some benefits for
almost all the games. Most noticeable is though how well
this improvement works for the game Breakthrough, maybe
not surprising given that it was UCT’s behavior in that game
that motivated the scheme. Also, we noticed in Breakthrough
in particular that focussing the simulations resulted in shorter

episodes, allowing up to three times as many simulations to be
performed in the same amount of time. The scheme also offers
significant improvements in the game of TCCC and Othello,
but in the latter game a move that is good in one position —
e.g. place a piece in a corner or on an edge — is most likely
also good in a different position. This seems to be a deciding
factor. The ineffectiveness in Connect-4 and Quarto is most
likely because of their rule’s simplicity and the absence of
consistently good moves.

D. Time-Control Comparison

To find out how increased number of simulations affects
UCT’s performance, we ran experiments with two identical
players where one player was given twice the thinking time
of the other. The player with more time won all matches
convincingly as seen in Table III. Moreover, there are no

TABLE II
TOURNAMENT BETWEEN CPuct AND CPimp .

Game CPimp win %
Connect-4 49.2 (± 6.03)
Checkers 55.4 (± 5.93)
Othello 59.0 (± 6.05)

Breakthrough 88.8 (± 3.92)
Amazons Small 55.0 (± 6.04)

Pentago 56.0 (± 6.01)
Quarto 50.6 (± 4.50)
TCCC 75.6 (± 5.25)
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TABLE III
TIME-CONTROL COMPARISON FOR CPuct .

Game 10 / 5 sec 20 / 10 sec 40 / 20 sec
Connect-4 64.2 (± 5.81) 63.2 (± 5.83) 65.4 (± 5.79)
Checkers 76.2 (± 4.85) 72.2 (± 4.96) 77.8 (± 4.33)
Othello 67.0 (± 5.75) 64.0 (± 5.86) 69.0 (± 5.68)
Breakthr. 66.8 (± 5.85) 67.6 (± 5.81) 64.8 (± 5.93)

TABLE IV
COMPARISON OF CPimp WITH AND WITHOUT SINGLE PLAYER

ENHANCEMENTS.

Game CPimp Avg. Enh. CPimp Avg.
Asteroids 53.50 (± 2.51) 74.00 (± 4.92)

Peg 87.30 (± 0.87) 90.30 (± 0.34)
Pancakes 86.25 (± 2.16) 94.75 (± 1.23)

Asteroids Serial 55.75 (± 2.19) 78.00 (± 1.60)
State Space Large 28.00 (± 0.00) 31.01 (± 1.33)

Average 62.16 (± 2.12) 73.61 (± 2.27)

signs yet of diminishing performance improvement as the time
controls are raised (although inevitably they will at some point
show up). This is positive and indicates that simulation-based
approaches will probably continue to gain momentum with
more massive multi-core CPU technology. It is worth noting
that a simulation-based search is much easier to parallelize
than traditional game-tree search algorithms.

E. UCT Single-Agent Enhancements

To examine the effect of the single-agent enhancements, we
ran comparison experiments using five different games, where
each data point consists of 100 matches. We used the CPimp
player both with and without the enhancements. The start-
and playclocks were both set to 10 seconds. The games all
have partial goals and are difficult to solve perfectly given
these time controls. As can be seen in Table IV UCT does a
reasonable job solving the games, but more importantly that
the enhancements add about 10 points on average, and for
some games even over 20 points. The improved UCT version
does even slightly outperform our A* based solver.

VI. RELATED WORK

One of the first general game-playing systems was Pell’s
METAGAMER [23], which played a wide variety of simplified
chess-like games. The winners of the 2005 and 2006 GGP
competition were CLUNEPLAYER and FLUXPLAYER, respec-
tively. The main research focus of both agents has been on
automatic feature discovery for building a heuristic evaluation
function for use by a traditional game-tree search.

The CLUNEPLAYER [4] agent creates abstract models from
the game descriptions that incorporate essential aspects of
the original game, such as payoff, control, and termination.
The agent then identifies stable features through sampling,
which are then used for fitting the models using regression.
Since winning the GGP competition in 2005, the agent has
finished second in all subsequent GGP competitions. In the

2008 competition the agent had dual capabilities such that it
could choose between using either mimimax-based or Monte-
Carlo simulation search, based on game properties. A thorough
analysis of the relative effectiveness of Monte-Carlo simula-
tions vs. minimax search in CLUNEPLAYER is provided for
different games in [24].

The FLUXPLAYER agent [5], [25] uses fluent calculus (an
extension of situated calculus) for reasoning about actions
and for generating game states. Standard game-tree search
techniques are used for the planning phase, including non-
uniform depth-first search, iterative deepening, transposition
tables, and history heuristic. The heuristic function evaluation
is based on fuzzy logic where semantic properties of game
predicates are used for detecting static structures in the game
descriptions. The system won the 2006 GGP competition, and
came second in 2005.

UTEXAS LARG is another prominent GGP agent using a
traditional game-tree method [6]. The agent is reinforcement-
learning based and is capable of transferring knowledge
learned in one game to expedite learning in other unseen
games via so-called value-function transfer (general features
are extracted from the state space of one game and used to
seed the learning in a state space of a different game) [26],
[27]. Part of the problem is to recognize which games are
similar enough for the transfer learning to be applicable; this
is done with graph-based domain mapping [28]. The system is
also highly parallel, capable of running concurrently on many
processors. It was among the top-place finishers in the first
few GGP competitions, although it has never placed first.

Besides CADIAPLAYER [7], [29], two agents that partici-
pated in the 2007 GGP competition, ARY and JIGSAWBOT,
used Monte-Carlo simulation search, although not UCT ac-
cording to their authors (personal comm., July, 2007). In the
2008 competition ARY had incorporated the UCT enhance-
ment, as well as MALIGNE, a new entry from University of
Alberta, Canada.

Monte Carlo Tree Search (MCTS) has been used success-
fully to advance the state-of-the-art in computer Go, and is
used by several of the strongest Go programs, e.g. MOGO
[8] and CRAZYSTONE [9]. Experiments in Go showing how
simulations can benefit from using an informed playout policy
are presented in [30]. The method, however, requires game-
specific knowledge which makes it difficult to apply to GGP.
In the paper the authors also show how to speed up the
initial stages of the learning process in MCTS by using a
search-control technique called Rapid Action Value Estimation
(RAVE). It is based on the all-moves-as-first principle, where
actions from the entire playout episode may invoke changes in
the top-level tree. There are fundamental differences between
that method and the one we propose here for search control,
the main one being that information are propagated differently:
in our method from the top-level tree down to the playout
phase, whereas in the aforementioned method it is the other
way around. Search-control learning in traditional game-tree
search has been studied for example in [31].

Other work on general game playing include: a co-evolution
approach that allows algorithm designers to both minimize
the amount of domain knowledge built into the system and



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 1, NO. 1, MARCH 2009 10

model opponent strategies more efficiently [32]; and a logic
program approach where the game descriptions are translated
into specialized evaluator that works with decomposed logical
features for improving accuracy and efficiency [33]. However,
neither of the approaches mentioned above has yet developed
into a fully-fledged competitive general game-playing system.

VII. CONCLUSIONS

We have established UCT simulations as a promising al-
ternative to traditional game-tree search in GGP. The main
advantages that UCT has over standard MC approaches are a
more informed action-selection rule and game-tree memory,
although MC can too be enriched with memory. The main
benefit comes from UCT’s action-selection rule though.

Simulation methods work particularly well in “converging”
games (e.g. Othello and Amazons), where each move advances
the game towards the end, as this bounds the length of each
simulation playout. However, simulation-based methods may
run into problems in games that converge slowly — we have
observed this in some chess-like games (e.g. Skirmish played
in the GPP competition). Both players can keep on for a
long time without making much progress, resulting in many
simulation runs becoming excessively long. To artificially
terminate a run prematurely is of a limited use without having
an evaluation function for assessing non-terminal states; such
a function may be necessary for playing these games well.

In general, however, there are many promising aspects that
simulations offer over traditional game-tree search in GGP.
The main advantage is that simulations do implicitly capture
game properties that would be difficult to explicitly learn and
express in a heuristic evaluation function. Also, simulation
searches are easily parallelizable and do not (yet) show dimin-
ishing returns in performance improvement as thinking time
is increased, thus promising to take full advantage of future
massively multi-core CPUs.

Search-control heuristics are important for guiding the
simulation playouts. We introduced one promising domain-
independent search-control method that increased our agent’s
playing strength on most games we tried it on, in the best
case defeating a standard UCT player with close to a 90%
winning score and currently we have not seen any indication
of the method being detrimental to any game. Also, the agent’s
effectiveness on single-agent games was improved with a
couple of minor adjustments to the UCT search.

It is worthwhile pointing out that it is not as critical for
UCT search to learn accurate search-control heuristics, as it
is for traditional game-tree search to have a good evaluation
function. In both cases performance will degrade when using
bad heuristics, but the UCT approach will recover after some
number of playouts, whereas the game-tree search will chase
the wrong objective the entire game.

As for future work, there are many interesting research
avenues to explore to further improve the UCT approach
in GGP. There are still many parameter values that can be
tuned (e.g. C and τ ), preferably automatically for each game
at hand. The simulation playouts can be improved further,
and we have already started exploring additional schemes

for automatically learning search control. Also, an interesting
line of work would be to try to combine the best of both
worlds — simulations and traditional game-tree search — for
example, for evaluating non-terminal states when simulations
are terminated prematurely.

APPENDIX A
COMPLETE GDL FOR TIC-TAC-TOE

(role xplayer)
(role oplayer)

(init (cell 1 1 b))
(init (cell 1 2 b))
(init (cell 1 3 b))
(init (cell 2 1 b))
(init (cell 2 2 b))
(init (cell 2 3 b))
(init (cell 3 1 b))
(init (cell 3 2 b))
(init (cell 3 3 b))
(init (control xplayer))

(<= (next (cell ?m ?n x))
(does xplayer (mark ?m ?n))
(true (cell ?m ?n b)))

(<= (next (cell ?m ?n o))
(does oplayer (mark ?m ?n))
(true (cell ?m ?n b)))

(<= (next (cell ?m ?n ?w))
(true (cell ?m ?n ?w))
(distinct ?w b))

(<= (next (cell ?m ?n b))
(does ?w (mark ?j ?k))
(true (cell ?m ?n b))
(distinct ?m ?j))

(<= (next (cell ?m ?n b))
(does ?w (mark ?j ?k))
(true (cell ?m ?n b))
(distinct ?n ?k))

(<= (next (control xplayer))
(true (control oplayer)))

(<= (next (control oplayer))
(true (control xplayer)))

(<= (row ?m ?x)
(true (cell ?m 1 ?x))
(true (cell ?m 2 ?x))
(true (cell ?m 3 ?x)))
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(<= (column ?n ?x)
(true (cell 1 ?n ?x))
(true (cell 2 ?n ?x))
(true (cell 3 ?n ?x)))

(<= (diagonal ?x)
(true (cell 1 1 ?x))
(true (cell 2 2 ?x))
(true (cell 3 3 ?x)))

(<= (diagonal ?x)
(true (cell 1 3 ?x))
(true (cell 2 2 ?x))
(true (cell 3 1 ?x)))

(<= (line ?x)
(row ?m ?x))

(<= (line ?x)
(column ?m ?x))

(<= (line ?x)
(diagonal ?x))

(<= open
(true (cell ?m ?n b)))

(<= (legal ?w (mark ?x ?y))
(true (cell ?x ?y b))
(true (control ?w)))

(<= (legal xplayer noop)
(true (control oplayer)))

(<= (legal oplayer noop)
(true (control xplayer)))

(<= (goal xplayer 100)
(line x))

(<= (goal xplayer 50)
(not (line x))
(not (line o))
(not open))

(<= (goal xplayer 0)
(line o))

(<= (goal oplayer 100)
(line o))

(<= (goal oplayer 50)
(not (line x))
(not (line o))
(not open))

(<= (goal oplayer 0)
(line x))

(<= terminal
(line x))

(<= terminal
(line o))

(<= terminal
(not open))
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