
IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, FEBRUARY 2004

Contributed Paper
Manuscript received November 12, 2003 0098 3063/04/$20.00 © 2004 IEEE

386

Embedded Software Synthesis and Prototyping
Trong-Yen Lee and Pao-Ann Hsiung

Abstract — With the integration of computer technology,
consumer products, and communication facilities, the software
in an embedded system now accounts for as much as 70% of
total system functionalities. In this work, we propose a
complete methodology called ESSP (Embedded Software
Synthesis and Prototyping) for the automatic design of
embedded software. Several issues are solved, including
software synthesis, software verification, code generation, and
system emulation. To avoid design errors, a formal approach
is adopted because glitches in embedded software are
intolerable and very expensive or even impossible to fix.
Complex-choice Petri nets are used to model embedded
software, which are then synthesized using an extended quasi
static scheduling algorithm. The final generated C code is
prototyped on an emulation platform, which consists of an
89C51 microcontroller for executing the software, an FPGA
chip for programming the hardware for different applications,
and some input/output devices. Two application examples are
used to illustrate the feasibility of the ESSP methodology.

 Index Terms — Embedded Software, Synthesis,
Platform, Scheduling.

I. INTRODUCTION

Embedded systems have made a man’s life more convenient
through easier controls and flexible configurations on many of
our home amenities and office equipments. Due to the growing
demand for more and more functionalities in embedded
systems, an all-hardware implementation is no longer feasible
because it is not only costly, but also not easily maintainable or
upgradeable. Thus, software has gradually taken over a large
portion of an embedded system’s functionalities. But, along
with this flexibility, embedded software has also become
highly complex. The past approach of starting everything from
scratch is no longer viable. We need to use tools that automate
several tedious tasks, but though there are some tools available
for the design of embedded software, yet there is still a lack for
a general design methodology. In this work, we are proposing
a complete methodology, covering issues such as software
synthesis, software verification, code generation, and system
emulation.

An embedded system is one that is installed in a large
system with a dedicated functionality. Some examples include

avionics flight control, vehicle cruise control, and network-
enabled devices in home appliances. In general, embedded
systems have a microprocessor for executing software and
some hardware in the form of ASICs, DSP, and I/O
peripherals. The hardware and software work together to
accomplish some given function for a larger system.
Embedded software are often hardware-dependent, thus it must
be co-developed along with the development of the hardware,
or the interface must be clearly defined. To satisfy all user-
given constraints, formal approaches are a well-accepted
design paradigm for embedded software [1], [2], [3], [4], [5].

Software synthesis is a process in which a formally modeled
system can be synthesized by a scheduling algorithm into a set
of feasible schedules that satisfy all user-given constraints on
system functions and memory space. Due to its high
expressiveness, Petri nets are a widely-used model. We
propose and use a high-level variant of the model called
Complex-Choice Petri Nets (CCPN). CCPN extends the
previously used models called Free-Choice Petri Nets [6].
Thus, our synthesis algorithm also extends a previously
proposed quasi-static scheduling algorithm. Details on the
model and the proposed Extended Quasi-Static Scheduling
(EQSS) algorithm along with code generation will be given in
Section II.

Software verification formally analyzes the behavior of
synthesized software to check if it satisfies all user-given
constraints on function and memory space. In this verification
process, we use the well-known model checking procedure to
automatically verify synthesized software schedules. Further,
we also need to estimate the amount of memory used by a
generated software schedule.

Finally, the generated embedded software is placed into an
emulation platform for prototyping and debugging. The
software code is downloaded into a single chip
microcontroller. The hardware for software code emulation is
programmed on an FPGA chip. According to the embedded
software specifications, the settings of the input/output devices
are configured. The embedded hardware and the I/O devices
are then used for monitoring the functions of the embedded
software through a debugger.

The proposed ESSP methodology will be illustrated using
two examples: a Vehicle Parking Management System
(VPMS) [7] and a motor speed control system.

II. EMBEDDED SOFTWARE SYNTHESIS AND PROTOTYPING
METHODOLOGY

A. Preliminaries
Several techniques for software synthesis from a concurrent

functional specification have been proposed [8], [9], [10], [11],
[12], [6], [13], [14]. Buck and Lee [9] have introduced the

Trong-Yen Lee is with the Electronics Engineering Department, National
Taipei University of Technology, Taipei, Taiwan ROC (e-mail:
tylee@ntut.edu.tw).

Pao-Ann Hsiung is with the Department of Computer Science and
Information Engineering, National Chung Cheng University, Chiayi, Taiwan
ROC (e-mail: hpa@computer.org).

T.-Y. Lee and P.-A. Hsiung: Embedded Software Synthesis and Prototyping 387

Boolean Data Flow (BDF) networks model and proposed an
algorithm to compute a quasi-static schedule. However, the
problem of scheduling BDF with bounded memory is
undecidable, i.e. any algorithm may fail to find a schedule
even if the BDF is schedulable. Hence, the algorithm proposed
by Buck can find a solution only in special cases. Thoen et al.
[10] proposed a technique to exploit static information in the
specification and extract from a constraint graph description of
the system statically schedulable clusters of threads. The limit
of this approach is that it does not rely on a formal model and
does not address the problem of checking whether a given
specification is schedulable. Lin [11] proposed an algorithm
that generates a software program from a concurrent process
specification through an intermediate Petri-Nets representation.
This approach is based on the strong assumption that the Petri
Net is safe, i.e. buffers can store at most one data unit. This on
one hand guarantees termination of the algorithm, on the other
hand it makes impossible to handle multirate specifications,
like FFT computations and down-sampling. Safeness implies
that the model is always schedulable and therefore also Lin’s
method does not address the problem of verifying
schedulability of the specification. Moreover, safeness
excludes the possibility to use Petri Nets where source and
sink transitions model the interaction with the environment.
This makes impossible to specify inputs with independent rate.
Later, Zhu and Lin [12] proposed a compositional synthesis
method that reduced the generated code size and thus was
more efficient.

Software synthesis method was proposed for a more general
Petri-Net framework by Sgroi et al. [6]. A quasi-static
scheduling algorithm was proposed for Free-Choice Petri Nets
(FCPN) [6]. A necessary and sufficient condition was given for
a FCPN to be schedulable. Schedulability was first tested for a
FCPN and then a valid schedule generated. Decomposing a
FCPN into a set of Conflict-Free (CF) components which were
then individually and statically scheduled. Code was finally
generated from the valid schedule.

Balarin et al. [2] proposed a software synthesis produce for
reactive embedded systems in the Codesign Finite State
Machine (CFSM) [15] framework with the POLIS hardware-
software codesign tool [15]. This work cannot be easily
extended to other more general frameworks.

Recently, Su and Hsiung [13] proposed an Extended Quasi-
Static Scheduling (EQSS) using Complex-Choice Petri Nets
(CCPNs) as models to solve the issue of complex choice
structures. Gau and Hsiung [14], [16] proposed a Time-
Memory Scheduling (TMS) method for formally synthesizing
and automatically generating code for real-time embedded
software, using the Colored Time Petri Nets model. In our
current work, we use EQSS to synthesize embedded software
and use the code generation procedure from [13] to generate
the C code for 8051 microcontroller.

Several simulation or emulation boards for single chip
micro-controller, such as Intel 8051 or ATMEL 89c51, have
been developed. As we know, the platform for embedded
software synthesis is still lacking. Therefore, we develop a
flexible emulation environment for embedded software system.

To the best of our knowledge, there are some emulation
platforms available for embedded system design such as [17]
[18]. In [17], a reconfigurable architecture platform for
embedded control applications aimed at improving real time
performance was proposed. In [18], the authors present the
technology assessment of N2C platform of CoWare Inc.,
which proposes a solution to the co-design/co-simulation
problem.

B. Embedded Software Synthesis and Prototyping
Methodology
In the automatic design of embedded software, there are

several issues to be solved, including how software is to be
synthesized and code generated, how software is to be verified,
and how software code is to be emulated. Each of these issues
was introduced in Section 1 and will be discussed at length in
the rest of this Section.

The overall flow of embedded software synthesis and the
emulation of the generated software code on our prototype
platform is as shown in Fig. 1. Given an embedded software
specification, we analyze it and then decide the requirements
of the hardware within which the embedded software is to be
executed. The hardware is then synthesized by an
FPGA/CPLD development tool and programmed into the chip
of ALTERA or XILINX on our platform.

On synthesis, if feasible software schedules cannot be
generated then we rollback to the embedded software
specification and ask the user to recheck or modify the
specification. If feasible software schedules can be generated,
then a C code for 8051 microcontroller will be generated by a
code generation procedure. The machine executable code will
be then generated using a 8051-specific C compiler. The target
machine code is finally loaded into the 89C51 or 87C51
microcontroller chip on the platform.

 Embedded
Software

Specification

Embedded Software Analysis

Hardware
Specification

Software
Specification

Graphic Model
Petri Net Model

Compiler and
Simulation

Scheduling

Schedulable ?
Functional
Correct ?

No

Yes Yes

No

Embedded Software Emulation Platform

Software Code
Generation

Hardware Code
Loading

Fig. 1. Embedded Software Synthesis and Prototyping Methodology

IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, FEBRUARY 2004 388

C. Software Synthesis and Code Generation
Software synthesis is a scheduling process whereby feasible

software schedules are generated, which satisfy all user-given
functional requirements, timing constraints, and memory
constraints. Here, we proposed an Extended Quasi-Static
Scheduling (EQSS) method for the synthesis of embedded
software. EQSS takes a set of CCPN as input along with
timing and memory constraints such as periods, deadlines, and
an upper bound on system memory space. CCPN is defined as
follows.
Definition 1. Complex-Choice Petri Nets (CCPN)
A Complex-Choice Petri Net is a 4-tuple (P, T, F, M0), where:

 P is a finite set of places,
 T is a finite set of transitions, P ∪ T ≠ ∅, and P ∩ T = ∅,
 F: (P × T) ∪ (T × P) → N is a weighted flow relation

between places and transitions, represented by arcs,
where N is the set of nonnegative integers. The flow
relation has the following characteristics.

 Synchronization at a transition is allowed between
a branch arc of a choice place and another
independent concurrent arc.

 Synchronization at a transition is not allowed
between two or more branch arcs of the same
choice place.

 A self-loop from a place back to itself is allowed
only if there is an initial token in one of the places
in the loop.

 M0: P → N is the initial marking (assignment of tokens
to places).

Graphically, a CCPN can be depicted as shown in Fig. 2,
where circles represent places, vertical bars represent
transitions, arrows represent arcs, black dots represent tokens,
and integers labeled over arcs represent the weights as defined
by F. Here, F(x, y) > 0 implies there is an arc from x to y with
a weight of F(x, y), where x and y can be a place or a transition.
Conflicts are allowed in a CCPN, where a conflict occurs when
there is a token in a place with more than one outgoing arc
such that only one enabled transition can fire, thus consuming
the token and disabling all other transitions. The transitions are
called conflicting and the place with the token is also called a
choice place. For example, decelerate and accelerate are

conflicting transitions in Fig. 2. Intuitions for the
characteristics of the flow relation in a CCPN, as given in
Definition 1, are as follows. First, unlike FCPN, confusions are
also allowed in CCPN, where confusion is a result of
synchronization between an arc of a choice place and another
independently concurrent arc. For example, the accelerate
transition in Fig. 2 is such a synchronization. Second,
synchronization is not allowed between two or more arcs of
the same choice place because arcs from a choice place
represent (un)conditional branching, thus synchronizing them
would amount to executing both branches, which conflicts
with the original definition of a choice place (only one
succeeding enabled transition is executed). Third, at least one
place occurring in a loop of a CCPN should have an initial
token because our EQSS scheduling method requires a CCPN
to return to its initial marking after a finite complete cycle of
markings. This is basically not a restriction as can be seen
from most real-world system models because a loop without an
initial token would result in either of two unrealistic situations:
(1) loop triggered externally resulting in accumulation of
infinite number of tokens in the loop, or (2) loop is never
triggered. Through an analysis of the choice structures in a
CCPN, EQSS generates a set of conflict-free components and
then schedules each of them, if possible. Once each component
can be scheduled to satisfy all constraints, the system is
declared schedulable and code is generated in the C
programming language.

Fig. 2. Automatic Cruise Controller CCPN Model

EQSS_Schedule(S, µ)
S = { Ai | Ai = (Pi, Ti, Fi, Mi0), i = 1, 2, …, n};
µ: integer; // Maximum memory
{

while (C = Get_CCS(S) ≠ NULL) { (1)
// Construct Exclusion Table ExTable for CCS C
Initialize_Table(ExTable); // Initialize table to False (2)
for each transition t in C (3)

for each transition t' in C (4)
if (M_Exclusive(t, t')) ExTable[t, t'] = True; (5)

// Decompose CCS C into conflict-free subsets
D = {C}; // D is a power-set of C (6)
for each subset H in D (7)

for each transition t in H (8)
for each transition t' in H (9)

if (ExTable[t, t'] = True) { (10)
H' = Copy_Set(H); (11)
Delete_Trans(H, t'); (12)
Delete_Trans(H', t); (13)
D = D ∪ H'; } (14)

// Decompose a CCPN into subnets according to D
for each subset H in D (15)

Decompose_CCPN(S, H); (16)
}
// Schedule all CF components
for each CCPN Ai in S (17)

for each conflict-free subnet X of Ai { (18)
Xs = Schedule(X, µ); (19)
if (Xs=NULL) return ERROR; (20)
else EQSSi=EQSSi ∪ Xs; } (21)

Generate_Code(S, µ, EQSS1, …, EQSSn); (22)
}

TABLE I
EXTENDED QUASI STATIC SCHEDULING ALGORITHM

speed
limit

sensor

preceding
vehicle

distance sensor

current
speed <

speed limit

distance >
threshold

yes

no

no

yes

decelerate

accelerate

no
speed
limit?

yes

no

T.-Y. Lee and P.-A. Hsiung: Embedded Software Synthesis and Prototyping 389

Semantically, the behavior of a CCPN is given by a
sequence of markings, where a marking is an assignment of
tokens to places. Formally, a marking is a vector M = <m1, m2,
…, m|P|>, where mi is the non-negative number of tokens in
place pi ∈ P. Starting from an initial marking M0, a CCPN may
transit to another marking through the firing of an enabled
transition and re-assignment of tokens. A transition is said to
be enabled when all its input places have the required number
of tokens, where the required number of tokens is the weight
as defined by the flow relation F. An enabled transition need
not necessarily fire. But upon firing, the required number of
tokens is removed from all the input places and the specified
number of tokens is placed in the output places, where the
specified number of tokens is that specified by the flow
relation F on the connecting arcs.

D. Extended Quasi-Static Scheduling
The details of our proposed EQSS algorithm are as shown

in Table 1. Given a set of CCPNs S = { Ai | Ai = (Pi, Ti, Fi, Mi0),
i = 1, 2, …, n} and a maximum bound on memory µ, the
algorithm finds and processes each set of complex choice
transitions (Step (1)), which is simply called Complex Choice
Set (CCS) and is defined as follows.
Definition 2. Complex Choice Set (CCS)
Given a CCPN Ai = (Pi, Ti, Fi, Mi0), a subset of transitions C ⊆
Ti is called a complex choice set if they satisfy the following
conditions.

 There exists a sequence of the transitions in C such that
any two adjacent transitions are always conflicting
transitions from the same choice place.

 There is no other transition in Ti \ C that conflicts with
any transition in C, which means C is maximal.

From Definition 2, we can see that a free-choice is a special
case of CCS. Thus, QSS also becomes a part of EQSS. For
each CCS, EQSS analyzes the mutual exclusiveness of the
transitions in that CCS and then records their relations into an
Exclusion Table (Steps (2)-(5)). Two complex-choice
transitions are said to be mutually exclusive if the firing of any
one of the two transitions disables the other transition. When
the (i, j) element of an exclusion table is True, it means the ith
and the jth transitions are mutually exclusive, otherwise it is
False. Based on the exclusion table, a CCS is decomposed into
two or more conflict-free (CF) subsets, which are sets of
transitions that do not have any conflicts, neither free-choice
nor complex-choice. The decomposition is done as follows
(Steps 6-14). For each pair of mutually exclusive transitions t,
t', do as follows.

 Make a copy H' of the CCS H (Step (11)),
 Delete t' from H (Step (12)), and
 Delete t from H' (Step (13)).
Based on the CF subsets, a CCPN is decomposed into

conflict-free components (subnets) (Steps (15)-(16)). The CF
components are not distinct decompositions as a transition may
occur in more than one component. Starting from an initial
marking for each component, a finite complete cycle is
constructed, where a finite complete cycle is a sequence of

transition firings that returns the net to its initial marking. A CF
component is said to be schedulable (Step (19)) if a finite
complete cycle can be found for it and it is deadlock-free.
Once all CF components of a CCPN are scheduled, a valid
schedule for the CCPN can be generated as a set of the finite
complete cycles. The reason why this set is a valid schedule is
that since each component always returns to its initial marking,
no tokens can get collected at any place. Satisfaction of
memory bound is checked by observing if the memory space
represented by the maximum number of tokens in any marking
does not exceed the bound. Here, each token represents some
amount of buffer space (i.e., memory) required after a
computation (transition firing). Hence, the total amount of
actual memory required is the memory space represented by
the maximum number of tokens that can get collected at all the
places in a marking during its transition from the initial
marking back to its initial marking. Finally, embedded
software code is generated (Step (22)), the details of which are
given in the following.

E. Code Generation with Multiple Threads
In contrast to the conventional single-threaded embedded

software, we propose to generate embedded software with
multiple threads, which can be processed for dispatch by a

Generate_Code(S, µ, EQSS1, EQSS2, …, EQSSn)
S = { Ai | Ai = (Pi, Ti, Fi, Mi0), i = 1, 2, …, n};
µ: integer; // Maximum memory
EQSS1, …, EQSSn: sets of schedules of conflict-free CCPNs
{

for each source transition tk ∈ ∪i Ti do { (1)
Tk = Create_Thread(tk); (2)
output(Tk, "call t_k;"); (3)
for each successor place p of tk (4)

Visit_Trans(EQSSk, Tk, tk, p); (5)
}
Create_Main(); (6)

}

Visit_Trans(EQSSk, Tk, tk, p) {

output(Tk, "mutexs_lock(&mutex);"); (1)
output(Tk, "p.token_num += weight[t_k, p];"); (2)
output(Tk, "mutexs_unlock(&mutex);"); (3)
Visit_Place(EQSSk, Tk, p); (4)

}

Visit_Place(EQSSk, Tk, p) {

if(Visited(p) = True) return; (1)
if(Is_Choice_Place(p) = True) (2)

output(Tk, "switch (p) {"}; (3)
for each successor transition t' of p (4)

if(Enabled(EQSSk, t')) { (5)
output(Tk, "mutexs_lock(&mutex);"); (6)
output(Tk,"p.token_num-=weight[p,t'];"); (7)
output(Tk, "mutexs_unlock(&mutex);"); (8)
output(Tk, "call t';"); (9)
for each successor place p' of t' (10)

Visit_Trans(EQSSk, Tk, t', p'); (11)
output(Tk, "break;"); } (12)

output(Tk, ")"); (13)
}

TABLE II
CODE GENERATION ALGORITHM FOR EQSS

IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, FEBRUARY 2004 390

real-time operating system. Our rationalizations are as follows:
(1) With advances in technology, the computing power of

microprocessors in an embedded system has increased to a
stage where fairly complex software can be executed.

(2) Due to the great variety of user needs such as interactive
interfacing, networking, and others, embedded software
needs some level of concurrency and low context-
switching overhead.

(3) Multithreaded software architecture preserves the user-
perceivable concurrencies among tasks, such that future
maintenance becomes easier.

The procedure for code generation with multiple threads
(CGMT) is given in Table 2. Each source transition in a CCPN
represents an input event. Corresponding to each source
transition, a P-thread is generated (Steps (1), (2)). Thus, the
thread is activated whenever there is an incoming event
represented by that source transition. There are two sub-
procedures in the code generator, namely Visit_Trans() and
Visit_Place(), which call each other in a recursive manner, thus
visiting all transitions and places and generating the
corresponding code segments. A CCPN transition represents a
piece of user-given code, and is simply generated as call
t_k; as in Step (3). Code generation begins by visiting the
source transition, once for each of its successor places (Steps
(4), (5)).

In both the sub-procedures Visit_Trans() (Steps (1)--(3))
and Visit_Place() (Steps (6-8)), a semaphore mutex is used
for exclusive access to the token_num variable associated
with a place. This semaphore is required because two or more
concurrent threads may try to update the variable at the same
time by producing or consuming tokens, which might result in
inconsistencies. Based on the firing semantics of a CCPN,
tokens are either consumed from an input place or produced
into an output place, upon the firing of a transition. When
visiting a choice place, a switch() construct is generated as
in Step (3).

F. Embedded Software Verification
There are three issues to be handled in software verification,

that is: “what to verify”, “when to verify”, and “how to verify”?
Each of these issues is solved as follows.

In solution to the “what to verify” issue, CCPN models are
translated into timed automata models which are then input to
a model checker. Timed automata models are easier to verify
than CCPN models because of its state space can be finitely
represented. Since both CCPN and timed automata are formal
models, there is an exact mapping between the two. For
example, a marking of a CCPN is mapped to a state location of
a timed automaton. Concurrency in CCPN is mapped to two or
more concurrent timed automaton. Source transitions in CCPN
are mapped to initial states of timed automata. Non-
deterministic choice places in CCPN are mapped to states with
branching transitions in timed automata. Loops in CCPN are
mapped to loops in timed automata.

In solution to the “when to verify” issue, we propose to
verify software after scheduling (synthesis) and before code

generation. Our rationalization is based on the fact that before
scheduling or after code generation, the state-space is much
larger than after scheduling and before code generation. A
formal analysis proves this fact. Intuitively, before scheduling
the state-space is much unconstrained than after scheduling,
thus we have to explore a larger state-space if we verify before
scheduling. Further, after code generation the state-space is
also larger than that before code generation because upon code
generation a lot of auxiliary and temporary variables are added,
which add to the size of the state-space unnecessarily.

In solution to the “how to verify” issue, we adopt a
compositional model checking approach, where two timed
automata are merged in each iteration and reduced using some
state-space reduction techniques such as read-write reduction,
symmetry reduction, clock shielding, and internal transition
bypassing. The reduction techniques have all been
implemented in the State Graph Manipulators (SGM) tool,
which is a high-level model checker for real-time systems
modeled as timed automata with properties specified in timed
computation tree logic (TCTL). After the globally reduced
state-graph is obtained, it is model checked for satisfaction of
some user-given TCTL property. Details can be found in [19].

G. Platform Architecture

A platform supports a hardware-software environment for
hardware emulation and software execution. In this work, we
design a platform with an architecture as shown in Fig. 3. The
FPGA/CPLD chip is programmed according to the hardware
requirements of an embedded system. The embedded software
is downloaded into the microcontroller. If microcontroller
memory is not enough, then external memory can be used. The
input/output devices, such as keyboard, LCD display, LED
display, and input switch are connected to FPGA/CPLD chip
and microcontroller using a bus. The point-to-point connection
topology is used in this bus on platform. The procedure
adopted for emulating embedded software in a platform is as
follows. (1) The embedded software code is downloaded into
the ROM or Flash memory, (2) The settings of the I/O devices
are configured according to the embedded software
specifications, (3) The emulation platform is booted, input
conditions are changed, and the output functions are checked
for satisfaction of the functional requirements of the embedded
software.

Bus

Keyboard LCD
Display

LED and
7-Segment

Display

Input
 Switch

FPGA/CPLD
Chip

Single Chip
Microcontroller

Memory

Fig. 3. Hardware-Software Prototype Platform Architecture

T.-Y. Lee and P.-A. Hsiung: Embedded Software Synthesis and Prototyping 391

III. EMBEDDED SYSTEM EXAMPLES
In this section, we use two embedded system examples to

illustrate our proposed embedded software synthesis and
prototyping methodology. The first example is display
subsystem of Vehicle Parking Management System (VPMS)
example, which includes three subsystems: entry management
system, exit management system, and display system. The
display system consists of a control system (counter and
display interface) and a 7-segment display device. The counter
value (count) indicates the number of available parking
vacancies. Further details on the VPMS specification can be
found in [7].

The display system in VPMS was modeled as a CCPN as
shown in Fig. 4 and the CCPN transitions are given in Table 3.
The embedded software code generated for the display system
is shown in Fig. 4, which was emulated using our ESSP
platform. We use two input switches to simulate the Car in and
Car out signals, respectively, and then use a 7-segment display
to show the number of available parking vacancies.

Another example is a motor speed control system, whose
CCPN model is as shown in Fig. 6. The main function of this
system is to adjust the speed of a motor based on its current
speed. There are two timers T0, T1 and two interrupts INT0,
INT1 that drive the system. On software synthesis, that is,
EQSS, there are two feasible schedules for this system as given
in Table 4, where an asterisk on a partial schedule indicates a
loop of at least one iteration. The generated code is shown in
Fig. 7, which was emulated on our ESSP platform. We use two
input switches to connect the trigger of INT0 and INT1,
respectively. Motor speed is displayed by an LCD display
device.

IV. CONCLUSION

TABLE III
CCPN TRANSITIONS IN DISPLAY SYSTEM

Place Description

P1 Counter value updated

P2 Signal polling complete
P3 Digit selected

Transition Description
t1 Initial counter
t2 Poll signal
t3 Select digit
t4 Decrement counter
t5 Increment counter
t6 Check count
t7 No operation
t8 Display digit

P2

P1

P3

t1

t2

t5

t4

t3

t6

t7

t8

Fig. 4. Petri Net Model of Display System

Display C-code
{(t1 t2 t4) (t1 t2 t5) (t1 t2 t6) (t1 t2 t7) (t1 t3)}
t1;
While (true) {

if (P1) {
 t2;

 Switch (P2) {
 Case Car in: t4;
 Case Car out: t5;
 Case Time stamp button pushed: t6;
 Case Default: t7;
 }/* End of Switch */
 }/* End of If */
 Else { t3; t8;
}/* End of While */

Fig. 5. Software Code for VPMS Display System

TABLE IV
FEASIBLE SCHEDULES FOR MOTOR SYSTEM

CCPN #T #P #S Schedules

MSCS 7 4 2 <t0, t1, <t2>*, t3, t5, t6 >,
 <t0, t1, < t2>* , t3, t4, t6>

#T: #transitions, #P: #places, #S: #schedules

Clear new rdgflg
and end

Increase drive

t1

t2

Decrease drive

t3

Set up T0, T1
Set up INT0, INT1

New rdflg ==True no

yes

yes

no Too slow

t5

t6

t4

t0

Fig. 6. Motor Speed Control System CCPN Model

IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, FEBRUARY 2004 392

A complete methodology called ESSP was proposed for
emulating hardware and synthesizing and executing embedded
software, which includes an extended quasi-static scheduling
algorithm, a code generation procedure, and an emulation
platform. The methodology will not only reduce development
time for embedded software, but also aid in debugging and
testing its functional correctness.

REFERENCES

[1] K. Altisen, G. Gössler, A.Pneuli, J. Sifakis, S. Tripakis, and S. Yovine,

“A framework for scheduler synthesis,” In Proceedings of the Real-
Time System Symposium (RTSS’99), IEEE Computer Society Press,
1999.

[2] F. Balarin and M. Chiodo. “Software synthesis for complex reactive
embedded systems,” In Proceedings of International Conference on
Computer Design (ICCD’99), IEEE CS Press, October 1999, 634 –
639.

[3] L. A. Cortes, P. Eles, and Z. Peng, “Formal co-verification of
embedded systems using model checking,” In Proceedings of
EUROMICRO, 2000, 106 – 113.

[4] P. -A. Hsiung, “Formal synthesis and code generation of embedded
real-time software,” In International Symposium on Hard-
ware/Software Codesign (CODES'01, Copenhagen, Denmark), ACM
Press, New York, USA, April 2001, 208 – 213.

[5] P. -A. Hsiung, W.-B. See, T.-Y. Lee, J.-M Fu, and S.-J. Chen, “Formal
verification of embedded real-time software in component-based
application frameworks,” In Proceedings of the 8th Asia-Pacific
Software Engineering Conference (APSEC 2001, Macau, China),
IEEE CS Press, December 2001, 71 – 78.

[6] M. Sgroi and L. Lavagno, “Synthesis of embedded software using
free-choice Petri nets,” IEEE/ACM 36th Design Automation
Conference (DAC’99), June 1999, 805 – 810.

[7] T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen, “A case study in codesign of
distributed systems — vehicle parking management system,” In
Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA'99, Las
Vegas, USA), CSREA Press, June 1999, 2982–2987.

[8] P.-A. Hsiung, “Formal Synthesis and Control of Soft Embedded Real-
Time Systems," In Proc. 21st IFIP WG 6.1 International Conference
on Formal Techniques for Networked and Distributed Systems
(FORTE'01, Cheju Island, Korea), Kluwer Academic Publishers,
August 2001, 35 – 50.

[9] J. Buck, Scheduling dynamic dataflow graphs with bounded memory
using the token flow model, Ph. D, dissertation, UC Berkeley, 1993.

[10] F. Thoen et al, “Real-time multi-tasking in software synthesis for
information processing systems,” In Proceeding of the International
System Synthesis Symposium, 1995, 48 – 53.

[11] B. Lin, “Software synthesis of process-based concurrent programs,”

IEEE/ACM 35th Design Automation Conference (DAC’98), June
1998, 502 – 505.

[12] X. Zhu and B. Lin, “Compositional software synthesis of
communicating processes,” IEEE International Conference on
Computer Design, October 1999, 646 – 651.

[13] F.-S. Su and P.-A. Hsiung, “Extended quasi-static scheduling for
formal synthesis and code generation of embedded software,” In Proc.
of the 10th IEEE/ACM International Symposium on
Hardware/Software Codesign, (CODES'2002, Colorado, USA), IEEE
CS Press, May 2002, 211 – 216.

[14] C. -H. Gau and P. -A. Hsiung, “Time-memory scheduling and code
generation of real-time embedded software,” In Proc. of the 8th
International Conference on Real-Time Computing Systems and
Applications (RTCSA'2002, Tokyo, Japan), March 2002, 19 – 27.

[15] F. Balarin et al., Hardware-software Co-design of Embedded Systems:
the POLIS Approach, Kluwer Academic Publishers, 1997.

[16] P.-A. Hsiung and C.-H. Gau, “Formal Synthesis of Real-Time
Embedded Software by Time-Memory Scheduling of Colored Time
Petri Nets,” In Proc. of the Workshop on Theory and Practice of
Timed Systems (TPTS'2002, Grenoble, France), Electronic Notes in
Theoretical Computer Science (ENTCS), Vol. 65, No. 6, April 2002

[17] M. Baleani, F. Gennari, J. Yunjian, Y. Patel, R. K. Brayton, A.
Sangiovanni-Vincentelli, “HW/SW partitioning and code generation
of embedded control applications on a reconfigurable architecture
platform,” In Proc. of the Tenth International Symposium on
Hardware/Software Codesign (CODES’2002, Colorado, USA), IEEE
CS Press, May 2002, 151 – 156.

[18] S. Tsasakou, N. S. Voros, M. Koziotis, D. Verkest, A. Prayati, and A.
Birbas, “Hardware-software co-design of embedded systems using
CoWare’s N2C methodology for application development,” In Proc. of.
the 6th IEEE International Conference on Electronics, Circuits and
Systems (ICECS’1999, Pafos, Cyprus), IEEE CS Press, September
1999, Vol. 1, 59 – 62.

[19] F. Wang and P.-A. Hsiung, “Efficient and User-Friendly Verification,”
IEEE Transactions on Computers, Vol. 51, No. 1, pp. 61-83, January
2002.

Trong-Yen Lee received the Ph.D. degree in electrical
engineering frim the National Taiwan University, Taipei,
Taiwan ROC., in 2001.

Since 2002, he has been a member of the faculty in
the Department of Electronic Engineering, National
Taipei University of Technology, where he is currently
an assistant professor. His research interests include
hardware-software codesign of embedded systems and

SOC, and software synthesis tool on embedded systems.

Pao-Ann Hsuing (M’98) received the B.S. degree in
mathematics and the Ph.D. degree in electrical
engineering from the National Taiwan University, Taipei,
Taiwan, ROC, in 1991 and 1996, respectively. From
1996 to 2001, he was a post-doctoral researcher at the
Institute of Information Science, Academia Sinica,
Taipei, Taiwan, ROC. From 2001, he joined the faculty
of the Department of Computer Science and Information

Engineering, National Chung Cheng University, Chiayi, Taiwan, ROC, where
he is currently an associate professor. Dr. Hsiung was the recipient of the
2001 K.-T. Li award sponsored by the ACM Taipei Chapter and given to a
single person annually. He has published more than 80 papers in international
journals and conference proceedings. He is currently an editor of the
International Journal of Embedded Systems and is the guest editor of some
special issues, the program committee member for conferences, and referee
for several well-known journals. His main research interests include
hardware-software codesign of real-time embedded systems and SoC, formal
verification, object-oriented design techniques, and formal software synthesis.

void *thread_run0(void *arg) {
 t0(); pthread_mutex_lock(&mutex); operation(t0,p0,'+')
 switch(p0) { case 1 : do{ if(check_enable(t1)) {
 mutex_operation(p0,t1,'-');
 t1(); mutex_operation(p0,t1,'+'); } }

while(pla0);
 pthread_mutex_unlock(&mutex);

break;
 case 2 : if(check_enable(t2))

{ operation(p0,t2,'-'); t2();
 pthread_mutex_unlock(&mutex);
 pthread_mutex_lock(&mutex);
operation(t2,p1,'+')
 switch(p1) { case 3 : if(check_enable(t3)) {
 operation(p1,t3,'-'); t3();
 pthread_mutex_unlock(&mutex);
 pthread_mutex_lock(&mutex);
 operation(t3,p2,'+') … }}}}

Fig. 7. Software Code for Motor Speed Control

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

