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Abstract — With the integration of computer technology, 
consumer products, and communication facilities, the software 
in an embedded system now accounts for as much as 70% of 
total system functionalities. In this work, we propose a 
complete methodology called ESSP (Embedded Software 
Synthesis and Prototyping) for the automatic design of 
embedded software. Several issues are solved, including 
software synthesis, software verification, code generation, and 
system emulation. To avoid design errors, a formal approach 
is adopted because glitches in embedded software are 
intolerable and very expensive or even impossible to fix. 
Complex-choice Petri nets are used to model embedded 
software, which are then synthesized using an extended quasi 
static scheduling algorithm. The final generated C code is 
prototyped on an emulation platform, which consists of an 
89C51 microcontroller for executing the software, an FPGA 
chip for programming the hardware for different applications, 
and some input/output devices. Two application examples are 
used to illustrate the feasibility of the ESSP methodology. 

 Index Terms — Embedded Software, Synthesis, 
Platform, Scheduling. 

I. INTRODUCTION 

Embedded systems have made a man’s life more convenient 
through easier controls and flexible configurations on many of 
our home amenities and office equipments. Due to the growing 
demand for more and more functionalities in embedded 
systems, an all-hardware implementation is no longer feasible 
because it is not only costly, but also not easily maintainable or 
upgradeable. Thus, software has gradually taken over a large 
portion of an embedded system’s functionalities. But, along 
with this flexibility, embedded software has also become 
highly complex. The past approach of starting everything from 
scratch is no longer viable. We need to use tools that automate 
several tedious tasks, but though there are some tools available 
for the design of embedded software, yet there is still a lack for 
a general design methodology. In this work, we are proposing 
a complete methodology, covering issues such as software 
synthesis, software verification, code generation, and system 
emulation. 

An embedded system is one that is installed in a large 
system with a dedicated functionality. Some examples include 

avionics flight control, vehicle cruise control, and network-
enabled devices in home appliances. In general, embedded 
systems have a microprocessor for executing software and 
some hardware in the form of ASICs, DSP, and I/O 
peripherals. The hardware and software work together to 
accomplish some given function for a larger system. 
Embedded software are often hardware-dependent, thus it must 
be co-developed along with the development of the hardware, 
or the interface must be clearly defined. To satisfy all user-
given constraints, formal approaches are a well-accepted 
design paradigm for embedded software [1], [2], [3], [4], [5]. 

Software synthesis is a process in which a formally modeled 
system can be synthesized by a scheduling algorithm into a set 
of feasible schedules that satisfy all user-given constraints on 
system functions and memory space. Due to its high 
expressiveness, Petri nets are a widely-used model. We 
propose and use a high-level variant of the model called 
Complex-Choice Petri Nets (CCPN). CCPN extends the 
previously used models called Free-Choice Petri Nets [6]. 
Thus, our synthesis algorithm also extends a previously 
proposed quasi-static scheduling algorithm. Details on the 
model and the proposed Extended Quasi-Static Scheduling 
(EQSS) algorithm along with code generation will be given in 
Section II. 

Software verification formally analyzes the behavior of 
synthesized software to check if it satisfies all user-given 
constraints on function and memory space. In this verification 
process, we use the well-known model checking procedure to 
automatically verify synthesized software schedules. Further, 
we also need to estimate the amount of memory used by a 
generated software schedule. 

Finally, the generated embedded software is placed into an 
emulation platform for prototyping and debugging. The 
software code is downloaded into a single chip 
microcontroller. The hardware for software code emulation is 
programmed on an FPGA chip. According to the embedded 
software specifications, the settings of the input/output devices 
are configured. The embedded hardware and the I/O devices 
are then used for monitoring the functions of the embedded 
software through a debugger. 

The proposed ESSP methodology will be illustrated using 
two examples: a Vehicle Parking Management System 
(VPMS) [7] and a motor speed control system. 

II. EMBEDDED SOFTWARE SYNTHESIS AND PROTOTYPING 
METHODOLOGY 

A. Preliminaries 
Several techniques for software synthesis from a concurrent 

functional specification have been proposed [8], [9], [10], [11], 
[12], [6], [13], [14]. Buck and Lee [9] have introduced the 
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Boolean Data Flow (BDF) networks model and proposed an 
algorithm to compute a quasi-static schedule. However, the 
problem of scheduling BDF with bounded memory is 
undecidable, i.e. any algorithm may fail to find a schedule 
even if the BDF is schedulable. Hence, the algorithm proposed 
by Buck can find a solution only in special cases. Thoen et al. 
[10] proposed a technique to exploit static information in the 
specification and extract from a constraint graph description of 
the system statically schedulable clusters of threads. The limit 
of this approach is that it does not rely on a formal model and 
does not address the problem of checking whether a given 
specification is schedulable. Lin [11] proposed an algorithm 
that generates a software program from a concurrent process 
specification through an intermediate Petri-Nets representation. 
This approach is based on the strong assumption that the Petri 
Net is safe, i.e. buffers can store at most one data unit. This on 
one hand guarantees termination of the algorithm, on the other 
hand it makes impossible to handle multirate specifications, 
like FFT computations and down-sampling. Safeness implies 
that the model is always schedulable and therefore also Lin’s 
method does not address the problem of verifying 
schedulability of the specification. Moreover, safeness 
excludes the possibility to use Petri Nets where source and 
sink transitions model the interaction with the environment. 
This makes impossible to specify inputs with independent rate. 
Later, Zhu and Lin [12] proposed a compositional synthesis 
method that reduced the generated code size and thus was 
more efficient.  

Software synthesis method was proposed for a more general 
Petri-Net framework by Sgroi et al. [6]. A quasi-static 
scheduling algorithm was proposed for Free-Choice Petri Nets 
(FCPN) [6]. A necessary and sufficient condition was given for 
a FCPN to be schedulable. Schedulability was first tested for a 
FCPN and then a valid schedule generated. Decomposing a 
FCPN into a set of Conflict-Free (CF) components which were 
then individually and statically scheduled. Code was finally 
generated from the valid schedule. 

Balarin et al. [2] proposed a software synthesis produce for 
reactive embedded systems in the Codesign Finite State 
Machine (CFSM) [15] framework with the POLIS hardware-
software codesign tool [15]. This work cannot be easily 
extended to other more general frameworks. 

Recently, Su and Hsiung [13] proposed an Extended Quasi-
Static Scheduling (EQSS) using Complex-Choice Petri Nets 
(CCPNs) as models to solve the issue of complex choice 
structures. Gau and Hsiung [14], [16] proposed a Time-
Memory Scheduling (TMS) method for formally synthesizing 
and automatically generating code for real-time embedded 
software, using the Colored Time Petri Nets model. In our 
current work, we use EQSS to synthesize embedded software 
and use the code generation procedure from [13] to generate 
the C code for 8051 microcontroller. 

Several simulation or emulation boards for single chip 
micro-controller, such as Intel 8051 or ATMEL 89c51, have 
been developed. As we know, the platform for embedded 
software synthesis is still lacking. Therefore, we develop a 
flexible emulation environment for embedded software system. 

To the best of our knowledge, there are some emulation 
platforms available for embedded system design such as [17] 
[18]. In [17], a reconfigurable architecture platform for 
embedded control applications aimed at improving real time 
performance was proposed. In [18], the authors present the 
technology assessment of N2C platform of CoWare Inc., 
which proposes a solution to the co-design/co-simulation 
problem. 

B. Embedded Software Synthesis and Prototyping 
Methodology 
In the automatic design of embedded software, there are 

several issues to be solved, including how software is to be 
synthesized and code generated, how software is to be verified, 
and how software code is to be emulated. Each of these issues 
was introduced in Section 1 and will be discussed at length in 
the rest of this Section. 

The overall flow of embedded software synthesis and the 
emulation of the generated software code on our prototype 
platform is as shown in Fig. 1. Given an embedded software 
specification, we analyze it and then decide the requirements 
of the hardware within which the embedded software is to be 
executed. The hardware is then synthesized by an 
FPGA/CPLD development tool and programmed into the chip 
of ALTERA or XILINX on our platform. 

On synthesis, if feasible software schedules cannot be 
generated then we rollback to the embedded software 
specification and ask the user to recheck or modify the 
specification. If feasible software schedules can be generated, 
then a C code for 8051 microcontroller will be generated by a 
code generation procedure. The machine executable code will 
be then generated using a 8051-specific C compiler. The target 
machine code is finally loaded into the 89C51 or 87C51 
microcontroller chip on the platform. 
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Fig. 1. Embedded Software Synthesis and Prototyping Methodology 
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C. Software Synthesis and Code Generation 
Software synthesis is a scheduling process whereby feasible 

software schedules are generated, which satisfy all user-given 
functional requirements, timing constraints, and memory 
constraints. Here, we proposed an Extended Quasi-Static 
Scheduling (EQSS) method for the synthesis of embedded 
software. EQSS takes a set of CCPN as input along with 
timing and memory constraints such as periods, deadlines, and 
an upper bound on system memory space. CCPN is defined as 
follows. 
Definition 1. Complex-Choice Petri Nets (CCPN) 
A Complex-Choice Petri Net is a 4-tuple (P, T, F, M0), where: 

 P is a finite set of places, 
 T is a finite set of transitions, P ∪ T ≠ ∅, and P ∩ T = ∅, 
 F: (P × T) ∪ (T × P) → N is a weighted flow relation 

between places and transitions, represented by arcs, 
where N is the set of nonnegative integers. The flow 
relation has the following characteristics. 

 Synchronization at a transition is allowed between 
a branch arc of a choice place and another 
independent concurrent arc. 

 Synchronization at a transition is not allowed 
between two or more branch arcs of the same 
choice place. 

 A self-loop from a place back to itself is allowed 
only if there is an initial token in one of the places 
in the loop. 

 M0: P → N is the initial marking (assignment of tokens 
to places). 

Graphically, a CCPN can be depicted as shown in Fig. 2, 
where circles represent places, vertical bars represent 
transitions, arrows represent arcs, black dots represent tokens, 
and integers labeled over arcs represent the weights as defined 
by F. Here, F(x, y) > 0 implies there is an arc from x to y with 
a weight of F(x, y), where x and y can be a place or a transition. 
Conflicts are allowed in a CCPN, where a conflict occurs when 
there is a token in a place with more than one outgoing arc 
such that only one enabled transition can fire, thus consuming 
the token and disabling all other transitions. The transitions are 
called conflicting and the place with the token is also called a 
choice place. For example, decelerate and accelerate are 

conflicting transitions in Fig. 2. Intuitions for the 
characteristics of the flow relation in a CCPN, as given in 
Definition 1, are as follows. First, unlike FCPN, confusions are 
also allowed in CCPN, where confusion is a result of 
synchronization between an arc of a choice place and another 
independently concurrent arc. For example, the accelerate 
transition in Fig. 2 is such a synchronization. Second, 
synchronization is not allowed between two or more arcs of 
the same choice place because arcs from a choice place 
represent (un)conditional branching, thus synchronizing them 
would amount to executing both branches, which conflicts 
with the original definition of a choice place (only one 
succeeding enabled transition is executed). Third, at least one 
place occurring in a loop of a CCPN should have an initial 
token because our EQSS scheduling method requires a CCPN 
to return to its initial marking after a finite complete cycle of 
markings. This is basically not a restriction as can be seen 
from most real-world system models because a loop without an 
initial token would result in either of two unrealistic situations: 
(1) loop triggered externally resulting in accumulation of 
infinite number of tokens in the loop, or (2) loop is never 
triggered. Through an analysis of the choice structures in a 
CCPN, EQSS generates a set of conflict-free components and 
then schedules each of them, if possible. Once each component 
can be scheduled to satisfy all constraints, the system is 
declared schedulable and code is generated in the C 
programming language. 

Fig. 2. Automatic Cruise Controller CCPN Model 

EQSS_Schedule(S, µ) 
S = { Ai | Ai = (Pi, Ti, Fi, Mi0), i = 1, 2, …, n}; 
µ: integer; // Maximum memory 
{ 

while (C = Get_CCS(S) ≠ NULL) {             (1) 
// Construct Exclusion Table ExTable for CCS C 
Initialize_Table(ExTable); // Initialize table to False    (2) 
for each transition t in C                (3) 

for each transition t' in C               (4) 
if (M_Exclusive(t, t'))  ExTable[t, t'] = True;      (5) 

// Decompose CCS C into conflict-free subsets 
D = {C}; // D is a power-set of C                      (6) 
for each subset H in D                (7) 

for each transition t in H              (8) 
for each transition t' in H              (9) 

if (ExTable[t, t'] = True) {            (10) 
H' = Copy_Set(H);              (11) 
Delete_Trans(H, t');            (12) 
Delete_Trans(H', t);            (13) 
D = D ∪ H'; }                   (14) 

// Decompose a CCPN into subnets according to D 
for each subset H in D                (15) 

Decompose_CCPN(S, H);             (16) 
} 
// Schedule all CF components 
for each CCPN Ai in S                 (17) 

for each conflict-free subnet X of Ai {           (18) 
Xs = Schedule(X, µ);               (19) 
if (Xs=NULL) return ERROR;                (20) 
else EQSSi=EQSSi ∪ Xs; }              (21) 

Generate_Code(S, µ, EQSS1, …, EQSSn);          (22) 
} 

TABLE I 
EXTENDED QUASI STATIC SCHEDULING ALGORITHM 
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Semantically, the behavior of a CCPN is given by a 
sequence of markings, where a marking is an assignment of 
tokens to places. Formally, a marking is a vector M = <m1, m2, 
…, m|P|>, where mi is the non-negative number of tokens in 
place pi ∈ P. Starting from an initial marking M0, a CCPN may 
transit to another marking through the firing of an enabled 
transition and re-assignment of tokens. A transition is said to 
be enabled when all its input places have the required number 
of tokens, where the required number of tokens is the weight 
as defined by the flow relation F. An enabled transition need 
not necessarily fire. But upon firing, the required number of 
tokens is removed from all the input places and the specified 
number of tokens is placed in the output places, where the 
specified number of tokens is that specified by the flow 
relation F on the connecting arcs. 

 
D. Extended Quasi-Static Scheduling 
The details of our proposed EQSS algorithm are as shown 

in Table 1. Given a set of CCPNs S = { Ai | Ai = (Pi, Ti, Fi, Mi0), 
i = 1, 2, …, n} and a maximum bound on memory µ, the 
algorithm finds and processes each set of complex choice 
transitions (Step (1)), which is simply called Complex Choice 
Set (CCS) and is defined as follows. 
Definition 2. Complex Choice Set (CCS) 
Given a CCPN Ai = (Pi, Ti, Fi, Mi0), a subset of transitions C ⊆ 
Ti is called a complex choice set if they satisfy the following 
conditions. 

 There exists a sequence of the transitions in C such that 
any two adjacent transitions are always conflicting 
transitions from the same choice place. 

 There is no other transition in Ti \ C that conflicts with 
any transition in C, which means C is maximal. 

From Definition 2, we can see that a free-choice is a special 
case of CCS. Thus, QSS also becomes a part of EQSS. For 
each CCS, EQSS analyzes the mutual exclusiveness of the 
transitions in that CCS and then records their relations into an 
Exclusion Table (Steps (2)-(5)). Two complex-choice 
transitions are said to be mutually exclusive if the firing of any 
one of the two transitions disables the other transition. When 
the (i, j) element of an exclusion table is True, it means the ith 
and the jth transitions are mutually exclusive, otherwise it is 
False. Based on the exclusion table, a CCS is decomposed into 
two or more conflict-free (CF) subsets, which are sets of 
transitions that do not have any conflicts, neither free-choice 
nor complex-choice. The decomposition is done as follows 
(Steps 6-14). For each pair of mutually exclusive transitions t, 
t', do as follows. 

 Make a copy H' of the CCS H (Step (11)), 
 Delete t' from H (Step (12)), and 
 Delete t from H' (Step (13)). 
Based on the CF subsets, a CCPN is decomposed into 

conflict-free components (subnets) (Steps (15)-(16)). The CF 
components are not distinct decompositions as a transition may 
occur in more than one component. Starting from an initial 
marking for each component, a finite complete cycle is 
constructed, where a finite complete cycle is a sequence of 

transition firings that returns the net to its initial marking. A CF 
component is said to be schedulable (Step (19)) if a finite 
complete cycle can be found for it and it is deadlock-free. 
Once all CF components of a CCPN are scheduled, a valid 
schedule for the CCPN can be generated as a set of the finite 
complete cycles. The reason why this set is a valid schedule is 
that since each component always returns to its initial marking, 
no tokens can get collected at any place. Satisfaction of 
memory bound is checked by observing if the memory space 
represented by the maximum number of tokens in any marking 
does not exceed the bound. Here, each token represents some 
amount of buffer space (i.e., memory) required after a 
computation (transition firing). Hence, the total amount of 
actual memory required is the memory space represented by 
the maximum number of tokens that can get collected at all the 
places in a marking during its transition from the initial 
marking back to its initial marking. Finally, embedded 
software code is generated (Step (22)), the details of which are 
given in the following. 

 
E. Code Generation with Multiple Threads 
In contrast to the conventional single-threaded embedded 

software, we propose to generate embedded software with 
multiple threads, which can be processed for dispatch by a 

Generate_Code(S, µ, EQSS1, EQSS2, …, EQSSn) 
S = { Ai | Ai = (Pi, Ti, Fi, Mi0), i = 1, 2, …, n}; 
µ: integer;   // Maximum memory 
EQSS1, …, EQSSn: sets of schedules of conflict-free CCPNs 
{ 

for each source transition tk ∈ ∪i Ti do {              (1) 
Tk = Create_Thread(tk);                            (2) 
output(Tk, "call t_k;");  (3) 
for each successor place p of tk                                (4) 

Visit_Trans(EQSSk, Tk, tk, p);           (5) 
} 
Create_Main();                                            (6) 

} 
 
Visit_Trans(EQSSk, Tk, tk, p) { 

output(Tk, "mutexs_lock(&mutex);");                     (1) 
output(Tk, "p.token_num += weight[t_k, p];");          (2) 
output(Tk, "mutexs_unlock(&mutex);");                (3) 
Visit_Place(EQSSk, Tk, p);                            (4) 

} 
 
Visit_Place(EQSSk, Tk, p) { 

if(Visited(p) = True) return;                                (1) 
if(Is_Choice_Place(p) = True)                           (2) 

output(Tk, "switch (p) {"};                           (3) 
for each successor transition t' of p                      (4) 

if(Enabled(EQSSk, t'))  {                           (5) 
output(Tk, "mutexs_lock(&mutex);");          (6) 
output(Tk,"p.token_num-=weight[p,t'];");     (7) 
output(Tk, "mutexs_unlock(&mutex);");        (8) 
output(Tk, "call t';");                                (9) 
for each successor place p' of t'               (10) 

Visit_Trans(EQSSk, Tk, t', p');                    (11) 
output(Tk, "break;");  }                          (12) 

output(Tk, ")");                                     (13) 
} 

TABLE II 
CODE GENERATION ALGORITHM FOR EQSS 
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real-time operating system. Our rationalizations are as follows:  
(1) With advances in technology, the computing power of 

microprocessors in an embedded system has increased to a 
stage where fairly complex software can be executed. 

(2) Due to the great variety of user needs such as interactive 
interfacing, networking, and others, embedded software 
needs some level of concurrency and low context-
switching overhead. 

(3) Multithreaded software architecture preserves the user-
perceivable concurrencies among tasks, such that future 
maintenance becomes easier. 

The procedure for code generation with multiple threads 
(CGMT) is given in Table 2. Each source transition in a CCPN 
represents an input event. Corresponding to each source 
transition, a P-thread is generated (Steps (1), (2)). Thus, the 
thread is activated whenever there is an incoming event 
represented by that source transition. There are two sub-
procedures in the code generator, namely Visit_Trans() and 
Visit_Place(), which call each other in a recursive manner, thus 
visiting all transitions and places and generating the 
corresponding code segments. A CCPN transition represents a 
piece of user-given code, and is simply generated as call 
t_k; as in Step (3). Code generation begins by visiting the 
source transition, once for each of its successor places (Steps 
(4), (5)). 

In both the sub-procedures Visit_Trans() (Steps (1)--(3)) 
and Visit_Place() (Steps (6-8)), a semaphore mutex is used 
for exclusive access to the token_num variable associated 
with a place. This semaphore is required because two or more 
concurrent threads may try to update the variable at the same 
time by producing or consuming tokens, which might result in 
inconsistencies. Based on the firing semantics of a CCPN, 
tokens are either consumed from an input place or produced 
into an output place, upon the firing of a transition. When 
visiting a choice place, a switch() construct is generated as 
in Step (3). 

 
F. Embedded Software Verification 
There are three issues to be handled in software verification, 

that is: “what to verify”, “when to verify”, and “how to verify”? 
Each of these issues is solved as follows. 

In solution to the “what to verify” issue, CCPN models are 
translated into timed automata models which are then input to 
a model checker. Timed automata models are easier to verify 
than CCPN models because of its state space can be finitely 
represented. Since both CCPN and timed automata are formal 
models, there is an exact mapping between the two. For 
example, a marking of a CCPN is mapped to a state location of 
a timed automaton. Concurrency in CCPN is mapped to two or 
more concurrent timed automaton. Source transitions in CCPN 
are mapped to initial states of timed automata. Non-
deterministic choice places in CCPN are mapped to states with 
branching transitions in timed automata. Loops in CCPN are 
mapped to loops in timed automata. 

In solution to the “when to verify” issue, we propose to 
verify software after scheduling (synthesis) and before code 

generation. Our rationalization is based on the fact that before 
scheduling or after code generation, the state-space is much 
larger than after scheduling and before code generation. A 
formal analysis proves this fact. Intuitively, before scheduling 
the state-space is much unconstrained than after scheduling, 
thus we have to explore a larger state-space if we verify before 
scheduling. Further, after code generation the state-space is 
also larger than that before code generation because upon code 
generation a lot of auxiliary and temporary variables are added, 
which add to the size of the state-space unnecessarily. 

In solution to the “how to verify” issue, we adopt a 
compositional model checking approach, where two timed 
automata are merged in each iteration and reduced using some 
state-space reduction techniques such as read-write reduction, 
symmetry reduction, clock shielding, and internal transition 
bypassing. The reduction techniques have all been 
implemented in the State Graph Manipulators (SGM) tool, 
which is a high-level model checker for real-time systems 
modeled as timed automata with properties specified in timed 
computation tree logic (TCTL). After the globally reduced 
state-graph is obtained, it is model checked for satisfaction of 
some user-given TCTL property. Details can be found in [19]. 

 
G. Platform Architecture 

A platform supports a hardware-software environment for 
hardware emulation and software execution. In this work, we 
design a platform with an architecture as shown in Fig. 3. The 
FPGA/CPLD chip is programmed according to the hardware 
requirements of an embedded system. The embedded software 
is downloaded into the microcontroller. If microcontroller 
memory is not enough, then external memory can be used. The 
input/output devices, such as keyboard, LCD display, LED 
display, and input switch are connected to FPGA/CPLD chip 
and microcontroller using a bus. The point-to-point connection 
topology is used in this bus on platform. The procedure 
adopted for emulating embedded software in a platform is as 
follows. (1) The embedded software code is downloaded into 
the ROM or Flash memory, (2) The settings of the I/O devices 
are configured according to the embedded software 
specifications, (3) The emulation platform is booted, input 
conditions are changed, and the output functions are checked 
for satisfaction of the functional requirements of the embedded 
software. 
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Fig. 3. Hardware-Software Prototype Platform Architecture 
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III. EMBEDDED SYSTEM EXAMPLES  
In this section, we use two embedded system examples to 

illustrate our proposed embedded software synthesis and 
prototyping methodology. The first example is display 
subsystem of Vehicle Parking Management System (VPMS) 
example, which includes three subsystems: entry management 
system, exit management system, and display system. The 
display system consists of a control system (counter and 
display interface) and a 7-segment display device. The counter 
value (count) indicates the number of available parking 
vacancies. Further details on the VPMS specification can be 
found in [7]. 

The display system in VPMS was modeled as a CCPN as 
shown in Fig. 4 and the CCPN transitions are given in Table 3. 
The embedded software code generated for the display system 
is shown in Fig. 4, which was emulated using our ESSP 
platform. We use two input switches to simulate the Car in and 
Car out signals, respectively, and then use a 7-segment display 
to show the number of available parking vacancies. 

Another example is a motor speed control system, whose 
CCPN model is as shown in Fig. 6. The main function of this 
system is to adjust the speed of a motor based on its current 
speed. There are two timers T0, T1 and two interrupts INT0, 
INT1 that drive the system. On software synthesis, that is, 
EQSS, there are two feasible schedules for this system as given 
in Table 4, where an asterisk on a partial schedule indicates a 
loop of at least one iteration. The generated code is shown in 
Fig. 7, which was emulated on our ESSP platform. We use two 
input switches to connect the trigger of INT0 and INT1, 
respectively. Motor speed is displayed by an LCD display 
device. 

 

IV. CONCLUSION 

TABLE III 
CCPN TRANSITIONS IN DISPLAY SYSTEM 

Place Description 

P1 Counter value updated 

P2 Signal polling complete 
P3 Digit selected 

Transition Description 
t1 Initial counter 
t2 Poll signal 
t3 Select digit 
t4 Decrement counter 
t5 Increment counter 
t6 Check count 
t7 No operation 
t8 Display digit 
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Fig. 4. Petri Net Model of Display System 

Display C-code 
{(t1 t2 t4) (t1 t2 t5) (t1 t2 t6) (t1 t2 t7) (t1 t3)} 
t1; 
While (true) { 

if (P1) { 
 t2; 

 Switch (P2) { 
  Case Car in:  t4; 
  Case Car out: t5; 
  Case Time stamp button pushed: t6; 
  Case Default: t7; 
 }/* End of Switch */ 
 }/* End of If */ 
 Else {  t3; t8; 
}/* End of While */ 

Fig. 5. Software Code for VPMS Display System 

TABLE IV   
FEASIBLE SCHEDULES FOR MOTOR SYSTEM 

CCPN #T #P #S Schedules 

MSCS 7 4 2 <t0,  t1, <t2>*,  t3,  t5,  t6 >, 
 <t0,  t1, < t2>* , t3, t4,  t6> 

#T: #transitions, #P: #places, #S: #schedules 

 

Clear new rdgflg 
and end 

Increase drive 

t1 

t2

Decrease drive

t3 

Set up T0, T1 
Set up INT0, INT1

New rdflg ==True no 

yes 

yes 

no Too slow 

t5 

t6

t4

t0 

Fig. 6. Motor Speed Control System CCPN Model 
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A complete methodology called ESSP was proposed for 
emulating hardware and synthesizing and executing embedded 
software, which includes an extended quasi-static scheduling 
algorithm, a code generation procedure, and an emulation 
platform. The methodology will not only reduce development 
time for embedded software, but also aid in debugging and 
testing its functional correctness. 
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void *thread_run0(void *arg) { 
 t0();  pthread_mutex_lock(&mutex);  operation(t0,p0,'+')
 switch(p0) { case 1 : do{ if(check_enable(t1)) { 
                  mutex_operation(p0,t1,'-'); 
                  t1(); mutex_operation(p0,t1,'+'); } }

while(pla0); 
                  pthread_mutex_unlock(&mutex); 

break; 
           case 2 : if(check_enable(t2)) 

{ operation(p0,t2,'-'); t2(); 
                   pthread_mutex_unlock(&mutex); 
                   pthread_mutex_lock(&mutex);  
operation(t2,p1,'+') 
         switch(p1) { case 3 : if(check_enable(t3)) { 
                     operation(p1,t3,'-'); t3(); 
                     pthread_mutex_unlock(&mutex);
                     pthread_mutex_lock(&mutex); 
                     operation(t3,p2,'+') … }}}} 

 
Fig. 7.  Software Code for Motor Speed Control 
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