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Abstract—Linkage analysis serves as a way of finding locations of genes that cause genetic diseases. Linkage studies have facilitated

the identification of several hundreds of human genes that can harbor mutations which by themselves lead to a disease phenotype.

The fundamental problem in linkage analysis is to identify regions whose allele is shared by all or almost all affected members but by

none or few unaffected members. Almost all the existing methods for linkage analysis are for families with clearly given pedigrees.

Little work has been done for the case where the sampled individuals are closely related, but their pedigree is not known. This situation

occurs very often when the individuals share a common ancestor at least six generations ago. Solving this case will tremendously

extend the use of linkage analysis for finding genes that cause genetic diseases. In this paper, we propose a mathematical model (the

shared center problem) for inferring the allele-sharing status of a given set of individuals using a database of confirmed haplotypes as

reference. We show the NP-completeness of the shared center problem and present a ratio-2 polynomial-time approximation algorithm

for its minimization version (called the closest shared center problem). We then convert the approximation algorithm into a heuristic

algorithm for the shared center problem. Based on this heuristic, we finally design a heuristic algorithm for mutation region detection.

We further implement the algorithms to obtain a software package. Our experimental data show that the software is both fast and

accurate. The package is available at http://www.cs.cityu.edu.hk/~lwang/software/LDWP/ for noncommercial use.

Index Terms—Haplotype inference, linkage analysis, pedigree, allele-sharing status, and approximation algorithm.

Ç

1 INTRODUCTION

LINKAGE is the tendency for genes and other genetic
markers to be inherited together because of their

mutually close locations on the same chromosome. Linkage
analysis aims at establishing linkage between mutated
genes and genetic markers. Today linkage analysis serves
as a way of identifying disease causal mutations. Linkage
studies have facilitated the identification of several hun-
dreds of human genes that can harbor mutations which by
themselves lead to a disease phenotype. The fundamental
problem in linkage analysis is to identify regions whose
allele is shared by all or most affected members but by none
or few unaffected family members.

Traditional approaches to linkage analysis have usually
been based on sparse microsatellite markers when the
recombination fraction between markers has to be consid-
ered. With the new development of microarray techniques,
high-density SNP genotype data can be used for large-scale
and cost-effective linkage analysis [11], [16]. With high-
density SNP genotype data, there exist a sufficient number
of informative markers between every pair of recombina-
tion points, and the allele-sharing status among the family
members can be unambiguously determined. Analysis tools
designed for analyzing microsatellite genotype data may
not work optimally with high-density SNP genotype data

despite vigorous modifications. Lots of new computer
programs have been developed for dealing with high-
density SNP genotype data.

Almost all the existing methods for linkage analysis are
for families with clearly given pedigrees. Existing ap-
proaches to linkage analysis can be classified into two
categories, namely, probabilistic approaches and determi-
nistic approaches. In probabilistic approaches, recombinant
rates are estimated in a way to maximize the likelihood of
the observed data [1], [7], [8], [9]. The well-known software
tools based on such approaches include GeneHunter [8],
LINKAGE [10], Allegro [7], Merlin [1], etc. According to
[11], these tools have different performances and efficien-
cies. Some of them (such as those based on the Elston-
Steward algorithm [5]) do not work well when the number
of markers is large, while the others (such as those based on
the Lander-Green algorithm [9]) do not work well when the
number of family members is large. This still remains true
even after tremendous improvement has been made to
them through subsequent modifications [1], [7]. On the
other hand, these tools can give very accurate outputs when
the size of the pedigree is small.

Recently some deterministic approaches have been
developed. The main idea is to minimize the total number
of recombinants to infer the input genotype data so that all/
most of diseased individuals share a segment that is shared
by none of the normal individuals [3], [14]. The algorithm in
[14] can give very accurate outputs when the number of
family members is large enough and for each nuclear family
the genotype data for both parents are available. Subse-
quently, a new software package (called LIden) has been
developed in [18]. LIden focuses on handling the case
where the genotype data for the whole chromosome of
one of the parents in a nuclear family is missing. It also uses
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the minimum recombinant model for haplotype inference in
pedigrees. The main idea behind LIden is a heuristic that
combines several local optimization algorithms to first infer
the haplotype of each individual and then use the inferred
haplotype data to determine the linked regions.

A closely related problem is the haplotype inference
problem with a given pedigree. The purpose here is to infer
the haplotype accurately. Many haplotype inference algo-
rithms and programs have been developed. Qian and
Beckmann [15] and Tapader et al. [17] proposed to
minimize the number of recombinants when the pedigree
is given. Zhang et al. [21] develop a program without
recombinant for general pedigrees. Doi et al. [4] designed
two algorithms for haplotype inference with a given
pedigree. One of their algorithms works well when the
number of marker loci is a fixed constant, while the other
works well when the number of family members is
bounded by a small constant. Li and Jiang [12], [13]
proposed to use an integer linear programming approach
for minimum recombinant configuration. Xiao et al. [19]
designed a faster algorithm for the case where there is no
recombinant. All the aforementioned algorithms heavily
depend on the given pedigree and do not work at all
without a given pedigree.

To our knowledge, no algorithm can give good output
when the sampled individuals are closely related but the
real relationship is hidden (most of the times because of
remote relationship). This situation occurs very often when
the individuals share a common ancestor at least six
generations ago. With the new development of microarray
techniques, high-density SNP genotype data can be used for
large-scale and cost-effective linkage analysis. Recently, the
international HapMap project has produced enormous
amount of haplotype data for individuals in some major
populations. For example, there are 340 haplotypes in the
group “Japanese in Tokyo”þ“Han Chinese in Beijing.”
These new developments make it possible for us to propose
new mathematical models for finding genes causing genetic
diseases when the sampled individuals are closely related
but their pedigree is unknown.

In this paper, we propose a mathematical model (the
shared center (SC) problem) for inferring the allele-sharing
status of a given set of individuals using a database of
confirmed haplotypes as reference. We show that the
shared center problem is NP-complete. We then present a
ratio-2 polynomial-time approximation algorithm for the
closest shared center (CSC) problem which is the minimiza-
tion version of the shared center problem. We further
convert the approximation algorithm into a heuristic
algorithm for the shared center problem. Using this
heuristic algorithm as a subroutine, we finally design a
heuristic algorithm for mutation region detection. We also
implement the algorithms to obtain a software package for
mutation region detection. Experiments show that the
method can report about 50 to 90 percent SNPs in the true
mutation regions in different cases.

2 METHOD

Our task here is to solve the problem where the given
individuals are closely related but their pedigree is unknown.
Recently, the international HapMap project has produced
enormous amount of haplotype data for individuals in some

major populations. This motivates us to propose a mathema-
tical model that makes use of the existing haplotype
databases for individuals in major populations.

Throughout this paper, a region on a chromosome,
denoted by ½a; b�, is a set of consecutive SNP sites (positions)
starting at position a and ending at position b. The general
problem (referred to as the Mutation Region Detection Problem)
is as follows: We are given three sets D ¼ fĝ1; ĝ2; . . . ; ĝkg,
N ¼ fĝkþ1; . . . ; ĝng, and H ¼ fĥ1; ĥ2; . . . ; ĥmg, where D con-
sists of diseased individuals represented by their genotype
data on a whole chromosome C, N consists of normal
individuals represented by their genotype data on C, and
H consists of confirmed haplotype data on C of some
individuals in the same (or similar) population. For con-
venience, we call H the reference database. We remark that H
can be obtained from the database of HapMap project. The
objective here is to find the true mutation regions of C. Here, a
true mutation region of C means a consecutive portion of C
where all the diseased individuals share a common
haplotype segment that is shared by none of the normal
individuals. The true mutation regions defined here are
based on the haplotype segments of all individuals. If we
know the haplotype segments of all the individuals, the true
mutation regions can be easily computed.

The strategy to solve this problem is to first infer the
haplotypes of each given individual. After knowing the
allele-sharing status of all the individuals, we can identify
the regions of C where all the diseased individuals share a
common haplotype segment that is shared by none of the
normal individuals. Those identified regions are candidate
mutation regions. In order to get the allele-sharing status of
all the input individuals, we divide the whole chromosome
C into a set R of regions of a fixed length L. For each region
R 2 R, we first obtain DR, NR, and HR, where DR

(respectively, NR or HR) is the set of (genotype or
haplotype) strings in D (respectively, N or H) with their
letters at positions outside R removed. We then check if we
can infer the haplotypes of the individuals over R so that
the following conditions hold:

1. All the diseased individuals share a common
haplotype segment s that is shared by none of the
normal individuals. That is, for each haplotype
strand h (as a string) of a normal individual, there is
at least one position (depending on s and h) where h
and s differ.

2. Each inferred haplotype is close to some haplotype
in HR.

Consider a genotype segment g in DR [NR, where the
letter of g at each position can be 0, 1, or 2. A position of g
with a letter 0 indicates that the inferred haplotypes of g
both must have a 0 at the position, while a position of g with
a letter 1 indicates that the inferred haplotypes of g both
must have a 1 at the position. On the other hand, a position
of g with a letter 2 indicates that one of the inferred
haplotypes of g must have a 0 at the position while the other
must have a 1 at the position. For convenience, we say that a
position of g is decided if the letter of g at the position is 0 or
1, and is undecided otherwise. A haplotype pair for g is a pair
ðh; h0Þ of haplotypes satisfying the following conditions:
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1. The letter of g at each decided position is the same as
the letters of both h and h0 at the same position.

2. For each undecided position of g, one of h and h0 has a
0 at the position while the other has a 1 at the position.

For DR, we define three sets as follows:

. The set of decided positions associated with DR consists
of all positions q in R such that q is a decided
position of at least one string in DR.

. The set of undecided positions associated with DR

consists of all positions q in R such that q is an
undecided position for all strings in DR.

. The set of conflicting positions associated with DR

consists of all positions q in R such that q is a decided
position of two distinct gi 2 DR and gj 2 DR but the
letters of gi and gj at position q differ.

Given DR, NR, and HR, we want to decide if it is possible
to find a haplotype pair for each genotype string in DR [NR

such that Conditions 1 and 2 hold. If we can successfully
find such a haplotype pair for each genotype string in
DR [NR, then R should be a portion of a true mutation
region of the chromosome. In other words, to test whether
R belongs to a true mutation region of the chromosome, we
need to solve the following computational problem:

The shared center problem. We are given a quadruple
ðDR;NR;HR; dÞ, where DR ¼ fg1; g2; . . . ; gkg and NR ¼
fgkþ1; gkþ2; . . . ; gng are sets consisting of genotype segments
of the same length L, HR ¼ fh1; h2; . . . ; hmg is a set
consisting of haplotype segments of length L, and d
(referred to as the radius) is a nonnegative integer. The
segments inDR are from diseased individuals while those in
NR are from normal individuals. For convenience, for two
binary strings s and t, we denote their Hamming distance by
distðs; tÞ. Moreover, for a string t and a set P of positions of
t, let tjP denote the string obtained from t by deleting the
letters at the positions not in P . A solution to ðDR;NR;HR; dÞ
consists of a center haplotype segment s, a center index
p 2 f1; 2; . . . ;mg, and a haplotype pair ðhi;1; hi;2Þ for each
gi 2 DR [NR such that the following conditions hold:

C1. distðs; hpÞ � d.
C2. For each i 2 f1; 2; . . . ; kg, hi;1 ¼ s and there is an

integer ‘i 2 f1; 2; . . . ;mg such that distðhi;2; h‘iÞ � d.
C3. For each i 2 fkþ 1; kþ 2; . . . ; ng and for each

j 2 f1; 2g, the following hold:

a. There is an integer ‘i;j 2 f1; 2; . . . ;mg n fpg with
distðhi;j; h‘i;jÞ � d.

b. hi;jjU 6¼ sjU , i.e., there is at least one position q in
U at which the letters of hi;j and s differ, where
U is the set of decided positions associated with
DR.

Note that the position q in Condition C3b depends not
only on i and j but also on hi;j, i.e., different i, j, or hi;j may
yield different q. Moreover, if U is empty,1 then there is no
solution to ðDR;NR;HR; dÞ.

Given ðDR;NR;HR; dÞ, an algorithm solving the SC
problem is required to check whether there is a solution
to ðDR;NR;HR; dÞ. If there is one, the algorithm outputs

“yes;” otherwise, it outputs “no.” Roughly speaking, we
want to compute a haplotype pair ðhi;1; hi;2Þ for each gi 2
DR [NR such that all the diseased individuals “share” a
center haplotype segment s that is shared by none of the
normal individuals. We also want s and all the haplotypes
hi;1 and hi;2 to be similar to some segments in HR.

Intuitively speaking, for each position q 2 U , there is a
diseased individual whose haplotype at position q is already
known and hence all the diseased individuals must share
this haplotype at position q (cf. Condition C2). On the other
hand, we need to compute a pair ðhi;1; hi;2Þ of hyplotypes to
explain the genotype gi of the normal individual so that
neither hi;1 nor hi;2 is identical to the center haplotype
segment s on R. However, the condition that hi;1 6¼ s
(respectively, hi;2 6¼ s) on R can be easily satisfied as long
as we can make sure that R contains a position at which hi;1
(respectively, hi;2) and s disagree. Note that unlike the letters
of s at the positions in U , the letters of s at the positions in
R n U are not fixed in advance. Thus, there is more freedom
to find a position in R n U at which hi;1 (respectively, hi;2)
and s disagree. Hence, the positions in R n U are less reliable
than the positions in U for distinguishing the diseased
individuals from the normal individuals. In this sense, the
condition that hi;1 6¼ s and hi;2 6¼ s looks too weak. This is
why we maintain Condition C3b instead.

If a solution to ðDR;NR;HR; dÞ exists for a region R of the
target chromosome C, then we call R a valid region.
Suppose that R is a true mutation region of C. Then, there
is a real haplotype pair ð ~hi;1; ~hi;2Þ for each gi 2 DR [NR. If
HR contains both ~hi;1 and ~hi;2 for all gi 2 DR [NR, then by
setting d ¼ 0, the SC problem always has a solution over R.
Intuitively speaking, a valid region R should belong to (part
of) a true mutation region of C if HR contains both ~hi;1 and
~hi;2 for all gi 2 DR [NR.

To find the true mutation regions of C, our idea is to
divide C into a set R of length-L regions and test whether
each of them is a valid region. After finding all valid regions
in R, we then use them to construct the true mutation
regions of C in a sophisticated way (such as merging
adjacent valid regions into longer regions). Each length-L
region R inR has to satisfy the inequality in Condition C3b.
Consequently, a (long) true mutation region consisting of
multiple valid length-L regions actually has to satisfy
multiple such inequalities.

We next show that the SC problem is NP-hard.

Theorem 1. The SC problem is NP-hard.

Proof. We reduce the binary closest-string (BCS) problem to
the special case of the SC problem where all the
individuals are diseased. Recall that an instance of the
BCS problem is a tuple ðs1; . . . ; sn; dÞ, where s1; . . . ; sn are
binary strings of the same length m and d is a
nonnegative integer. Given ðs1; . . . ; sn; dÞ, the BCS pro-
blem asks if there is a binary string t of length m such
that distðt; siÞ � d for all 1 � i � n. It is known that the
BCS problem is NP-complete [6].

Let ðs1; . . . ; sn; dÞ be an instance of the binary closest-
string problem. Let m be the common length of the
strings s1; . . . ; sn. For convenience, for a letter ‘ 2
f0; 1; 2g and a nonnegative integer i, let ‘i denote the
string consisting of i‘s. Note that ‘0 is the empty string.
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For a binary string s, let s denote the string obtained
from s by flipping each bit. We obtain nþ 1 strings h0,
h1; . . . ; hn as follows:

1. h0 ¼ s10ðdþ1Þn.
2. For each

i 2 f1; . . . ; ng; hi ¼ si0ðdþ1Þði�1Þ1dþ10ðdþ1Þðn�iÞ:

We further obtain n strings g1; . . . ; gn as follows:

. For each

i 2 f1; . . . ; ng; gi ¼ 2m0ðdþ1Þði�1Þ2dþ10ðdþ1Þðn�iÞ:

Suppose that ðs1; . . . ; sn; dÞ has a solution t in the
binary closest-string problem. Then, we can construct a
solution for the instance ðfg1; . . . ; gng; ;; fh0; . . . ; hng; dÞ of
the SC problem as follows:

1. s ¼ t0ðdþ1Þn. Note that distðs; h0Þ � d because t is a
solution to ðs1; . . . ; sn; dÞ in the binary closest-
string problem and hence distðt; s1Þ � d.

2. For each i 2 f1; . . . ; ng, construct a haplotype pair
ðhi;1; hi;2Þ for gi by setting hi;1 ¼ s and hi;2 ¼
t0ðdþ1Þði�1Þ1dþ10ðdþ1Þðn�iÞ. Note that for each 1 �
i � n, distðhi;2; hiÞ ¼ distðt; siÞ ¼ distðt; siÞ � d be-
cause t is a solution to ðs1; . . . ; sn; dÞ in the binary
closest-string problem.

Conversely, suppose that the instance ðfg1; . . . ; gng; ;;
fh0; . . . ; hng; dÞ of the SC problem has a solution. Let s be
the center haplotype segment in the solution. Let t be the
prefix of s with jtj ¼ m. We claim that t is a solution to
ðs1; . . . ; sn; dÞ in the binary closest-string problem. To see
this, first note that for each 1 � i � ðdþ 1Þn, there is a
j 2 f1; . . . ; ng such that the ith rightmost letter of gj is a 0.
This implies that the last ðdþ 1Þn bits of s are 0s. So, the
string hi with distðs; hiÞ � d has to be h0 because there are
dþ 1 1s in the last ðdþ 1Þn bits of each hj with 1 � j � n.
Thus, distðt; s1Þ � d. Moreover, for each 1 � i � n, if we
decompose gi into two strings hi;1 and hi;2 with hi;1 ¼ s,
then hi;2 ¼ t0ðdþ1Þði�2Þ1dþ10ðdþ1Þðn�iÞ. Hence, for each
1 � i � n, the hj with 0 � j � n and distðhj; hi;2Þ � d
has to be hi because of the different locations of the dþ 1
1s in the last ðdþ 1Þn bits of h1; . . . ; hn. Therefore,
distðt; siÞ ¼ distðt; siÞ � d. This completes the proof of
the claim and hence that of the theorem. tu

In the minimization version of the SC problem, we are
given a triple ðDR;NR;HRÞ, where DR, NR, and HR are as in
the SC problem. The objective is as follows: If there is an
integer d such that the instance ðDR;NR;HR; dÞ to the SC
problem has a solution, then we find the smallest such integer
d together with a solution to ðDR;HR;HR; dÞ. Otherwise, we
report that no such integer d exists. For convenience, we call
the minimization version the closest shared center problem.

3 AN APPROXIMATION ALGORITHM FOR THE CSC
PROBLEM

Throughout this section, let I ¼ ðDR;NR;HRÞ be an
instance of the CSC problem, where DR ¼ fg1; g2; . . . ; gkg,

NR ¼ fgkþ1; gkþ2; . . . ; gng, and HR ¼ fh1; h2; . . . ; hmg. Let L
be the common length of the strings in DR [NR [HR.

First, we want to decide if there is an integer d such that
the instance ðDR;NR;HR; dÞ to the SC problem has a
solution. For convenience, we refer to such an integer d as
a valid radius for I . Section 3.1 is devoted to testing if valid
radii exist for I . Note that if d is a valid radius for I , then so
are integers larger than d. We say that an integer d is a
semioptimal radius for I if d is a valid radius for I and is at
most twice the smallest valid radius for I . After knowing
the existence of a valid radius for I , we want to find a
semioptimal radius d for I together with a solution to
ðDR;HR;HR; dÞ. Section 3.2 is devoted to this purpose.

3.1 Testing If Valid Radii Exist

Obviously, there is a valid radius for I if and only if L is a
valid radius for I . So, we consider how to test if L is a valid
radius for I . For convenience, we say that a string s is a
center haplotype segment shared by the strings in DR if for each
gi 2 DR, there is a haplotype pair ðhi;1; hi;2Þ with hi;1 ¼ s.
Obviously, if the set of conflicting positions associated with
DR is not empty, then there is no center haplotype segment
shared by the strings in DR. Moreover, if there is no center
haplotype segment shared by the strings in DR, then L is
not a valid radius for I . Hence, we hereafter assume that
the following condition holds:

. A1. The set of conflicting positions associated with
DR is empty.

Let U (respectively, U) be the set of undecided (respec-
tively, decided) positions associated with DR. If there is a
center haplotype segment s shared by the strings in DR,
then the letter of s at each position q 2 U can be uniquely
fixed according to the following rules:

. Rule 1. If some segment in DR is 0 at position q and
each of the other segments in DR is 0 or 2 at position
q, then the letter of s at position q is 0.

. Rule 2. If some segment in DR is 1 at position q and
each of the other segments in DR is 1 or 2 at position
q, then the letter of s at position q is 1.

For convenience, we refer to the letter of s at each
position q 2 U as the center letter at position q. Because we
only care if L is a valid radius for I or not, the letters of s at
the positions in U are not important and neither is the center
index p.

Now, consider each gi 2 NR. Let Ui (respectively, Ui)
denote the set of undecided (respectively, decided) posi-
tions of gi. We say that gi is free if there is a position in
Ui \ U at which the center letter is different from the letter
of gi. On the other hand, we say that gi is dead if 1) jU n Uij �
1 and 2) at every position q in Ui \ U , the center letter is the
same as the letter of gi.

We claim that if at least one gi inNR is dead, thenL is not a
valid radius for I . Toward a contradiction, assume that this
claim does not hold. Then, some gi inNR is dead but there is a
solution S to ðDR;NR;HR; LÞ. Let s be the center haplotype
segment in S, and ðhi;1; hi;2Þ be the haplotype pair for gi in S.
Since gi is dead, jU n Uij � 1 and gijUi\U ¼ sjUi\U . So, if
jU n Uij ¼ 0, then hi;1jU ¼ hi;2jU ¼ sjU , a contradiction against
Condition C3b in Section 2. Thus, we may assume that
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jU n Uij ¼ 1. Let q be the unique position inU n Ui. Obviously,
either the letters of hi;1 and s at position q are the same or the
letters of hi;2 and s at position q are the same. In the former
case, hi;1jU ¼ sjU , while in the latter case, hi;2jU ¼ sjU . Thus,
we always have a contradiction against Condition C3b in
Section 2. This completes the proof of the claim.

So, we hereafter assume that the following condition
holds:

. A2. No string gi 2 NR is dead.

Under Condition A2, if a string gi 2 NR is not free, then
jUi \ U j � jUj � 2.

Under Conditions A1 and A2, L is a valid radius for I .
Indeed, we can construct a solution to ðDR;NR;HR; LÞ as
follows: We let the center haplotype segment s in the
solution be any binary string such that the letter of s at each
position q 2 U is the center letter at position q. We let the
center index p in the solution be any integer in f1; . . . ;mg.
For each gi 2 DR, we obtain the unique haplotype pair
ðhi;1; hi;2Þ for gi with hi;1 ¼ s. For each free gi 2 NR, we
obtain an arbitrary haplotype pair ðhi;1; hi;2Þ. For each gi 2
NR that is not free, we first obtain an arbitrary haplotype
pair ðhi;1; hi;2Þ for gi, then select two arbitrary positions q1

and q2 in U n Ui, and further make some necessary
modifications on the letters of hi;1 and hi;2 at positions q1

and q2 so that the letter of hi;1 at position q1 is different from
the center letter at position q1 and the letter of hi;2 at position
q2 is different from the center letter at position q2.

Note that it is easy to decide if Conditions A1 and A2
hold. So, it is easy to decide if L is a valid radius for I .

3.2 Computing a Semioptimal Radius and a
Solution

Throughout this section, we assume that L is a valid radius
for I . So, Conditions A1 and A2 hold. Let d be the smallest
valid radius for I . It is not hard to decide if d ¼ 0. So, we
hereafter assume that d � 1.

Our goal is to compute a valid radius b for I together
with a solution S to ðDR;NR;HR; bÞ such that b � 2d. To find
the center haplotype segment in S, our idea is to look at the
strings s1, s2; . . . ; sm defined as follows:

. For each p 2 f1; 2; . . . ;mg, let sp be the haplotype
segment of length L such that spjU ¼ hpjU and the
letter of sp at each position q 2 U is the center letter
at position q.

Basically, our algorithm will select an appropriate sp
among s1, s2; . . . ; sm and include it in S as its center
haplotype segment. After this, a haplotype pair for each
gi 2 DR can be easily computed from sp as shown in the
next lemma:

Lemma 2. For every p 2 f1; 2; . . . ;mg and every i 2 f1; 2; . . . ;
kg, there is a unique haplotype pair ðhp;i;1; hp;i;2Þ for gi with
hp;i;1 ¼ sp. Moreover, if p is the center index in a solution to
ðDR;NR;HR; dÞ, then dp;i � 2d for every i 2 f1; 2; . . . ; kg,
where dp;i ¼ min1�j�mdistðhp;i;2; hjÞ.

Proof. The first assertion in the lemma is obvious. To prove
the second assertion, consider a solution S� to
ðDR;NR;HR; dÞ. Recall that S� consists of a center
haplotype segment s, a center index p 2 f1; . . . ;mg, and

a haplotype pair ðhi;1; hi;2Þ for each gi 2 DR [NR satisfy-

ing Conditions C1 through C3 in Section 2. Obviously,

distðsp; hpÞ � distðs; hpÞ � d. Moreover, for every gi 2
DR, distðhp;i;2; hi;2Þ ¼ distðsp; sÞ � d. Therefore,

distðhp;i;2; h‘iÞ � distðhp;i;2; hi;2Þ þ distðhi;2; h‘iÞ � 2d;

where ‘i is the integer specified in Condition 2 in Section 2.

Now, since dp;i � distðhp;i;2; h‘iÞ, dp;i � 2d. tu
By Lemma 2, to obtain S, it remains to obtain a haplotype

pair for each gi 2 NR. The following definitions will be

useful:

. For each i 2 fkþ 1; kþ 2; . . . ; ng and each j 2 f1;
2; . . . ;mg, let d0i;j be the number of decided positions
q of gi such that the letters of gi and hj at position q
differ.

. For each triple ði; j; j0Þ with i 2 fkþ 1; kþ 2; . . . ; ng,
j 2 f1; 2; . . . ;mg, and j0 2 f1; 2; . . . ;mg, let Si;j;j0 be
the set of undecided positions q of gi such that the
letters of hj and hj0 at position q coincide, and let
di;j;j0 ¼ 1þmaxfd0i;j; d0i;j0 ; d0:5ðd0i;j þ d0i;j0 þ jSi;j;j0 jÞeg.

. For each p 2 f1; 2; . . . ;mg and each i 2 fkþ 1;
kþ 2; . . . ; ng, let dp;i ¼ minðj;j0Þdi;j;j0 , where j and j0

range over all integers in f1; 2; . . . ;mg n fpg.
Based on the above definitions, the following lemma

shows how to compute a haplotype pair for each gi 2 NR:

Lemma 3. For each triple ði; j; j0Þ with i 2 fkþ 1; kþ 2; . . . ; ng,
j 2 f1; 2; . . . ;mg, and j0 2 f1; 2; . . . ;mg, we can construct a

haplotype pair ðhi;j;j0;1; hi;j;j0;2Þ for gi in OðLÞ time such that

distðhi;j;j0;1; hjÞ � di;j;j0 , distðhi;j;j0;2; hj0 Þ � di;j;j0 , there is at

least one position q1 2 U at which the letter of hi;j;j0;1 is not the

center letter, and there is at least one position q2 2 U at which

the letter of hi;j;j0;2 is not the center letter.

Proof. Fix a triple ði; j; j0Þ with i 2 fkþ 1; kþ 2; . . . ; ng,
j 2 f1; 2; . . . ;mg, and j0 2 f1; 2; . . . ;mg. For convenience,

let �di;j;j0 ¼ di;j;j0 � 1. The remainder of the proof can be

sketched as follows: First, we show how to construct a

haplotype pair ðhi;j;j0;1; hi;j;j0;2Þ for each gi 2 NR such that

distðhi;j;j0;1; hjÞ � �di;j;j0 and distðhi;j;j0;2; hj0 Þ � �di;j;j0 . Unfor-

tunately, such a pair ðhi;j;j0;1; hi;j;j0;2Þ is not necessarily

what we need, because it might be the case that 1) the

letter of hi;j;j0;1 at every position q 2 U is the center letter

at position q or 2) the letter of hi;j;j0;2 at every position

q 2 U is the center letter at position q. So, we then show

that if this bad case occurs, then it suffices to modify

hi;j;j0;1 and hi;j;j0;2 by first selecting a suitable position q 2
U and further switching the letters of hi;j;j0;1 and hi;j;j0;2 at

position q. Note that this modification can increase

distðhi;j;j0;1; hjÞ and distðhi;j;j0;2; hj0 Þ each by at most 1,

implying that we now have distðhi;j;j0;1; hjÞ � di;j;j0 and

distðhi;j;j0;2; hj0 Þ � di;j;j0 . Thus, after this modification,

ðhi;j;j0;1; hi;j;j0;2Þ becomes a required haplotype pair for gi.
We next detail the proof. By definition, d0i;j � �di;j;j0 ,

d0i;j0 � �di;j;j0 , and d0i;j þ d0i;j0 þ jSi;j;j0 j � 2�di;j;j0 . So, we can
easily partition Si;j;j0 into two subsets Ŝi;j;j0 and ~Si;j;j0 such
that d0i;j þ jŜi;j;j0 j � �di;j;j0 and d0i;j0 þ j ~Si;j;j0 j � �di;j;j0 . Thus,
we can obtain a required haplotype pair ðhi;j;j0;1; hi;j;j0;2Þ
for gi by performing the following steps in turn:
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1. For each decided position q of gi, set the letters of
hi;j;j0;1 and hi;j;j0;2 at position q to be the letter of gi
at position q.

2. For each undecided position q of gi not contained
in Si;j;j0 , set the letters of hi;j;j0;1 and hi;j;j0;2 at
position q to be the letters of hj and hj0 at position
q, respectively.

3. For each undecided position q in Ŝi;j;j0 , set the
letter of hi;j;j0;2 at position q to be the letter of hj0

at position q and set the letter of hi;j;j0;1 at position
q to be the letter in f0; 1g different from the letter
of hj at position q. (Note: After this step,
distðhi;j;j0;1; hjÞ ¼ d0i;j þ jŜi;j;j0 j � �di;j;j0 .)

4. For each undecided position q in ~Si;j;j0 , set the
letter of hi;j;j0;1 at position q to be the letter of hj
at position q and set the letter of hi;j;j0;2 at
position q to be the letter in f0; 1g different from
the letter of hj0 at position q. (Note: After this
step, distðhi;j;j0;2; hj0 Þ ¼ d0i;j0 þ j ~Si;j;j0 j � �di;j;j0 .)

5. If a) the letter of hi;j;j0;1 at every position q 2 U is
the center letter at position q, or b) the letter of
hi;j;j0;2 at every position q 2 U is the center letter at
position q, then choose an arbitrary position q 2
U n Ui and switch the letters of hi;j;j0;1 and hi;j;j0;2 at
position q. (Note: After this step, distðhi;j;j0;1; hjÞ �
1þ d0i;j þ jŜi;j;j0 j � 1þ �di;j;j0 ¼ di;j;j0 and similarly
distðhi;j;j0;2; hjÞ � di;j;j0 . Moreover, for every posi-
tion q 2 U n Ui, either the letter of hi;j;j0;1 at position
q is not the center letter at position q, or the letter of
hi;j;j0;2 at position q is not the center letter at
position q. Thus, if U n Ui 6¼ ;, then it is impossible
that both Conditions a) and b) in Step 5 hold.)

To finish the proof of the lemma, it suffices to show
that after Step 5, the letter of hi;j;j0;1 at some position
q 2 U is not the center letter at position q and the letter of
hi;j;j0;2 at some position q0 2 U is not the center letter at
position q0. To this end, suppose that Condition a) or b) in
Step 5 holds. Then, gi is not free. Moreover, by Condition
A2, gi is not dead. Hence, jU n Uij � 2. Consider two
arbitrary positions q and q0 in U n Ui. Since q is an
undecided position of gi, either the letter of hi;j;j0;1 at
position q is not the center letter at position q or the letter
of hi;j;j0;2 at position q is not the center letter at position q.
Similarly, either the letter of hi;j;j0;1 at position q0 is not the
center letter at position q0 or the letter of hi;j;j0;2 at position
q0 is not the center letter at position q0. Consequently,
because Conditions a) or b) holds, either the letters of
hi;j;j0;1 at positions q and q0 are the center letters at
positions q and q0 but the letters of hi;j;j0;2 at positions q
and q0 are not the center letters at positions q and q0, or
the letters of hi;j;j0;2 at positions q and q0 are the center
letters at positions q and q0 but the letters of hi;j;j0;1 at
positions q and q0 are not the center letters at positions q
and q0. In either case, after switching the letters of hi;j;j0;1
and hi;j;j0;2 at position q, the letter of hi;j;j0;1 at some
position r 2 fq; q0g is not the center letter at position r
and the letter of hi;j;j0;2 at the position r0 2 fq; q0g n frg is
not the center letter at position r0. tu

Lemma 4. If p is the center index in a solution to ðDR;NR;

HR; dÞ, then dp;i � 1þ d � 2d for every i 2 fkþ 1; k þ
2; . . . ; ng.

Proof. Consider a solution S� to ðDR;NR;HR; dÞ that
consists of a center haplotype segment s, a center index
p 2 f1; . . . ;mg, and a haplotype pair ðhi;1; hi;2Þ for each
gi 2 DR [NR satisfying Conditions C1 through C3 in
Section 2. Fix an integer i 2 fkþ 1; kþ 2; . . . ; ng. Let j ¼
‘i;1 and j0 ¼ ‘i;2 be the integers in f1; 2; . . . ;mg n fpg that
are guaranteed to exist for i by Condition C3a. Then,
distðhi;1; hjÞ � d and distðhi;2; hj0 Þ � d. Moreover, by the
definition of d0i;j and d0i;j0 , distðhi;1; hjÞ � d0i;j, and
distðhi;2; hj0 Þ � d0i;j0 . Furthermore, by the definition of
Si;j;j0 , we know that for every position q 2 Si;j;j0 , either the
letters of hi;1 and hj at position q differ or the letters of
hi;2 and hj0 at position q differ. Thus, by Condition C3a,
there must be a way to partition Si;j;j0 into two subsets
Ŝi;j;j0 and ~Si;j;j0 such that d0i;j þ jŜi;j;j0 j � d and d0i;j0 þ
j ~Si;j;j0 j � d. Hence, d0i;j þ d0i;j0 þ jSi;j;j0 j � 2d.

By the discussion in the last paragraph, we have the
following three inequalities: d0i;j � d, d0i;j0 � d, and d0i;j þ
d0i;j0 þ jSi;j;j0 j � 2d. S o , maxfd0i;j; d0i;j0 ; d0:5ðd0i;j þ d0i;j0 þ
jSi;j;j0 jÞeg � d because d is an integer. Thus, by the
definition of di;j;j0 , di;j;j0 � 1 � d. Consequently, by the
definition of dp;i, dp;i � dþ 1. Finally, dp;i � 2d for
d � 1. tu

We need two more definitions:

. For each p 2 f1; 2; . . . ;mg, let dp ¼ max1�i�ndp;i.

. b ¼ min1�p�mdp.

Corollary 5. If p is the center index in a solution to
ðDR;NR;HR; dÞ, then dp � 2d. Consequently, b � 2d and
there is a solution to ðDR;NR;HR; bÞ.

Proof. The corollary follows from Lemmas 2, 3, and 4
immediately. tu

Based on Corollary 5, we design an approximation
algorithm for the CSC problem. It is shown in Fig. 1.

Theorem 6. The algorithm in Fig. 1 achieves an approximation
ratio of 2 and runs in OðnLm2 þ nm3Þ time.

Proof. By Corollary 5, the algorithm achieves an approx-
imation ratio of 2. We next estimate its time complexity.
It is easy to show that Step 1 can be done in OðnLm2Þ
time. Clearly, Step 2 can be done in ðn� kÞLm2 time.
Step 3 can be done in OðkLm2 þ ðn� kÞm3Þ time, because
Steps 3.1, 3.2, 3.3, and 3.4 can be done in OðLÞ, OðkLmÞ,
Oððn� kÞm2Þ, and OðnÞ time, respectively. Step 4 can be
done in OðmÞ time. So, the total time complexity is as
claimed in the theorem. tu

We next show that we can modify the above algorithm so
that it runs in OðnLm2Þ time. The point is how to compute b
in OðnLm2Þ time when we know b � 1. For each p 2 f1;
2; . . . ;mg, let d0p ¼ max1�i�kdp;i and d00p ¼ maxkþ1�i�ndp;i.
Then, b ¼ min1�p�mmaxfd0p; d00pg. Moreover, it is obvious that
b � L. So, b is the smallest integer ‘ 2 f1; 2; . . . ; Lg such that
there is a p 2 f1; 2; . . . ;mg with d0p � ‘ and d00p � ‘. Thus, it
suffices to consider how to check if d0p � ‘ and d00p � ‘.
Obviously, we can compute all the integers in fd0pj1 � p �
mg in OðkLm2Þ total time in advance. With d0p known, we
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can check if d0p � ‘ in Oð1Þ time when p and ‘ are given.

However, we do not know how to compute d001 ; d
00
2 ; . . . ; d00m in

Oððn� kÞLm2Þ total time. So, we want to decide if d00p � ‘
without actually knowing d00p . The following definition is for

this purpose:

. For each triple ðp; i; ‘Þ with 1 � p � m, kþ 1 � i � n,
and 1 � ‘ � L, let Pp;i;‘ be a set consisting of an
(arbitrary) pair ðj; j0Þ of integers in f1; 2; . . . ;mg n fpg
with di;j;j0 � ‘ if such a pair exists, and let Pp;i;‘ be the
empty set otherwise.

The crucial point is that d00p � ‘ if and only if all the sets in

fPp;i;‘jkþ 1 � i � ng are nonempty. Thus, it remains to

consider how to compute the sets in fPp;i;‘j1 � p � m,

kþ 1 � i � n, 1 � ‘ � Lg in OðkLm2Þ total time in advance.

The following definition is for this purpose:

. For each pair ði; ‘Þ with kþ 1 � i � n and 1 � ‘ � L,
let Qi;‘ be the set of all pairs ðj; j0Þ of integers in
f1; 2; . . . ;mg with di;j;j0 � ‘.

Obviously, after performing Step 2 of the algorithm (in
Fig. 1), we can compute all the sets Qi;‘ with kþ 1 � i � n
and 1 � ‘ � L in Oððn� kÞLm2Þ total time in advance. The
crucial point is that with Qi;‘ known, we can compute Pp;i;‘
in OðmÞ time when p, i, and ‘ are given. The idea for
computing Pp;i;‘ is to scan the pairs in Qi;‘ in an arbitrary
order until at least one of the following conditions holds:

1. A pair ðj; j0Þ with j 6¼ p and j0 6¼ p is found.
2. Already 2m pairs in Qi;‘ or all the pairs in Qi;‘ have

been scanned.

If Condition 1 holds, then we can let Pp;i;‘ ¼ fðj; j0Þg.
Otherwise, we can let Pp;i;‘ ¼ ; because among any subset of
2m pairs in Qi;‘, there is at least one pair ðj; j0Þ with j 6¼ p
and j0 6¼ p.

In summary, to speed up the algorithm in Fig. 1, it
suffices to replace Steps 3, 4, and 5 of the algorithm by the
four steps in Fig. 2.

Now, we are ready to state the main theorem of this
section.

Theorem 7. The modified algorithm achieves an approximation
ratio of 2 and runs in OðnLm2Þ time.

4 A DECISION ALGORITHM

We can directly use the modified algorithm in Section 3.2 to
approximately test if a given region R in a chromosome
belongs to a true mutation region. We first obtain the
instance ðDR;NR;HRÞ of the CSC problem in region R and
see if the modified algorithm can return an approximate
solution with radius 2d. If the algorithm cannot return an
approximate solution with radius 2d for a user defined
value of d, we can conclude that there is no solution to the
instance ðDR;NR;HR; dÞ of the SC problem and rule out the
possibility that R is part of a true mutation region.
Otherwise, we should consider R as part of a candidate
mutation region for further processing.

In order to get better results in practice, we transform the
modified algorithm in Section 3.2 into a decision algorithm
which is shown in Fig. 3. In the decision algorithm, we have
a user defined value d as part of the input and the algorithm
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Fig. 1. An approximation algorithm for the CSC problem.

Fig. 2. Replacing Steps 3, 4, and 5 of the algorithm in Fig. 1.



returns either “yes” or “no.” The main difference is that
instead of trying to find a small radius b together with a
solution to ðDR;NR;HR; bÞ as in the modified algorithm, we
test Conditions (a) and (b) in Step 6.1. Note that the
inequality distðsp; hpÞ þ distðhp;i;2; h‘iÞ � 2d is much stron-
ger than the inequality distðhp;i;2; h‘iÞ � 2d which holds in
the modified algorithm. Thus, Conditions (a) and (b)
together are much stronger than the existence of a solution
to ðDR;NR;HR; 2dÞ. So, if the decision algorithm returns
“yes,” then we can always get a solution to ðDR;NR;
HR; 2dÞ. However, it is possible that Condition (b) does not
hold but a solution to ðDR;NR;HR; dþ 1Þ exists. For
example, when distðspjU ; hpjUÞ ¼ distðhp;i;2jU; h‘i jUÞ ¼ d and
ðjUj � distðh‘i jU ; hpjUÞÞ ¼ 1, the inequality distðsp; hpÞ þ
distðhp;i;2; h‘iÞ � 2d does not hold but it is still possible to
have a solution to ðDR;NR;HR; dþ 1Þ.

5 HEURISTICS FOR MUTATION REGION DETECTION

In this section, we use the decision algorithm in Section 4
to design heuristics for the general mutation region
detection problem.

In order to find the true mutation regions of a target
chromosome C, we divide C into a setR of length-L regions
by cutting C at the positions L, 2 � L; . . . ; bc=Lc � L, where c
is the number of SNPs in C. In our experiments, we always
fix L ¼ 500. For each region R 2 R, we first obtain the
instance ðDR;NR;HR; dÞ of the SC problem in region R by
setting d ¼ bL=10c. If the decision algorithm outputs “yes,”
then we view R as a valid region. Otherwise, we view R as
an invalid region.

Let V be the valid length-L regions obtained as above.
We then keep modifying V as follows: Whenever V contains
two regions R1 and R2 that are at most 3L SNP sites apart
on the chromosome C, we modify V by replacing R1 and R2

with the smallest region of C that contains both R1 and R2.
For example, if L ¼ 500 and [1, 500] and [1001, 1500] are
two regions in V, then we replace them by the larger region

[1, 1500]. Finally, we output the first few (say, 3 or 4) largest
regions in V as the mutation regions of C. This completes
the description of our first heuristic for mutation region
detection. For convenience, we call it Heuristic 1.

We have tested the performance of Heuristic 1 on some
simulated data. Our experimental data show that Heuristic 1
often outputs several disjoint mutation regions that indeed
belong to a single long true mutation region of the target
chromosomeC. If we just report one of them, a big portion of
the true mutation region will be missing. Therefore, we
further keep modifying the set V1 of mutation regions found
by Heuristic 1 as follows: Whenever V1 contains two regions
R1 and R2 that are at most 7L SNP sites apart on the
chromosome C, we modify V1 by replacing R1 and R2 with
the smallest region of C that contains both R1 and R2. After
modifying V1 in this way, we output the regions in it. For
convenience, we call the new heuristic Heuristic 2.

We have tested the performance of Heuristic 2 on some
simulated data. Our experimental data show that Heuristic 2
often outputs a mutation region that can be obtained from a
true mutation region of the chromosome C by deleting a
number of SNPs in its left or right end. In other words, by
extending a mutation region found by Heuristic 2 in both
(left and right) directions, we obtain a true mutation region
of C. This motivates us to modify the set V2 of mutation
regions found by Heuristic 2 as follows: For each region
R 2 V2, we try to extendR alongC in both directions each up
to 4L SNP sites. More precisely, if there are at least 4L SNP
sites to the left (respectively, right) ofR on C, then we divide
the 4L SNP sites immediately to the left (respectively, right)
of R into a setR0 of four regions each of length L; otherwise,
we divide all SNP sites to the left (respectively, right) ofR on
C into a setR0 of at most four regions, all of them except one
are of length L. For each R0 2 R0, we ignore the normal
individuals to obtain the instance ðDR0 ; ;; HR0 ; dÞ of the SC
problem in region R0 and call the decision algorithm to
approximately solve the SC problem on input ðDR0 ; ;; HR0 ;
dÞ. If the algorithm outputs “yes” on input ðDR0 ; ;; HR0 ; dÞ
and R0 is within a distance of L SNP sites to R on C, then we
extend R to include R0. After modifying each region R in the
set V2 in this way, we output the regions in the set as the
mutation regions ofC. For convenience, we call this heuristic
Heuristic 3.

6 IMPLEMENTATION

We have implemented the algorithms in C++ to obtain a
software package that can run on a Windows machine. It
has two versions: one of them provides a graphical user
interface while the other does not. To run the package, one
has to prepare three input files: children.ped, genotype.txt,
and haplotype.phased. Here, children.ped contains the
basic information about the input individuals such as their
names, genders, and diseased statuses. File genotype.txt
corresponds to the union of D and N in Section 2 and hence
contains the genotype data of the input (diseased or normal)
individuals. File haplotype.phased corresponds to H in
Section 2 and hence contains the confirmed haplotype data
of some individuals in the same population as the input
individuals. For the reader’s convenience, we provide an
example haplotype.phased which contains the haplotype

506 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 2, MARCH/APRIL 2012

Fig. 3. A decision algorithm.



data for chromosome 1 of 170 unrelated Japanese in Tokyo
and Han Chinese in Beijing. These data were downloaded
from HapMap (http://hapmap.org). Given the three files
children.ped, genotype.txt, and haplotype.phased, our
package outputs the predicted mutation regions for them.
Each output region is shown by the indexes of its starting
SNP and ending SNP sites on the chromosome.

7 EXPERIMENTS

In order to evaluate the performance of the heuristics and the
feasibility of the mathematical model proposed in this paper,
we have written a program in C++ to produce simulated
data. The program takes a pedigree and the haplotype data
for the whole chromosome of each founder in the pedigree
as input. It generates the haplotype data for the remaining
individuals in the pedigree using the standard �2 model for
recombination with the parameter (the degree of freedom
divided by 2) equal to 4 [2] and according to the male/
female averaged genetic map for chromosome 1 down-
loaded from HapMap (http://hapmap.org). The haplotype
data of a nonfounder in the pedigree are generated to
randomly inherit one strand of the four-strand chromatid
bundle from each parent of the nonfounder. A mutation
point is selected uniformly at random from the SNP sites of
the chromosome and it appears on one strand of the
haplotype pair in the diseased founder. (Each pedigree has
one diseased founder.) Each diseased offspring is forced to
inherit (from each of its parent) the strand with the mutation
point and the normal offsprings are forced to inherit the
strand without the mutation point. In this way, we can
guarantee that there is at least one true mutation region.
Moreover, since we know the haplotype data of all the
individuals in the simulations, we can easily find the true
mutation regions. By definition (see Section 2), there may

exist more than one true mutation region. In our experi-
ments, we find that the chance to have more than one true
mutation region is less than 1 percent. Thus, from now on we
just use the unique true mutation region containing the
mutation point in the rest of the paper.

In our experiments, we use the haplotype data for
chromosome 1 of 170 unrelated Japanese in Tokyo and Han
Chinese in Beijing as our reference database. The founders
of an input pedigree (and hence their haplotype data) are
randomly chosen from this database. We note that there are
116,415 SNPs in chromosome 1. When we run our programs
(to evaluate their performance) on the simulated data, we
delete the haplotype data of the founders from the reference
database H (to avoid trivial solutions).

To evaluate our programs, we use six different pedi-
grees. They are shown in Figs. 4, 5, 6, 7, 8, and 9 and are
denoted by P1, P2; . . . ; P6, respectively. Pedigree P1 is
generated manually. The rest of pedigrees are modified
from P1. No couple is allowed to share any common
ancestor in all the six pedigrees. Pedigrees P1 through P4

have five generations and each of them has 2, 3, 4, and 5
diseased individuals as part of the input for our program in
the latest generation, respectively. Pedigrees P5 and P6 have
six and seven generations, respectively. In each figure, a
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Fig. 4. A pedigree P1 spanning five generations among which the
youngest consists of two diseased individuals and eight normal
individuals.

Fig. 6. A pedigree P3 spanning five generations among which the
youngest consists of four diseased individuals and eight normal
individuals.

Fig. 7. A pedigree P4 spanning five generations among which the
youngest consists of five diseased individuals and 10 normal individuals.

Fig. 5. A pedigree P2 spanning five generations among which the
youngest consists of three diseased individuals and seven normal
individuals.

Fig. 8. A pedigree P5 spanning six generations among which the
youngest consists of two diseased individuals and eight normal
individuals.



square represents a male, while a circle represents a female.
Moreover, a filled square (respectively, circle) represents a
diseased male (respectively, female), while an unfilled
square (respectively, circle) represents a normal male
(respectively, female). Furthermore, if two circles (respec-
tively, squares) enclose the same number in the figure, then
they correspond to the same male (respectively, female) and
their circumferences (respectively, sides) are dashed. This
makes the figure more readable. Note that our programs
only take the individuals in the youngest generation of the
pedigree as input. So, to emphasize the youngest genera-
tion, we use a dotted rectangle to enclose them at the
bottom of the pedigree. In this way, one can easily find out
that P1, P2, P3, and P4 have 10, 10, 12, and 15 individuals in
their youngest generation, respectively. Moreover, one can
see that the four pedigrees have different structures,
because they have 2, 3, 4, and 5 diseased individuals in
the youngest generation, respectively.

We have done 150 experiments for each pedigree and
calculated the average performance of our programs. We
use precision and recall to evaluate the performance of our
programs. The correctly detected mutation regions are the
intersection of the regions output by the computer program
and the true mutation regions. Here, precision is defined as
the number of SNPs in the correctly detected mutation
regions divided by the total number of SNPs in the regions
output by the program. The value of recall is defined as the
number of SNPs in the correctly detected mutation regions
divided by the total number of SNPs in the true mutation

regions. So, if the value of recall is 1, then all the SNPs in the
true mutation regions have been output by the program.
Similarly, if precision is 1, then all the SNPs reported by the
program are in the true mutation regions.

The columns “P1” through “P4” in Table 1 show our
experimental results for P1 through P4, respectively. The
table consists of three parts separated by two consecutive
horizontal lines. The first (respectively, second or third) part
shows the result of Heuristic 1 (respectively, Heuristic 2 or
Heuristic 3). Note that, in terms of recall, Heuristic 3 always
gives the best results. Each part has three rows: “longest,”
“first 2 longest,” and “first 3 longest.” The row “longest” is
the result that our program just outputs the longest detected
region. The row “first 2 longest” is the result that our
program outputs the first two longest detected regions as
the output. The row “first 3 longest” is the result that our
program outputs the first three longest detected regions as
the output. In any case, if the output detected regions have
no overlap with the true mutation regions, both precision
and recall are treated as 0.

By the columns “P1” and “P2” in Table 1, the average recall
values for the 150 tests are 90.3 and 86.3 percent, respec-
tively. This implies that the reported regions for P1 and P2

cover 90.3 and 86.3 percent of the true mutation regions,
respectively. The precision values 48.3 and 58.7 percent at
the bottom of the columns “P1” and “P2” in Table 1 indicate
that the sizes of the reported mutation regions are about
twice of that for the true mutation regions. This is still very
useful for narrowing the region for searching the mutation
gene(s), which is the main purpose here. From the columns
“P1” through “P4” in Table 1, we can see that the values of
both precision and recall decrease when the number of
diseased individuals increases. One of the possible reasons
might be that the average length of the true mutation regions
becomes shorter when the number of diseased individuals
increases. Table 2 lists the average length of the true
mutation regions for P1 through P6. For pedigrees P1 to P4,
where all the four pedigrees have five generations, the length
of the true mutation regions decreases from 7,107 to 4,128
with the increment of the number of diseased individuals. By
the definition of the true mutation regions, when there are
more diseased individuals, the length of the true mutation
regions shared by all the diseased individuals will certainly
decrease. Comparing pedigrees P1,P5, and P6, where they all
have two diseased individuals in the input set and have 5, 6,
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Fig. 9. A pedigree P6 spanning seven generations among which the
youngest consists of two diseased individuals and eight normal
individuals.

TABLE 1
The Results for P1 through P6, Where Each Percentage Is Relative to 150 Tests

The table consists of three parts separated by two consecutive horizontal lines. The first (respectively, second or third) part shows the results of
Heuristic 1 (respectively, Heuristic 2 or Heuristic 3).



and 7 generations, respectively, the length of the true

mutation regions also decreases when the number of

generations increases.
P5 and P6 demonstrate the situations where there are six

and seven generations, respectively. When there are two

diseased individuals, the average recall of the 150 tests are

very similar to that of five generations. The results are

shown in the columns “P5” and “P6” in Table 1.
We have run the programs on a computer with Intel (R)

Core (TM) 2 CPU 2.40 GHz and 4 GB memory. The running
times of the heuristics range from several minutes to dozens
of minutes for the six pedigrees. We find that Heuristics 1
and 2 have almost the same running time for all the six
pedigrees, and hence we only list the average running times
of Heuristics 1 and 3 in Table 3.

8 CONCLUDING REMARKS

We have proposed a mathematical model for inferring the

allele-sharing status of a given set of individuals using a

database of confirmed halpotypes as reference. Our

experimental data show that the method can report about

50 to 90 percent SNPs in the true mutation regions in

different cases.
Based on the mathematical model, we know that if HR

contains all the real haplotype pairs ð~hi;1; ~hi;2Þ for all

gi 2 DR [NR, then by setting d ¼ 0, the SC problem always

has a solution overR. Note that, when we do the experiments,

we delete the haplotype data of all the founders from the

reference database. Thus, for some cases, the recall value is not

very big. With the increasing of the size of the database, we

can expect that the value of recall can be improved.
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TABLE 3
The Average Running Times (in Minutes) of Heuristics 1

through 3 for P1 through P6

TABLE 2
The Average Length of the True Mutation Regions and the

Regions Computed by the Heuristics for P1 through P6
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