
Dependent Latch Identification in the Reachable State Space

Chen-Hsuan Lin Chun-Yao Wang
Department of Computer Science

National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
adonis@nthucad.cs.nthu.edu.tw wcyao@cs.nthu.edu.tw

Abstract— The large number of latches in current designs increase the
complexity of formal verification and logic synthesis, since the growth
of latch number leads the state space to explode exponentially. One
solution to this problem is to find the functional dependencies among
these latches. Then, these latches can be identified as dependent latches or
essential latches, where the state space can be constructed using only the
essential latches. This paper proposes an approach to find the functional
dependencies among latches in a sequential circuit by using SAT solvers
with the Craig interpolation theorem. In addition, the proposed approach
detects sequential functional dependencies existing in the reachable state
space only. Experimental results show that our approach could deal with
large sequential circuits with up to 1.5K latches in a reasonable time
and simultaneously identify the combinational and sequential dependent
latches.

I. INTRODUCTION

In the formal verification of sequential systems, a main task is
to test the equivalence of two given sequential circuits, also called
sequential equivalence checking (SEC). Examining two sequential
circuits S1 and S2 for equivalence can be reduced to a reachability
analysis by building a product machine of the two sequential circuits
(called a miter in [4]). Since the state space of a product machine
is the Cartesian product of the state space of S1 and S2, and it
grows exponentially with the increase of the number of latches in it,
the corresponding reachability analysis of the machine will become
more difficult. Also, the performance of SEC strongly depends on
the reachability analysis [5] of the product machine. In addition
to SEC, many other tasks for sequential circuits, such as property
checking or model checking [19], can be reduced to a reachability
analysis as well. Hence, reachability analysis plays an important role
in the formal verification of sequential systems and its efficiency
would influence the performance of formal verification for sequential
circuits dramatically.

There are many approaches, such as early quantification [12],
approximative state space traversal [7][9][20], and functional depen-
dencies [10][24], to improve the efficiency of reachability analysis.
Functional dependencies, which this work focusing on, is to identify
dependent latches in a machine. Since some latches in a system might
functionally depend on the other latches, it is possible that not all
latches in a system have to be considered during the reachability
analysis. Therefore, the identification of dependent latches, that
functionally depend on the other latches within the system, plays
an important role in reducing the state space of a product machine.
It also helps to minimize the number of latches in a sequential circuit.

To identify the dependent latches in a sequential circuit, the
functional dependencies between these latches must be discovered.
The functional dependencies are the relationships between these
latches, and their corresponding Boolean functions are called de-
pendency functions. With information obtained about dependency
function, dependent latches can be replaced by other latches. Hence,
a sequential circuit might be optimized by removing these dependent
latches without changing the circuit’s functionality [16]. In addition,
disregarding dependent latches can avoid the explosive expansion
of Binary Decision Diagram (BDD) [2] size during the BDD-based
reachability analysis [10].

This work was supported in part by the National Science Council of R.O.C.
under Grant NSC 97-2220-E-007-042 and NSC 97-2220-E-007-034.

Equivalence relation (Fi ≡ Fj) and opposition relation (Fi =
¬Fj) are examples of some typical functional dependencies. [11]
and [24] have proposed algorithms to identify them. However, there
may exist many other relations among these latches. For instance,
AND relation (Fi = Fj • Fk) is another relation. An approximate
approach in [13] directly extracts dependency functions from the
latches’ transition functions by using BDDs. But the scalability of the
approach is still restricted to the BDD size. As a result, this approach
might not efficiently identify all functional dependencies among
latches. Therefore, another approach [15] detects the functional
dependency by using a SAT solver with the Craig interpolation
theorem [6]. With the great recent advances on SAT solvers [8][17],
this approach can identify more functional dependencies among
latches.

Although [15] exploited a SAT solver to find more functional
dependencies among latches, the identified dependency functions
may not be precise enough because of using maximal input sup-
port candidates. Furthermore, it only reports which latches have a
dependency function, but does not explicitly indicate the dependent
latches. Thus the identified results cannot be directly used for further
applications. On the other hand, since [15] extracts the functional
dependency from the latches’ transition functions, its functional
dependency is a combinational functional dependency, which holds
in the whole state space. As for the sequential functional dependency,
which holds only in the reachable state space, [15] cannot explore
it. The sequential functional dependency is capable of identifying
additional dependent latches in a circuit after a specific timeframe.

The contributions of this paper are as follows: (I) An ordered
destroyed cost heuristic is derived to minimize the input support
candidates such that as many dependent latches are identified as pos-
sible. The corresponding dependent functions among the latches are
derived as well. (II) An efficient method for discovering sequential
functional dependencies among latches by exploiting the incremental
SAT technique and the early detection of dependent latches are
proposed. As a result, more dependent latches could be identified
at each timeframe.

II. PRELIMINARIES

A. Functional dependency of latches

Definition 1: A latch’s transition function is a Boolean function
f(X) whose input domain consists of the primary inputs (PIs) and
pseudo primary inputs (PPIs). The PPI is the output signal of a latch.
This determines the next state value of this latch.
Definition 2: Given a latch’s transition function r(X) : Bm →
B, and a vector of other latches’ transition functions S =
〈s1(X), . . . , sn(X)〉, where si(X) : Bm → B for i = 1, . . . , n
over the same input domain {X ∈ Bm|X = 〈x1, . . . , xm〉}. The
total number of PIs and PPIs (latches) is m. r functionally depends
on S if there is a Boolean function d : Bn → B, called the
dependency function, such that r(X) = d(s1(X), . . . , sn(X)). The
latch r is called a replaced latch, and the latches in vector S are
called substituted latches.

Note that the replaced latch might depend only on a subset of
the substituted latch set {s1(X), . . . , sn(X)} when the dependency
function is written as r(X) = d(s1(X), . . . , sn(X)).

978-1-4244-2749-9/09/$25.00 ©2009 IEEE

7B-1

630

B. Existence of functional dependency

A necessary and sufficient condition to examining the existence
of functional dependency among latches is described as follows.
Theorem 1 [13]: Given the transition function of a replaced latch
r and the transition functions of substituted latches S, let d0 =
{Y ∈ Bn|Y = S(X) and r(X) = 0, X ∈ Bm} and d1 =
{Y ∈ Bn|Y = S(X) and r(X) = 1, X ∈ Bm}. The dependency
function d exists if and only if d0 ∩ d1 is empty. Therefore, d0 ,
d1 , and Bn \ (d0 ∪ d1) could be considered as the off-set, on-set,
and don’t care-set of d, respectively. In brief, when d0 ∩ d1 = φ,
r(X) = d(S(X)) is always true for all input combinations of X .

Theorem 1 can be used to examine whether the dependency
function d exists or not.

C. Exploration of functional dependency by SAT solvers

1) Identification model: [15] defines a general model, as seen in
Fig. 1, to establish whether the dependency function exists by using
a SAT solver. This method will extract the combinational part of a
sequential circuit with l latches. This combinational part includes
each latch’s transition function with the PIs, PPIs, and pseudo
primary outputs (PPOs), the input signal of latches, as the signals (the
primary outputs will be ignored in this work). xi, i = 1, . . . , m is one
of PIs or PPIs and yj , j = 1, . . . , l is one of PPO functions. Each yj

represents the next state transition function of latch j, so this latch’s
next state value = yj(x1, . . . , xm). The combinational part of the
circuit is instantiated into two copies called Combon and Comboff

to form the circuit part of the model. For every variable v in Combon,
there is starred counterpart v∗ in Comboff . The constraint part of
the model selects (n+1) out of l latches which are considered in the
circuit, (n + 1) ≤ l. With yj and yj

∗, j = 0, . . . , n in the constraint
part, y0 = 1 would be set as the constraint in Combon and y∗

0 = 0
in Comboff . This action results in the domain of X (resp. X∗)
restricted to the sub-domain leading y0 = 1 (resp. y∗

0 = 0). Similarly,
the domain of 〈y1, . . . , yn〉 (resp. 〈y∗

1 , . . . , y∗
n〉) would be restricted

to the sub-domain based on the constrained domain of X (resp. X∗).

1

1 2 mx x x * * *
1 2 mx x x

0 1 2 ny y y y * * * *
0 1 2 ny y y y

Combon Comboff

0

X X*

= = =. . .

Circuit Part

Constraint Part

Fig. 1. The identification model for SAT solvers [15].

2) Model operation: To check whether a dependency function
d exists among a replaced latch r and the substituted latches
〈s1, . . . , sn〉, y0 and 〈y1, . . . , yn〉 can be regarded in this model as
the replaced latch r and the substituted latches 〈s1, . . . , sn〉, respec-
tively. Then, the constrained sub-domain of 〈y1, . . . , yn〉 can be taken
as the on-set d1 and the constrained sub-domain of 〈y∗

1 , . . . , y∗
n〉 as

the off-set d0. Therefore, if the sub-domain of 〈y1, . . . , yn〉 and the
sub-domain of 〈y∗

1 , . . . , y∗
n〉 overlap, it indicates that d0 ∩ d1 is not

empty and the dependency function d does not exist according to
Theorem 1.

3) Model transformation to a SAT problem: The circuit part
Combon and Comboff of the model in Fig. 1 can be converted
to conjunctive normal forms (CNFs) Con and Coff , respectively
[1]. Similarly, the constraint part can be converted to a CNF :
y0 ∧ ¬y∗

0 ∧ (y1 ≡ y∗
1) ∧ . . . ∧ (yn ≡ y∗

n). Therefore, the complete

CNF of the identification model is

Cmodel = Con ∧Coff ∧y0 ∧¬y∗
0 ∧ (y1 ≡ y∗

1)∧ . . .∧ (yn ≡ y∗
n),

where (yj ≡ y∗
j) stands for (yj ∨ ¬y∗

j) ∧ (¬yj ∨ y∗
j).

Finally, SAT solvers can be used to examine whether Cmodel is
satisfiable or unsatisfiable.
Satisfiable: There exists one assignment of 〈y1, . . . , yn〉 and
〈y∗

1 , . . . , y∗
n〉 such that (y0 = 1) and (y∗

0 = 0) are both true. That is,
d0 ∩ d1 is not empty and the dependency function d does not exist.
Unsatisfiable: No assignment of 〈y1, . . . , yn〉 and 〈y∗

1 , . . . , y∗
n〉 can

be found, so that d0 ∩ d1 is empty and the dependency function d
exists.

The summaries above are based on the following theorem in [15].
Theorem 2 [15]: Given the transition function r(X) of a replaced
latch and the transition functions 〈s1(X), . . . , sn(X)〉 of substituted
latches, a dependency function d exists between the replaced latch
and substituted latches if, and only if, the corresponding Cmodel is
unsatisfiable.

D. Determination of dependency function by Craig Interpolation

Theorem 3 [6]: (Craig Interpolation Theorem) In two CNFs Ca

and Cb with the same common input variables 〈v0, . . . , vn〉, if Ca ∧
Cb is unsatisfiable, there exists a Boolean formula I only referring
to the common input variables 〈v0, . . . , vn〉 with the property that
Ca ⇒ I and I ⇒ ¬Cb.

This Boolean formula I is called the interpolant of Ca and
Cb. The interpolant can be constructed in linear time from the
refutation proof [14][18][21], and current SAT solvers [8][17] can
easily produce it from an unsatisfiable problem.
Theorem 4 [15]: For the CNF Cmodel = Con ∧Coff ∧ y0 ∧¬y∗

0 ∧
(y1 ≡ y∗

1) ∧ . . . ∧ (yn ≡ y∗
n), if it is unsatisfiable, we can partition

Cmodel into Ca and Cb (i.e., Cmodel = Ca∧Cb) with Ca = Con∧y0

and Cb = Coff ∧¬y∗
0 ∧ (y1 ≡ y∗

1)∧ . . .∧ (yn ≡ y∗
n). The common

input variables of Ca and Cb are Y = 〈y1, . . . , yn〉. Because the
Cmodel is unsatisfiable, there exists an interpolant formula I only
referring to the common variables Y , and I(Y) can be taken as the
dependency function d.

The detailed proof of Theorem 4 in [15] shows that I(Y) must be
an over-approximation of d1(Y) and must be disjoint from d0(Y).
Therefore, I(Y) is the valid dependency function, such that r =
I(s1, . . . , sn) is always true.

III. THE LIMITATIONS OF THE STATE OF THE ART

A. The difference between functional dependencies and dependent
latches

The dependency functions among latches can be explored by
previous work [15], but it still has a gap to the dependent latch
identification. For instance, if three latches A, B, and C in a sequen-
tial circuit have circular functional dependencies: A = fA(B, C),
B = fB(A, C), C = fC(A, B). The previous method could only
report that three functional dependencies exist but cannot identify
which latches are dependent.

B. The effect of input support candidate selection

To identify all functional dependencies in a sequential circuit, the
previous work would take all the other latches as the input support
candidates, named maximal input support candidates in this work,
to explore the dependency function of a latch. But with maximal
input support candidates, the dependency functions obtained in the
previous work may contain some redundant input supports and rely
on dependent latches, and these results do not benefit the dependent
latch maximization. Two simple examples, as shown in Fig. 2(a)
and Fig. 2(b), are used to demonstrate the effects of input support
candidate selection.

631

7B-1

a

b

f3

f1
o1

o2

o3

c
f2 b

f4

f1
o1

o2

o4

f2

a

f3
o3

(b)(a)

Fig. 2. Two examples demonstrating the effect of maximal input support
candidates.

1) Dependency functions containing redundant input supports:
Fig. 2(a) is a sequential circuit with three latches (f1, f2, f3) and
three PIs (a, b, c). As the previous work examines whether f3’s
functional dependency exists, it would take {f1, f2}, the maximal
input support candidates, as its input support candidates. With the
proposed identification model, it sets n to 2 in the constraint part
of the model, and regards y0 and 〈y1, y2〉 in the model as the
replaced latch f3 and the substituted latches 〈f1, f2〉, respectively.
As a result, it will get a dependency function f3 = f1 • f2 as
can be observed from Fig. 2(a). However, if f3’s input support
candidates are restricted to {f1}, a more simplified, but not intuited
dependency function f3 = f1 would be found. This is because
f3 = f1 • f2 = (ab) • (b + c) = ab + abc = ab = f1. In
this work, we will remove as many redundant variables from the
input support candidate set as possible, to obtain more simplified
dependency functions.

2) Dependency functions relying on dependent latches: Fig. 2(b)
is a sequential circuit with four latches (f1, f2, f3, f4) and two
PIs (a, b). As the previous work examines whether f3’s functional
dependency exists, it would take {f1, f2, f4}, the maximal input
support candidates, as its input support candidates. As a result, it
would get a dependency function f3 = f4. Dealing in the same
way with f1, f2 and f4, it will also get f4 = f3, and will
regard f1 and f2 as independent latches. Although the dependency
functions of f3 and f4 do not have redundant input supports,
that is, they are simplified dependency functions, these results will
significantly influence the dependent latch identification. According
to the dependency functions of f3 and f4 explored by the previous
work, only one of them can be identified as a dependent latch, so
the other one should be an essential latch. In this work, however, the
input support candidates of f3 and f4 will be restricted to {f1, f2},
and their corresponding dependency functions f3 = f1 • f2 and
f4 = f1•f2 will be obtained. According to the dependency functions,
f3 and f4 can be simultaneously identified as dependent latches.

IV. THE ORDERED DESTROYED COST HEURISTIC

In this section, an example in Fig. 3 is used to demonstrate the
heuristic for the dependent latch identification in sequential circuits.
At first, the identification model is used to determine which latch’s
dependency function exists with maximal input support candidates,
that is, by considering all other latches as input support candidates.
But its dependency function will not currently be derived due to
inaccuracy. Thus, two sets of latch P : {L1, L2, L3, L9, L10} and
I : {L4, . . . , L8} are distinguished, where P is the set of possibly
dependent latches in which functional dependencies exist, and I is
the set of independent latches.

A. Refinement of the set P by the set I

Latches in I do not have any functional dependency, hence, they
cannot be identified as dependent latches. That is, they are the
essential latches of the circuit and can be used as the substituted
latches to replace the latches in P . We can determine whether the
latches in P : {L1, L2, L3, L9, L10} depend solely on the latches in
I : {L4, . . . , L8}. In addition, constant latches in a circuit will also
be identified in this step since constant latches can be presented as

a
b

c

d

o1

o2

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10 o3

Fig. 3. A demonstrating example.

having functional dependencies over any input support candidates.
For example, to examine whether L1 depends only on the set I
or is a constant latch using the identification model, the n is set
to 5 in the constraint part of the model, and y0 and 〈y1, . . . , y5〉
are regarded as the replaced latch L1 and the substituted latches
〈L4, . . . , L8〉, respectively. The other latches in P can also be
examined in the same manner. In Fig. 3 it can be found that L9

and L10 are the latches dependent on I , and their input support
candidate sets are refined from {L1, . . . , L8, L10} and {L1, . . . , L9}
to {L4, . . . , L8}, and no constant latch exists in this example. As a
result, L9 and L10 are put with set R, which collects the dependent
latches depending on I and the constant latches. Then, set P is
updated from {L1, L2, L3, L9, L10} to {L1, L2, L3}.

B. Refinement of the set P by the ordered destroyed cost

After the refinement by I , the latches in P either depend on some
of the latches in P itself or some of the latches in P and I . That
is, each latch Li in P whose dependency function exists with input
support candidates P \{Li} or (P \{Li})∪I . Next, P is divided into
two disjointed sets PR and PI , where the latches in PR are dependent
on PI ∪ I . The goal is to maximize the PR set and minimize the PI

set. This is because the more latches in PR, the more latches that
can be identified as dependent latches.

An ordered destroyed cost is proposed as the guide for the
heuristic to move latches from P to PI . The same example is used to
demonstrate how to evaluate and use the destroyed cost. The physical
meaning of the destroyed cost will be discussed at the end of this
section.

To evaluate the destroyed cost of L3, denoted as dc3, L3 is
removed from the input support candidates of latches L1 and L2,
and the identification model is used to examine how many functional
dependencies would not exist without L3. That is, the number of
Lj’s functional dependencies with candidates (P \ {L3, Lj}) ∪ I
that will be destroyed by removing L3 are counted. In this example,
both L1’s functional dependency with input support candidates
{L2, L4, . . . , L8} and L2’s functional dependency with input sup-
port candidates {L1, L4, . . . , L8} would be destroyed without L3,
according to the identification model. This results in the destroyed
cost of L3=2.

After all calculations, we obtain the destroyed cost dc1=1, dc2=1,
and dc3=2. According to the descending order of the destroyed cost,
Li with the highest dci is removed to PI and it is checked whether
the remaining latches in P depend solely on the updated PI ∪ I . If
a latch in P satisfies this dependency condition, it can be moved to
PR. If P is not empty, Li can be further moved with the next highest
dci to PI and the operations mentioned above can be iterated.

For this example, L3 with dc3=2 is first moved to PI , and
the remaining latches {L1, L2} in P are checked to see if they
functionally depend on the updated PI∪I (updated PI : {L3}) using
the identification model. In this iteration, {L1, L2} have dependency
functions with input support candidates PI ∪I . Thus, they are moved

7B-1

632

to PR. Finally, P is empty, and the heuristic has partitioned P into
PI : {L3} and PR : {L1, L2}. All latches in PR functionally depend
on PI∪I . The pseudo code of evaluating the destroyed cost of latches
in P is shown in Fig. 4.

EvaluateDestroyedCost()
Input : set P , set I
Output : dci of each Li in P

for each latch Li in P
for all other latches Lj(j �= i) in P{

Check existence of FDj with input candidates
(P \ {Li, Lj}) ∪ I ;

if (remove Li destroys FDj)
dci++ ;}

return dci of each Li in P ;
* FDj is the functional dependency of latch Lj

Fig. 4. The pseudo code of EvaluateDestroyedCost function.

The results of this example using the proposed heuristic are shown
in Fig. 5. In this example, the approach can identify four latches
(PR : {L1, L2}, R : {L9, L10}) as the combinational dependent
latches by selecting (PI : {L3}, I : {L4, . . . , L8}) as the essential
(substituted) latches. In addition, dependent latches’ dependency
functions can be explored with more accurate input support can-
didates as compared to the maximal input support candidates used
in [15]. According to Theorem 4, the Boolean formulae of each
dependency function can also be derived, as shown in the bottom of
Fig. 5, by this heuristic.

Next, the physical meaning of the ordered destroyed cost is
explained. It was observed that latches with similar behavior would
have the same destroyed cost. Therefore, grouping the latches by
the destroyed cost and consecutively moving Li from the same
group to PI until this group becomes empty would speed up the
identification process. Furthermore, dealing first with groups having
a higher destroyed cost might identify more dependent latches. This
is because latches in the higher cost group might have a higher
probability of replacing more dependent latches. In this example,
If L3(dc3=2) is moved to PI , it can replace two latches, L1 and
L2, with the independent latches {L4, L5}. However, if L1(dc1=1)
is moved to PI , only one latch, L2 or L3, could be replaced because
the exact input support sets of L2 and L3 are L2 = {L3, L4} and
L3 = {L1, L2}, respectively. Therefore, the order in which latches
are moved from P to PI will influence the results obtained.

C. Sequential functional dependency in the reachable state space

To find more functional dependencies which exist in the reachable
state space but not in the whole state space, an identification model
with t timeframes is proposed, as shown in Fig. 6. To build this
identification model, (0, . . . , t−1) circuit parts of the model in Fig. 1
are expanded by wiring internal PPOs and PPIs, and then connecting
the same constraint part as that in Fig. 1 at the end of model.
This model can detect the dependency for multiple timeframes.
This functional dependency across multiple timeframes is called the
sequential functional dependency in this paper.

To find the functional dependency at timeframe t, the identification
model is first constructed as shown in Fig. 6. Then the same method
as that mentioned in Section II is used to detect the dependencies
in the constraint part of Fig. 6. In addition, given that a sequential
system begins with an unrestricted initial state S0, the reachable state
space at each timeframe would be monotonically reduced and a fixed
point of reachable state space would be reached. That is, Sj ⊆ Si

if j > i (St is the reachable state space at the tth timeframe).
Therefore, with the property of state space shrinking, if the functional
dependency of Li does not exist at timeframe t, it might exist at
timeframe k (k > t). However, the functional dependency of Li

found at the timeframe t must still hold at the succeeding timeframe
k (k > t).

Essential latch sets PI : {L3}, I : {L4, L5, L6, L7, L8}
Dependent latch sets PR : {L1, L2}, R : {L9, L10}
Corresponding input support candidates:

L10’s input support candidates = I
L9’s input support candidates = I
L2’s input support candidates = PI ∪ I
L1’s input support candidates = PI ∪ I

Corresponding dependency functions:

L10 = ¬(L6 + L7 + L8)
L9 = L6 + L7 + L8

L2 = L3 • ¬L4

L1 = L3 • ¬L5

Fig. 5. The combinational dependent latches identified by this heuristic.

L0

…
…

…
…Comboff

Combon

…
…

Comboff

Combon
…

…

Comboff

Combon

…
…

PI0s

PI0 *s

PI1s

PI1 *s

PI t - 1s

PI t - 1 *s

X

X*

X

X*

Constraint Part
of Timeframe t

S1 S t - 1

Ll

L0*

Ll*

S0

Fig. 6. The multi-timeframe model for sequential functional dependencies.

This approach will feed PI ∪ I , which is found at the current
timeframe, to the next timeframe model to get more dependencies
until run time limit is reached. If that is found, the previous depen-
dency functions will be updated. Before feeding PI ∪ I to the next
timeframe model, a refined process will be conducted to examine
whether latches in PI are actually used by a dependent latch’s
dependency functions at the current timeframe. This is because
that the heuristic might not obtain the optimal results every time,
therefore, this process is used to refine the results. If some latches
in PI are not used, they will be removed from PI to P and the
operations mentioned above will be iterated. For the last example,
PI ∪I = {L3}∪{L4, L5, L6, L7, L8} is fed into the next timeframe
model. Since L3 in PI is actually used by the derived dependency
functions of L1 and L2, the refined process will be terminated. At
the next timeframe, a new sequential dependency function (L6 =
¬L7 • L8) can be found. Hence, there is one more dependent latch
L6 after timeframe 2. The previous dependent latches’ dependency
functions which depend on L6 are also updated. In this example, the
dependency function of L9 is updated from (L9 = L6 + L7 + L8)
to (L9 = ¬L7 • L8 + L7 + L8 = L7 + L8) and the dependency
function of L10 is updated from (L10 = ¬(L6+L7+L8)) to (L10 =
¬(¬L7 • L8 + L7 + L8) = ¬(L7 + L8)) if L6 is considered as a
dependent latch after timeframe 2. The combinational and sequential
dependent latches identified by this approach are summarized in Fig.
7.

Dependent latches: {L1, L2, L9, L10} after timeframe 1

Corresponding dependency functions:

L10 = ¬(L6 + L7 + L8)
L9 = L6 + L7 + L8

L2 = L3 • ¬L4

L1 = L3 • ¬L5

Dependent latches: {L1, L2, L6, L9, L10} after timeframe 2

Corresponding dependency functions:

L10 = ¬(L7 + L8)
L9 = L7 + L8

L6 = ¬L7 • L8

L2 = L3 • ¬L4

L1 = L3 • ¬L5

Fig. 7. The dependent latches identified at different timeframes by this
approach.

The following paragraphs will explain an accelerated technique
used for the sequential dependent latch identification and introduce
the application of the found sequential functional dependencies.

633

7B-1

1) Accelerated technique for the sequential dependent latch
identification: The accelerated technique consists of two parts, the
incremental technique [25] of SAT solvers and the early detection
of dependent latches. To find the sequential functional dependency
at timeframe t using SAT solvers, it needs to set the variables in the
CNFs of circuit parts belonging to timeframe (0, . . . , t − 1). Since
these variables at timeframe (0, . . . , t−1) have been processed, much
useful information is available to speed up the process at timeframe
t. Thus, the heuristic uses the incremental technique of SAT solvers
to reuse the learned clauses at timeframe (0, . . . , t−1). Furthermore,
dependent latches existing at timeframe t′ (t′ ≥ 1) must also exist
at timeframe t (t > t′), that is, sequential dependent latches existing
at timeframe t (t > 1) may have already existed at timeframe t′

(1 ≤ t′ ≤ t− 1). Therefore, these dependent latches detected earlier
at timeframe t′ (1 ≤ t′ ≤ t−1) are recorded and much run time could
be saved in identifying all sequential dependent latches at timeframe
t (t > 1). In other words, to identify dependent latches at timeframe
t, our approach would identify dependent latches from timeframe 1
to t, and only latches in PI ∪ I at the current timeframe are needed
for the next timeframe.

2) Application of sequential functional dependency: This heuris-
tic can find the combinational functional dependency existing in the
whole state space, as well as the sequential functional dependency
existing in the reachable state space only. Therefore, an application
of this work is to reduce the efforts of reachability analysis. With
information about the sequential functional dependency at each time-
frame, the reachability analysis engine which traverses the reachable
state space of a sequential circuit can ignore some dependent latches
after a certain timeframe. Hence, the searching space is significantly
reduced. Furthermore, for a sequential circuit allowed to run t don’t-
care initializing cycles from unrestricted initial states before entering
the normal operation states, the state space in timeframe (0, . . . , t−1)
can be ignored (delay replaceability in [23]). Thus, the sequential
functional dependencies found at timeframe t could be used to further
optimize the design.

V. EXPERIMENTAL RESULTS

The proposed heuristic is implemented within SIS [22] environ-
ment and MiniSAT [8] is used as the SAT solver. The experiments
are conducted on a Linux platform (CentOS 4.4) with a 2.194
GHz machine and 8GBytes memory. To show the scalability of the
algorithm, a set of larger sequential circuits (more flip-flops (FFs))
are selected from ISCAS’89 and ITC’99 benchmarks.

The experimental results are shown in two subsections. Section
V.A shows the capability of identifying dependent latches of our
approach. Section V.B shows how dependent latch identification
quantitatively benefits the reachability analysis. The reason that
the proposed approach does not compare against [15] is that [15]
reports the functional dependencies rather than the dependent latches.
Therefore, only the results of the proposed approach are reported.

A. Dependent latch identification by the proposed approach

1) Combinational dependent latch identification: The experi-
mental results of combinational dependent latches identified by this
approach are shown in Table I. Columns 1 and 2 list the benchmarks
and the number of FFs (also called latches). The results of this
method are listed in Columns 3 to 6. |Dep. latch| represents the
number of identified dependent latches. |Ess. latch| represents the
number of essential latches which can be considered as substituted
latches to replace the dependent latches. Column 5 shows the
percentage of FFs which are identified as dependent latches (i.e.,
|Dep. latch| / |FF|). The final column is the CPU time of this
approach measured in seconds.

For example, s13207 circuit has 669 FFs, in which this approach
can identify 159 (5 + 154) dependent latches and 510 (453 + 57)

TABLE I
COMBINATIONAL DEPENDENT LATCH IDENTIFICATION IN ALL STATE SPACE.

Circuit |FF| |Dep. latch| |Ess. latch| Dep. latch
Time (s)

R + PR I + PI Ident. Ratio (%)

s5378 164 1 + 7 135 + 21 4.88 2.08

s9234 211 1 + 19 165 + 26 9.48 9.86

s15850 597 8 + 14 568 + 7 3.69 11.27

s13207 669 5 + 154 453 + 57 23.77 283.18

s38584 1452 2 + 11 1428 + 11 0.90 92.57

s38417 1636 0 + 71 1541 + 24 4.34 312.07

s35932 1728 0 + 0 1728 + 0 0 82.23

b12 121 0 + 2 117 + 2 1.65 0.11

b14 245 2 + 0 243 + 0 0.82 3.71

b15 449 0 + 0 449 + 0 0 5.79

b21 490 4 + 0 486 + 0 0.82 21.15

b22 735 6 + 0 729 + 0 0.82 67.74

TABLE II
SEQUENTIAL DEPENDENT LATCH IDENTIFICATION IN REACHABLE STATE SPACE

FOR 10, 000 SECONDS RUN TIME LIMIT.

Circuit |FF| All State Space Reachable State Space Unfolded All Dep.
|Dep.| |Dep.| Timeframe Ratio (%) Timeframe Ratio (%)

s5378 164 8 53 14 27.44 106 32.32

s9234 211 20 22 2 0.95 27 10.43

s15850 597 22 62 8 6.70 23 10.39

s13207 669 159 250 22 13.60 26 37.37

s38584 1452 13 32 4 1.31 7 2.20

s38417 1636 71 140 5 4.22 5 8.56

s35932 1728 0 0 0 0 9 0

b12 121 2 2 1 0 109 1.65

b14 245 2 2 1 0 27 0.82

b15 449 0 0 0 0 33 0

b21 490 4 4 1 0 13 0.82

b22 735 6 6 1 0 8 0.82

essential latches. Therefore, in s13207 circuit, 23.77% of the latches
in the circuit are the dependent latches. As demonstrated in Table I,
this approach can recognize the dependent latches such that fewer
latches have to be considered in the reachability analysis. In the
experiment, we observed that the proposed approach identifies more
dependent latches with the ISCAS benchmarks than with the ITC
benchmarks. This indicates that fewer dependent latches are in the
ITC benchmarks with unrestricted initial states.

2) Sequential dependent latch identification: The experimental
results on the sequential functional dependency in the reachable state
space are shown in Table II. The CPU time limit is set to 10, 000
seconds. Columns 1 and 2 list the benchmarks and the number of
FFs in it. Column 3 lists the number of identified dependent latches
considered in all state space (i.e., at the timeframe 1). The results of
sequential functional dependency are listed in Columns 4 through 6.
Column 4 shows the number of dependent latches identified after the
timeframe in Column 5. Column 6 shows the ratio of additionally
identified sequential dependent latches as compared with total FFs
in Column 2 (i.e., ((|Dep.| in Column 4) − (|Dep.| in Column 3))
/ |FF|). Column 7 lists how many timeframes can be unfolded and
examined within 10, 000 seconds run time limit. The ratio of the
number of overall dependent latches identified after the timeframe
in Column 5 is shown in the final column.

The experimental results show that other sequential functional
dependencies may exist in the circuit, which can be used for
reachability analysis and sequential circuit optimization. Take s5378
as an example: the state space could be reduced from 2164 to
2156 by ignoring the combinational dependent latches. Furthermore,
the state space could be shrunk from 2156 to 2111 by ignoring
other sequential dependent latches after the timeframe 14. However,
after the timeframe 14, there are no additional sequential dependent
latches can be identified. The reasons for it are the state space might
has shrunk to a fixed point or some sequential dependent latches
exist after the timeframe 107. But we cannot identify them with the

7B-1

634

TABLE III
THE EXPERIMENTAL RESULTS OF REACHABILITY ANALYSIS WITHIN A RUN TIME LIMIT IN THE ORIGINAL CIRCUITS AND THE OPTIMIZED CIRCUITS.

Circuit Time limit (s)
Ori. Opt. |RState| Improvement BDD Size

|FF.| Timeframe |RState| BDD size |FF.| Timeframe |RState| BDD size (Opt. / Ori.) (%) Reduction (%)

s5378 300, 000 164 6 6.77711e + 16 1, 564, 629 156 7 1.63316e + 17 452, 403 240.98 71.09

s9234 300, 000 211 12 4.64715e + 17 1, 651, 445 191 12 4.64715e + 17 1, 221, 122 100 26.10

s15850 600, 000 597 18 7.21485e + 07 5, 897, 688 575 18 7.21485e + 07 4, 383, 715 100 25.67

s13207 600, 000 669 43 4.82309e + 15 8, 301, 281 510 60 1.44247e + 17 10, 762, 172 2990.76 −29.64

s38584 900, 000 1, 452 13 1.61008e + 10 35, 855, 891 1, 439 13 1.61008e + 10 23, 424, 952 100 34.67

s38417 900, 000 1, 636 3 3.45877e + 18 315, 465 1, 565 3 3.45877e + 18 218, 134 100 30.85

Note: The number of BDD size is reported from VIS.

time limit.

B. Reachability analysis enhancement with the dependent latch
identification

This subsection provides the experimental results of the reacha-
bility analysis with and without using the results of the dependent
latch identification within VIS [3] environment, the state-of-the-art
academic formal verification tool. The experiments are conducted
on a Linux platform (CentOS 4.4) with a 2.194 GHz machine and
8GBytes memory. The sequential circuits in ISCAS’89 which have
dependent latches identified are selected as the benchmarks.

Although both the combinational and sequential dependent latches
in a sequential circuit can be identified by our approach, the experi-
ments only consider the combinational ones since VIS does not allow
setting the sequential dependent latches during reachability analysis.
The optimized version of one benchmark is derived by removing out
the combinational dependent latches of the original circuit. The initial
states of all latches in the optimized circuits are set to 0. But for the
original circuits, only the essential latches are set to 0. The dependent
latches in the original circuits are set to the values with respect to
the dependency functions under the essential latches’ setting. The
dynamic variable ordering technique in BDD, sift algorithm, is used
in the experiments (VIS command, “dynamic var ordering -e sift”).
We conduct the experiments with a run time limit, and compare the
results in term of the number of reached states and BDD size.

The experimental results of reachability analysis of the original
and the optimized circuits with the same run time limit are shown in
Table III. Columns 1 and 2 list the benchmarks and the corresponding
run time limit. Longer run time limits are for more complicated
circuits. The results of the original and the optimized benchmarks
are listed in Columns 3 through 10. The timeframe column shows the
timeframe reached within the run time limit. The number of reached
states and the corresponding BDD size are listed in the next two
columns. Column 11 lists the improvement ratio of the optimized
circuit to the original one in term of the number of reached states.
The final column lists the ratio of the BDD size reduction.

Take s13207 as an example, the original circuit has 669 FFs and
the optimized circuit has 510 FFs by removing out 159 combinational
dependent latches (R + PR = 5 + 154). With 600, 000 seconds run
time limit, the original circuit reaches 4.82309e + 15 states in the
43th timeframe while the optimized circuit reaches 1.44247e + 17
states in the 60th timeframe. The fewer FFs in the optimized circuits
made additional 17 timeframes evolved and 2890.76% (2990.76 −
100) more states reached. In addition, the optimized s5378 circuit
also reached 140.98% (240.98 − 100) more states than the original
one but had 71.09% BDD size reduction. For the circuit without
state improvement, s9234, s15850, s38584 and s38417, the optimized
versions still saved 26.10%, 25.67%, 34.67% and 30.85% BDD size,
respectively. The BDD size savings make the reachability analysis
proceed further possibly if the time limit is loosened.

VI. CONCLUSIONS

An algorithm has been proposed to efficiently identify combina-
tional dependent latches and explore their dependency functions with

the more accurate input support candidates. In addition, a multi-
timeframe model was constructed to identify additional sequential
dependent latches existing in the reachable state space. With the
dependency functions identified, the complexity of performing reach-
ability analysis and sequential depth exploration can be reduced by
disregarding these dependent latches.

REFERENCES

[1] F. A. Aloul, I. L. Markov, et al, “Faster SAT and Smaller BDDs via Common
Function Structure,” Technical Report, University Michigan, 12, Dec. 2001.

[2] R. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” IEEE
Trans. Computers, vol. 35, pp. 677-691, August 1986.

[3] R. K. Brayton et al, “VIS: A System for Verification and Synthesis,” in Proc. Com-
puter Aided Verification Conf., pp. 423-427, 1996.

[4] D. Brand, “Verification of Large Synthesized Designs,” in
Proc. Int. Conf. Computer-Aided Design, pp. 534-537, 1993.

[5] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill, “Symbolic
Model Checking for Sequential Circuit Verification,” in IEEE Trans. on Computer-
Aided Design, vol. 13, no. 4, pp. 401-424, April 1994.

[6] W. Craig, “Linear Reasoning: A New Form of the Herbrand-Gentzen Theorem,”
J. Symbolic Logic, 22(3):250-268, 1957.

[7] H. Cho et al, “Algorithms for Approximate FSM Traversal Based on State Space
Decomposition,” in Proc. Design Automation Conf., pp. 25-30, 1993.

[8] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in Proc. Int. Conf. on
Theory and Applications of Satisfiability Testing, pp. 502-518, 2003.

[9] S. G. Govindaraju, D. L. Dill, A. Hu, and M. A. Horowitz, “Approximate
Reachability Analysis with BDDs Using Overlapping Projections, in Proc. Design
Automation Conf., pp. 451-456 , 1998.

[10] A.-J. Hu and D. L. Dill, “Reducing BDD Size by Exploiting Functional Depen-
dencies,” in Proc. Design Automation Conf., pp. 266-271, 1993.

[11] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen, “AQUILA: An Equivalence Verifier
for Large Sequential Circuits,” in Proc. Asian South Pacific Design Automation
Conf., pp. 455-460, 1997.

[12] R. Hojati et al, “Heuristic Algorithms for Early Quantification and Partial Product
Minimization,” in Technical Report M94/11, UC Berkeley, 1994.

[13] J.-H. R. Jiang and R. K. Brayton, “Functional Dependency for Verification
Reduction,” in Proc. Computer Aided Verification Conf., pp. 268-280, 2004.

[14] J. Krajicek, “Interpolation Theorems, Lower Bounds for Proof Systems, and
Independence Results for Bounded Arithmetic,” J. Symbolic Logic, 62(2):457-486,
June 1997.

[15] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko, “Scalable Exploration
of Functional Dependency by Interpolation and Incremental SAT Solving,” in
Proc. Int. Conf. Computer-Aided Design, pp. 227-233, 2007.

[16] B. Lin and A. R. Newton, “Exact Redundant State Registers Removal Based on
Binary Decision Diagrams,” in Proc. Int. Conf. on Very Large Scale Integration,
pp. 277-286, 1991.

[17] M. Moskewicz, C. Madigan, L. Zhang, et al, “Chaff: Engineering an Efficient
SAT Solver,” in Proc. Design Automation Conf., pp. 530-535, 2001.

[18] K. L. McMillan, “Interpolation and SAT-based Model Checking,” in Proc. Com-
puter Aided Verification Conf., pp. 1-13, 2003.

[19] K. L. McMillan, “Symbolic Model Checking,” Kluwer Academic Publishers,
Norwell, MA, 1993.

[20] I.-H. Moon, et al, “Least Fixpoint Approximations for Reachability Analysis,” in
Proc. Int. Conf. Computer-Aided Design, pp. 41-49, 1999.

[21] P. Pudlak, “Lower Bounds for Resolution and Cutting Plane Proofs and Monotone
Computations,” J. Symbolic Logic, 62(3):981-998, Sep. 1997.

[22] E. M. Sentovich et al, “SIS: A System for Sequential Circuit Synthesis,” Tech-
nical Report UCB/ERL M92/41, Electronics Research Lab, Univ. of California,
Berkeley, CA 94720, May 1992.

[23] M. Syal and M. S. Hsiao, “VERISEC: Verifying Equivalence of Sequential Circuits
Using SAT,” in Proc. High-Level Design Validation and Test Workshop., pp. 52-59,
2005.

[24] C. A. J. van Eijk et al, “Exploiting Functional Dependencies in Finite State
Machine Verification,” in Proc. Euro. Design & Test Conf., pp. 9-14, 1996.

[25] J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A New Incremental Satisfia-
bility Engine,” in Proc. Design Automation Conf., pp. 542-545, 2001.

635

7B-1

