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Optimal Register Sharing for High-Level
Synthesis of SSA Form Programs

Philip Brisk, Foad Dabiri, Student Member, IEEE, Roozbeh Jafari, Student Member, IEEE,
and Majid Sarrafzadeh, Fellow, IEEE

Abstract—Register sharing for high-level synthesis of programs
represented in static single assignment (SSA) form is proven to
have a polynomial-time solution. Register sharing is modeled as a
graph-coloring problem. Although graph coloring is NP-Complete
in the general case, an interference graph constructed for a pro-
gram in SSA form probably belongs to the class of chordal graphs
that have an optimal O(|V | + |E|) time algorithm. Chordal
graph coloring reduces the number of registers allocated to the
program by as much as 86% and 64.93% on average compared to
linear scan register allocation.

Index Terms—Compilers (silicon), high-level synthesis.

I. INTRODUCTION

R EGISTER sharing during high-level synthesis is proven
to have an optimal solution if the intermediate repre-

sentation is a scheduled control flow graph (CFG) in static
single assignment (SSA) form. Register sharing allows program
variables with nonoverlapping lifetimes to reside in the same
register. Without register sharing, each variable in the interme-
diate representation is stored in a separate register. An optimal
solution to the register sharing problem minimizes the number
of registers in the resulting data path, yielding a more compact
design with increased register utilization.

Register sharing has historically been modeled as a graph-
coloring problem. For a program represented as a CFG in SSA
form, the graph to be colored is proven to have an optimal
solution with an O(|V |+ |E|) time complexity. Results for
12 large procedures in SSA form show that optimal register
sharing reduces the number of registers allocated to the design
by 64.93% (42.83 registers) on average compared to linear
scan register allocation [1]–[3]. The per-benchmark percentage
reduction ranged from 8.33% to 86.36% (1 to 87 registers).

II. HIGH-LEVEL SYNTHESIS AND REGISTER

SHARING OVERVIEW

High-level synthesis is the transformation of an intermediate
representation of a computation into a structural description of
a data path that implements it. A high-level synthesis system
contains many stages, including, but not limited to, resource
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allocation (computational, storage, and interconnect), schedul-
ing, resource selection, resource sharing, binding operations to
specific resource instances, and clock selection. These prob-
lems are interdependent, and different formulations exist for
each depending on the order in which they are solved. Many
of these problems are also NP-Complete.

A procedure body is represented as a CFG, a directed
graph where nodes represent basic blocks—maximal sequences
of a straight line code with no branches or branch targets
interleaved—and edges represent transfers of control from the
end of one block to the beginning of another. Each basic block
is represented by a directed acyclic graph (DAG) called a
data flow graph (DFG). A typical synthesis flow will begin
by allocating computational resources (adders, multipliers, etc.)
to the design and scheduling each operation on each resource.
The scheduled DFG can then be represented by a list of sets of
operations; the ith set contains all of the DFG operations that
were scheduled at the ith time step.

The problem of register sharing is typically formulated and
solved following resource allocation and scheduling. Let V
be the set of variables in the program. An interference graph
G = (V,E) is defined, where (u, v) ∈ E indicates that vari-
ables u and v interfere, i.e., their lifetimes overlap and thus
require separate storage resources.

An independent set is a subset V ′ ⊆ V such that there are
no edges between any pair of vertices in V ′. A k-coloring
of G is a partition of V into k nonoverlapping independent
sets (color classes): {C1, C2, . . . , Ck}. A k-coloring can also
be represented by a function f : V → {1, 2, . . . , k}, defined
such that f(v) = j is equivalent to the statement v ∈ Cj .
k-coloring ensures that for every edge (u, v) ∈ E, f(u) �=
f(v). The goal of register sharing is to color G with the fewest
possible colors. Each color class represents a set of variables
with nonoverlapping lifetimes that share the same register.

In early synthesis systems, inputs were limited to DFGs. For
a scheduled DFG, the interference graph for register sharing
belongs to the class of interval graphs, which can be colored
optimally in O(|V |log|V |) time using the Left Edge Algorithm
[2], [3]; since all interval graphs are chordal, an O(|V |+ |E|)-
time coloring algorithm [4] could also be used.

Springer and Thomas [5] showed that chordal interference
graphs arise during synthesis if certain conditions are imposed
on variable lifetimes with respect to conditional branches,
merge points, and module calls. Their work predated the adop-
tion of the SSA form for synthesis.

When cycles exist in the intermediate representation, either
due to loop constructs or recursive module calls, then the

0278-0070/$20.00 © 2006 IEEE
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Fig. 1. (a) Small procedure represented as (b) CFG and shown in (c) SSA form.

interference graph belongs to the class of circular arc graphs.
Circular arc coloring is NP-Complete. Stok [6] has suggested
that this circular arc coloring should be solved via transforma-
tion to a multicommodity flow problem.

III. SSA FORM

Any operation of the form v ← . . . defines variable v; any
operation of the form . . .← v uses v. For simplicity, assume
that each instruction defines at most one value. A CFG is in
SSA form if each variable is: 1) defined once and 2) each
use corresponds to one definition. Prior to register allocation,
compilers and synthesis tools assume an infinite supply of reg-
isters. With limitless registers, criterion 1) is trivially satisfied.
Satisfying the criterion 2) entails the insertion of ϕ functions
where different control paths in the program merge.

Fig. 1 shows a procedure foo (a) represented as a CFG (b)
and in SSA form (c). In the CFG, variable y is defined on both
sides of a condition and used later at the join point. In SSA
form, the definitions of y have been renamed to y1 and y2.
Depending on the whether condition is true or false, the use
of y at the join point will be either a use of y1 or y2, not both.
A ϕ function y3 ← ϕ(y1, y2) merges the definitions of y1 or
y2 into a new variable y3 to represent this conditional use. y3

explicitly represents the fact that different definitions of y occur
on paths that merge together in the original CFG. Without the ϕ
function, the use of y in the return statement has two definitions,
one on each side of the condition.

It is possible to directly synthesize a CFG in SSA form by
realizing ϕ functions in hardware as multiplexers [7]. In Fig. 1,
y3 will receive its value from y1 or y2, depending on which
control path entering the CFG node containing the ϕ function
is taken at runtime.

It is not possible, however, to compile a program in SSA form
without first translating it out of SSA form. This is necessary
because the vast majority of modern architectures offer no
assembly instruction that meets the abstract specification of a
ϕ function. Conditional move (cmove) and conditional select
(csel) instructions offer similar functionality, but can only select
between a fixed number of inputs. ϕ functions must select be-
tween k variables, where k is the number of predecessors of
the basic block containing the ϕ function. Since k can grow
arbitrarily large, encoding and decoding ϕ functions in hard-
ware is likely to be unwieldy.

IV. STRICT PROGRAMS

A strict program [8] ensures that every variable is assigned a
value before the variable is used in a computation along every
possible path of program execution. Some languages impose
strictness by definition. In Java, for example, all variables that
are not explicitly initialized by the programmer are implicitly
initialized to 0 by the compiler. Other languages, for example
C/C++, do not impose strictness as a requirement. Most real-
world programs are strict, regardless of language; however,
nonstrict programs do exist, and compilers and synthesis tools
must be able to handle them.

A regular program [8] is a strict program in SSA form. A
proof is given in the Appendix that an interference graph con-
structed for a regular program belongs to the class of chordal
graphs. This is a notable result because graph coloring can be
solved in O(|V |+ |E|) time for chordal graphs.

The theoretical result proven in this paper requires a regular
program to ensure correctness. Nonstrict programs explicitly
violate the SSA form since some variables that are not defined
may exist. Compilers such as the GNU C Compiler (GCC)
insert implicit definitions for all variables that are used but
not defined. Implicit definitions can also be used to correct the
case where a variable is defined on some (but not all) paths
that converge at a ϕ function. This imposes strictness on the
intermediate representation, even if the input program is not
strict. Throughout the duration of this paper, it is assumed that
programs in SSA form are regular.

V. LIVENESS ANALYSIS FOR PROGRAMS IN SSA FORM

According to Cooper and Torczon [9, p. 630], “variable v
is live at point p if it has been defined along a path from the
procedure’s entry to p and there exists a path from p to a use
of v along which v is not redefined.” Liveness analysis is the
process of computing the set of variables that are live at each
point in the CFG. To build an interference graph for a CFG in
SSA form, a minor modification to standard liveness analysis
is required. We have implemented and modified the liveness
analyzer described by Cooper and Torczon [9, pp. 437–447].

If n is a basic block in a CFG, then LIVEOUT(n) is the set
of all such variables that are live upon exiting n. Intuitively,
LIVEOUT(n) contains those variables that are defined either
in n or some other node n′ from which n is reachable, and are
used in some CFG node n′′ reachable from n. Liveness analysis
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computes LIVEOUT(n) for every basic block in the program.
To compute LIVEOUT(n), two additional sets of variables are
required: UEVAR(n) and VARKILL(n).

UEVAR(n) is defined to be the set of upward-exposed vari-
ables in n. UEVAR(n) contains all the variables that are used
in n but are not defined in n; some block that precedes n during
program execution must define each variable in UEVAR(n).
VARKILL(n) is the set of all variables that are defined in n.
Both UEVAR(n) and VARKILL(n) can be constructed by a
linear traversal of the operations in n.

Let succ(n) be the set of successor CFG nodes of n. In
other words, there must be some (conditional or unconditional)
control transfer from n to each node in succ(n). LIVEOUT(n)
is defined recursively as

LIVEOUT(n) =
⋃

m∈succ(n)

UEVAR(m)

∪
(

LIVEOUT(m) ∩ VARKILL(m)
)
. (1)

During liveness analysis, (1) is repeatedly solved for each
basic block in the program until stability is reached.

For programs in SSA form, let preds(m) be the set of
predecessors of CFG node m. Then, for each CFG node n ∈
preds(m), UEVAR(m) is replaced with UEVAR(m,n): the
set of upward-exposed variables from m to n. This allows m
to expose different ϕ function parameters to predecessors on
different incoming control paths, i.e., mutual exclusion. There
may also be variables that are originally in the UEVAR(m) set
that are not defined by a ϕ function in m. These variables are
still live upon entry to m. All such variables are added to every
set UEVAR(m,n) for each predecessor n of m.

For a program in SSA form, the recursive equation for
LIVEOUT sets is rewritten as

LIVEOUT(n) =
⋃

m∈succ(n)

UEVAR(m,n)

∪
(

LIVEOUT(m) ∩ VARKILL(m)
)
. (2)

In Fig. 1(c), y1 ∈ UEVAR(n3, n1) and y2 ∈ UEVAR(n3,
n2). This yields the following live-out sets: LIVEOUT(n1) =
{y1} and LIVEOUT(n2) = {y2}.

VI. CHORDAL GRAPHS

This section summarizes relevant topics from the theory of
chordal graphs. Historically, chordal graphs have also been
called triangulated graphs and rigid circuit graphs. For a thor-
ough treatment of the subject, the interested reader is re-
ferred to Golumbic’s textbook on algorithmic graph theory
[10, Ch. 4]. Fig. 2(a) and (b) shows respective examples of
chordal and nonchordal graphs.

There are, in fact, three equivalent criteria for chordality.
Undirected graph G is chordal if and only if:

1) G has no induced subgraph isomorphic to a k-hole;
2) G admits a perfect elimination order (PEO);
3) G is the intersection graph of a set of subtrees of a tree.

Fig. 2. (a) Chordal and (b) nonchordal graph. Four holes in (b) shown with
bold edges.

Let G = (V,E) be an undirected graph. Graphs G1 = (V1, E1)
and G2 = (V2, E2) are isomorphic to one another if there exists
a one-to-one bijection g : V1 → V2, such that for all u, v ∈ V1,
(u, v) ∈ E1 if and only if (g(u), g(v)) ∈ E2.

A k-hole, defined by positive integer k ≥ 4, is any graph
isomorphic toH = (VO, EO), where VO = {v0, v1, . . . , vk−1},
and EO = {(vi, v(i+1)%k)|0 ≤ i ≤ k − 1}.

An elimination order σ of graph G = (V,E) is a numbering
scheme that orders the vertices. σ(v) = i indicates that v is the
ith element in the order. Once σ has been computed, vertices
are renamed so that σ(vi) = i.

Starting with an empty graph, G can be built by adding
vertices in the order of σ. When vi is added to G, all edges
adjoining vi to vertices in {v1, . . . , vi−1} are added to G as
well. Let G(i) = (V (i), E(i)) represent the partially built graph
after adding vertices {v1, . . . , vi}; in other words, G(i) is the
subgraph of G induced by {v1, . . . , vi}.

Let N(v) be the set of vertices adjacent to v in G, and let
N [v] = N(v) ∪ {v}. For v ∈ V (i), let N (i)(v) = N(v) ∩ V (i)

and N (i)[v] = N (i)(v) ∪ {v}.
Vertex v in G is simplical if N(v) is a clique, a com-

plete subgraph. σ is a PEO if vi is simplical in G(i) for i =
1, 2, . . . , n. In Fig. 2(a), 〈B,C,E, FD,A〉 is a PEO. On the
other hand, 〈A,B,C,D,E, F 〉 is not; E, the fifth vertex in
the PEO, is not simplical since N (5)(E) = {A,B,C} is not
a clique.

A PEO can be constructed for graph G = (V,E) in O(|V |+
|E|) time using either lexicographic breadth first search (Lex-
BFS) or a somewhat simpler and faster implementation of
Lex-BFS called maximum cardinality search (MCS) [11].
Given a PEO, a chordal graph can be colored in O(|V |+ |E|)
time [4]. Colors are assigned in PEO order: 〈v1, v2, . . . , vn〉.
The only vertices that constrain the color that is assigned to vi

are those in N (i)(vi). The first color not assigned to a vertex
in N (i)(vi) is given to vi. If the colors are tested in some fixed
order, a color will be found within |N (i)(vi)|+ 1 tries.

VII. OPTIMAL REGISTER SHARING FOR

SSA FORM PROGRAMS

First, we introduce the concept of dominance. A node ni in a
CFG dominates node nj (denoted ni dom nj) if every possible
execution path from the entry node n0 to nj passes through
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ni. Trivially, n0 dominates every other node in the CFG. The
dominance relation satisfies the three properties:

reflexivity: ni dom ni

transitivity: ni dom nj ∧ nj dom nk ⇒ ni dom nk

antisymmetry: ni dom nj ∧ nj dom ni ⇔ ni = nj .

For instructions, i1 dom i2 if i1’s basic block dominates i2 or
if i1 precedes i2 in the same basic block. For variables vi and vj ,
vi dom vj if the definition of vi dominates the definition of vj .

Theorems 1 and 2 are due to Budimlić et al. [8].
Theorem 1: If two variables u and v in a regular program

interfere, then either u dom v or v dom u.
Theorem 2: If two variables v1 and v2 in a regular program

interfere and the definition point of v1 dom v2, then v1 is in the
live-in set of the block in which v2 is defined, or both variables
are defined in the same block.

The live-in set in Theorem 2, denoted LIVEIN(n), is the
set of variables that are live at n’s entry point. Theorem 3
formally states that the interference graph for a regular program
is chordal. A proof of Theorem 3 is given in the Appendix.

Theorem 3: Let G = (V,E) be an interference graph gener-
ated from a regular program. Then G is a chordal graph.

At the International Workshop on Logic and Synthesis
(IWLS) in June 2005, Brisk et al. [12] stated a slightly weaker
version of Theorem 3—that G is a perfect graph. The proof in
that paper is sufficient for chordal graphs, a subclass of perfect
graphs. Brisk corrected this oversight in his talk.

In a technical report, also in June 2005, Hack [13] pub-
lished Theorem 3 independently from Brisk et al. In fact,
an earlier proof had been discovered in 2002 by Darte in a
private conversation with Rastello and e-mail communication
with Ferrante. Darte’s proof used the subtree intersection char-
acterization of chordal graphs (Definition 3). Darte’s contri-
bution was subsequently published in a technical report by
Bouchez et al. [14] in August 2005.

The technical reports by Hack and Bouchez et al. discuss
Theorem 3 in the context of register allocation in software
compilers (e.g., [1], [19], and [20]), where the problem remains
NP-Complete. Brisk et al. applied Theorem 3 to high-level syn-
thesis, which has an analogous problem called register alloca-
tion in past literature (e.g., [3], [5], and [6]). The term “register
sharing” is used here to refer to the problem in synthesis.

VIII. COMPUTING OPTIMAL COLORING WITHOUT

BUILDING INTERFERENCE GRAPH

Given a CFG in SSA form, an optimal color assignment
can be computed without explicitly constructing an interference
graph. Let LIVEDEF(v) be the set of variables that are live at
the point in the program just before v is defined. By Theorem 1,
for every variable u ∈ LIVEDEF(v), u dom v. A PEO can
be constructed by creating an ordering σ, where σ(v) > σ(u)
for all u ∈ LIVEDEF(v). For some variable vi, such that
σ(vi) = i, LIVEDEF(vi) is identical to clique N (i)(vi) dis-
cussed in Section VI. Given LIVEDEF(vi), the smallest color
not assigned to a vertex in LIVEDEF(vi) is then assigned to vi.

Fig. 3. Pseudocode for optimal color assignment without building interfer-
ence graph.

A pseudocode to perform color assignment without building
an interference graph is given in Fig. 3. The dominator tree is
traversed from the root toward the leaves, ensuring that each
parent node in the tree is processed before all of its children.
The instructions within each basic block n are traversed twice.
First, n is traversed backward in order to determine which
instructions represent the end of variable lifetimes. Let set
KILLS(i∗) contain the variables whose lifetimes end at i∗. After
computing the KILLS sets, a forward traversal of the list assigns
colors to each variable. LIVEDEF(v) is replaced in Fig. 3 with
a set LIVENOW that contains the variables that are live at each
point in the CFG. Without KILLS sets, the forward traversal
could not determine if each variable remains in LIVENOW or
dies after each use.

Theorem 4 establishes the correctness of the algorithm in
Fig. 3; a proof can be found in the Appendix.

Theorem 4: Let α be the order in which variables in a regular
program are assigned colors by Line 24 in Fig. 3, and let
G = (V,E) be the interference graph. Then, σ is a PEO of G.

IX. EXPERIMENTAL RESULTS

The Machine SUIF compiler [15] was used to test and evalu-
ate the concepts and ideas presented in this paper. Programs are
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TABLE I
RESULTS FOR REGISTER SHARING USING LINEAR SCAN ALLOCATION AND CHORDAL GRAPH COLORING

TABLE II
RUNTIME (IN SECONDS) FOR LIVENESS ANALYSIS AND THREE COLORING HEURISTICS (LS, CHO-1, CHO-2)

converted to SSA form and an interference graph is constructed.
Since this study focuses on register sharing (high-level syn-
thesis) rather than register allocation (compilers), spilling and
copy coalescing are not considered. Copies are folded during
SSA construction and a pruned SSA form [16] is used in all
experiments. The experiments were performed on a 3.00-GHz
Intel Pentium IV Processor with 512-K cache and 1-G RAM,
running Mepis Linux.

Register sharing based on chordal graph coloring is com-
pared to register sharing based on linear scan allocation, which
is summarized in Section X. The benchmarks used in this
experiment are procedures written in C taken from SPEC
INT 2000 [17] and Mediabench [18]. Each procedure in this
experiment has an SSA-form interference graph with at least
5000 vertices. Results are not reported for smaller proce-
dures. These procedures came from four benchmarks, namely:
1) 176.gcc; 2) 186.crafty; 3) ghostscript; and 4) pegwit.

Table I reports the effectiveness of register sharing using
the two techniques. The first three columns summarize each
benchmark: application, file, and function name. The next two
columns, labeled |V | and |E|, list the number of vertices and
edges in the interference graph for the SSA form program. |V |
is the number of registers that would be allocated to the design
in the absence of register sharing, one register per variable.
The final two columns labeled show the number of registers

allocated to the design after register sharing using both linear
scan [1]–[3] and optimal chordal graph-coloring algorithms.

Table I clearly illustrates that chordal graph coloring outper-
forms linear scan. The difference in the number of registers
allocated ranges from 1 (SHA1Transform) to 87 (expand_expr).
On average, the difference in favor of chordal coloring was
42.83 registers per procedure. For smaller procedures, a lin-
ear scan is capable of producing (near-)optimal results. For
procedures without control flow constructs such as conditional
branches and loops, a linear scan is optimal.

The primary selling point of linear scan allocation is its
runtime, not the quality of its results. Table II compares the
runtime (in seconds) of linear scan to two different implementa-
tions of chordal graph coloring, an interference graph using the
technique described in Section V computes a PEO using MCS
and then colors the interference graph optimally [4]; CHO-2
uses the procedure in Fig. 3 to compute an optimal color
assignment without building an interference graph.

From Table II, the runtime of liveness analysis, which is
required by all three coloring techniques, dominates the total
runtime cost of coloring. The respective runtimes of LS and
CHO-2 post-liveness analysis are reported as is. The post-
liveness analysis runtime of CHO-1 is broken into two compo-
nents: the runtime of interference graph construction, including
memory allocation, and the runtime of computing a PEO and
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then coloring the chordal graph. Both LS and CHO-2 run much
faster than CHO-1. Both components of CHO-1 run slower than
LS and CHO-2 by at least one order of magnitude. CHO-2 runs
faster than LS for all benchmarks.

The 12 interference graphs used in the experiments were
much larger than the vast majority in both SPEC INT 2000
and Mediabench. The differences between CHO-2 and LS in
terms of both solution quality and runtime are exacerbated
here. For small benchmarks, the differences are negligible. For
procedures without loops or branches, both LS and CHO-1/
CHO-2 will produce optimal colorings.

X. RELATED WORK

A. Register Allocation in Software Compilers

The first graph-coloring register allocator for compilers was
developed by Chaitin et al. [19], [20]. This work included a
proof that for every finite undirected graph G a CFG could
be constructed such that liveness analysis would build an in-
terference graph isomorphic to G. The CFG, however, was not
strict, and the proof predated the discovery of an SSA form.
If strictness was imposed on the CFG and the program was
converted to SSA form, Theorem 3 would take precedence.

Numerous register allocators have been developed as mod-
ifications or improvements to Chaitin et al.’s allocator. For
example, Pereira and Palsberg [21] have recently developed a
Chaitin-style allocator that assigns colors using the MCS/PEO
technique on both chordal and nonchordal interference graphs.
Many successful register allocators have also been developed
that do not use graph coloring.

Linear scan register allocation [1] emphasizes speed rather
than solution quality. The program is represented as a linear
list of instructions numbered 1, 2, . . . , N . Each variable v is
represented by an interval [i, j], where i is the smallest value
such that there exists no i′ < i, where v is live at i′, and j is
the largest value such that there exists no j′ > j, where v is
live at j′. Given a variable v with interval [i, j], there may be
many subintervals within [i, j] where v is not live. An optimal
color assignment for the linear scan interference graph is often
suboptimal for exact interference graphs.

B. Translation Out of SSA Form

The process of translating a program out of an SSA form
is a necessary step for software compilers. To eliminate the
ϕ function y ← ϕ(. . . , x, . . .), there are two options: insert a
copy y ← x, or merge x and y into one variable in the post-
SSA program. x and y can only be merged together if they do
not interfere.

Cytron et al. [22] and Briggs et al. [23] inserted copies for
all variables and relied on the coalescing phase of a Chaitin-
style register allocator to remove as many copies as possible.
Rastello et al. [24] showed that translation out of an SSA
form is NP-Complete and tried to minimize the number
of copies inserted while also satisfying architecture-imposed
naming constraints on variables in the post-SSA program.
Budimlić et al. [8] used Theorems 1 and 2 to develop a heuristic

with an almost-linear time complexity that tried to minimize the
number of copies inserted during translation out of SSA.

C. Implications of Theorem 3 for Software Compilers

Theorem 3 yields an optimal O(|V |+ |E|)-time algorithm
for register sharing in high-level synthesis for CFGs in SSA
form. Theorem 3 does not, however, yield an optimal SSA-
based polynomial-time solution for register allocation in com-
pilers. In a compiler, a register allocator must determine which
variables to store in registers and which to spill to memory.
If k is the number of registers in the target architecture, then
the subgraph induced by the subset of variables stored in
registers must be k colorable. All variables not in the induced
subgraph would be spilled to memory instead. Unfortunately,
the problem of determining the largest k colorable induced
subgraph is NP-Complete for chordal graphs [25]. Moreover,
once spilling decisions have been made, the placement of spill
code is NP-Complete [26]. Finally, minimizing the number
of copies inserted during SSA deconstruction is NP-Complete
as well [24].

XI. CONCLUSION

The problem of register sharing on a CFG in SSA form
has been shown to have a polynomial-time solution based on
chordal graph coloring. By sidestepping the construction of the
interference graph, optimal register sharing can run faster than
linear scan allocation. Register sharing will reduce the overall
area of the design and increase the utilization of registers. If
resource R is connected to k registers r1, r2, . . . rk that are
consolidated into a single register r via register sharing, then
the interconnect may be reduced as well.

Techniques based on translation out of SSA form should
be investigated to reduce the number of multiplexers re-
quired to synthesize a data path. Consider ϕ function y ←
ϕ(x1, x2, x3, x4). If {x1, x2, x3, x4} are assigned to the same
register, then no multiplexer is necessary. If {x1, x2} and
{x3, x4} are assigned to two registers, then a two-input multi-
plexer is necessary; if {x1}, {x2}, {x3}, and {x4} are assigned
to four different registers, then a four-input multiplexer is
required. This problem is most likely NP-Complete due to
its similarity to copy minimization during translation out of
SSA form.

APPENDIX

Proof of Theorem 3: Let V ′ ⊆ V , |V ′| = k ≥ 4. We show
that G′, the subgraph of G induced by V ′, is not isomor-
phic to a k hole. Assume to the contrary that G′ is iso-
morphic to a k hole, i.e., V ′ = {v0, v1, . . . , vk−1} and E ′ =
{(vi, v(i+1)%k)|0 ≤ i ≤ k − 1}. Let us assign directions to the
edges in E ′ in accordance with dominance. By Theorem 1,
for every edge (vi, v(i+1)%k) ∈ E ′, either vi dom v(i+1)%k

or v(i+1)%k dom vi. After assigning directions, all edges
will be written such that (vi, v(i+1)%k) ∈ E ′ indicates that
vi dom v(i+1)%k. Henceforth, G′ is directed.

First, we argue that G′ must be acyclic. Since G′ is a hole,
the only cycle would be the sequence 〈v0, v1, . . . , vk, v0〉, its
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Fig. 4. k hole represented as DAG with source s and sink t. Both of t’s
neighbors are proven to interfere; however, there can be no edge between t’s
neighbors in k hole, a contradiction.

reverse, or a circular shift thereof. Without loss of generality,
let v0 dom v1; however, path 〈v1, . . . , vk, v0〉 coupled with the
transitivity of the dominance relation indicates that v1 dom v0,
violating antisymmetry. Therefore, G′ must be acyclic.

In a directed graph,N(v) is divided into incoming and outgo-
ing adjacent vertices. Nin[v] = {u|(u, v) ∈ E ′} and Nout[v] =
{w|(v, w) ∈ E ′}. Since the original undirected graph G is a
hole, every vertex v satisfies the following property: |Nin[v]|+
||Nout[v]| = 2. A source is defined to be a vertex s such that
|Nin[s]| = 0. A sink is defined to be a vertex t such that
|Nout[t]| = 0. It is a fundamental result from graph theory
that every DAG has at least one source and at least one sink.

Let s = vi and t = vj be a respective source and sink in G′.
W.L.O.G., suppose that i < j. If j > i, simply reverse all of the
edges in G′ and swap s and t. Antisymmetry ensures that the
same vertex cannot be both a source and a sink in G′.

We do not know whether s and t are the unique source and
sink, or if there are others. If s and t are unique, then there
exist two directed paths from s to t: P1 = 〈s, vi+1, vi+2, . . . , t〉
and P2 = 〈s, vi−1, vi−2, . . . v0, vk−1, vk−2, . . . t〉, illustrated
in Fig. 4.

We show by induction that P1 is a directed path in G. For the
basis, 〈s, vi+1〉 is trivially a directed path since s is a source.
Now, let 〈s, vi+1, . . . , vi+α〉, where 1 ≤ α ≤ j − i− 1 be a
directed path from s to vi+α. Now, consider vi+(α+1).

Assume to the contrary that (vi+(α+1), vi+α) defines the
direction of the edge between vi+(α+1) and vi+α; consequently,
vi+(α+1) dom vi+α. Let n be the basic block that defines
vi+(α−1). By Theorem 2, either vi+α ∈ LIVEIN(n) or vi+α is
defined in n.

By the induction hypothesis, the direction of edge
(vi+(α−1), vi+α) has already been resolved; consequently,
vi+(α+1) dom vi+α. Once again, Theorem 2 shows that ei-
ther vi+(α−1) ∈ LIVEIN(n) or vi+(α−1) is defined in n. In
either case, vi+(α−1) and vi+(α+1) must both be live at the
definition point of vi+α in n, and vi+(α−1) and vi+(α+1)

interfere. Since a hole must contain at least four vertices,
and edges (vi+(α−1), vi+α) and (vi+α, vi+(α+1)) are known to
exist, the existence of edge (vi+(α−1), vi+(α+1)) would violate
the assumption that G′ is a hole, a contradiction. Consequently,
(vi+α, vi+(α+1)) must be the direction of the edge, ensuring
that 〈s, vi+1, . . . , vi+α, vi+(α+1)〉 is a directed path from s to
vi+(α+1).

This establishes that P1 is a directed path from s to t. An
identical argument proves that P2 is also a directed path from
s to t. Together, the existence of directed paths P1 and P2

ensures that there is exactly one source and one sink in G′.
Now, consider sink t. Since t is a sink, Nin[t] = {vj−1, vj+1}.
Consequently, vj−1 dom t and vj+1 dom t. If n is the basic
block in which t is defined, then vj−1 ∈ LIVEIN(n) or vj−1 is

defined in n; likewise, vj+1 ∈ LIVEIN(n) or vj+1 is defined
in n. Both vj−1 and vj+1 interfere at the definition point
of vj . Once again, a hole known to contain edges (vj−1, vj)
and (vj , vj+1) cannot also contain an edge (vj−1, vj+1). This
contradicts the assumption that G′ is isomorphic to a k-hole. �

Proof of Theorem 4: Consider a basic block n. Let
DEFS[n] be the set of variables defined in n. For u ∈
LIVEIN(n), v ∈ DEFS[n], σ(u) < σ(v) since basic blocks are
processed in dominance order. For v, w ∈ DEFS[n], σ(v) <
σ(w) if and only if v is defined before w in n since Line 24
occurs within a forward traversal of n. Then, for each variable
x ∈ LIVEDEF[v], σ(v) > σ(x).

Now, consider interference edge (u, v) ∈ E. By Theorem 2,
either (1) u dom v and u ∈ LIVEDEF[v] or (2) v dom u and
σ(v) < σ(u). Let G′ = (V ′, E′) be the subgraph of G induced
by V ′ = {(u, v) ∈ E|σ(u) < σ(v)}. Then, (u, v) ∈ E′ if and
only if u ∈ LIVEDEF[v]. Since LIVEDEF[v] is a clique, v is
simplical in G′ and σ is a PEO of G. �
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