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Abstract

An enhanced framework for peak-to-average power ratio (PAPR) reduction and waveform design for

Multiple-Input-Multiple-Output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems,

based on a convolutional-autoencoder (CAE) architecture, is presented. The end-to-end learning-based

autoencoder (AE) for communication networks represents the network by an encoder and decoder,

where in between, the learned latent representation goes through a physical communication channel.

We introduce a joint learning scheme based on projected gradient descent iteration to optimize the

spectral mask behavior and MIMO detection under the influence of a non-linear high power amplifier

(HPA) and a multipath fading channel. The offered efficient implementation novel waveform design

technique utilizes only a single PAPR reduction block for all antennas. It is throughput-lossless, as

no side information is required at the decoder. Performance is analyzed by examining the bit error

rate (BER), the PAPR, and the spectral response and compared with classical PAPR reduction MIMO

detector methods on 5G simulated data. The suggested system exhibits competitive performance when

considering all optimization criteria simultaneously. We apply gradual loss learning for multi-objective

optimization and show empirically that a single trained model covers the tasks of PAPR reduction,

spectrum design, and MIMO detection together over a wide range of SNR levels.

Index Terms

Deep learning, Autoencoder, Multiple-Input-Multiple-Output, Orthogonal frequency-division mul-

tiplexing, Peak-to-average power ratio, Wireless signal processing.
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I. INTRODUCTION

The Multiple-input-multiple-output (MIMO) scheme is a widely used technique for enhancing

channel capacity and transmission reliability, thanks to the diversity and multiplexing gains.

Orthogonal frequency division multiplexing (OFDM) is a waveform design method known for

providing high bandwidth efficiency, high throughput, simple equalization in wireless transmis-

sion, and efficient hardware implementation. For these reasons, it has been adopted as a standard

technology in various wireless communication systems, such as WiFi, 4G, and 5G standards for

wireless communications. Nonetheless, significant drawbacks of the OFDM multi-carrier system

appear in the form of adjacent channel power ratio (ACPR) limitations and the tendency to

produce signals with a high peak-to-average power ratio (PAPR) in the time-domain, since many

subcarrier components are added via a fast Fourier transform (FFT) operation. The contribution

of each subcarrier to the total power is dynamic, which makes the total power highly variable.

In particular, the high PAPR in MIMO-OFDM systems is exacerbated as the number of antennas

increases [1]. The demand for higher energy efficiency as well as reduced power consumption is

expected to increase for future radio systems [2]. Moreover, future communication system design

and equipment are expected to be more compatible with machine learning (ML) implementation

requirements, for example, allowing learning in the field to make some design choices [2].

Accordingly, waveform designs using ML techniques are becoming significantly attractive.

A high power amplifier (HPA) is required to provide enough output power for reliable com-

munication. In practical systems, the HPA is not linear and distorts the transmitted signal. As a

result, severe non-linear signal distortions are found when these high PAPR signals pass through

the non-linear HPA. The resulting signal exhibits spectral regrowth in the form of in-band

signal distortions and out-of-band radiation [3], and the bit error rate (BER) increases. Hence,

it is crucial to develop PAPR reduction techniques for MIMO-OFDM systems to increase their

efficiency in handling large data streams and to reduce their error rates. Training and applying
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the PAPR reduction block to each antenna individually exacerbates the complexity, cost, and

redundancy in proportion to the number of transmit antennas in the system. Instead, in this

work, a single PAPR reduction block jointly operates on all antenna OFDM sequences, and it

is designed according to the maximum PAPR value of all antenna sequences.

A central difficulty of the multiple transmitter (TX) and receiver (RX) antenna structure is

posed by the need for joint detection of the data symbols sent by each transmitter. Unfortunately,

the optimal MIMO detection solution imposes an NP-hard problem on the receiver. Consequently,

various sub-optimal yet feasible detection algorithms have been proposed. Other than classical

model-driven solutions, an increasing effort has been dedicated to ML, and, specifically, deep

learning (DL) based techniques to solve the MIMO detection problem, and more generally, various

wireless communication tasks.

The design of OFDM waveform signals aims to simultaneously achieve a high data rate, high

spectral efficiency (measured by the ACPR), and low computational complexity [4], [5]. This

design is highly affected by the non-linear effects of the HPA. While keeping the PAPR level

low is favorable, it is of particular importance to have acceptable signal spectral behavior and

BER, which are often referred to as waveform design. In order to fulfill that, this work suggests

an overall communication network multi-objective optimization, such that the transmitter, HPA,

channel, and the receiver, are represented as a single optimization block. Instead of separately

optimizing different components of the transmitter and the receiver, an end-to-end convolutional-

autoencoder (CAE) learning model is proposed. This end-to-end optimization block is presented

as a constrained optimization problem where the transmitted signal estimation is the objective,

and the PAPR and ACPR requirements are the constraints. MIMO detection over multiple channel

realizations is performed as a part of the end-to-end joint optimization model, utilizing an iterative

approach based on convolutional layers, and a gradual loss learning approach. We evaluate

the performance of our algorithms over both additive white Gaussian noise (AWGN) and 3rd

Generation Partnership Project (3GPP) fading channels [6]. By analyzing the BER, PAPR, and

January 13, 2023 DRAFT



4

spectrum performance, we show that the proposed end-to-end learning approach can integrate

different communication network blocks to balance those performance objectives successfully.

We show that the suggested scheme is able to achieve better spectral performance for higher

HPA efficiency operation. Various OFDM PAPR reduction techniques have been proposed in

the literature, as well as for MIMO detection. Generally, these techniques can be categorized

into model-driven and data-driven techniques. The first category refers to standard approaches

in classical communications theory, while the second relies on recently developed approaches

based on ML techniques. The following subsections review different earlier solutions for the

above-mentioned problems.

A. Classical Approaches (Model Driven) for MIMO Detection

Many MIMO detection algorithms have been developed over the years. The maximum like-

lihood estimation (MLE) solution is optimal for the joint detection of transmitted symbols in a

MIMO system. However, its exponential computational and time complexity (due to exhaustive

searches over all possible transmitted signals) render it infeasible when the number of transmitters

and the modulation order are high. An example of suboptimal high accuracy non-linear detection

algorithms are those based on sphere decoding (SD) [7], but they become computationally

expensive as the number of antennas grows. The general idea is based on a lattice search for a

solution in an iterative manner, and the accuracy/complexity ratio strongly depends on the value

chosen for the radius parameter. More advanced detectors include the successive interference

cancellation (SIC) based detectors [8] and the semi-definite relaxation detectors [9].

B. Machine-Learning-Based Schemes (Data Driven) for MIMO Detection

The motivation for DL-based detectors is to enhance the performance of classical model-

driven detection algorithms by learning, from the training data set, an optimized mapping of

the received signals onto the transmitted symbols. In [10], [11], an iteration-based algorithm

for implementing a receiver for MIMO detection was suggested. One of the highlights of the
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presented model’s framework is that it enables training through different random communication

channel realizations. In [12], a model-based algorithm was suggested, where a classical SD

algorithm was integrated with a neural network (NN) that was trained to optimize the selection of

the initial radius. In [13], a neural detector-based transformer architecture implements a recurrent

estimation scheme by learning an iterative decoding algorithm.

In [14]–[16] an AE was offered to design a physical layer in which DL-based CSI encoding

was suggested for different scenarios to achieve lower BER together with better robustness to

the wireless channel characteristics. Thorough surveys and analysis are presented in [17].

C. Classical Approaches (Model Driven) for PAPR Reduction

PAPR reduction schemes are roughly classified into three categories. The signal distortion

category consists of techniques such as clipping and filtering (CF) [18], [19], which limit the

peak envelope of the input signal in the time domain to a predetermined value. The multiple

signaling probabilistic category includes methods such as selective mapping (SLM) [19], [20],

partial transmit sequence (PTS) [20], ton reservation and ton injection [21], and constellation

shaping [22]. The main principle of SLM is to generate different candidates for each OFDM block

by multiplying the symbols vector with a set of different pseudo-random sequences and choosing

the candidate with the lowest PAPR. The third category is the coding technique category [21],

[23], attempting to reduce the occurrence probability of the same phase signals.

Earlier schemes were mainly developed for single-antenna systems. Extended works which

applied the single-antenna PAPR reduction schemes on each antenna of the MIMO configuration

separately are found in, e.g., [24], but those required considerable computations, cost, and

complexity. Model-driven approaches to simultaneously reduce PAPR over all antennas were

also proposed. In [25], instead of applying SLM to each antenna, the sequence with the highest

PAPR over all transmit antennas was selected. Usually, SLM and PTS methods demand side

information (SI) to be sent to the receiver along with each transmitted data block for retrieving

the original data. The need for SI requires extra bandwidth overhead, and the incorrect detection
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of the SI bits over the channel will lead to significant degradation in the BER performance of

the receiver in the MIMO-OFDM system.

D. Deep-Learning-Based Schemes (Data Driven) for PAPR Reduction

In recent years much research has been dedicated to applying DL techniques in the design

and optimization of wireless communication networks, e.g., [4], [11], [26]. Several papers

have proposed DL methods to handle PAPR reduction. For example, the authors of [27], [28],

added a NN to reduce the complexity of the active constellation scheme, followed by CF. In

[29], [30] the authors present an AE solution for PAPR reduction, while minimizing the BER

degradation. In [31] a CAE was suggested for the implementation of an end-to-end SISO− OFDM

communication network that simultaneously reduces the PAPR and reconstructs the transmitted

symbols, while keeping acceptable spectral requirements. Another learning-based approach,

which considers the reduction of the PAPR and ACPR together with the maximization of the

achievable information rate for a single-carrier waveform above multipath channels, was proposed

in [32]. The authors in [33] proposed a deep NN combined with SLM to mitigate the high PAPR

issue of OFDM signal types.

All of the above papers consider a SISO network. A PAPR reduction scheme assisted by DL

for a MIMO-OFDM system was suggested in [34]. The authors apply selective tone reservation

[35] on each antenna separately and then apply unused beam reservation [36] on all antennas

together. An ML-based method for approximating the optimal tabular hyperparameters required

for using selective tone reservation and unused beam reservation was suggested.

E. Main Contributions

Some of the aforementioned PAPR reduction approaches suffer from in-band interference, out-

of-band distortions, and high computational complexity. Moreover, published ML-based solutions

mostly handle single antenna scenarios. Those who deal with PAPR reduction for MIMO systems

use ML only for the PAPR reduction block and not for the end-to-end network implementation.

This paper aims to handle the PAPR problem in MIMO systems as an integral part of a waveform
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design objective. In particular, we design a communication system that simultaneously achieves

PAPR reduction, acceptable spectral behavior of the PA’s output, and good BER performance.

The suggested end-to-end network aims to resolve the MIMO detection problem as a part of the

other mentioned objectives. To the best of our knowledge, this approach is new. Novelties we

introduce include using a CAE combined with a gradual loss learning technique to handle the

multi-objective optimization of the network, and adding the effect of the HPA on an integrated

end-to-end MIMO communication system. We present an iterative MIMO detection algorithm

integrated into transmitter-receiver end-to-end communication system joint optimization. We

demonstrate our algorithm’s results on 5G MIMO-OFDM Matlab toolbox simulated data, and

we compare our method with classical methods for PAPR reduction and waveform design, and

show competitive results for all the objectives mentioned above. The proposed algorithm offers

performance improvement for future wireless communication systems. We show that our model

provides competitive PAPR reduction, waveform design, and detection results.

The rest of this paper is structured as follows. In Section II, the problem is defined and

formulated separately for MIMO detection, and for PAPR reduction as a part of the MIMO-OFDM

system. We then present the proposed DL-based system architecture for the multi-objective

optimization and explain the training procedure in Section III. Section IV provides detailed

numerical simulation results and insights. Finally, Section V gives concluding remarks.

II. NOTATION AND PROBLEM DEFINITION

In this section, we introduce the notation and the problem definition.

A. Notation

Throughout this paper, we use the following notations. The set of real numbers is denoted

by R, while the set of complex numbers is denoted by C. Random variables will be denoted

by capital letters, and their realizations will be denoted by lower-case letters, e.g., X and x,

respectively. Calligraphic letters denote sets, e.g., X . We use the notation Xn to denote the

random vector (X1, X2, . . . , Xn) and xn to denote the realization of such a random vector.
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The expectation operator is denoted by E [·]. (·)∗, (·)† denote the conjugate, and pseudo-inverse

operators, respectively.

B. Problem Definition

In this section, we describe mathematically each part of the integrated problem of MIMO de-

tection together with PAPR reduction and spectrum constraints. First, we give a brief introduction

to the end-to-end setup used in our system.

1) MIMO detection model: Let us assume a standard MIMO-OFDM system with Nt transmit

antennas and Nr receive antennas. Transmission is considered over a memoryless complex-

valued channel model, while assuming frequency flatness and slow fading. A MIMO system can

be modeled by the following complex baseband model:

y = Hx+ n, (1)

where x ∈ CNt is the transmitted complex symbol vector drawn from a finite discrete constel-

lation of size |M|, H ∈ CNr×Nt is the complex baseband channel matrix that is related to a

specific subcarrier, n ∈ CNr is complex background AWGN seen at the receiver, and y ∈ CNr is

the received complex vector resulting from the propagation of the transmitted symbols through

the channel contaminated by AWGN.

As the proposed implementation is based on a real-valued NN model determined by the DL

Pytorch library, (1) is expressed with real values by splitting and concatenating each signal into

its real and imaginary parts:

x =







Re{x}

Im{x}






, y =







Re{y}

Im{y}






, n =







Re{n}

Im{n}






,H =







Re{H} −Im{H}

Im{H} Re{H}






. (2)

In the MIMO detection problem, the objective is to detect the transmitted symbols, x, given

the received data y. The optimal solution for the MIMO detection of the transmitted symbols

problem defined above is given by the MLE algorithm, that is,

x̂mle = argmin
x∈XNt

||y −Hx||2, (3)
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where X denotes the set of possible transmitted symbols (i.e., signal constellation). The solution

of (3) requires an exhaustive search over all |M|Nt possible transmitted vectors. Therefore,

it is infeasible for an actual implementation where large-scale MIMO setups and/or a large

constellation are in use.

2) PAPR problem in MIMO-OFDM: In an OFDM system with N complex orthogonal sub-

carriers, the discrete-time transmitted OFDM signal at the nt antenna, is given by the inverse

discrete Fourier transform (IDFT):

xnt,n =
1√
N

N−1
∑

k=0

Xnt,ke
j 2π
LN

kn, 0 ≤ n ≤ LN − 1, 1 ≤ nt ≤ Nt, (4)

where {Xnt,k}N−1
k=0 are random input symbols per antenna, modulated by a finite constellation,

and L ≥ 1 is the over-sampling factor (L = 1 is the Nyquist sampling rate). As shown in

[21], oversampling by a factor of four results in a good approximation of the continuous-time

PAPR of complex OFDM signals. The discussed problem considers non-linear HPAs at each

of the Nt TX branches. We assume that the HPAs in all branches have the same non-linear

characteristic, which is a reasonable assumption, considering current wireless MIMO systems.

Also, in a discrete implementation, the same HPAs are usually used.

The PAPR of the transmitted signal in (4) is defined as the ratio between the maximum peak

power and the average power of the OFDM signal. Specifically, the PAPR at the nt-th transmit

antenna is defined by:

PAPRnt ,
max0≤n≤LN−1 |xnt,n|2

E|xnt,n|2
. (5)

For the entire MIMO-OFDM system, the PAPR reduction method we use will consider the

maximum PAPR among all Nt transmit antennas, as the same PA model is used in all branches:

PAPRMIMO−OFDM = max
1≤nt≤Nt

PAPRnt . (6)

As HPA non-linearity causes spectral regrowth, an important assessment for the spectral purity

of the system is the ACPR criterion, which is the ratio between the power of the adjacent channel
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and the power of the main channel. Following [6], we define it as

ACPR ,
max

(

∫ 3BW/2

BW/2
Pss(f) df,

∫ BW/2

−3BW/2
Pss(f) df

)

∫ BW/2

−BW/2
Pss(f) df

, (7)

where Pss(·) is the power spectral density (PSD) of the signal at the HPA’s output, and BW is

the primary channel bandwidth, which is assumed to be equal to the data signal bandwidth.

A block diagram of the communication system model is shown in Fig. 1.
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Fig. 1: General system model diagram.

Specifically, the encoder and fil-

ter blocks mitigate the PAPR effect

and design the waveform to com-

ply with predefined spectral mask

requirements. For example, the en-

coder block can model a clipping

operation, while the filter can be a standard band-pass filter (BPF). The filtered signal xF
n is

amplified by a non-linear HPA. The amplified signal, xP
n = G(xF

n), is transmitted through a

fading channel with AWGN. The channel decoder receives the noisy signal and attempts to

reconstruct and detect the transmitted signal. For model-driven approaches, a classical detection

algorithm, e.g., MLE, is applied for detecting the estimated symbol denoted by X̂k.

The role of the HPA is to convert the low-level transmission signal to a high power signal,

capable of driving the antenna at the desired power level. The HPA has to operate close to its

saturation region for maximal power efficiency. If the HPA exceeds the saturation point and

enters the non-linear area of operation, the output signal becomes non-linear. Accordingly, to

operate the amplifier only in the linear region, we need to make sure that the amplifier operates

at a power level that is lower than the saturation point. This is achieved by down-scaling the

input signal by an input back-off (IBO) factor. The drawback of adding the IBO attenuation is

that the output power decreases, which makes the HPA power-inefficient.
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signal for different smoothness p values.

There are several commonly used models for the

non-linearity of an HPA. Here, we will focus on

the RAPP behavioral amplifier model [37], which

is very accurate for solid-state-power amplifiers.

The model’s AM/AM conversion is given by

G(Ain) = v · Ain ·
(

1 +

(

vAin

A0

)2p
)− 1

2p

, (8)

where Ain is the input amplitude, A0 is the limiting

output amplitude, v is the small signal gain, p is a

smoothness parameter controlling the transition from the linear region to the saturation region,

and G(A) is the output amplitude. Figure 2 shows RAPP HPA outputs versus input for several

smoothing factor values.

III. PROPOSED WAVEFORM DESIGN STRUCTURE

In this section, we describe our multi-objective optimization CAE model architecture. Mo-

tivated by research evidence of powerful learning ability, under the same conditions of the

MIMO-OFDM examined structure, it is expected that the proposed CAE model will achieve

good enough performance to be compared with classical PAPR reduction methods combined

with the MLE detector. We first briefly discuss the general CAE concept. Then, we describe our

algorithm building blocks, and the joint PAPR reduction, spectral design, and detection operation

in detail. The motivation and structure of the iteration-based decoder with regard to handling

the MIMO detection problem as a part of the CAE network will be explained. The proposed

architecture in Fig. 3 is then elaborated, including the Bussgang’s non-linearity compensation

theorem, followed by a description of the gradual learning process. Last, the training procedure

of the CAE multi-objective optimization network operation will be described.

Fig. 3a shows the overall end-to-end communication network structure implemented by a

CAE model, where the encoder and the decoder are the trainable blocks. Each mentioned loss
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component is calculated using the operations appearing in the red blocks in the figure. It can

be noticed that there are two PAPR calculation-based loss components, as will be detailed later,

that helped achieve improved spectral behavior and BER results. Fig. 3b describes the encoder

structure. It is constructed of 2D convolutional layers to be compatible with the input example

dimensions, a fully connected layer, and a power normalization layer at the output. We also added

a skip connection to improve stability and performance. Fig. 3c shows the decoder structure. It

is also implemented with 2D convolutional layers. To be able to optimize the network under
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different communication channel realizations, we used an iterative-based solution to the MIMO

detection problem. We emphasize that the presented CAE model, once trained on a single training

set, presents competitive results for the discussed multi-objective optimization problem in the

presence of a wide range of noise power levels, without any knowledge of the SNR level.

A. Convolutional Autoencoder (CAE)

The proposed implementation uses an AE learning system based on a convolutional neural

network (CNN). The general structure of an AE consists of two main blocks: the encoder f(x)

and the decoder g(x), where x is the input data. The AE is trained to minimize a certain joint

loss function, which we denote by L(x, g(f(x))). An end-to-end communication system can be

interpreted as an AE in which the encoder and the decoder are part of the transmitter and the

receiver, respectively, and can jointly optimize them through an end-to-end learning procedure.

CNNs are widely used for feature extraction and pattern recognition in ML models. Compared

with a fully connected (FC) network, a CNN has significantly fewer connections between adjacent

layers, and thus fewer parameters and weights to train, resulting in lower complexity and much

faster training.

B. Iteration-Based Model Motivation

An iterative approach based on convolutional layers, was adopted to implement the decoder.

The MIM0 detector was designed to solve the MLE optimization (3) using the projected gradient

descent approach, where the input to the detector is a linear combination of features instead of

the channel output directly. Utilizing such detectors significantly improved the detection results

when various channel realizations were integrated. The detector input feature selection was based

on the following projected gradient decent approach used to optimize (9):

||y −Hx||2. (9)

As shown in [10], [11], such iterations are updated by

x̂k+1 = Pc

[

x̂k − δk
∂||y −Hx||2

∂x

∣

∣

∣

∣

x=x̂k

]

= Pc

[

x̂k − δk
(

HHy −HHHx̂k

)]

, (10)
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where x̂k is the objective estimation in the k’th iteration, HH indicates the conjugate transpose

operation over the channel matrix H , δk is the step size, and Pc is the non-linear projection

operator. The above can be adapted to a deep NN iterative solution by the following linear

combination form:

x̂k+1 = Pc(x̂k + δ1kH
Hy + δ2kH

HHx̂k), (11)

where δ1k and δ2k are learned hyper-parameters to be optimized. One of the motivations for using

the described iterative decoder approach was a former work published in [10], [11]. In our work, it

is designed as part of the joint encoder-decoder multi-task optimization. Also, it was implemented

with convolutional layers, that enabled better computational and performance capabilities for

the joint optimization end-to-end system, and the per subcarrier/antenna alternating analysis. A

softmax layer is added at the output of the CAE to generate probabilistic outputs. In the following

section, we provide the complete detection procedure.

C. Proposed CAE Architecture

This section introduces the suggested CAE learning network implementation of the MIMO-

OFDM system for the multi-objective optimization task. We consider a MIMO-OFDM scheme

with Nt transmit antennas and Nr receive antennas, where the OFDM is of order K. The input

is represented by a matrix in the frequency domain, i.e.

X =





















X(1)(1) X(1)(2) · · · X(1)(K)

X(2)(1) X(2)(2) · · · X(2)(K)

...
...

. . .
...

X(Nt)(1) X(Nt)(2) · · · X(Nt)(K)





















, (12)

where, for any nt ∈ [1, Nt] and k ∈ [1, K], X(nt)(k) is a M-QAM constellation complex-valued

symbol.

In Fig. 3a, we illustrate the general structure of the end-to-end communication network

implemented by the CAE configuration. Specifically, we consider a transmitter that takes the
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two-dimensional matrix X as an input. The transmitter’s output goes through a MIMO channel,

together with AWGN. Finally, the noisy channel outputs are fed into a receiver to estimate X.

The operations within the transmitter and the receiver are described below.

• Transmitter: the input signal X is zero-padded on the subcarriers’ dimension and converted

to the time domain via an IFFT applied on each of the transmitter branches, outputting

{xn}LN−1
n=0 . These symbols serve as the input to the encoder, which acts as a PAPR reduction

block, followed by a BPF filter for optimizing the spectral behavior by reducing the out-

of-band radiation. Its frequency response is a rectangular window with the same bandwidth

as X
(nt)
k . Then, a predefined IBO is applied just before the signal is amplified by the HPA.

• Receiver: the distorted OFDM symbols are divided by an α factor to compensate for the

non-linear distortions, as will be detailed in the following. Finally, the proposed CAE decoder

reconstructs and detects the estimated MIMO-OFDM transmitted signals.

The encoder comprises three convolutional layers, and the decoder is composed of iterative

construction of convolutional layers. Each convolutional layer is followed by a non-linear ac-

tivation function and batch normalization [38], and then a fully connected layer. In addition, a

residual connection is added to the encoder block, which sums (element-wise) the input to

the second convolutional layer and the output of the third convolutional layer. It turns out

that this modification improves the overall performance of the suggested scheme significantly.

The intuition is that adding another path for data to reach the latter parts of the NN makes it

easier to optimize the mapping [39]. Furthermore, the encoder has a power normalization layer,

which ensures that the transmitted signal meets the power constraints of unit average energy

per OFDM symbol. This way, the intended SNR is maintained. We tested several activation

functions, including sigmoid, rectified linear unit (RELU), Gaussian error linear unit (GELU),

and scaled exponential linear unit (SELU) [40]. Empirically, it was found that SELU activation

provides the best results for our CAE scheme.

As illustrated in Fig. 3a and Fig. 3b, since the encoder is responsible for the PAPR reduction,
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which is calculated per OFDM symbol, we start with per antenna analysis, where each antenna is

treated separately. A one-dimensional kernel per TX branch handles this. The encoder architecture

can be described by the following:

f(x) = ρLf

(∣

∣

∣

∣

W
f
Lf

(

ρLf−1

(

...

(

ρ1
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∣
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∣

bnorm

))

, (13)

where Lf is the number of the encoder’s convolutional layers, W
f
i , and b

f
i are the encoder’s

weight matrix and bias vector, respectively, for the i’th layer, with size determined as a part of

the network design. ρi(·) is the activation function of the i’th layer, and bnorm means the layer

passes through a batch normalization.

The next part of this process applies the non-linear HPAs on each TX branch of the transmitter

time domain signals, each composed of all subcarriers. The signal is then converted via FFT to the

frequency domain, and the zero-unpadding block removes the out-of-band samples. Afterward,

frequency domain analysis is performed on each subcarrier transmitted through all Nt antennas.

Each subcarrier is transmitted through its related complex baseband channel described by a

(Nr ×Nt) matrix, and the AWGN is added as well.

To continue with the per subcarrier analysis on the receiver side, we need to overcome the

non-linearity of the HPA. To that end, we compensate the receiver input signal by applying

an attenuation factor represented by α. Bussgang’s decomposition theorem [41] states that if a

zero-mean Gaussian signal passes through a memoryless non-linear device, then the output-input

cross-correlation function is proportional to the input autocovariance. Accordingly, the value of

α is chosen to minimize the variance of the non-linear signal distortions, such that it is attempted

that the transmitted signal in each transmitter branch is linearly separated, and thus represented

as a sum of the signal and distortion. It can be shown that

α =
E
(

xF
nx

P
n

)

E (|xF
n|2)

, (14)
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where xP
n is the complex output signal of the PA, and xP

n is its complex conjugate. By assuming

that the PSD of the in-band distortion is approximately flat [42] in the frequency domain, the

output signal of the HPA on the k-th subcarrier can then be expressed as

XP(k) = α(k)XF(k) +D(k), (15)

where D(k) is the non-linear distortion on the k-th subcarrier. The same model is assumed for

all PAs; therefore, it can be concluded that αnt = α.

At the MIMO decoder, Fig. 3c, the per subcarrier analysis is continued, meaning that different

subcarriers of the same RX branch will not be mixed. To generalize our end-to-end structure,

we modified the 1D kernel to a 2D kernel at the decoder part. It also helped better reconstruct

the signal after the encoder layers. As explained in the previous sub-section, we use an iterative

procedure to implement the decoder, which is designed for signal reconstruction and detection.

A general mathematical description of one iteration, k, of the presented decoder is given by

dk =

(

x̂k−1, δ1kH
Hy, δ2kH

HHx̂k−1

)

x̂k = g(dk)

= ρLg,k

(∣

∣

∣

∣

W
g
Lg ,k

(

ρLg−1,k
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...
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ρ1,k

(∣

∣

∣

∣
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1,kd

T
k + b
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1,k
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∣
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bnorm

)))

...

)

+ b
g
Lg,k

∣
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∣

∣

bnorm

)

,

where Lg, W
g
i , and b

g
i , have the same definitions as described for the encoder’s block, only

that these apply for the decoder. The decoder’s input features vector, dk, was initialized by

randomizing a prediction x̂0. Initialization by zeros resulted in performance degradation.

D. Training of the CAE Network

We train a single CAE model for all tested SNR values. We use the AdamW optimizer [43]

that runs back-propagation to optimize the model during training. This optimizer is designed to

improve gradients when L2 regularization is used. Our loss function is set to solve the constrained

optimization problem by handling three objectives: accurate signal reconstruction (minimal BER),

minimal PAPR, and acceptable ACPR.

We solve this constrained optimization problem by recasting it as an unconstrained problem

by constructing the Lagrangian function and augmenting the objective function with a quadratic
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penalty term [44]. The augmented Lagrangian (AL) combines the Lagrangian formulation with a

weighted quadratic penalty function. The general AL for an inequality-constrained problem can

be described by

Fρk(x, λ
k) = f(x) + λk

1c1(x) +
1

2
ρk1 ‖c1(x)‖22 +

1

2ρk2

{

[

max{0, λk
2 + ρk2c2(x)}

]2 − (λk
2)

2
}

,

(16)

where f denotes the objective function, ρk , (ρk1, ρ
k
2) are positive penalty parameters, λk ,

(λk
1, λ

k
2) are the Lagrangian multipliers, the c1-involved expressions handle the equality constraint,

and c2 is for the inequality constraint. Equation (16) considers the elimination of a slack variable

s ≥ 0 that was introduced in the representation of the inequality constraint to transform it into

a relaxed equality constraint. As suggested in [45], the minimizer s = max{0, c2(x) − λ2
1
ρ2
}

was used. k is the iteration number for updating the Lagrangian multipliers and penalty term,

according to the following rule derived by the dual ascent method [44],

xk+1 := argmin
x

Fρk(x, λ
k) (17)

λk+1
1 := λk

1 + ρk1c1(x
k+1) (18)

λk+1
2 := max{0, λk

2 + ρk2c2(x
k+1)}. (19)

We saw better convergence and more stable results for different BO values by adding the

quadratic penalty function and adaptively updating the multipliers instead of keeping them

constant. Since adaptive penalty parameter update was not beneficial for the examined cases, it

was added as a fixed hyperparameter.

Following the above-described general inequality constraint optimization problem, the formu-

lation of our loss function based on the appropriate objective and constraints, represented by
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four loss components L1, L2a, L2b, and L3, is

L(x, x̂, λk
2a, λ

k
2b, λ

k
3) = L1(x, x̂) + λk

2aL2a(x) +
ρ2a
2

‖L2a(x)‖22

+ λk
2bL2b(x) +

ρ2b
2

‖L2b(x)‖22 +
1

2ρ3

{

[

max{0, λk
3 + ρ3L3(x)}

]2 − (λk
3)

2
}

,

(20)

where λ2a, λ2b, λ3, ρ2a, ρ2b, and ρ3 are the appropriate Lagrange multipliers and penalty pa-

rameters, accordingly. These are considered hyper-parameters, which balance the contribution

of each loss component to the joint loss function. We start with a moderate value of λ2a, λ2b

and λ3 and then iterate for a better value according to the resulting PAPR loss of each iteration

and some predetermined PAPR threshold value. Better performance was observed for relatively

small λ2b values, with very low ρ2b, meaning that λ2b was kept almost constant during training.

The loss function we use for optimizing the signal reconstruction and detection is the sum

of negative log loss function of the predicted output probability of the real and imaginary parts

of each symbol, with L2 regularization to reduce over-fitting. Denoting by x the input sample

(which is also the output target), x̂ as the estimated signal, Θ as the model’s weights, and λ1

as a hyperparameter for tuning the L2 regularization, the loss function for each OFDM MIMO

sample is given by,

L1(x, x̂) = −
[

Nt
∑

j=1

Nsc
∑

s=1

Nc
∑

q=1

1
{

Re{xj} = lq

}

logPθ

(

Re
{

x̂j
}

= lq

)

+
Nt
∑

j=1

Nsc
∑

s=1

Nc
∑

q=1

1
{

Im{xj} = lq

}

logPθ

(

Im
{

x̂j
}

= lq

)

]

+ λ1 ‖Θ‖22 , (21)

where Nc =
√

|M| denotes the number of the real value possibilities, lq, of each of the real

and imaginary parts of the transmitted modulated symbol.

The PAPR minimization part is handled with two loss components, where one, L2a, is

calculated according to the BPF input, xE
n, and the other one, L2b, according to the BPF output,
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xF
n (cf. Fig. 3a). These are our equality constraints, defined by

L2a(x) = PAPR{xE
n}, (22)

L2b(x) = PAPR{xF
n}. (23)

Other than the role of PAPR minimization handled by either of the components, L2a(x), signif-

icantly improved the BER result together with the ACPR, while L2b(x), enabled us to control

and obtain better spectral performance, meaning lower ACPR with lower output back-off (OBO)

values. The ACPR loss component is given by

L3(x) = ACPR{xP
n} − ACPRreq, (24)

where xP
n is the PA’s output, and ACPRreq is the required ACPR value, which is usually dictated

by a standard. ACPRreq was set according to the 5G standard requirements for high spectral

purity: ACPRreq ≤ −45dB [6]; thus, L3(x) defines our inequality constraint.

We have applied a gradual loss learning technique. In the first stage, the loss function consisted

only of L1 and optimized only the reconstruction loss. Then, after a predetermined number of

epochs, the loss function defined in (20) was used to reduce the PAPR and improve the spectral

behavior. The gradual loss learning enables better control and stability in tuning the different

criteria’ trade-offs.

IV. RESULTS AND INSIGHTS

A. Data Generation and Experimental Setup

To train and test the proposed data-driven model, the MATLAB® 5G Toolbox™ [46] was

used. This toolbox provides 5G radio-standard-compliant functions to generate accurate data

for MIMO-OFDM transmission, according to specified constellation sizes and examined MIMO

setups. MIMO-OFDM transmissions over fading channels were simulated, where TDL-D type

channels - a 13 delay tap channel with a 30ns delay spread, as described in the 3gpp specification

document [6], were used for our implemented algorithm.
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We consider a MIMO-OFDM system with K =72 subcarriers over 14 OFDM symbols per

frame. 4375 batches of 32 MIMO samples each were used for a single training set, where

the input and output of the CAE sample shape is [2/4 − antennas, (72 − subcarriers) ×

(2− complex − parts)× (4 − oversampling)]. An oversampling factor L = 4, and smoothness

factor p = 2 were considered. We trained three identical CAE models on the following setups:

1) QPSK modulation scheme with a 2× 2 MIMO setting, with 3GPP multipath channel.

2) 16-QAM modulation scheme with a 4× 4 MIMO setting, with 3GPP multipath channel.

3) 16-QAM modulation scheme with a 4× 4 MIMO setting, with AWGN channel.

To provide an unbiased performance evaluation of the final training model, the training and

test data sets were generated independently, i.e. OFDM symbols, channel realization, and noise

were randomized independently. In the following, we give numerical performance results of our

multi-objective CAE model compared to a classical CF algorithm with a clipping ratio of 4.08

dB, and to SLM with U = 64 phase sequences, with MLE added for MIMO detection. The

inference part was performed on 7000 MIMO samples for each SNR point.

B. Training Setup

As a part of the experimental analysis, we performed an extensive exploration of different

model structures and hyper-parameters, including the number of layers, kernel sizes, number

of convolutional layer channels, regularization, dropout, number of decoder iterations, batch-

normalization, learning rate, AL parameters, trained SNR value, and epoch number. We found

that the best performance versus complexity on both examined MIMO setups was achieved for

the same model structure, only with different training data sets. As the constellation, the number

of subcarriers per OFDM symbols, and the number of antennas are higher, the training is longer,

and it is harder to achieve the desired results. The proposed CAE structure for the above 4× 4

MIMO system is described in Table I, where λ
(0)
2a , λ

(0)
2b , and λ

(0)
3 are the values of the first iteration

when the AL epochs start, and ’Grad start’ indicates the number of initial epochs where only the

reconstruction loss is counted, optimizing the unconstrained problem. ’LR’ indicates the learning
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TABLE I: CAE Proposed Structure

Transmitter Receiver

Parameter Value Kernel Ch-in Ch-out Value Kernel Ch-in Ch-out

Input size 4× 720 - - - 12× 144 - -

Conv (SELU) - 1× 3 1 21 - 3× 3 1 15

Conv (SELU) - 1× 3 21 15 - 3× 3 15 21

Conv (SELU) - 1× 3 15 21 - - - -

FC (Linear) output size 4× 720 - - - 12× 144 - - -

Decoder iterations - - - - 10 - - -

Conv padding LR Epochs num Grad start SNR train λ
(0)
2a , λ

(0)
2b , λ

(0)
3 ρ2a, ρ2b, ρ3

2 0.001 140 45 40 dB 0.015, 0.001, 0.005 0.0015, 0.00001, 0.001

rate. Training on any of the data sets with the same best SNR value used for noise generation,

’SNR train’, showed the top overall inference performance for any tested SNRs. Adding dropout

had no benefit in all examined setups.

C. BER Analysis

The calculation of BER versus Peak Signal to Noise Ratio (P SNR) is used here as a key

parameter to measure the reconstruction and detection of the transmitted signal. Considering a

normalized channel, i.e. E ‖H‖2 = 1, the P SNR is defined as the ratio between the MIMO

system maximal emitted energy, PT , and the noise power, σ2
w, such that

P SNR =
PT

σ2
w

. (25)

As shown in Fig. 4, the CAE has competitive BER vs. P SNR performance compared to the

other standard examined methods in most of the P SNR range, where a visible gain is achieved at

the higher part. As the NN does not assume any specific physical model, it has better robustness

to distortions. That is, the MIMO-OFDM signal reconstruction and detection of HPA-distorted

data as a part of the multi-objective optimization proposed by our end-to-end DL scheme has

the benefit over the common algorithms.
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(a) 16-QAM, 4x4 MIMO with 3GPP multipath channel
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(b) 16-QAM, 4x4 MIMO with AWGN channel
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(c) 4-QAM, 2x2 MIMO with 3GPP multipath channel

Fig. 4: BER vs. P SNR of the considered methods and setups.

D. CCDF for PAPR Comparison

To demonstrate the PAPR performance of different methods, complementary cumulative dis-

tribution function (CCDF) curves are presented in Fig. 5. The CCDF of the PAPR denotes the

probability that the PAPR exceeds a certain threshold, i.e. P(PAPRMIMO−OFDM > PAPR0). The

PAPR is calculated according to the BPF output, xF
n. As can be observed in Fig. 5, the proposed

CAE achieves the better performance of PAPR reduction compared to the CF and SLM methods.

However, still the BER and spectral behavior are more important for performance evaluation.
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(c) 4-QAM, 2x2 MIMO with 3GPP multipath channel

Fig. 5: CCDF of PAPR of the considered methods.

E. Spectrum Analysis

Figure 6 compare the spectral performance in terms of the PSD of the transmitted signals for

all examined methods. The dashed rectangle shows perfect spectral behavior for a linear HPA

with no non-linear components.

The proposed CAE decreases the out-of-band distortions at the expense of lower transmitted

power efficiency. Observing the spectral behavior as a part of the experimental analysis showed

us that there is a trade-off between increasing the IBO and increasing the Lagrange multiplier

associated with the PAPR loss component, λ2b. As shown in Fig. 7, while increasing the IBO

mostly shifts the CAE curve downwards, increasing λ2b causes the curve to bend more.
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(a) 16-QAM, 4x4 MIMO with 3GPP multipath channel

0 50 100 150 200 250 300 350
Subcarrier  umber

−70

−60

−50

−40

−30

−20

−10

0

PS
D[
dB

]

No_PAPR_reductio _ oPA
No_PAPR_reductio 
CAE
CF
SLM

(b) 16-QAM, 4x4 MIMO with AWGN channel
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(c) 4-QAM, 2x2 MIMO with 3GPP multipath channel

Fig. 6: PSD for the considered methods.

(a) moderate λ2b (b) high λ2b (c) moderate IBO (d) high IBO

Fig. 7: Spectral mask behavior trade-off between IBO and λ2b.

The transmitter’s OBO, which evaluates the power efficiency of the system, is defined as the

ratio between the maximal radiated power that is the maximal power transmitted by all the HPAs

in the network, PT , and the mean transmitted power at the HPAs’ input, i.e.

OBO =
PT

∑Nt

m=1 E
(

|xB
n,m|2

) . (26)
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TABLE II: ACPR and OBO

4QAM 2X2 MIMO 16QAM 4X4 MIMO

Parameter CAE FC-AE CF SLM No-reduction CAE FC-AE CF SLM No-reduction

ACPR[dB] -39.87 -37.26 -39.08 -37.73 -34.99 -37.88 -36.53 -39.004 -37.67 -35.01

OBO[dB] 5.92 6.62 6.74 6.78 6.86 6.09 6.77 6.74 6.78 6.84

−55 −50 −45 −40 −35 −30 −25
ACPR[dB]

2
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O[

dB
]
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SLM

Fig. 8: OBO vs. ACPR for the considered meth-

ods for 16-QAM with 4x4 MIMO setup and

3GPP multipath channel.

The maximum radiated power is defined to

be PT = 1. PT is divided equally between

the HPAs. In other words, the maximal trans-

mitted power of each HPA is PT/Nt. As we

defined all HPAs to have the same charac-

teristics, the saturation level of each HPA is

A0 =
√

PT/NT . Table II compares the ACPR

and the OBO of the proposed CAE to the other

methods. As shown, the ACPR of the CAE is

comparable with the considered methods.

In Fig. 8 we further compare the OBO performance for different ACPR values. It can be

seen that the CAE system requires lower OBOs, which is better overall power efficiency, while

maintaining better BER compared to the other methods.

F. Autoencoder - FC vs. CNN

We investigated various NN types for the AE, in particular, FC and CNN. Figure 9a compares

the BER performance of two AE architectures: the proposed CAE, which contains convolutional

layers, and a fully connected autoencoder (FC-AE), which contains only FC layers. It can be

observed that the CAE network has better BER performance compared to the FC-AE. As shown

in Table II, the ACPR of the CAE is better than that of the FC-AE. Moreover, the CAE has

lower complexity and thus faster training. The three convolutional layers have a total of 1953

parameters, while for three FC layers of sizes 3500, 2500, and 3500, as were used for the FC-AE
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Fig. 9: BER vs. P SNR learning approaches comparison of 16-QAM, 4x4 MIMO with 3GPP

multipath channel.

in Fig. 9a and Table II, the number of parameters is around 107.

G. Fixed vs. Gradual Loss Learning

To show the benefits of using a gradual loss learning procedure, Fig. 9b compares its BER

performance to that of a fixed-loss training procedure, where the loss function’s weights are fixed

for the entire training. It can be observed that the gradual loss learning procedure significantly

improves the BER. In addition, improving the BER while keeping the PAPR and spectral

performance at the desired levels is easier to control when applying the gradual loss learning

method than manipulating loss function weights in fixed-loss training. Also, spectral performance

and PAPR reduction were harder to control and provide similar performance.

V. CONCLUSIONS AND FUTURE WORK

In this study, we have presented a CAE model for PAPR reduction and waveform design in

a MIMO-OFDM communication system. We have applied a gradual loss learning method to

optimize the performance in terms of three objectives: low BER, low PAPR, and adherence to

ACPR spectral requirements, on top of the AL multipliers optimization technique. The presented

CAE structure trainable parts included a neural PAPR reduction block, followed by a BPF filter to

optimize the spectral behavior at the transmitter, and a neural iterative MIMO detection block at
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the receiver, both were simultaneously optimized as a part of the end-to-end network design. The

proposed CAE was shown to outperform the CF and the SLM algorithms at the examined cases.

Future work can extend the MIMO scenario to higher modulation schemes and larger MIMO

setups, aiming to achieve a functional utility for future wireless communication networks.
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