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Optimal Power Allocation for Integrated Visible
Light Positioning and Communication System with

a Single LED-Lamp
Shuai Ma, Member, IEEE, Ruixin Yang, Graduate Student Member, IEEE, Bing Li, Yongyan Chen, Hang

Li, Member, IEEE, Youlong Wu, Member, IEEE, Majid Safari, Senior Member, IEEE, Shiyin Li, and Naofal
Al-Dhahir, Fellow, IEEE

Abstract—In this paper, we investigate an integrated visible
light positioning and communication (VLPC) system with a
single LED-lamp. First, by leveraging the fact that the VLC
channel model is a function of the receiver’s location, we propose
a system model that estimates the channel state information
(CSI) based on the positioning information without transmitting
pilot sequences. Second, we derive the Cramer-Rao lower bound
(CRLB) on the positioning error variance and a lower bound
on the achievable rate with on-off keying modulation. Third,
based on the derived performance metrics, we optimize the power
allocation to minimize the CRLB, while satisfying the rate outage
probability constraint. To tackle this non-convex optimization
problem, we apply the worst-case distribution of the Conditional
Value-at-Risk (CVaR) and the block coordinate descent (BCD)
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methods to obtain the feasible solutions. Finally, the effects
of critical system parameters, such as outage probability, rate
threshold, total power threshold, are revealed by numerical
results.

Index Terms—Visible light communication, Visible light posi-
tioning, Power allocation, Cramer-Rao lower bound.

I. INTRODUCTION

With the explosively increasing number of Internet of
Things (IoT) devices in beyond fifth generation (B5G) net-
works, the crisis of radio frequency (RF) spectrum shortage
becomes increasingly challenging, which makes it more dif-
ficult for the RF wireless systems to meet the high speed
data transmission and high accuracy positioning demands
simultaneously [1]. It is worth noting that more than 50% of
voice traffic and 70% of wireless data traffic occur in indoor
environments [2]. Since the indoor activity requires both
illumination and network access, visible light communication
(VLC) [3] and visible light positioning (VLP) [4], which
apply the ubiquitous light emitting diodes (LEDs) as access
points (APs) and anchor nodes, are promising technologies
for indoor IoT applications. Comparing with the conventional
radio frequency (RF) wireless technologies, the distinct ad-
vantages of VLC and VLP are multifold [4] [5], including
no electromagnetic interference, high energy efficiency, high
security, and low-cost.

VLC utilizes the simple intensity modulation and direct
detection (IM/DD) mechanism for information transmission,
and has attracted significant research interests as a break-
through technology for B5G networks [6]. Extensive studies
have been reported to improve VLC networks performance.
For example, by adopting the alternating direction method of
multipliers (ADMM), a distributed coordinated interference
management scheme is proposed in [7] for VLC networks.
To balance energy and bandwidth efficiency, both power
allocation and rate splitting are optimized in [8] for DC-biased
optical orthogonal frequency division multiplexing (DCO-
OFDM). In [9], in order to jointly optimize the post-equalizer,
the precoder and the DC offset, a gradient projection-based
procedure is presented to minimize the sum mean squared
error (MSE) of the received symbols. Furthermore, VLC has
been commercialized in industry. Some startup companies
and existing industry giants, such as pureLiFi, Philips, and
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Oledcomm, are providing VLC commercial solutions in home
and business buildings.

Owning to its short wavelength and low multipath inter-
ference, VLP can achieve high indoor positioning accuracy,
which can facilitate various applications, such as indoor nav-
igation, location aware services, logistic management, and
assets tracking, to name few. By exploiting different visible
light characteristics, existing VLP schemes can apply time of
arrival (TOA) [10] [11], time difference of arrival (TDOA)
[12], angle of arrival (AOA) [13] and received signal strength
(RSS) [14] techniques for positioning. Among the above VLP
schemes, the RSS based scheme is widely adopted due to
its simplicity and ubiquity, where the distance between the
lamp base station (BS) and the device is calculated based
on the channel model. For example, by using the weighted
k-nearest-neighbor (K-NN), a multi-LEDs positioning system
is designed in [15] based on sparse fingerprints. In [16], an
artificial neural network (ANN)-based position estimator is
proposed for 3D RSS-based VLP systems.

Most of the existing works only focus on VLC or VLP
individually. In practical indoor applications, an integrated
system with both the communication and positioning func-
tions is highly desirable. So far, only few works considered
the integration of VLC and VLP. Specifically, VLC systems
based on orthogonal frequency division multiplexing access
(OFDMA) [17], [18] were proposed to estimate the receiver
position. An integrated visible light positioning and com-
munication (VLPC) system was designed in [19] by using
filter bank multicarrier-based subcarrier multiplexing (FBMC-
SCM). Such FBMC-SCM-assisted VLP with its high signal
processing complexity was proposed to reduce the out-of-band
interference (OOBI). Towards an OFDMA VLPC network,
the authors in [20] jointly optimized the AP selection, band-
width allocation, adaptive modulation, and power allocation
to maximize the data rate while satisfying positioning accu-
racy constraints. In [21], a modified experience replay actor-
critic (MERAC) reinforcement learning (RL) approach was
presented to maximize the sum rate under the users’ minimum
data rates and positioning accuracy requirements. In [22], the
authors proposed a coordinated resource allocation approach
to maximize the sum rate while satisfying the minimum data
rates and positioning accuracy requirements of devices.

In the above considered VLPC systems, it is required that
at least two lamp signals are captured at the receiver simul-
taneously for effective positioning. Unfortunately, such multi-
lamp setup may not fit in many practical scenarios, such as in
a tunnel, corridor, and staircase, where the lamps are sparsely
installed. In these scenarios, the multi-lamp based method will
not be as efficient as in a large and flat room. In terms of
system design, most of the existing VLPC literatures [4], [23]
mainly focus on optimizing the resource allocation in different
frequency bands to guarantee quality of service (QoS) of
communication and positioning. However, some fundamental
issues have not been well investigated. Particularly, does the
positioning benefit or compromise the communication? How
are the two performances related? Given the limited power
consumption, how to balance the two performances while
taking the positioning error into account?

In this paper, we aim to address the above mentioned fun-
damental issues, as well as to provide a robust beamforming
and power allocation scheme. The main contributions of this
paper are summarized as follows:
• We establish a VLPC system model with a single LED-

lamp and a mobile user with multiple photoelectric de-
tectors (PD). By leveraging the fact that the VLC channel
model is a function of the receiver’s location, the lamp
estimate the channel state information (CSI) based on the
positioning results, instead of transmitting pilot sequences
for CSI estimation, which can significantly reduce the
system overhead.

• We derive the Cramer-Rao lower bound (CRLB) on the
positioning error variance, which is used as the VLP
performance metric. In addition, we derive the achievable
rate expression for on-off keying (OOK) modulation, and
its closed-form lower bound. Furthermore, by exploiting
CRLB and achievable rate expressions, we reveal the
inner relationship between VLP and VLC for the first
time, i.e., derive the distribution of the CSI error of VLC
based on the positioning error of VLP, and obtain a rate
outage probability of VLC.

• Based on the derived model and metrics, we further inves-
tigate a joint positioning and communication power allo-
cation and beamforming problem to minimize the CRLB
subject to rate outage constraints and power constraints.
The outage probability constraint makes the optimization
problem non-convex. Then, we apply the Conditional
Value-at-Risk (CVaR) and the block coordinate descent
(BCD) method techniques to convert the original problem
into two convex VLP and VLC sub-problems. Finally,
we develop a BCD algorithm for robust VLPC design, in
which the positioning and communication power alloca-
tion are iteratively optimized until convergence.

The rest of this paper is organized as follows. We present
the VLPC system model in Section II. The key performance
metrics for the VLPC system are derived in Section III.
In Section IV, we investigate the chance constrained robust
design. Extensive simulation results are presented in Section
V. Section VI concludes the paper. Moreover, Table I and II
present the means of the key notations and the main acronyms
of this paper, respectively.

Notations: Boldfaced lowercase and uppercase letters repre-
sent vectors and matrices, respectively. M , {1, ...,M}. The
transpose and trace of a matrix are denoted as (·)T and Tr (·),
respectively. ‖·‖2 denotes 2-norm. N denotes the Gaussian
distribution. 0 denotes a column vector where all elements are
0. Rn represents the space of n-dimensional real matrices. Sn
represents the space of n-dimensional real symmetric matrices.

II. SYSTEM MODEL

Considering a VLPC system, as shown in Fig. 1, where
the lamp is equipped with a single LED that points straight
downward, and a mobile user (MU) has a receiver with M
PDs (M ≥ 3)1. Let l = [xl, yl, zl]

T, u = [xu, yu, zu]
T and

1For 3D positioning, the number of PDs is at least 3.
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TABLE I: Summary of Key Notations

Notation Description
Pp Allocated positioning power
Pc Allocated communication power
u Location vector of MU
ep Positioning error vector
ĥ Estimated CSI vector

∆h CSI estimation error vector
I Identity matrix

Jp Fisher information matrix
RL

c Lower bound on the the achievable rate
P The set of distributions for ∆h

r̄ Minimum rate requirement
Pout Maximum tolerable outage probability

TABLE II: Summary of Main Acronyms

Notation Description
VLP Visible light positioning
VLC Visible light communication

VLPC Visible light positioning and communication
MU Mobile user

CRLB Cramer-Rao lower bound
CSI Channel state information

BCD Block coordinate descent
CVaR Conditional Value-at-Risk

ui = [xi, yi, zi]
T denote the locations of the LED, the MU

and the ith PD, respectively, where i ∈ M. Moreover, let
vi = [vx,i, vy,i, vz,i]

T denote the offset of the ith PD to the
MU, i.e., ui = u + vi.

The wireless channel of the VLPC system has two types
of links, i.e. the line-of-sight (LOS) link and the non line-of-
sight (NLOS) link. Generally, the influence of the LOS link
is much stronger than that of the NLOS link [24]. In order to
facilitate the theoretical analysis, the design of VLPC system is
based only on the LOS link, but both the LOS link and NLOS
link are considered in simulation verification. According to
the Lambert radiation model [25], the LOS path gain between
the LED and the ith PD within field-of-view (FoV) can be
expressed as

hi =
(m+ 1)APD

2πd2
i

cosm (φi) cos (ϕi) gTf . (1)

Here, m is the order of Lambertian emission and m =
− ln 2

ln(cos θ1/2)
, where θ1/2 is the semi-angle at half power. Other

parameters are defined as follows: APD denotes the PD area; di
is the distance between the LED and the ith PD; φi and ϕi are
the radiance and incidence angles, respectively; g denotes the
gain of the optical concentrator, and is given by g =

n2
r

sin2(ψFoV)
,

where nr denotes the refractive index, and ψFoV represents the
FoV of receiver; and Tf denotes the gain of the optical filter.

Without loss of generality, assume that the PDs are pointing
straight upward [26]. Based on the geometric relationship, the
LOS path gain (1) parameters can be specified as

di = ‖l− ui‖2, (2a)

PDi

PDM

PD1

MU

i
j
i
j

in y
FOV

y
FOV

Z

Y

X

Lamp

i
f
i
f

idid

...
...

LED
n
LED
n

Fig. 1: System model illustration.

cos (φi) =
(ui − l)

T
nLED

‖l− ui‖2
=

zl − zi
‖l− ui‖2

, (2b)

cos (ϕi) =
(l− ui)

T
ni

‖l− ui‖2
=

zl − zi
‖l− ui‖2

, (2c)

where nLED = [0, 0,−1]
T and ni = [0, 0, 1]

T are unit
direction vectors of the LED and the ith PD, respectively.
After substituting the above equations into (1), the LOS path
gain can be expressed as

hi =
α(zl − zi)m+1

‖l− ui‖m+3
2

, (3)

where α =
(m+1)APDgTf

2π .

FeedbackPositioning  Data transmission
uTpT

cT

Fig. 2: The frame structure of the considered VLPC system.

As shown in Fig. 2, the operational frame consists of
three subframes: positioning subframe (downlink), feedback
subframe (uplink) and data transmission subframe (downlink).
The corresponding durations are Tp, Tu and Tc, respectively.
More specific, during the positioning subframe, the LED lamp
transmits the positioning symbols to the MU, which estimates
the PDs’ locations based on the RSS, and the corresponding
positioning information will be used for channel estimation
in the next sub-frame. Then, during the feedback subframe,
the MU sends feedback signals of the PDs’ locations to the
lamp which estimates the CSI between the LED and the
PDs. Finally, during the data transmission subframe, the lamp
transmits data symbols to the MU according to the estimated
CSI. This model can be extented into the multi-user system
though proper multiple access methods. Due to the positioning
theory, the positioning signal and subframe can be shared
directly by all users without the multiple access. However,
the multiple acess method, such as OFDMA, time division
multiple address (TDMA), is necessary for the multi-user
uplink feedback and downlink data transmission. Thus, The
problem and solution also should refer to the classical theory
of the multi-user networks.
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A. Positioning Signal Model and Measurements

In the following, we will specify the signal model in order
to analyze the operation in each subframe. Let sp (t) denote
the positioning symbol generated at the lamp at time t, and
|sp (t)| ≤ A, E {sp (t)} = 0, E

{
s2

p (t)
}

= ε, where A > 0 is
the peak amplitude.

For t ∈ [0, Tp], the transmitted positioning signal xp (t) of
the LED is given as

xp (t) =
√
Ppsp (t) + IDC, (4)

where Pp indicates the allocated transmission power to the
positioning symbol, and IDC > 0 denotes the direct current
(DC) bias.

To guarantee that the transmitted signal is non-negative, the
power Pp should satisfy√

PpA ≤ IDC. (5)

Given the human eye safety requirement, the LED optical
power is limited, i.e.

√
PpA + IDC ≤ Pmax

o , where Pmax
o

denotes the maximum optical power. Thus, the power level
Pp should also satisfy√

Pp ≤
Pmax

o − IDC

A
. (6)

Besides, due to practical circuit limitations, the electrical
power of the transmitted signal is constrained as E

{
x2

p (t)
}
≤

Pmax
e , i.e.,

Ppε+ I2
DC ≤ Pmax

e , (7)

where Pmax
e denotes the maximum LED electrical power.

Based on (5), (6) and (7), the constraint of the power Pp

can be written as

0 ≤ Pp ≤ min

{
I2
DC

A2
,

(Pmax
o − IDC)

2

A2
,
Pmax

e − I2
DC

ε

}
. (8)

Then, the received positioning signal at the ith PD can be
expressed as

yp,i (t) = hixp (t) + np,i (t) , (9)

where np,i denotes the received additive white Gaussian noise
(AWGN), which includes shot noise and thermal noise [27],
and np,i ∼ N

(
0, σ2

p

)
.

Theoretically, the electrical power of the received position-
ing signal is given by

Pr,i = E
{
y2

p,i (t)
}

=
(
Ppε+ I2

DC

)
h2
i + σ2

p,i, (10)

where σ2
p,i denotes noise power. Combining (3) and (10), we

have the following M equations
(zl−zu−vz,1)m+1

‖l−u−v1‖m+3
2

= 1
α

(
Pr,1−σ2

p,1

Ppε+I2
DC

) 1
2

,

...
(zl−zu−vz,M )m+1

‖l−u−vM‖m+3
2

= 1
α

(
Pr,M−σ2

p,M

Ppε+I2
DC

) 1
2

.

(11)

To transform the Equations in (11) into a concise form, we

define the auxiliary variable

ηi (u) =
(zl − zu − vz,i)m+1

‖l− u− vi‖m+3
2

− 1

α

(
Pr,i − σ2

p,i

Ppε+ I2
DC

) 1
2

. (12)

Thus, Equation (11) can be equivalently reformulated as
follows

ηi (u) = 0, i ∈M. (13)

Here Equation (13) can be solved by using off-the-shelf
optimization solvers, such as FSOLVE in MATLAB [28].

In general, the positioning error is inevitable. Let û and
ep denote the estimated MU location and the corresponding
positioning error, where ep = [ex, ey, ez]

T. Their relationship
can be written as

ep = u− û. (14)

Generally, the positioning error ep can be assumed to
follow the Gaussian distribution [29]–[31], and then CRLB
can be achieved by the maximum-likelihood (ML) estimator
[32], [33]. We use fep

(ep) to denote the probability density
distribution of ep, which follows a Gaussian distribution with
mean 0 and covariance matrix Ep, i.e., ep ∼ N (0,Ep).

B. MU Feedback and Channel Estimation

When t ∈ [Tp, Tp + Tu], the estimated location of the MU
û will be sent to the lamp, which also serves as an anchor
node. Based on û, the lamp can estimate the CSI between the

LED and the PDs. Specifically, ĥ =
[
ĥ1, ..., ĥM

]T
∈ RM×1

denotes the estimated CSI vector; ∆h = [∆h1, ...,∆hM ]
T ∈

RM×1 denotes the CSI estimation error vector.
Let hi and ĥi denote the perfect and estimated CSI between

the LED and the ith PD, and ∆hi denote the estimated CSI
error, i.e., hi = ĥi+∆hi. According to (3), the estimated CSI
ĥi is a function of the estimated UE’s location û given by

ĥi =
α(zl − ẑu − vz,i)m+1

‖l− û− vi‖m+3
2

. (15)

Based on (3) and (15), the estimated CSI error ∆hi is given
as

∆hi =
α(zl − ẑu − vz,i − ez)m+1

‖l− û− vi − ep‖m+3
2

− α(zl − ẑu − vz,i)m+1

‖l− û− vi‖m+3
2

.

(16)

C. Data Transmission

Let sOOK (t) denote the data symbol transmitted from the
LED, and sOOK (t) takes value 0 or A with equal probability,
i.e., Pr {sOOK (t) = 0} = 1

2 , and Pr {sOOK (t) = A} = 1
2 ,

where A is the peak amplitude of the symbol. Due to sOOK ≥
0, IDC can be 0 in the data transmission.

For t ∈ [Tp + Tu, Tp + Tu + Tc], the LED transmitted data
signal xc (t) can be expressed as

xc (t) =
√
PcsOOK (t) , (17)

where Pc indicates the allocated communication power of the
LED.
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Similarly, the communication power Pc should also meet the
eye safety constraint, i.e.

√
PcA ≤ Pmax

o , where Pmax
o denotes

the maximum optical power. Thus, the communication power
Pc should satisfy √

Pc ≤
Pmax

o

A
. (18)

Under practical circuit limitations, the electrical power of
the transmitted signal is constrained as E

{
x2

c (t)
}
≤ Pmax

e ,
i.e.,

PcE
{
s2

OOK (t)
}

=
PcA

2

2
≤ Pmax

e , (19)

where Pmax
e denotes the maximum LED electrical power.

Based on (18) and (19), the power Pc should satisfy

0 ≤ Pc ≤ min

{
(Pmax

o )
2

A2
,

2Pmax
e

A2

}
. (20)

At the receiver, let v = [v1, ..., vM ]
T ∈ RM×1 denote

the receive beamforming vector of the MU, and ‖v‖ = 1.
Therefore, the received data signal at MU can be expressed as

yc (t) = vT
(
ĥ + ∆h

)
xc (t) + zc, (21)

where zc
∆
= vTnc, and nc ∈ RM×1 denotes the receiver

Gaussian noise vector, i.e., nc ∼ N
(
0, σ2

cI
)
.

III. PERFORMANCE METRICS

A. Cramer-Rao Lower Bound

The CRLB represents a lower bound on the variance of
the positioning estimation error. Hence, we adopt CRLB
as the performance metric for the positioning accuracy in
this paper. Specifically, we consider three-dimensional MU
location estimation. Considering the received signal model in
(9), the likelihood function of yp,i (t) can be written as

f (yp,i (t) ; u) =
1√

2πσp

e
− (yp,i(t)−hixp(t))2

2σ2
p . (22)

Therefore, the log-likelihood function of the received signal
{yp,i (t)}Mi is obtained as follows [34]

Λ (u) = ln

(
M∏
i=1

f (yp,i (t) ; u)

)

= lnκ− 1

2σ2
p

M∑
i=1

∫ Tp

0

(yp,i (t)− hixp (t))
2

dt, (23)

where κ is a constant that does not depend on the unknown
parameters. Recalling the definition given in (14), and denoting
by Ep the covariance matrix of the positioning error ep. Then,
according to the definition of the CRLB on the variance of any
unbiased estimator [35], a lower limit on the variance of the
ith element in an unbiased estimate vector û is given by∑

i

[Ep]ii ≥
∑
i

[
J−1

p

]
ii
, (24)

where [·]ii denotes the diagonal element of a matrix, and Jp

denotes the Fisher Information matrix (FIM), which is defined
as

[Jp]
ij

= −E
{
∂2Λ (u)

∂ui∂uj

}
, (25)

for i ∈ {1, 2, 3}, j ∈ {1, 2, 3}. Likewise, [·]ij denotes the
element on the ith row and jth column of a matrix. We show
in Appendix A that the FIM for (23) is given by

Jp =
Tp

(
Ppε+ I2

DC

)
σ2

p

Q, (26)

where

Q =



M∑
i=1

∂hi
∂xu

∂hi
∂xu

M∑
i=1

∂hi
∂xu

∂hi
∂yu

M∑
i=1

∂hi
∂xu

∂hi
∂zu

M∑
i=1

∂hi
∂xu

∂hi
∂yu

M∑
i=1

∂hi
∂yu

∂hi
∂yu

M∑
i=1

∂hi
∂yu

∂hi
∂zu

M∑
i=1

∂hi
∂xu

∂hi
∂zu

M∑
i=1

∂hi
∂yu

∂hi
∂zu

M∑
i=1

∂hi
∂zu

∂hi
∂zu

 , (27a)

∂hi
∂xu

=
−α (m+ 3) (zl − zu − vz,i)m+1

(xu + vx,i − xl)
‖l− u− vi‖m+5 ,

(27b)

∂hi
∂yu

=
−α (m+ 3) (zl − zu − vz,i)m+1

(yu + vy,i − yl)
‖l− u− vi‖m+5 ,

(27c)
∂hi
∂zu

=
− (m+ 1)α(zl − zu − vz,i)m

‖l− u− vi‖m+3

+
(m+ 3)α(zl − zu − vz,i)m+2

‖l− u− vi‖m+5 . (27d)

Moreover, let B (Hz) denote the bandwidth of VLC link.
Combine the bandwidth of VLC link, the variance of position-
ing error ep is lower bounded by

Tr (Ep) ≥ Tr
(
J−1

p

)
=

Bσ2
p Tr
(
Q−1

)
Tp (Ppε+ I2

DC)
. (28)

In the following, we will use (28) as the positioning
performance metric which is to be minimized.

B. Achievable Rate for OOK

When considering OOK modulation, the input signal no
longer follows the Gaussian distribution, and thus the Shannon
capacity formula based on the Gaussian assumption cannot
be directly applied. In Appendix B, we show that the mutual
information is given by

I (xc; yc) = −1

2
Ezc

log2

e−
z2c

2σ2
c + e

− (vT h
√
PcA+zc)

2

2σ2
c

2




− 1

2
Ezc

log2

e−
z2c

2σ2
c + e

− (−vT h
√
PcA+zc)

2

2σ2
c

2


−

1

2 ln 2
.

(29)
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Due to the expectation operation, the expression (29) is not
analytically tractable, and can only be calculated numerically
at the expense of high computational complexity. To strike
a balance between complexity and analytical tractability, we
derive a closed-form lower bound on the mutual information
(29).

Let RL
c (∆h) denote a lower bound on the achievable rate.

Using Jensen’s Inequality and combining h = ĥ + ∆h, we
show in Appendix C that RL

c (∆h) with the bandwidth B is
given by

RL
c (∆h) = 3B − B

ln 2

− 2Blog2

1 + e
− (vT(ĥ+∆h))

2
PcA

2

4Bσ2
c

 . (30)

The CSI error ∆h affects the achievable rate, and ∆h is
a function of the positioning error ep as shown in Equation
(16), which also depends on the positioning signal power
Pp. Therefore, both the positioning signal power Pp and
communication signal power Pc affect the achievable rate, and
their allocations need to be carefully optimized.

IV. ROBUST POWER ALLOCATION FOR VLPC DESIGN

In this section, we investigate the positioning error variance
minimization problem via a robust power allocation design
by considering the rate outage probability constraint. Different
from existing works, this paper considers the application of the
VLPC system in the 3D case, and establishes the connection
between the rate outage probability and the positioning error
for the first time.

A. Problem Formulation
We derive the rate outage probability by investigating the

relationship between the positioning error and CSI error. Based
on (16), the CSI error ∆h is a function of the positioning error
ep. Thus, let ∆hi

∆
= gi (ep) denote the CSI error function of

the ith PD, i.e.,

∆hi = gi (ep) =
α(zl − ẑu − vz,i − ez)m+1

‖l− û− vi − ep‖m+3
2

− α(zl − ẑu − vz,i)m+1

‖l− û− vi‖m+3
2

, (31)

where i ∈M.
Then, we can write ep = g−1

i (∆hi), and the probability
density function fhi (∆hi) is given by

fhi (∆hi) = fep

(
g−1
i (∆hi)

) ∣∣∣∣∂g−1
i (∆hi)

∂∆hi

∣∣∣∣ . (32)

Unfortunately, an explicit expression of the function ep =
g−1
i (∆hi) is difficult to derive.

Nonetheless, we can numerically calculate both the mean
and covariance matrix of the CSI error vector ∆h. Specifically,
let µ = E {∆h} ∈ RM×1 denote the mean vector of the
estimated CSI error ∆h, which is given as

E {∆hi} =

∫
gi (ep) fep

(ep) dep. (33)

Furthermore, let D = E
{

(∆h− µ) (∆h− µ)
T
}
∈ RM×M

denote the covariance matrix of the estimated CSI error vector
∆h. Then, the element on the ith row and jth column of D
is given by

[D]ij = E {(∆hi − E {∆hi}) (∆hj − E {∆hj})} , (34)

where i ∈M, and j ∈M.
The exact distribution of CSI errors ∆h is unknown except

for its first and second-order moments. Then, we may define
a set P of distributions for ∆h as follows

P = {P : EP {∆h} = µ,VarP {∆h} = D} , (35)

where P denotes an arbitrary distribution with the mean µ and
covariance matrix D. The set P in (35) determines the CSI
error variation, and the rate outage probability.

Now, we can formulate the positioning error variance min-
imization through robust power allocation problem as follows

min
Pp,Pc,v

Tr
(
J−1

p

)
(36a)

s.t. sup
∆h∼P, P∈P

Pr
{
RL

c (∆h) ≤ r̄
}
≤ Pout, (36b)

Pp + Pc ≤ PT, (36c)
0 ≤ Pp ≤ Pmax

p , (36d)

0 ≤ Pc ≤ Pmax
c , (36e)

‖v‖2 = 1, (36f)

where r̄ denotes the minimum rate requirement, Pout denotes
the maximum tolerable outage probability, PT denotes the
total power, Pmax

p
∆
= min

{
I2
DC

A2 ,
(Pmax

o −IDC)2

A2 ,
Pmax

e −I2
DC

ε

}
,

and Pmax
c

∆
= min

{
(Pmax

o )2

A2 ,
2Pmax

e

A2

}
.

B. Proposed Robust VLPC Method

The main challenge of problem (36) lies in the chance con-
straint (36b), which does not have a closed-form expression.
Hence, we will reformulate constraint (36b). Combined with
the lower bound on the achievable rate in (30), the inequality
RL

c (∆h) ≤ r̄ can be equivalently rewritten as(
vT
(
ĥ + ∆h

))2

≤ δ

Pc
, (37)

where δ ∆
= − 4Bσ2

c

A2 ln
(

2
3
2−

1
2 ln 2−

r̄
2B − 1

)
. By using the fol-

lowing equivalence relationship

V = vvT ⇔ V � 0, rank (V) = 1, (38)

and neglecting the non-convex rank constraint rank (V) = 1,
constraints (37) and (36f) can be respectively relaxed as

∆hTV∆h + 2ĥTV∆h + ĥTVĥ ≤ δ

Pc
, (39a)

Tr (V) = 1, V � 0, (39b)

In words, we exploit the semidefinite relaxation (SDR) tech-
nique to relax (37) to a semidefinite program (SDP). Then, the
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outage constraint (36b) can be recast as

Pr

{
∆hTV∆h + 2ĥTV∆h + ĥTVĥ− δ

Pc
≤ 0

}
≤ Pout.

(40)

An effective approach to proceed is to transform (40) into
a distributionally robust chance constraint. Then, we can find
the worst-case distribution among all the possible distributions
from the ambiguity set, i.e.,

inf
P∈P

PrP

{
∆hT(−V)∆h + 2∆hT(−V)ĥ + ĥT(−V)ĥ

+
δ

Pc
≤ 0

}
≥ 1− Pout, (41)

where inf
P∈P

PrP {·} denotes the distribution that can achieve
the minimum value of the probability.

To further deal with the intractability of (41), we introduce
a CVaR-based method [36], which is known as a good convex
approximation of the worst-case chance constraint.

Lemma 1 (CVaR-Based Method): For a constraint function
L that is concave or quadratic in ξ, the distributionally robust
chance constraint is equivalent to the worst-case constraint,
given by [37]

inf
P∈P

PrP {L (ξ) ≤ 0} ≥ 1− ρ

⇔ sup
P∈P
{P− CVaRρ {L (ξ)}} ≤ 0, (42)

where the expression P − CVaRρ {L (ξ)} denotes the CVaR
of function L (ξ) at threshold ρ under distribution P, which is
defined as

P− CVaRρ {L (ξ)} = inf
β∈R

{
β +

1

ρ
EP

[
(L (ξ)− β)

+
]}

.

(43)

Here, R is the set of real numbers, (z)
+

= max {0, z}, and
β ∈ R is an auxiliary variable introduced by CVaR. The worst-
case CVaR on the right hand side of (42) can be converted into
a group of SDPs, which will be shown in the following lemma.

Lemma 2: Let L (ξ) = ξTQξ + qTξ + q0 denote a
quadratic function of ξ, ∀ξ ∈ Rn. The worst-case CVaR can
be computed as [37]

sup
P∈P
{P− CVaRρ {L (ξ)}} = min

β,M

{
β +

1

ρ
Tr (ΩM)

}
(44a)

s.t.M � 0,M ∈ Sn+1, (44b)

M−
[

Q 1
2q

1
2qT q0 − β

]
� 0, (44c)

where M is an auxiliary matrix variable, and Ω is a matrix
defined as

Ω =

[
Σ + µµT µ

µT 1

]
, (45)

where µ ∈ Rn and Σ ∈ Sn are the mean vector and covariance
matrix of random vector ξ, respectively.

Let define the continuous quadratic function L (∆h) =
∆hT(−V)∆h+2∆hT(−V)ĥ+ ĥT(−V)ĥ+ δ

Pc
. By Lemma

2, the worst-case chance constraint in (41) can be computed

by the optimization problem as similarly as the problem
(44). Then, according to the Lemma 1, the problem can be
equivalent to the following CVaR constraints:

β +
1

Pout
Tr (ΩM) ≤ 0, (46a)

M−

[
−V −VTĥ

−ĥTV −ĥTVĥ + δ
Pc
− β

]
� 0, (46b)

M � 0,M ∈ S4, (46c)

where M and β are two auxiliary variables, and

Ω =

[
D + µµT µ

µT 1

]
.

Therefore, the original distributionally chance-constrained
problem (36) can be reformulated as follows

min
Pp,Pc,V,M,β

Tr
(
J−1

p

)
(47a)

s.t. (36c), (36d), (36e), (39b), (46a), (46b), (46c).

Note that, problem (47) is still non-convex given that the
optimization variables Pp and V are coupled together in con-
straint (46a). However, the problem (47) can be decomposed
into two convex subproblems with two decoupling variables
blocks: {Pc,V,M, β} and Pp, respectively. It means that
when one of blocks is fixed, the problem becomes convex
in the remaining block of variables, which is called the multi-
convex problem [38]. To solve this kind of multi-convex prob-
lem, we propose an efficient BCD algorithm [39] for robust
VLPC design with variables coupling, which can guarantee to
globally converge to the stationary point [40], [41]. Then, at
every iteration, the two convex subproblems, i.e., VLP sub-
problems and VLC subproblems, are alternatively optimized
with respect to one block variable while the remaining blocks
are held fixed. More specifically, for the kth iteration, the VLP
and VLC subproblems are optimized follows.

1) VLP subproblem: For fixing variables P (k−1)
c , the posi-

tioning power P (k)
p is updated via solving the following convex

VLP subproblem

min
Pp

Tr
(
J−1

p

)
(48)

s.t. (36c), (36d),

which can be solved using the interior point methods, such
as CVX [42].

2) VLC subproblem: With given positioning power P (k)
p ,

the block variables
{
P

(k)
c ,V(k),M(k), β(k)

}
are updated by

solving the following convex VLC subproblem

min
Pc,V,M,β

Pc (49)

s.t. (36e), (39b), (46a), (46b), (46c).

In summary, the overall BCD algorithm for robust VLPC
design is listed in Algorithm 1. The solution of the BCD
Algorithm 1 is a stationary point of the joint optimization
problem (36) [43], [44]. Note that, due to the SDR, the rank
of V(k) may not be 1. For rank

(
V(k)

)
= 1, the optimal

beamformer v can be calculated by eigenvalue decomposition.
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When rank
(
V(k)

)
> 1, we can calculate a high-quality

feasible solution v of problem (49) based on the Gaussian
randomization procedure [45]. Meanwhile, the two SDP
problem can be efficiently solved with a worst case complexity
O
(

max {m,n}4 n0.5 log δ−1
)

, where n is the problem size
n, m denotes the number of constraints m, and δ represents
the accuracy of SDP [45]. And the proposed BCD algorithm
has a sub-linear convergence rate, O

(
1
k

)
, where k is the index

of iteration [46].

Algorithm 1 Block Coordinate Descent Algorithm for Robust
VLPC Design

Input: Initialize r̄, Pout, P
(0)
p , k = 0 and set the tolerance

of accuracy ε > 0;
1: repeat
2: k ← k + 1;
3: Update

{
P

(k)
c ,V(k),M(k), β(k)

}
by solving VLC

subproblem (49) with fixed P (k−1)
p ;

4: Update P
(k)
p by solving VLP subproblem (48) with

given
{
P

(k)
c ,V(k),M(k), β(k)

}
;

5: until
∣∣∣Tr
(
J−1

p

)(k) − Tr
(
J−1

p

)(k−1)
∣∣∣ ≤ ε;

Output: P (k)
p , P (k)

c and V(k).

V. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
effectiveness of the proposed VLPC system design. Consider
a VLPC system in a room with size

(
5× 5× 3m3

)
, where

one corner of the room is the origin (0, 0, 0) of the Cartesian
coordinate system (X,Y, Z). Assume that the LED location
is (2.5, 2.5, 3) and the MU is equipped with M = 3 PDs.

Moreover, as shown in Fig. 3, we verify the performance
of the proposed optimization method for four different hori-
zontal locations of the MU, i.e., U1 (1, 1, zu), U2 (1.5, 1.5, zu),
U3 (2, 2, zu) and U4 (2.5, 2.5, zu), where the PDs are arranged
according to an equilateral triangle with side length L. The
other simulation parameters are summarized in Table III.
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Fig. 3: Locations of MU and LED.

TABLE III: Basic Simulation Parameters

Parameters Value
FoV, ψFoV 90◦

Detector area of PD, APD 1cm2

Half power angle, θ1/2 60◦

Gain of an optical filter, Tf 1
Gain of an optical concentrator, g 1
DC bias, IDC 2
Peak amplitude, A 0.007
Maximum optical power, Pmax

o 8W
Maximum electrical power, Pmax

e 16W
Bandwidth, B 20MHz
Noise PSD of positioning signal, σ2

p 10−21Watts
/

Hz

Noise PSD of data signal, σ2
c 10−21Watts

/
Hz

A. Positioning Performance

First of all, it should be noted that the positioning error in
this section is the root mean square error (RMSE), which is
the error between the average estimated value obtained from
multiple measurements and the true value. The positioning
symbol with normalized power is considered, i.e., ε = 1. The
received SNR is defined as the received SNR at the 1th PD,
i.e, SNR = 10lg

Pph
2
1

Bσ2
p

.
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Fig. 4: (a) Positioning error versus SNR when the test point is chosen at
different locations, where L = 0.1m; (b) Positioning error versus SNR

when the transceiver height difference ∆z = zl − zu is different, where
L = 0.1m.



9

Fig. 4 (a) illustrates the positioning error at the four test
points versus received SNR, where zu = 1m. We may observe
that the positioning error decreases rapidly at first and then
slowly, and finally converge to a constant as SNR increases.
This is because as SNR increases, the influence of the noise
decreases. For high SNR, the localization performance is
negligibly affected by the noise, but still affected by the NLOS
link. In addition, it can be seen from the Fig. 4 (a) that the
positioning error at test points U1, U2, U3 and U4 gradually
decreases at the same SNR. This is because U4 is the closest to
the lamp, while U1 is the farthest. Therefore, when the total
transmit power is constant, the SNR at U4, U3, U2 and U1

decreases.
In Fig. 4 (b), we plot the positioning error at test point

U1 versus SNR, for different MU heights. The shapes of the
curves are similar to Fig. 4 (a), and the reasons are also similar.
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Fig. 5: Positioning error versus L(cm), where ∆z = 2m.

Fig. 5 shows the positioning error versus side length L
at high and low SNR. As we can see, with the increase of
relative distance L, the positioning error first decreases rapidly
and then slowly when the SNR=5dB, while the position error
first decreases slowly and then remains unchanged when the
SNR=15dB. This is because the larger the relative distance L
is, the greater the difference in signal intensity received by
each PD will be. Thus, the solution of the nonlinear equations
in (13) will be more accurate, especially at low SNR, and
the impact of the signal strength difference on accuracy is
more obvious. At the same time, when the relative distance
L reaches a certain value, additional increases will not help.
In addition, when L is constant, the positioning error at U1,
U2 and U3 still decreases sequentially, and the gap between
the positioning errors at U2 and U3 becomes smaller with
increasing L.

B. Communication Performance

To evaluate the communication performance, we first intro-
duce the non-robust VLPC design scheme, which ignores the
CSI uncertainty ∆h, and the estimated CSI ĥ is viewed as
the perfect CSI h. Moreover, in our simulations, we choose
the following basic parameters: length of positioning subframe
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Fig. 6: In the non-robust VLPC design, the robust VLPC design with outage
probabilities Pout = 1% and 5%, and the equal power allocation design:

(a) CDF of achievable rate; (b) CDF of CRLB.

Tp = 0.12 sec side length L = 0.1 m and the test point U3

with zu = 1.5 m.

Fig. 6 (a) depicts the CDF of achievable rate of the
non-robust VLPC design, the robust VLPC design with the
maximum tolerated outage probabilities Pout = 1% and 5%,
and the equal power allocation design (Pp = Pc), where the
total power is PT = 10W . It can be seen that the outage
probability of the non-robust VLPC design is 50%, which
significantly exceeds the maximum tolerated outage probabil-
ity requirement. On the other hand, the outage probability of
the proposed robust VLPC design is lower than 5%, which
meets the outage probability requirement. Fig. 6 (b) depicts
the CDF of CRLB with the same parameters as Fig. 6 (a).
As can be seen from Fig. 6 (b), the positioning error of the
robust VLPC design with Pout = 1% is lager than that of the
design with Pout = 5%. Combined with Fig. 6 (a), the robust
VLPC design allocates more power to communication than
non-robust design under the premise of minimizing positioning
accuracy in order to meet the minimum rate requirements of
the system. Therefore, when the total power is limited, the
positioning power decreases correspondingly, resulting in the
increase of positioning error. Compared with the equal power
allocation scheme, the robust VLPC scheme allocates less
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power to communication under the condition of satisfying the
rate requirement, resulting in less positioning error. Thus, Fig.
6 demonstrates the effectiveness of our proposed robust VLPC
design.
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Fig. 7: (a) Power allocation of robust VLPC design versus outage
probability Pout; (b) CRLB and average communication rate R̃c of robust

VLPC design versus outage probability Pout.

Fig. 7 (a) shows the positioning power Pp and the com-
munication power Pc of the robust VLPC design versus the
outage probability Pout with r̄ = 10Mbit/sec and PT = 10W .
From Fig. 7 (a), with increasing outage probability Pout,
the positioning power Pp increases, while the communication
power Pc decreases. This is because as the outage probability
Pout decreases, the probability that the communication rate is
the threshold r̄ decreases, and the robust design becomes more
conservative. Moreover, under the same simulation conditions
as Fig. 7 (a), Fig. 7 (b) depicts the CRLB and average
communication rate R̃c of the robust VLPC design versus
the outage probability Pout. We observe that, as the outage
probability Pout increases, the CRLB decreases, and the
average communication rate R̃c also decreases. This is because
for a given total power, the communication power Pc and the
positioning power Pp are both related to the communication
rate, and there exists a tradeoff between them.

Fig. 8 show the influence of the total power PT on the robust
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Fig. 8: (a) Power allocation of robust VLPC design versus total power PT;
(b) CRLB and average rate R̃c of robust VLPC design versus total power

PT.

VLPC design. Fig. 8 (a) shows the optimized power allocation
versus PT with Pout = 5% and r̄ = 5Mbit/sec. From Fig.
8 (a), we can observe that as the total power PT increases,
both the positioning power Pp and the communication power
Pc increase because more power can be allocated for both
positioning and communication power to meet the positioning
performance requirements and rate constraints. In addition,
Fig. 8 (b) shows the CRLB and average rate R̃c versus PT

with the same parameters as Fig. 8 (a). From Fig. 8 (b), we
can observe that as the total power PT increases, the CRLB
decreases and the average communication rate R̃c increases.
This is intuitive since higher total available power improves
both the positioning and communication.

Fig. 9 show the influence of the rate thresholds r̄ on the
robust VLPC design, where PT = 8W and Pout = 5%. Fig.
9 (a) shows the optimized power allocation versus different
rate thresholds r̄. We can see that the allocated positioning
power Pp decreases while Pc increases as the rate threshold r̄
increases. This is because the robust VLPC system needs more
communication power to meet the rate threshold r̄. Moreover,
Fig. 9 (b) shows the CRLB and average rate R̃c versus r̄. It
can be seen that as the rate threshold r̄ increases, the CRLB
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increases because the positioning power Pp decreases as r̄
increases. In addition, the average rate increases because the
communication power Pc increases as r̄ increases.
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Fig. 9: (a) Power allocation of robust VLPC design versus rate threshold r̄;
(b) CRLB and average rate R̃c of robust VLPC design versus rate

threshold r̄.

VI. CONCLUSION

In this paper, we reveal the intrinsic relationship between
VLP and VLC based on the relationship between CSI and
location, i.e., the positioning information can be used to
estimate the CSI. Then, both the CRLB for VLP and the
achievable rate of VLC are derived. Furthermore, a robust
power allocation scheme is proposed under practical optical
constraints, and QoS requirements. To tackle the rate outage
constraints, the worst-case distribution of the CVaR is con-
servatively approximated to a more tractable form. Then, we
propose a BCD Algorithm for robust VLPC design, in which
the VLP and VLC sub-problems are iteratively optimized.
Finally, our simulation results demonstrate the effectiveness
of the proposed VLPC scheme for both localization and
communications.

APPENDIX A
DERIVATION OF EQUATION (26)

The Fisher Information matrix (FIM) is given by

Jp =


−E

{
∂2Λ(u)
∂x2
u

}
−E

{
∂2Λ(u)
∂xu∂yu

}
−E

{
∂2Λ(u)
∂xu∂zu

}
−E

{
∂2Λ(u)
∂yu∂xu

}
−E

{
∂2Λ(u)
∂y2
u

}
−E

{
∂2Λ(u)
∂yu∂zu

}
−E

{
∂2Λ(u)
∂zu∂xu

}
−E

{
∂2Λ(u)
∂zu∂yu

}
−E

{
∂2Λ(u)
∂z2
u

}
 .

(50)

Then, based on the first partial derivatives of the likelihood
function in (23), we have

∂Λ (u)

∂xu
= − 1

σ2
p

M∑
i=1

∫ Tp

0

(
hix

2
p (t)− yp,i (t)xp (t)

) ∂hi
∂xu

dt,

(51a)

∂Λ (u)

∂yu
= − 1

σ2
p

M∑
i=1

∫ Tp

0

(
hix

2
p (t)− yp,i (t)xp (t)

) ∂hi
∂yu

dt,

(51b)

∂Λ (u)

∂zu
= − 1

σ2

M∑
i=1

∫ Tp

0

(
hix

2
p (t)− yp,i (t)xp (t)

) ∂hi
∂zu

dt.

(51c)

Furthermore, according to the second partial derivatives of
the likelihood function, we obtain

∂2Λ (u)

∂x2
u

= − 1

σ2
p

M∑
i=1

∫ Tp

0

(
∂hi
∂xu

∂hi
∂xu

x2
p (t) + hi

∂2hi
∂x2

u

x2
p (t)

−yp,i (t)xp (t)
∂2hi
∂x2

u

)
dt, (52a)

∂2Λ (u)

∂y2
u

= − 1

σ2
p

M∑
i=1

∫ Tp

0

(
∂hi
∂yu

∂hi
∂yu

x2
p (t) + hi

∂2hi
∂y2

u

x2
p (t)

−yp,i (t)xp (t)
∂2hi
∂y2

u

)
dt, (52b)

∂2Λ (u)

∂z2
u

= − 1

σ2
p

M∑
i=1

∫ Tp

0

(
∂hi
∂zu

∂hi
∂zu

x2
p (t) + hi

∂2hi
∂z2
u

x2
p (t)

−yp,i (t)xp (t)
∂2hi
∂z2
u

)
dt, (52c)

∂2Λ (u)

∂xu∂yu
=
∂2Λ (u)

∂yu∂xu
= − 1

σ2
p

M∑
i=1

∫ Tp

0

(
∂hi
∂yu

∂hi
∂xu

x2
p (t)

+hi
∂2hi

∂xu∂yu
x2

p (t)− yp,i (t)xp (t)
∂2hi

∂xu∂yu

)
dt,

(52d)

∂2Λ (u)

∂xu∂zu
=
∂2Λ (u)

∂zu∂xu
= − 1

σ2
p

M∑
i=1

∫ Tp

0

(
∂hi
∂xu

∂hi
∂zu

x2
p (t)

+hi
∂2hi

∂xu∂zu
x2

p (t)− yp,i (t)xp (t)
∂2hi

∂xu∂zu

)
dt,

(52e)

∂2Λ (u)

∂yu∂zu
=
∂2Λ (u)

∂zu∂yu
= − 1

σ2
p

M∑
i=1

∫ Tp

0

(
∂hi
∂yu

∂hi
∂zu

x2
p (t)
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+hi
∂2hi
∂yu∂zu

x2
p (t)− yp,i (t)xp (t)

∂2hi
∂yu∂zu

)
dt.

(52f)

Since E {sp} = 0, E
{
s2

p

}
= ε, the expectation of terms in

(52) can be simplified as

E
{
∂2Λ (u)

∂x2
u

}
= −

Tp

(
Ppε+ I2

DC

)
σ2

p

M∑
i=1

∂hi
∂xu

∂hi
∂xu

, (53a)

E
{
∂2Λ (u)

∂y2
u

}
= −

Tp

(
Ppε+ I2

DC

)
σ2

p

M∑
i=1

∂hi
∂yu

∂hi
∂yu

, (53b)

E
{
∂2Λ (u)

∂z2
u

}
= −

Tp

(
Ppε+ I2

DC

)
σ2

p

M∑
i=1

∂hi
∂zu

∂hi
∂zu

, (53c)

E
{
∂2Λ (u)

∂xu∂yu

}
= E

{
∂2Λ (u)

∂yu∂xu

}
= −

Tp

(
Ppε+ I2

DC

)
σ2

p

M∑
i=1

∂hi
∂xu

∂hi
∂yu

, (53d)

E
{
∂2Λ (u)

∂xu∂zu

}
= E

{
∂2Λ (u)

∂zu∂xu

}
= −

Tp

(
Ppε+ I2

DC

)
σ2

p

M∑
i=1

∂hi
∂xu

∂hi
∂zu

, (53e)

E
{
∂2Λ (u)

∂yu∂zu

}
= E

{
∂2Λ (u)

∂zu∂yu

}
= −

Tp

(
Ppε+ I2

DC

)
σ2

p

M∑
i=1

∂hi
∂yu

∂hi
∂zu

, (53f)

where ∂hi
∂xu

, and ∂hi
∂yu

and ∂hi
∂zu

can be, respectively, expressed
as

∂hi
∂xu

=
−α (m+ 3) (zl − zu − vz,i)m+1

(xu + vx,i − xl)
‖l− u− vi‖m+5 ,

(54a)

∂hi
∂yu

=
−α (m+ 3) (zl − zu − vz,i)m+1

(yu + vy,i − yl)
‖l− u− vi‖m+5 ,

(54b)
∂hi
∂zu

=
− (m+ 1)α(zl − zu − vz,i)m

‖l− u− vi‖m+3

+
(m+ 3)α(zl − zu − vz,i)m+2

‖l− u− vi‖m+5 . (54c)

APPENDIX B
DERIVATION OF EQUATION (29)

For brevity, we drop the time index t throughout this
appendix. Let s1 and s2 denote values A and 0, respectively.
According to (21), the PDF of yc can be written as

f (yc) =
1

2
√

2πσc

2∑
k=1

e
− (yc−vTh(

√
Pcsk+IDC))

2

2σ2
c . (55)

Then the mutual information of the receiver is derived as

I (xc; yc) = h (yc)− h (yc |xc ) (56a)

= −
∫ ∞
−∞

f (yc) log2f (yc) dyc −
1

2
log22πe var (zc) (56b)

= −
∫ ∞
−∞

2∑
k=1

e
− z2c

2σ2
c

2
√

2πσc

log2

2∑
j=1

e
− (vTh

√
Pc(sk−sj)+zc)

2

2σ2
c

2
√

2πσc

dzc

− 1

2
log22πeσ2

c (56c)

= −1

2

∫ ∞
−∞

2∑
k=1

fzc (zc)log2

2∑
j=1

e
− (vT h

√
Pc(sk−sj)+zc)

2

2σ2
c

2
√

2πσc

dzc

− 1

2
log22πeσ2

c (56d)

= −1

2

2∑
k=1

Ezc

log2

2∑
j=1

e
− (vTh

√
Pc(sk−sj)+zc)

2

2σ2
c

2


− 1

2 ln 2
. (56e)

APPENDIX C
DERIVATION OF EQUATION (30)

According to Jensen’s Inequality [47], if f (x) is a convex
function, then we have the inequality f [E(x)] ≥ E [f (x)].
Since log2 (x) is a concave function with respect to x, ac-
cording to (56e), a lower bound on the mutual information is
derived as

I (xc; yc) ≥ −1

2

2∑
k=1

log2

2∑
j=1

1

2
Ezc

e− (vTh
√
Pc(sk−sj)+zc)

2

2σ2
c


− 1

2 ln 2
(57a)

= −1

2

2∑
k=1

log2

2∑
j=1

∫ ∞
−∞

e
− (vTh

√
Pc(sk−sj)+zc)

2
+z2c

2σ2
c

2
√

2πσc

dzc

− 1

2 ln 2
(57b)

= −1

2

2∑
k=1

log2

2∑
j=1

1

2
√

2
e
− (vTh

√
Pc(sk−sj))

2

4σ2
c − 1

2 ln 2
(57c)

= −log2

1 + e
− (vTh)

2
PcA

2

4σ2
c

− 1

2 ln 2
+

3

2
. (57d)

Supposed that the bandwidth of the VLC link is B (Hz).
Then, both the input and the output of the VLC link can
be represented by samples taken 1

2B seconds apart. Since
the power spectral density of noise is σ2

c

2 Watts/Hertz, the
noise power is Bσ2

c . For the time interval [0, Tc], there are
2BTc noise samples, and the variance of each sample is
Bσ2

pTp

2BTc
=

σ2
c

2 . Moreover, if the power of signal is P , the signal
energy per sample is PTc

2BTc
= P

2B .
Therefore, with bandwidth B and h = ĥ + ∆h, the

achievable rate is given by

RL
c (∆h) = 3B − B

ln 2
− 2Blog2

1 + e
− (vT(ĥ+∆h))

2
PcA

2

4Bσ2
c

 .

(58)
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