
Efficiency of Tree-structured Peer-to-peer Service DiscoverySystems∗

Eddy Caron◦†⋄, Fréd́eric Desprez◦‡⋄, Cédric Tedeschi◦†⋄

◦ University of Lyon† ENS Lyon‡ INRIA
⋄ LIP UMR 5668 CNRS ENS Lyon INRIA UCBL, France.

Abstract

The efficiency of service discovery is a crucial point
in the development of fully decentralized middlewares in-
tended to manage large scale computational grids. The
work conducted on this issue led to the design of many peer-
to-peer fashioned approaches. More specifically, the need
for flexibility and complexity in the service discovery has
seen the emergence of a new kind of overlays, based on
tries, also known aslexicographictrees.

Although these overlays are efficient and well designed,
they require a costly maintenance and do not accurately
take into account the heterogeneity of nodes and the chang-
ing popularity of the services requested by users.

In this paper, we focus on reducing the cost of the main-
tenance of a particular architecture, based on a dynamic
prefix tree, while enhancing it with some load balancing
techniques that dynamically adapt the load of the nodes in
order to maximize the throughput of the system. The algo-
rithms developed couple a self-organizing prefix tree over-
lay with load balancing techniques inspired by similar pre-
vious works undertaken for distributed hash tables.

After some simulation results showing how our load bal-
ancing heuristics perform in such an overlay and compare
to other heuristics, we provide a fair comparison of this ar-
chitecture and similar overlays recently proposed.

1 Introduction

Grids connecting geographically distributed computing
resources have become a low cost alternative to super-
computers. For a few years now, the convergence of the
grid computing and peer-to-peer communities has produced
numerous papers attempting to design new approaches to
make grid middleware able to work over fully decentralized
platforms [9]. One crucial point in the design of such sys-
tems is the efficiency of the service discovery. More specif-
ically, the need for flexibility and complexity in the service

∗This work has been supported in part by the ANR project LEGO
(ANR-05-CIGC-11).

discovery process led to the emergence of a new kind of
overlays, based ontries a.k.a., lexicographic trees. These
architectures usually support range queries, automatic com-
pletion of partial search strings and are easy to extend to
multi-attribute queries.

Although these systems provide flexible meanings of
search and are designed to be efficient over dynamic large
scale platforms, they require a costly maintenance and suf-
fer from a lack of adaptability as heterogeneity increases in
the platform and hot spots appear and disappear more and
more frequently.

In this paper, we focus on the DLPT (Distributed Lexi-
cographic Placement Table), a more particular architecture
recently developed [5]. This approach is a two layer ar-
chitecture. The upper layer is a prefix tree maintaining the
information about services declared. This tree is mapped
onto the lower layeri.e., the physical networks by the in-
termediary of a distributed hash table. The first contribu-
tion of this paper is the avoidance of the DHT: we devel-
oped a self-contained tree overlay able to both maintain the
tree and map it onto the network. The load balancing issue
has been mostly ignore by previous work on this architec-
ture [5, 6]. The second contribution is the design of a new
load balancing heuristic based on the local maximization of
the throughput. This heuristic is inspired by existing ap-
proach for the load balancing within distributed hash tables.
We then adapt it to our case and compared its performance
to the closest existing heuristic we are aware of. Finally,
the paper ends by an attempt to give the means for a fair
comparison of our approach and similar works in terms of
functionalities and performance. These works include both
the load balancing techniques used in distributed hash tables
and other close trie-based architecture.

2 Preliminaries

System Model. A P2P network consists of a set of asyn-
chronousphysicalnodes with distinct IDs. In the following,
we use the termpeerto refer to this kind of nodes. The peers
communicate by exchanging messages. Any peerP1 can
communicate with another peerP2 providedP1 knows the

1

ID of P2. Each peer maintains one or morelogical nodes
of the distributedlogical tree. In the following, we use the
termnodeto refer to the nodes of the tree.

Greatest Common Prefix Tree. Let A be a finite set
of digits e.g., A = {0, 1}. A non empty identifierw
over A is a finite sequence of digitsa1, . . . , ai, . . . , al,
l > 0. The concatenationof two ids u and v, denoted
as uv, is the ida1, . . . , ai, . . . , ak, b1, . . . , bj , . . . , bl such
that u = a1, . . . , ai, . . . , ak and v = b1, . . . , bj , . . . , bl.
Let ǫ be theempty id such that for every idw, wǫ =
ǫw = w. The length of an id w, denoted as|w|, is
the number of digits ofw—|ǫ| = 0. An id u is a pre-
fix (respectively,proper prefix) of a word v if there ex-
ists an idw such thatv = uw (resp.,v = uw andu 6=
v). TheGreatest Common Prefix(resp.,Proper Greatest
Common Prefix) of a collection of idsw1, w2, . . . , wi, . . .

(i ≥ 2), denoted asGCP (w1, w2, . . . , wi, . . .) (resp.
PGCP (w1, w2, . . . , wi, . . .)), is the longest prefixu shared
by all of them (resp., such that∀i ≥ 1, u 6= wi).

Definition 1 (PGCP Tree). A Proper Greatest Common
Prefix Tree is a labeled rooted tree such that the label of
each node of the tree is the Proper Greatest Common Prefix
of the labels of every pair of its children.

Architecture. The DLPT architecture developed in [5]
maintains a PGCP tree over a DHT. Figure 1(a) gives a sam-
ple of such a tree constructed with binary identifiers where
01, 10101, 10111 and101111 are keys of resources made
available by some servers. Note that the non-filled nodes
101 and ǫ have been created to maintain a tree satisfying
Definition 1. More generally, it can be built with any kind
of strings, for instance, with routines of the BLAS, as shown
on Figure 1(b) (Note that in this last case, no hashing is re-
quired). When a discovery request sent by a client enters
the tree, on a random node, the request moves upward until
reaching a node whose subtree contains the requested node
and then moves upward to this node. The DLPT system
supports range queries and automatic completion of partial
search strings.

In its original design [5], the tree is mapped onto the net-
work using a distributed hash table, thus requiring to main-
tain both layers. Such a mapping is illustrated by Figure 2,
using the Chord mapping technique [18]i.e.,mapping a key
on the peer with the lowest identifier higher than the key.

This leads to the first contribution of this paper: Avoid-
ing the need for a DHT to both maintain the physical net-
work and map the data keys onto it in such an architecture.
In the following, we present a scheme that maintains a pre-
fix tree over a P2P network without requiring a DHT.

a. Binary identifiers b. BLAS routines

Figure 1. Examples of PGCP tree

Figure 2. Ring

Load balancing. The routing scheme proposed in [5] and
the heterogeneity of both the capacity of peers and popular-
ity of keys could lead to an unbalanced distribution of the
load and thus create bottlenecks on different peers.

The second issue we face in this paper is how to inject
some load balancing in the architecture proposed in [5]. In
Section 3, we also give a novel load balancing heuristic
taking these heterogeneities into account, based on a local
maximization of the throughput.

3 Protocol

Consider a set of digitsA and a circular identifier space
I of all distinct idsi such thati is a finite sequence of digits
of A. The protocol is made of two distinct parts.

One part maintains the physical networki.e., builds a
bidirectional ring over the peers as they join the network.
DenoteP ⊆ I the set of peer identifiers currently in the
ring. Peers are ordered in a bidirectional ring. Each peer
P ∈ P has the knowledge of its immediate predecessor
predP and immediate successorsuccP i.e., peers whose
identifier is the highest lower thanP and the lowest higher
thanP , respectively. LetPmax ∈ P andPmin ∈ P be the
two peers whose ids are the highest and lowest in the ring,
respectively. Recall that this part of the protocol is mainly

achieved by the nodes and does not require extra connec-
tions between peers.

The other part maintains a Greatest Common Prefix Tree
over data keys as data are made available by some servers.
DenoteN ⊆ I the set of node identifiers currently in the
tree. The registration of a datak leads to the creation of
some node if¬(∃n ∈ N : n = k). The protocol maps the
tree onto the peers as it is growing. The mapping scheme
ensures that the peerP chosen to run a given noden always
satisfies the condition thatP is the lowest peer id higher
thann. Recall that if∀n ∈ N such thatn > Pmax, the peer
runningn is Pmin. Each noden maintains a fatherfn, a set
of childrenCn and the set of all dataδn associated with the
key k = n. For the sake of readability, we use the key of a
data to refer to both the key and the value associated with.

We assume two basic functions.

• PREFIXES(k) returns the set of ids properly pre-
fixing k. For instance, PREFIXES(10101) returns
{ǫ, 1, 10, 101, 1010}

• GCP(k1, k2) returns the longest common prefix shared
by k1 andk2. For instance, GCP(101, 100) = 10.

3.1 Peer insertion

When a peerP joins the system, the routing of the join
request sent byP is handled by the nodes, until the rout-
ing process reaches a node run on a peer close to the final
destination ofP . Then the effective insertion is performed.
This protocol is detailed by algorithms 1 and 2. The sought
peer is the one with the highest identifier lower thanP . To
reach this peer, we first route the request to the node with
the highest id lower thanP .

In details, the path of a PEERJOIN request is made of
three steps. During a first step (lines 1.03 to 1.10), the re-
quest is marked0, moves upward and eventually reaches a
node that is either a prefix ofP or the root, what changes
the state of the request to1. During a second step, the
the request is marked1 (lines 1.12 to 1.14) and moves
downward until reaching the nodet whose id is the high-
est lower thanP . t then sends the request to the peerT on
which it runs, and the request is delegated to the peer layer
(Line 1.16). The final step consists in deciding whether
P shall be a predecessor ofT , or a predecessor ofsuccT

(tested Line 2.03). Only these two cases are possible since
predT < P ≤ succT . predT < P comes from the facts
predT ≤ t and t ≤ P . Now, by contradiction, let’s as-
sumeP > succT . SinceνT , the set of nodes run onP is
not empty,∃n ∈ νT such thatn > t, which means that
the first part of the algorithm did not give the propert. A
contradiction.

Once decided whethersuccP is T or succT , it remains
to effectively insertP and dispatchνsuccP

amongP and

succP , according to their value, as detailed lines 2.06-2.10.
The YOURINFORMATION message contains the informa-
tion required forP to run i.e., (pred, succ, data). The UP-
DATESUCCESSORmessage informspredQ that its succes-
sor has changed (fromQ) to P . We do not detail the recep-
tion of these two messages due to their triviality.

Algorithm 1 Peer insertion, on nodep

1.01 Variables: fp, identifier of the father ofp
Cp, finite set of children ofp

1.02 upon receiptof <PEERJOIN, P , s> do
1.03 if s = 0 then
1.04 if P /∈ PREFIXES(p) then
1.05 if (fp = ⊥) then
1.06 send(<PEERJOIN, P , 1>, p)
1.07 else
1.08 send(<PEERJOIN, P , 0>, fp)
1.09 else
1.10 send(<PEERJOIN, P , 1>, p)
1.11 else
1.12 q =MAX ({q ∈ Cp : q ≤ P})
1.13 if (q 6= ⊥) then
1.14 send(<PEERJOIN, P , 1>, q)
1.15 else
1.16 send to host(<NEWPREDECESSOR, P>)

Algorithm 2 Peer insertion, on peerQ

2.01 Variables: succQ, successor ofQ
predQ, predecessor ofQ
νQ, set of nodes running onQ

2.02 upon receiptof <NEWPREDECESSOR, P> do
2.03 if Q < P then
2.04 send(<NEWPREDECESSOR, P>, succQ)
2.05 else
2.06 νP = {n ∈ νp : n ≤ P}
2.07 νQ = {n ∈ νp : n > P}
2.08 send(<YOURINFORMATION, (Qpred, Q, νP)>, P)
2.09 send(<UPDATESUCCESSOR, P>, predQ)
2.10 predQ := P

3.2 Data Insertion

To declare the availability of a resource identified byk, a
peer (or server) sends a DATA INSERTION request to a ran-
dom node of the tree. The protocol routes the request to
the node with the identifier closest tok. If 6 ∃n ∈ N with
n = k, such a node is created, inserted in the tree and run
on a peer. In any case,k is eventually added to the set of
dataδn of the noden = k. This process is detailed in Al-
gorithm 3. On receipt of the request, the nodep proceeds
according one of the four following cases:

• If p = k (Line 3.03),p is the proper node. Data asso-
ciated withk is added toδp.

• If p ∈ PREFIXES (k) (lines 3.04 to 3.09), the sought
node is in the subtree ofp. If ∃q ∈ Cp that shares a

longer prefix withk thanp, the sought node is in the
subtree rooted atq, the request is forwarded toq. Oth-
erwise, the sought node does not exist and is created as
a child ofp. To find a host for the new node, its whole
information (key, father, set of children, data) is
sent top itself using the SEARCHINGHOST message.
This part of this protocol is detailed later.

• If k ∈ PREFIXES (p) (lines 3.10 to 3.20), the sought
node is upward. Ifk is also a prefix offp, then the
request is forwarded tofp. Otherwise, the sought node
does not exist and is created betweenp and fp (the
new node become the root of the tree iffp = ⊥). The
UPDATECHILD(old, new) message notifies its recipi-
ent that its child aold must be replaced by a childnew

in its set of children.

• Finally, if none of the previous cases were satisfied,
the algorithm behaves similarly than for the previous
case. Iffp shares the same prefix withk asp, the re-
quest is again forwarded tofp. Otherwise, the sought
node does not exist.p and the node labeledk are sib-
lings, but their common parent also does not exist. Two
nodes are created, one to storek and one to preserve
the prefix patterns inside the tree, common parent ofp

andk, labeled by GCP(p, k).

Once created, a new noden must find the peer
on which it will run. As mentioned earlier, the
SEARCHINGHOST(key, parent, set of children, data)
message initiates the search for a peer to hostn. This
part is detailed by lines 3.32 to 3.37. Because the first
recipient of such a message always prefixesn, it remains to
move the request downward until reaching the highest node
lower thann. With Line 3.37, the proper peer receives the
information required to hostn.

3.3 Load balancing

Each peer runs a set of nodes. As detailed before, the
routing follows a top-down traversal. Therefore, the uppera
node is, the more times it will be visited by a request. More-
over, due to the sudden popularity of some data, the nodes
storing the corresponding keys, independently from their
depth in the tree, may become overloaded. The heuristic we
present now deals with this issue by maximizing the aggre-
gated throughput of two consecutive peersi.e., the number
of requests these two heterogeneous peers will be able to
process. This is achieved by periodically redistributing the
nodes on the peers, based on recent history.

For the sake of clarity, we consider a discrete time and
choose one particular peerS. The load balancing process
is triggered onS at the end of each unit of time. Let
P = predS be the predecessor ofS. Refer to Figure 3(a).

Algorithm 3 Data insertion, on nodep

3.01 Variables: δp, set of data stored onp
fp, identifier of the father ofp
Cp, finite set of children ofp

3.02 upon receiptof <DATA INSERTION, k> do
3.03 if k = p then δp := δp ∪ {k}
3.04 elseifp ∈ PREFIXES(k) then
3.05 if ∃q ∈ Cp : | GCP(k, q)| > |GCP(k, p)| then
3.06 send(<DATA INSERTION, k>, q)
3.07 else
3.08 send(<SEARCHINGHOST, (k, p, ∅, {datak})>, p)
3.09 Cp := Cp ∪ {k}
3.10 elseifk ∈ PREFIXES(p) then
3.11 if (fp = ⊥) then
3.12 send(<SEARCHINGHOST, (k,⊥, {p}, {k})>, p)
3.13 fp := k
3.14 else
3.15 if (|GCP(k, fp)| = |p|) then
3.16 send(<DATA INSERTION, k>, fp)
3.17 else
3.18 send(<SEARCHINGHOST, (k, fp, {p}, {k})>, fp)
3.19 send(<UPDATECHILD , (p, k)>, fp)
3.20 fp := k
3.21 else
3.22 if (fp 6= ⊥) ∧ (|GCP(k, p)| = |GCP(k, fp)|) then
3.23 send(<DATA INSERTION, k>, fpt)
3.24 else
3.25 if (fp = ⊥) then
3.26 send(<SEARCHINGHOST, (GCP(p, k), fp,

{p, k}, ∅)>, p)
3.27 else
3.28 send(<SEARCHINGHOST, (GCP(p, k), fp,

{p, k}, ∅)>, fp)
3.29 send(<UPDATECHILD , (p, GCP(p, k))>, fp)
3.30 send(<SEARCHINGHOST, (k, p, ∅, {k})>, fp)
3.31 fp := GCP(p, k)

3.32 upon receiptof <SEARCHINGHOST, (l, f, C, δ)> do
3.33 q =MAX{f ∈ Cp : f ≤ l}
3.34 if (q 6= ⊥) then
3.35 send(<SEARCHINGHOST, (l, f, C, δ)>, q)
3.36 else
3.37 send to host(<HOST, (l, f, C, δ)>)

CS andCP refer to their respective capacitiesi.e., the num-
ber of requests they are respectively able to process dur-
ing one unit of time. Note that the peers capacity does not
change over time. At the end of a time unit, each peer sends
the number of requests received during this time unit, for
each node it runs, to its predecessor. Assume that, during
last time unitτ , the set of nodes runs byS and P were
respectivelyντ

S andντ
P and that eachn ∈ ντ

S ∪ ντ
P has re-

ceived a number of requestln. Then, the load ofS during
the periodτ is the sum of the loads of the nodes it runsi.e.,

Lτ
S =

∑

n∈ντ
P

ln.

We easily see that the number of satisfied requests during a
time unitτ i.e., that were effectively processed is:

T τ
S,P = min(Lτ

S , CS) + min(Lτ
P , CP).

Starting from this knowledgei.e.,the load of every nodes
n ∈ ντ

S ∪ ντ
P , we want to maximize the throughput of the

Figure 3. One local load balancing step

next unit of timeτ + 1. To do so, we must find the new
distributionντ+1

S andντ+1
P that maximizes the throughput

i.e.,such that:

T τ+1
S,P = min(

∑

n∈ντ+1

S

ln, CS) + min(
∑

m∈ντ+1

P

lm, CP)

is maximum. The number of possible distributions of
nodes on peers is bounded by the fact that nodes identifiers
can not be changed, in order to ensure the routing consis-
tency. Then, as illustrated on Figure 3, finding the best dis-
tribution is equivalent to find thebest positionof P moving
along the ring, as illustrated by arrows on Figure 3(b). The
number of candidate positions forP is |νS ∪ νP |− 1. Thus,
the time and extra space complexity of the redistribution
algorithm is clearly inO(|ντ

S ∪ ντ
P |). An example of the re-

sult of this process is given by Figure 3(c). This heuristic is
henceforth referred to asMLT (Max Local Throughput).

4 Simulation

To validate our approach, we developed a simulator of
this architecture, into which we integrated two load balanc-
ing heuristics:MLT and an adaptation of a recent load bal-
ancing algorithm initially designed for DHTs known as the
k-choicesalgorithm [11] and, to our knowledge, the most
related existing heuristic. We denoteKC this adaptation.
More precisely, when used,KC is run each time a peer joins
the system. Because some regions of the ring are more
densely populated than others,KC finds, amongk poten-
tial locations for the new peer, the one that leads to the best
local load balance. Please refer to [11] for more details.

We used a discrete time in the simulations. One simula-
tion was made of a fixed number of time units. Each simu-
lation were repeated 30, 50 or 100 times, to have some rel-
evant results. Recall that thecapacityof a peer refers to the
maximum number of requests processed by it during one
time unit. All requests received on a peer after it reached
this number are ignored. The ratio between the most and
the least powerful peers is 4. A request is said to besatis-
fied if it reaches its final destination. The number of peers is
approximately100, and the number of nodes around1000.
We setKC with k = 4. The prefix trees are built with iden-

tifiers commonly encountered in a grid computing context
such as names of linear algebra routines.

We first estimated the global throughput of the system
when usingMLT , KC or no explicit load balancing at all.
Each time unit is composed of several steps. (1) IfMLT
is enabled, a fixed fraction of the peers executes theMLT
load balancing. (2) A fixed fraction of peers join the system
(applying theKC algorithm if enabled, or just the proto-
col detailed in Section 3, otherwise. (3) A fixed fraction
of peers leaves the system. (4) A fixed fraction of new ser-
vices are added in the tree (possibly resulting in the creation
of new nodes). (5) Discovery requests are sent to the tree
(and results on the number of satisfied discovery requests
are collected).

During first experiments, services requested were ran-
domly picked among the set of available services. Figure 4
gives the percentage of satisfied requests usingMLT , KC
or no load balancing, for50 time units. The first 10 units
correspond to the period where the prefix tree is growing.
After, it remains the same. The obtained curves show that
using heuristics, and more particularlyMLT , leads to a non
negligible gain. Figure 5 shows the results of the same ex-
periment, but with a very high number of requests, in order
to stress the system. We observe similar results, even if the
satisfaction percentage is obviously globally lower.

Until now, experiments were conducted in a relatively
stable network. It means that the number of peers joining
and leaving the system were intentionally low. Moreover,
the efficiency of theKC algorithm relies on the dynamic na-
ture of the system since load balancing is done each time a
peer joins the system. Now,10% of the nodes are replaced
at each time unit. This is why we repeated these experi-
ments with an increased level of peers joining and leaving
the network. Figures 6 and 7 give the results of the same
experiments than before but conducted over a dynamic plat-
form. We see thatKC performs a bit better than previously,
and gives results similar toMLT .

We conducted these experiments for different loads. The
results are summarized in Table 1. The percentages in the
left column express the ratio between the number of re-
quests and the aggregated capacity of all peers in the sys-
tem. The table gives the gain on the number of satisfied
requests of each heuristic compared to the architecture with
no load balancing. The gain can be really important.

Our last simulation, whose result is illustrated by Fig-
ure 8, consisted in creating hot spots in the tree, by tem-
porarily launching many discovery requests on some keys
stored in the same region of the treei.e., lexicographically
closed, in bursts. The experiment is divided in time as fol-
lows. During the first 40 time units, services are again ran-
domly picked. Then, between40 and80, a hot spot is cre-
ated on the particular S3L library. Most of S3L routines
are named by a string beginning by “S3L”. We thus over-

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

P
er

ce
nt

ag
e

of
 s

at
is

fie
d

re
qu

es
ts

Time

Load balancing − stable network − no overload

MLT enabled [30 runs]
KC enabled [30 runs]

No LB [30 runs]

Figure 4. Stable network, low load

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

P
er

ce
nt

ag
e

of
 s

at
is

fie
d

re
qu

es
ts

Time

Load balancing − stable network − overload

MLT enabled [30 runs]
KC enabled [30 runs]

No LB [30 runs]

Figure 5. Stable network, high load

loaded the subtree containing the keys prefixed by “S3L”.
The network was previously balanced for random requests.
The number of satisfied requests suddenly falls. However,
the MLT -enabled architecture adapts to the situation and
increases the satisfaction ratio to a reasonable point. Unfor-
tunately, a second change arises at time 80, when simulating
the arrival of many requests on the ScaLapack library whose
functions begin with “P”. The system stabilizes again. The
random way to pick services is chosen for the40 last time
units, leading to a behavior similar to the one of the be-
ginning. Finally, as previously said, the mapping scheme
is better in several ways than a random DHT-based map-
ping, since a random mapping results in breaking the local-
ity. Connected nodes in the tree are randomly dispatched in
random locations of the physical network. With our map-
ping scheme, the set of nodes stored on one peer are highly
connected. This fact brings about a reduction of the com-
munications between peers, since a high amount of routing
steps in the tree involves two nodes run on the same peer.
Figure 9 gives, for each time unit, the average number of
hops in the tree required to reach their final destination. We

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

P
er

ce
nt

ag
e

of
 s

at
is

fie
d

re
qu

es
ts

Time

Comparing LB algorithms − dynamic network − no overload

MLT enabled [30 runs]
KC enabled [30 runs]

No LB [30 runs]

Figure 6. Dynamic network, low load

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

P
er

ce
nt

ag
e

of
 s

at
is

fie
d

re
qu

es
ts

Time

Comparing LB algorithms − dynamic network − overload

MLT enabled [30 runs]
KC enabled [30 runs]

No LB [30 runs]

Figure 7. Dynamic network, high load

see that our self-contained mapping featured withMLT sig-
nificantly reduces the amount of communications within the
physical network.

5 Related Work

The resource discovery in P2P environments has been
intensively studied. Although DHTs [15, 18, 19] were de-
signed for very large systems, they provided only rigid
mechanisms of search. Lot of research went into find-
ing ways to improve the retrieval process over structured
peer-to-peer networks. Peer-to-peer systems use different
technologies to support multi-attribute range queries [12,
3, 13, 16, 17]. In this research on multi-attribute range
queries, a new kind of overlay, based on tries, has emerged.
Trie-structured approaches outperform others in the sense
that logarithmic (or constant if we assume an upper bound
on the depth of the trie) latency is achieved by paralleliz-
ing the resolution of the query in several branches of the
trie. For instance, Skip Graphs [1] are similar to a trie but
are built based on skip lists. Nodewiz [2] achieves multi-

Load Stable network Dynamic network
MLT KC MLT KC

5% 39,62% 38,58% 18.25% 32,47%
10% 103,41% 58,95% 46,16% 51,00%
16% 147,07% 64,97% 65,90% 59,11%
24% 165,25% 59,27% 71,26% 60,01%
40% 206,90% 68,16% 97,71% 67,18%
80% 230,51% 76,99% 90,59% 71,93%

Table 1. Summary of gains of KC and MLT
heuristics

Functionality P-Grid PHT DLPT
Tree Routing O(log|Π|) O(D log P) O(D)

Local State O(log|Π|) |N |
|P | |A| |N |

|P | |A|

Table 2. Complexities of close trie-structured
approaches

dimensional range queries, but unrealistically assumes that
a set of static reliable nodes host the trie.

To our knowledghe, our closest related work is Prefix
Hash Tree PHT [14] and P-Grid [7]. PHT builds a prefix
tree over the data set on top of a DHT. The trie is used as an
upper logical layer allowing complex searches on top of any
DHT-like network. P-Grid builds a trie on the whole key-
space, each leaf corresponding to a subset of the key-space.
A fair comparison of their complexities can be achieved us-
ing Table 2. The complexities of our approach (DLPT) and
the two previously mentioned approaches are quite similar.
|Π| refers to the number of partitions of the key-space,D to
the maximal length of the identifiers,A to the set of digits
used,N to the set of nodes of the tree andP to the set of
peers.

Our contribution over PHT and P-Grid is in the load bal-
ancing process. The PHT load balancing assumes the peers
homogeneous. It relies on a global threshold on the number
of keys each node maintains. P-Grid relies on a set of algo-
rithms periodically checking the load balance. In these two
approaches, the heterogeneous capacities of the peers and
the popularity of data are ignored. We believe that the num-
ber of keys maintained on a node does not accurately re-
flects its load, since it depends on what users request. More-
over, the capacities of the peers can not be supposed homo-
geneous in a grid computing context. For these reasons and
because our architecture maintains aring over the peers,
we studied the works on the load balancing issue within
DHTs. Karger and Ruhl [10], although still assuming ho-
mogeneous peers, proposed some local heuristics based on

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

P
er

ce
nt

ag
e

of
 S

at
is

fie
d

re
qu

es
ts

Time

Load balancing − dynamic network − hot spots

MLT enabled [50 runs]
KC enabled [50 runs]

No LB [50 runs]

Figure 8. Dynamic network with hot
spots

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160

H
op

s

Time

Communication gain

Logical hops [100 run]
Physical hops − random mapping [100 run]

Physical hops − lexico. mapping with LB (MLT) [100 run]

Figure 9. Reduction of the communi-
cation by the lexicographicmapping

item balancing. Godfrey et al. [8] used a set of elected nodes
gathering the load information and redistributing items with
partial knowledge of loads and capacities. The drawback of
this approach is itssemi-centralizedfashion. A load balanc-
ing strategy for Chord proposed in [4] uses multiple hash
function to select a number of candidate peers. Ledlie and
Seltzer [11] proposed the similark-choicesapproach, but
assuming heterogeneity of both peers and items.

6 Conclusion and future work

The efficiency of service discovery is a crucial point in
the development of fully decentralized grid middlewares.
Dealing with this issue, trie-structured overlays provide
some interesting characteristics. Nevertheless, its costly
maintenance and several drawbacks (homogeneity assump-
tions, ignorance of the popularity of the services) of their
load balancing techniques hinder their use within grids.

In this paper, we focused on improving these two as-
pects in DLPT, based on a particular kind of tries and ini-
tially designed for service discovery in a grid computing

context. The first contribution is a complete protocol for a
self-contained version of this architecture and the avoidance
of the use of an underlying DHT. The second contribution
is a novel heuristic for the load balancing inside this archi-
tecture and the adaptation to our case of recent techniques
initially designed for the same purpose within DHTs. Dif-
ferent simulations show the gain obtained by using these
heuristics. We finally propose a comparison of close ap-
proaches, in terms of complexities and load balancing.

The development of an experimentation prototype of this
architecture has been undertaken, to be able to study its be-
havior on a real grid such as Grid’50001, tune its parameters
and integrate it into existing grid middlewares.

References

[1] J. Aspnes and G. Shah. Skip graphs. InFourteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pages 384–393, January 2003.

[2] S. Basu, S. Banerjee, P. Sharma, and S. Lee. NodeWiz:
Peer-to-Peer Resource Discovery for Grids. In5th
International Workshop on Global and Peer-to-Peer
Computing (GP2PC), May 2005.

[3] A. Bharambe, M. Agrawal, and S. Seshan. Mercury:
Supporting Scalable Multi-Attribute Range Queries.
In Proceedings of the SIGCOMM Symposium, August
2004.

[4] J. W. Byers, J. Considine, and M. Mitzenmacher. Sim-
ple Load Balancing for Distributed Hash Tables. In
IPTPS, pages 80–87, 2003.

[5] E. Caron, F. Desprez, and C. Tedeschi. A Dynamic
Prefix Tree for the Service Discovery Within Large
Scale Grids. InThe Sixth IEEE International Con-
ference on Peer-to-Peer Computing, P2P2006, pages
106–113, Cambridge, UK., September 6-8 2006.

[6] Philip Chan and David Abramson. A Scalable and
Efficient Prefix-Based Lookup Mechanism for Large-
Scale Grids. In3rd IEEE International Conference on
e-Science and Grid Computing, e-Science 2007, Ban-
galore, India, December, 10-13 2007. IEEE.

[7] A. Datta, M. Hauswirth, R. John, R. Schmidt, and
K. Aberer. Range queries in trie-structured overlays.
In The Fifth IEEE International Conference on Peer-
to-Peer Computing, 2005.

[8] B. Godfrey, K. Lakshminarayanan, S. Surana,
R. Karp, and I. Stoica. Load balancing in dynamic
structured P2P systems. InProc. IEEE INFOCOM,
Hong Kong, 2004.

1www.grid5000.org

[9] A. Iamnitchi and I. Foster. On Death, Taxes, and the
Convergence of Peer-to-Peer and Grid Computing. In
IPTPS, pages 118–128, 2003.

[10] D. R. Karger and M. Ruhl. Simple Efficient Load
Balancing Algorithms for Peer-to-Peer Systems. In
IPTPS, pages 131–140, 2004.

[11] J. Ledlie and M. I. Seltzer. Distributed, Secure Load
Balancing with Skew, Heterogeneity and Churn. In
INFOCOM, pages 1419–1430, 2005.

[12] M. Cai and M. Frank and J. Chen and P. Szekely.
MAAN: A multi-attribute addressable network for
Grid information services. 2(1):3–14, March 2004.

[13] D. Oppenheimer, J. Albrecht, D. Patterson, and
A. Vahdat. Distributed Resource Discovery on
PlanetLab with SWORD. InProceedings of the
ACM/USENIX Workshop on Real, Large Distributed
Systems (WORLDS), December 2004.

[14] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and
S. Shenker. Prefix hash tree an indexing data struc-
ture over distributed hash tables. InProceedings of
the 23rd ACM Symposium on Principles of Distributed
Computing, July 2004.

[15] A. Rowstron and P. Druschel. Pastry: Scalable, Dis-
tributed Object Location and Routing for Large-Scale
Peer-To-Peer Systems. InInternational Conference on
Distributed Systems Platforms (Middleware), 2001.

[16] C. Schmidt and M. Parashar. Enabling Flexible
Queries with Guarantees in P2P Systems.IEEE In-
ternet Computing, 8(3):19–26, 2004.

[17] Y. Shu, B. C. Ooi, K. Tan, and Aoying Zhou. Support-
ing Multi-Dimensional Range Queries in Peer-to-Peer
Systems. InPeer-to-Peer Computing, 2005.

[18] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup service for Internet Applications. InACM
SIGCOMM, pages 149–160, 2001.

[19] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. D. Kubiatowicz. Tapestry: A re-
silient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications,
22(1):41–53, January 2004.

