
Armor Within: Defending against Vulnerabilities in
Third-Party Libraries

Sameed Ali

Department of Computer Science
Dartmouth College

Hanover, USA

sameed.ali.gr@dartmouth.edu

Prashant Anantharaman

Department of Computer Science
Dartmouth College

Hanover, USA

pa@cs.dartmouth.edu

Sean W. Smith

Department of Computer Science
Dartmouth College

Hanover, USA

sws@cs.dartmouth.edu

Abstract—Vulnerabilities in third-party software modules have
resulted in severe security flaws, including remote code execution
and denial of service. However, current approaches to securing
such libraries suffer from one of two problems. First, they do not
perform sufficiently well to be applicable in practice and incur
high CPU and memory overheads. Second, they are also harder
to apply to legacy and proprietary systems when the source code
of the application is not available. There is, therefore, a dire need
to secure the internal boundaries within an application to ensure
vulnerable software modules are not exploitable via crafted input
attacks.

We present a novel approach to secure third-party software
modules without requiring access to the source code of the
program. First, using the foundations of language-theoretic se-
curity, we build a validation filter for the vulnerable module.
Using the foundations of linking and loading, we present two
different ways to insert that filter between the main code and
the vulnerable module. Finally, using the foundations of ELF-
based access control, we ensure any entry into the vulnerable
module must first go through the filter.

We evaluate our approaches using three known real-world
exploits in two popular libraries—libpng and libxml. We were
able to successfully prevent all three exploits from executing.

Keywords-Language-theoretic security, buffer overflows, input-
handling vulnerabilities, access control

I. INTRODUCTION

As software grows complex, the use of libraries and other

such third-party software modules has become ubiquitous. The

extensive use of such software modules presents a difficult

challenge for software security as vulnerabilities found in

third-party software modules can compromise the security of

the entire program, as it’s all within the same process address

space.

Software exploits occur when an unexpected input causes

the program to undergo an unexpected program execution path,

which leads to undesired program behavior. In prior work,

this behavior has also been described as the discovery and

programming of ”weird machines” [1]. However, looking at

This material is based upon work supported by the United States Air Force
and DARPA under Contract No. FA8750-16-C-0179. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of United States Government
or any agency thereof.

recently discovered vulnerabilities, we notice that a significant

number are due to crafted input exploits against libraries.1

external interface
main code

vulnerable
library

adversary

application

Fig. 1. In the general model we consider, an internal library has a crafted
input vulnerability; we must defend against the adversary tricking the main
program into calling that library with suitably crafted input.

The standard way to defend against crafted input attacks

is validate the input that comes in at the adversary’s attack

surface. However, when an internal library is vulnerable (Fig-

ure 1), it’s not clear what to filter for at the adversary’s attack

surface. We therefore propose enforcing strong protections

at the software module boundaries—e.g., between the main

program and each library it uses. These protections will

provide a strong guarantee that even if a third-party library

is vulnerable to a crafted input attack, the overall application

will not be exploited; the adversary may try to trick the main

program into passing the right crafted input to the vulnerable

library, but our defense will ensure that no unvalidated input

crosses that channel. This allows us to reason strongly about

software security. We can be sure that any crafted input attack

which requires the input to be syntactically invalid will not

be able to exploit the software module—thus reducing the

severity of another libpng-like 0-day [2], if it were to happen

again. Furthermore, these drop-in filters could easily be added

to applications after a vulnerability is discovered to protect

them from being exploited by a malicious attacker.

1We searched http://cve.mitre.org for recent crafted input attacks using the
keywords “buffer overflows,” “crafted,” and “heap overflow.”

291

2020 Symposium on Security and Privacy Workshops (SPW)

© 2020, Sameed Ali. Under license to IEEE.
DOI 10.1109/SPW50608.2020.00063

networking module
Browser core

vulnerable
libpng

Malicious PNG
image

GUI module

XML module
libxml

sensitive
data

browser

Fig. 2. In CVE-2004-0597, the adversary tricks the browser into sending
a malicious PNG file into the libpng library. The exploited software module
can then access sensitive information in other parts of the address space.

a) Attacks: Third-party libraries are used by multiple

widely used software programs and are often targeted by

malicious actors who try to find exploits in these widely used

modules so they can reach a larger target audience for their

malware.

Programs accept arbitrary input from users, sockets or files.

These programs are expected to fail safely and reject malicious

inputs. However, in the case of the remote code execution bug

found in libpng (CVE-2004-0597), if the adversary can trick

the main program into passing a specially crafted PNG to the

library, the library overwrites the stack of the main program.

Figure 2 visualizes the data-flow of this attack. Traditional

security considers hardening the outer boundary of the main

program, and treats libraries as black boxes; preventing these

attacks requires hardening the boundaries between the main

program and the libraries.

b) Existing Defenses: Most solutions that have been

proposed—such as Write-XOR-Execute [3], stack cookies [4],

DEP [5], SafeSEH [6], CFI [7], and ASLR [8]—do not

prevent malformed input from being consumed. Indeed, they

attempt to prevent exploits after the exploit starts execution

by detecting a memory corruption or a control flow integrity

violation. Although these techniques do manage to stop some

exploits midway in execution, they offer no protections that

crafted or malformed input will not be consumed by the

application in the first place. In contrast, our drop-in LangSec

filters will detect and prevent a crafted input attack before

the exploit executes itself. Moreover, sophisticated exploits

are often able to bypass these defense techniques, so there

is a need for a more effective exploit mitigation mechanism.

The existing software hardening approaches also do not take

advantage of software modularity. A defensive mechanism

which attempts to use this aspect of software architecture to

its advantage will prove highly useful as we shall demonstrate

with our approach.

c) This Paper: We tackle these issues using a suite of

techniques to provide Armor Within an application.

First, we propose enforcing strong protections at software

module boundaries. We do this by injecting LangSec filter

before data enters the untrusted modules. A LangSec filter is

the software component which validates the input by parsing

it as a formal language.

Second, we use ELFbac to compartmentalize software and

enforce fine-grained access control on code and data sections

and across software module boundaries. By ensuring that

programs do not jump to code sections that are not allowed

via policy, ELFbac enforces that entries to a vulnerable library

must first go through the filter.

Finally, we convert legacy binaries to include ELFbac meta-

data and LangSec filters to reduce the human effort required

to deploy our tools. Our LangSec filters consume CPU time

in the order of micro-seconds.

To this end, we make the following contributions:

• We provide a novel technique to prevent exploitation of

untrusted libraries by using lightweight LangSec parsers

and filters.

• We demonstrate two novel techniques to inject these

parsers into an application using these libraries

• We demonstrate a novel use of ELFbac to ensure an

attacker cannot bypass these parses

• We base these defense on the scientific foundations of

language theory, access control, and linking and loading.

The remainder of the paper is organized as follows: Section 2

provides a recap of LangSec and ELFbac, Section 3 describes

our solutions to tackling the problem of insecure libraries,

Section 4 discusses strategies to evaluate Armor Within, related

work is in Section 5, and Section 6 concludes.

II. BACKGROUND

A. A Recap of LangSec

Any application which takes an input and uses it must

somehow parse that input. Consuming input that has not been

correctly parsed and validated is a primary cause of software

vulnerabilities.

The Language-theoretic security (LangSec) approach is to

model the input of the program as a formal language, and then

validate that inputs lie within this language. This approach

applies the scientific foundations of formal language theory

to input validation. To enable building these validators, the

LangSec community has built hardened parser construction

libraries—the defending programmer then transforms the lan-

guage grammar into calls to these combinators. By modeling

the input as a formal grammar and validating it, LangSec

ensures that the application only consumes syntactically valid

input. We chose the Hammer [9] combinator library because

of ease of use, but our techniques can be applied using other

parser-combinators such as EverParse [10] or Nom [11].

The Hammer parser-combinator library supports various

parsing backends to parse regular grammars, context-free

grammars, as well as parsing expression grammars. Hammer2

makes use of combinators and primitives such as these:

• h_uint8() — to parse an 8 bit integer.

2Hammer supports of a lot of other combinators and primitives, a complete
list can be found here [9].

292

• h_ch(‘a’) — to parse the character ‘a’.

• h_length_value(l, p) — apply parser l which

returns a number n, then apply parser p, n times.

• h_int_range — check if the integer parsed lies in the

range specified.

• h_attr_bool — programmer can provide a custom

function that validates the input.

Fig. 3. Overall Architecture of Armor Within. The diagram shows the two
approaches used to insert LangSec filters to harden a binary.

In this past, many researchers (including our team) have

used LangSec to harden applications by placing LangSec

filters on the outer perimeter. In this paper, we use LangSec

within an application—at the software module boundaries to

secure vulnerable software modules.

B. A Recap of ELFbac

The standard OS security model treats a process address

space as the basic unit. All code within the address space is

the same subject; writable data in the space can be written by

any code in the space.

Our lab’s ELFbac approach [12] uses the executable and

linking format (ELF) to decompose the code and data inside

an address space into smaller units, and then uses a custom

kernel patch to provide fine-grained memory access protec-

tions among these units.

Prior work has used ELFbac as a mitigation technique to

prevent exploits where exploited code tries to inappropriately

access data. In this paper, we also use ELFbac to provide

limited control-flow integrity, to insure that any calls or jumps

into a specific code block must first pass through an interposer.

This policy is added to the ELF binary file. When the OS

loads the binary, the loader reads the policy contained in the

binary file and enforces it [13].

We use a custom tool to write the policy to the ELF binary

file, called mithril. To add a policy, first the policy is

defined in a ruby file as shown in Listing 3. The file is then

read by mithril and injected into the ELF binary in a

separate ”.elfbac” section.

The policy must specify a list of states, the regions of

memory that should be executable, along with the regions of

data that should be accessible from each particular state. The

policy must also specify a starting state, which is the first state

the program will be in when control is transferred to it by the

loader. The policy allows definitions of tags which allow to

refer to separate parts of memory as one group for ease of

writing the policy. As an example, the tag for libc library

is defined in Listing 3 on line 3. The policy has constructs

to easily reference parts of the loaded application as well. For

instance, to reference parts of ELF binary sections, one can use

section_start construct and to refer to the code region of

a dynamically loaded library one can use the library_code
construct. The policy also specifies fine-grained permissions

on sections such as readwrite and executable.

III. PROPOSED SOLUTION

As shown in Figure 4, we propose to secure vulnerable

software modules from crafted input attacks by inserting

LangSec input validation filters between the main program

and the vulnerable module. This binary hardening approach

addresses and prevents input validation vulnerabilities present

in libraries.

external interface
main code

vulnerable
library

vulnerable
libpng

vulnerable
libxml

PNG LangSec
Parser

XML LangSec
Parser

application

Fig. 4. Placement of LangSec Validation Filters. In a binary that uses both
libPNG and libXML, two separate parsers would have to be placed across the
boundaries between the binary and the two different libraries.

LangSec filters have been used to effectively prevent crafted

input exploits [14] in the past. Inspired by the libpng vul-

nerability, we extend the prior work in the LangSec space to

build these LangSec-compliant parsers for popular file formats,

demonstrate that LangSec validation filters are an effective

way to secure vulnerable third-party software modules that

consume these formats, and present two novel techniques of

injecting these parsers in existing legacy binaries.

Furthermore, our approach demonstrates that it is possible to

insert the filters mentioned above without access to the source

code of the program. However, to build prototypes of Armor
Within, we assume that the parser-combinator toolkit we use,

Hammer, is bug free. We also assume that the control-flow

integrity techniques we use in our paper function correctly.

An outline of the approaches we used is shown in Figure 3.

A. Basic Model

An attacker trying to compromise a system may have

offline-read access to the address space of the binary, but still

may not be able to find vulnerabilities to gain access to a shell.

The address space may, however, use libraries such as libpng,

that could have vulnerabilities.

We assume that the attacker will try to manipulate the main

program in order to force a call or jump to an insecure module

293

and feed it the appropriate crafted input. To defend against

these attacks, we

• insert LangSec validation filters around the vulnerable

internal module,

• enforce that adversary-compromised code goes through

these filters before reaching the module

Below, we detail two methods to do this.

B. Method one: Object rewriting

Our first method directly edits the ELF binary.

ELF binaries contain code and data. They also contain a

symbol table to keep track of what functions are in an ELF

file and at what offsets in the binary they are present. For the

first method, our intuition is that we can rewrite this symbol

table to rewrite a function offset, and force the binary to run

its input through a parser.

This approach assumes we have separate object files for

each of the software modules. By manipulating the object files

instead of the source code, we are able to inject our parsers

and show that the technique works well.

The symbol table, as its name suggests, stores the symbolic

references of different modules in the ELF file. It allows

the linker to handle symbolic references from one module to

another. Before linking the object files together, the symbols

are representing the functions in the vulnerable library object

file are rewritten to point to the LangSec filter functions. Thus

when the linker links the object files together, it will insert the

LangSec filter in-place of the vulnerable functions. This filter

can then call the vulnerable function after validating the data.

Symbol t a b l e ’ . symtab ’ c o n t a i n s 31 e n t r i e s :

Num: Value S i z e Type Bind Vis Ndx Name

0 : 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1 : 0000000000000000 0 FILE LOCAL DEFAULT ABS readpng . c

2 : 0000000000000000 0 SECTION LOCAL DEFAULT 1

3 : 0000000000000000 0 SECTION LOCAL DEFAULT 3

4 : 0000000000000000 0 SECTION LOCAL DEFAULT 4

5 : 0000000000000000 0 SECTION LOCAL DEFAULT 5

6 : 0000000000000000 0 SECTION LOCAL DEFAULT 6

7 : 0000000000000000 0 SECTION LOCAL DEFAULT 7

8 : 0000000000000000 0 SECTION LOCAL DEFAULT 9

9 : 0000000000000000 0 SECTION LOCAL DEFAULT 10

1 0 : 0000000000000000 0 SECTION LOCAL DEFAULT 12

1 1 : 0000000000000000 0 SECTION LOCAL DEFAULT 14

1 2 : 0000000000000000 0 SECTION LOCAL DEFAULT 16

1 3 : 0000000000000000 0 SECTION LOCAL DEFAULT 18

1 4 : 0000000000000000 0 SECTION LOCAL DEFAULT 19

1 5 : 0000000000000000 0 SECTION LOCAL DEFAULT 17

1 6 : 0000000000000000 337 FUNC GLOBAL DEFAULT 1 readpng

1 7 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND fopen

1 8 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND p u t s

1 9 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND w p n g c r e a t e r e a d s t r u c t

2 0 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND f c l o s e

2 1 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND w p n g c r e a t e i n f o s t r u c t

2 2 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND w p n g d e s t r o y r e a d s t r u c t

2 3 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND s e t j m p

2 4 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND w p n g i n i t i o

2 5 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND w p n g s e t s i g b y t e s

2 6 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND wpng read png

2 7 : 0000000000001000 122 FUNC GLOBAL DEFAULT 1 main

2 8 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND s t d e r r

2 9 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND f p r i n t f c h k

3 0 : 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND f w r i t e

Listing 1. The symbol table of an object file printed by readelf

If a software module were to call a function from another

module, the linker will lookup the symbol table, find the

corresponding entry for that called function and thus know

which part of the code section to jump to execute that

function or which dynamic library to load to continue program

execution. If the symbol table entry, corresponding to the

vulnerable library function, is rewritten to point to the LangSec

validation filter instead, the LangSec validation filter function

will be executed every time a call to the vulnerable library

function is made. Listing 1 shows an example of a symbol

table.
The LangSec validation filter validates the arguments passed

to the library filter and invokes the library function if the

LangSec validation is successful. If the input is malformed,

it halts the program. A programmer has the option to specify

what to do instead of stopping.
By only executing the vulnerable function of a library

after validating the input data via LangSec, we ensure the

library function gets syntactically well-formed input. An active

adversary cannot exploit vulnerabilities in the library to gain

control of the address space, since the LangSec validation filter

rejects the malformed input.
To ensure that the adversary cannot get the main program to

bypass the filters, we assume the application includes ELFbac-

compliant metadata (viz. code and data sections are separate)

and we run it on an ELFbac-enhanced kernel (fine-grained

permissions are applied and enforced). As Figure 5 shows,

we use ELFbac to ensure that the attacker would not be able

to jump from anywhere into the vulnerable module, but from

particular entry points.

Starting state
‘main’ libPNG stateLangSec filter

state

Policy State Diagram

function call to LangSec wrapper function call to libpng function

Fig. 5. In ELFbac, the kernel enforces memory access controls based on an
FSM and policy we specify. This example shows how libpng is not executable
unless the system has entered our LangSec filter. (For simplicity, we do not
show the case of when libpng may itself then call other libraries.). The dotted
lines represent the state transitions occuring when a function returns.

After rewriting the symbol table of the binary, ELFbac

policy is added to it to ensure that there are no direct jumps

allowed from the user code directly to the vulnerable library,

i.e., a jump bypassing the inserted LangSec filter, as shown in

Figure 6. The policy also ensures that the library function is

allowed only the data that is relevant to its use.

C. Method two: Binary rewriting
The method of Section III-B has disadvantages.

• This first method needs access to object files (not just the

raw binary) to rewrite the symbols. In many cases, This

may not be realistic

294

• It is not effective when binaries are statically linked.

Statically linked binaries include entire libraries in their

binaries, and hence a lot more addresses and symbols

would have to be rewritten, making this approach infea-

sible to scale.

• Rewriting symbols is also not useful when legacy binaries

require additional metadata. If functions and data are not

already in separate, self-contained sections, it can be non-

trivial to add these metadata to a legacy binary without

breaking functionality.

To overcome these limitations, we developed a second tech-

nique where we lift the binary to LLVM bitcode and insert

the filter as an LLVM IR pass.

We convert legacy binaries to LLVM IR using off the shelf

tools such as McSema [15]. McSema lifts binaries to LLVM

bitcode via a two-step process. It first gathers the control-

flow graph of the program using tools such as IDA Pro, and

then it converts this control-flow graph into LLVM bitcode.

They were able to demonstrate effectiveness across several

architectures.

After obtaining the LLVM bitcode, a custom LLVM IR pass

inserts the LangSec filter in the required positions. First, this

function scans the LLVM bitcode to locate all the entry points

from the user code to a library module. We then examine the

list of entry points and map them to the library module to

evaluate which parser to inject.

Second, the LLVM IR pass replaces the library function

calls in the user code with function calls to the LangSec filters.

An example of this can be found in Listing 2. These filters

exhaustively validate the input received to make sure they

comply with the formal specification of the data format. In

our examples, we used the PNG image format and a custom

XML format. After validating the data syntax, the filter would

then go on to call the library module.

To maintain control-flow integrity, and to prevent attackers

from jumping past the LangSec validation filters, we want to

insert metadata that ELFbac can use to ensure that the program

corresponds to the state-machine policy. Armor Within adds

ELFbac metadata in a two-step process. First, it adds section

information to all the functions and global data. Second, when

the LLVM bitcode is compiled back to a binary, it adds a

“.elfbac” section to the binary that contains details of the

policies that need to be enforced.

D. Implementation

We implemented parsers for PNG and a custom XML for-

mat using the Hammer parser-combinator toolkit. Our parsers

are written in C. The parser for our PNG header format is

in Listing 2. We also implemented an ELFbac policy for the

binary that uses the libpng library. The policy uses a Ruby-

based domain-specific language, and is in Listing 3.

We also implemented method one: symbol rewriting, and

method two: binary rewriting. Our symbol rewriting imple-

mentation makes use of objcopy to edit object files and add

sections to it. It then recompiles the object files again to create

the final binary with the injected parser.

1 # i n c l u d e <hammer . h>
2

3 HPar se r * PNG IHDR parser () {
4 HPar se r * MAGIC = h token (”\x89\x50\x4E\x47\x0D\

x0A\x1A\x0A” , 8) ;
5 HPar se r * IHDR len = h i n t r a n g e (h u i n t 3 2 () , 13 ,

13) ;
6 HPar se r * IHDR type = h token (”IHDR” , 4) ;
7

8 HPar se r * wid th = h u i n t 3 2 () ;
9 HPar se r * h e i g h t = h u i n t 3 2 () ;

10 HPar se r * a t t r i b u t e s = h r e p e a t n (h i n t 8 () , 5) ;
11 HPar se r * IHDR chunk = h sequence (width , h e i g h t ,

a t t r i b u t e s , NULL) ;
12

13 HPar se r * IHDR crc = h a t t r b o o l (h u i n t 3 2 () ,
v a l i d a t e c r c , NULL) ;

14

15 HPar se r * IHDR = h sequence (MAGIC, IHDR len ,
IHDR type , IHDR chunk , IHDR crc , NULL) ;

16 r e t u r n IHDR ;
17 }
Listing 2. Hammer implementation of the PNG header. The PNG header
format starts with 8 magic bytes, followed by a 13 byte length field. We use
the h_attr_bool() function to validate the checksum.

Our second implementation, makes use of an Clang-LLVM

IR pass. The binary is lifted using McSema [15]. The lifted

binary is run through the Clang-LLVM IR pass. The IR pass

is written in C++, and must be compiled using clang to work.

E. Limitations

We are aware that our proposed defenses have certain

limitations. First, LangSec parsers offer no protection against

crafted input attacks whose payload is syntactically valid, but

semantically invalid. Dealing with such attacks, however, is

outside the scope of this paper.

Second, our defenses require the parsing to be done twice—

once in our filter, and then again inside the vulnerable module.

In our current approach, the abstract syntax tree generated by

the Hammer-based LangSec validator is not utilized by the

program’s application logic. However, this limitation can be

overcome if the application is programmed to use the AST

generated by the LangSec filter instead.

Third, our approach requires the programmer to write the

LangSec parser for each input format going into the third

party library—or at least of the input formats discovered to

trigger vulnerabilities. Although it is possible to automate the

generation of such parsers with a domain-specific language

or a data-description language, it is necessary extra effort

required from the programmer.

F. Summary

In summary, our approaches to inject LangSec validation

filters comprise rewriting symbols in compiled binaries and

lifting binaries to LLVM bitcode and injecting code in the

LLVM bitcode. We augment our code injection techniques

by using control-flow integrity approaches such as ELFbac.

ELFbac places the library modules in their separate states and

provides a clear interface to inject our LangSec validation

295

1 # Tags d e f i n i t i o n
2 # f o r b r e v i t y a l l used t a g s a r e n o t shown
3 t a g : l i b c do
4 l i b r a r y c o d e (’ l i b c . so . 6 ’)
5 l i b r a r y c o d e (’ ld−l i n u x−x86−64. so . 2 ’)
6 end
7

8 # t h e s t a r t s t a t e
9 s t a t e ’ main ’ do

10 exec : l i b c # l i b c t a g r e g i o n i s e x e c u t a b l e
11 exec : p l t
12 exec : w p n g i n i t i o
13 exec : main
14 # r e a d w r i t e p e r m i s s i o n f o r ” d e f a u l t ” t a g r e g i o n
15 r e a d w r i t e : d e f a u l t
16 t o ’ l a n g s e c f i l t e r ’ do
17 # when ’ w p n g i n i t i o ’ f u n c t i o n c a l l e d
18 # do t r a n s i t i o n t o LangSec s t a t e
19 c a l l ’ w p n g i n i t i o ’
20 end
21 # t r a n s i t i o n t o l i b c
22 t o ’ l i b c ’ do
23 c a l l ’ d l r u n t i m e r e s o l v e ’
24 end
25 end
26

27 # s t a t e r e p r e s e n t i n g l i b c
28 s t a t e ’ l i b c ’ do
29 exec : l i b c
30 exec : p l t
31 r e a d w r i t e : d e f a u l t
32 t o ’ main ’ do
33 c a l l s e c t i o n s t a r t (’ . f i n i ’)
34 end
35 end
36

37 # t h e LangSec f i l t e r s t a t e
38 s t a t e ’ l a n g s e c f i l t e r ’ do
39 exec : w p n g i n i t i o
40 exec : p l t
41 exec : d e f a u l t
42 r e a d w r i t e : d e f a u l t
43 t o ’ l i b c ’ do
44 # r e q u i r e d t r a n s i t i o n f o r l i b c f u n c t i o n s
45 c a l l ’ d l r u n t i m e r e s o l v e ’
46 c a l l ’ m a l l o c ’
47 end
48 # t r a n s i t i o n t o libPNG s t a t e
49 t o ’ p n g i n i t i o ’ do
50 c a l l ’ p n g i n i t i o ’
51 end
52 end
53

54 # t h e libPNG s t a t e
55 s t a t e ’ p n g i n i t i o ’ do
56 exec : p n g i n i t i o
57 exec : l i b c
58 exec : p l t
59 r e a d w r i t e : d e f a u l t
60 # libPNG needs a c c e s s l i b c
61 t o ’ l i b c ’ do
62 c a l l ’ d l r u n t i m e r e s o l v e ’
63 end
64 end

Listing 3. ELFbac policy for libpng. The policy shows four states: main,
LangSec filter, libpng, and libc. Each state also clearly specifies what data
and code sections it can access, and what states it can transition to, when
calling which functions.

libpng User
code

LangSec
Validation

Filter

Random jumps are prevented.
Only jumps allowed by the
state machine are allowed.

Fig. 6. How ELFbac and LangSec interact with each other. ELFbac prevents
random jumps and only allows jumps from specific locations that are clearly
specified in the state machine of the binary.

filters. We evaluate the performance of our approaches and

discuss challenges in the oncoming sections.

IV. EVALUATION AND RESULTS

To evaluate our system, we answer the following questions:

• Is Armor Within effective against known vulnerabilities?

• How much overhead do our LangSec filters add to

existing binaries?

• Can Armor Within effectively inject parsers in existing

binaries?

A. Effectiveness against known vulnerabilities

We reconstructed three known exploits of which two were

in the libpng library and one was in libxml library. We

tested the effectiveness of our method by inserting drop-in

LangSec validation filters in the vulnerable application ELF

binaries. We tried the experiments with the object rewriting

approach.

The CVE numbers of the tested exploits as as follows:

• CVE-2016-1838: Denial-of-service heap-based buffer

over-read vulnerability in LIBXML

• CVE-2004-0597: Stack-Overflow remote code execution

vulnerability in LibPNG

• CVE-2010-1205: Buffer overflow in LibPNG

We ran these experiments on a Desktop computer equipped

with a Xeon E3-1245 processor and 8 Gigabytes of RAM. The

computer ran Ubuntu Linux version 12.04 with the ELFbac

Linux kernel patch.

In all cases, the filters detected the malicious input and

prevented the application from being exploited. Both the

exploits can be mitigated by using the same LangSec imple-

mentation of the PNG parser. All the three vulnerabilities were

patched using our filters. This result shows that our method

of hardening third-party modules in binaries using a hardened

parser-combinator library can effectively prevent crafted input

attacks.

296

PNG file size No instrumentation With LangSec filter LangSec filter with ELFbac policy

100KB
Page faults 273 660 1230
Instructions 28,974,520 35,669,663 2,050,000,720
Time 0.028951596 0.061482514 0.540514533

200KB
Page faults 326 713 1,334
Instructions 45,926,310 52,487,839 2,414,208,538
Time 0.063752567 0.076081896 0.66811976

500KB
Page faults 525 912 1,734
Instructions 111,338,010 119,492,290 4,070,225,945
Time 0.117933531 0.127791843 1.201331268

TABLE I
PERFORMANCE EVALUATION OF OUR LANGSEC VALIDATION FILTERS

USING PERF . TO BENCHMARK THE OVERHEAD IMPOSED BY OUR

LANGSEC FILTERS, WE SELECTED PNG FILES OF VARYING SIZES AND

RAN THEM THROUGH A BARE-METAL EXECUTABLE, AND ONE WITH THE

LANGSEC FILTER, AND ONE WITH AN ELFBAC POLICY TO ENSURE CFI.

We also demonstrate that constructing a single parser for

an input format using a hardened parser combinator library

we can effectively prevent multiple exploits of the same kind.

To be more exact, a LangSec filter for a given grammar will

reject all syntactically invalid crafted input exploits.

This is especially beneficial for software security because a

single correctly written LangSec patch for a given vulnerability

can successfully prevent multiple exploits discovered in the

future. As we show in our example both CVE-2004-059,3

and CVE-2010-12054 are prevented using the same filter thus

eliminating the need to patch the software multiple times for

different exploits of the same kind.

B. Performance

To evaluate the implementation, we ran the perf linux

profiler on three different implementations. The first imple-

mentation was run without any instrumentation, the second

with the filter but without using ELFbac, and the third with the

filter and a sufficient ELFbac policy. We ran the experiments

for PNG files of varying sizes. The results are shown in Table I.

The ELFbac policy we implemented for the implementation

is in 3. This policy has four states. Each state restricts the code

and data sections the application is allowed to access. The four

states are for libc, the LangSec filter, libpng library, and

the starting state. ELFbac not only restricts the memory these

states are allowed to access, but also only allows a transition

between them when the state executes a function defined in

the policy (viz. you can only jump from specific locations in

the code). In the example shown, the starting state main, is

allowed to only transition to the LangSec filter or the libc
state. Thus, preventing any jumps directly into the vulnerable

library.

As shown in the table, we profiled the effect of the PNG

LangSec filter with PNG files of varying sizes. We observed

that the performance overhead increases with the size of the

input, as the LangSec parser has to validate it before it is

consumed by the third party library. We observe that the

3https://www.exploit-db.com/exploits/14422
4https://www.exploit-db.com/exploits/389

overhead is on average less than 25% when using the LangSec

filter.

The overhead, however, increases when using CFI tech-

niques such as ELFbac. ELFbac forces page faults when

memory is fixed accessed in a particular state to ensure that the

program has access to the particular memory location. ELFbac

also triggers a TLB flush on every state transition. These are

large performance costs. The ARM64 version of ELFbac does

not incur such high performance costs because of the way

it handles page faults and TLB flushes, and can be used to

reduce overheads.

V. RELATED WORK

The defenses we presented in this paper serve two purposes:

defending against weird machines using LangSec filters, and

ensuring that the filters cannot be bypassed. Memory safety

techniques solve some of the same problems as our LangSec

filters, whereas control-flow integrity techniques ensure that

attackers cannot bypass the filters.

There are several techniques that address memory

safety [16], [17] and control-flow integrity. In this section,

we summarize memory safety techniques that address the

same problem as our LangSec filters, and control-flow defense

techniques that can ensure that our LangSec filters are not

bypassed.

A. Memory Safety Approaches

Attackers use memory corruption in software to construct

exploits. Memory safety exploit-mitigation techniques watch

for memory safety violations in a program and terminate the

program upon detection, thereby preventing the exploit.

Memory corruption can be spatial or temporal, or both.

Spatial memory corruption occurs when a pointer accesses an

address beyond the intended memory region. Whereas, tem-

poral memory corruption occurs when an object is accessed

before creation or after it has been deallocated. For example,

a use-after-free is a temporal memory safety violation. On

the other hand, a buffer overflow is a spatial memory safety

violation.

1) Spatial Memory Safety: Several recent papers have

added run-time checks on pointers to enforce spatial memory

safety in software. In Cyclone, a dialect of C, the programming

can control the memory layout and keep track of the address

ranges being used [18]. This information is stored by altering

the pointer representation to include the boundary information

within it. These modified pointers are referred to as “fat

pointers.” We see two issues with Cyclone. First, changing the

pointer representation causes substantial binary incompatibil-

ity issues in the resulting binaries. Second, Cyclone requires

source code annotations to guide the static analysis which

makes it impractical for large existing unannotated code bases.

SoftBound [19] addresses the binary incompatibility issues

caused by Cyclone, by separating the boundary information

from the pointer representation and keeping this information

in a data structure elsewhere. Softbound is implemented as a

297

compile-time transformation for C programs. Code is instru-

mented to update the data structure which tracks the boundary

metadata when necessary. Softbound addresses spatial memory

safety concerns only and has a 67% performance overhead.

2) Temporal Memory Safety: A shortcoming of object-

based bounds checking is that they are unable to detect

memory corruption within objects and thus may lead to false

negatives. An undetected memory corruption within an object

could potentially lead to an exploit.

Valgrind’s Memcheck [20] and AddressSanitizer [21] detect

use-after-free bugs by keeping track of the allocation and

deallocation information in a separate memory region. This

allows them to detect dereferences of dangling pointers. If,

however, a memory region is reallocated for some other object

then neither Memcheck nor AddressSanitizer can detect an

invalid access in that memory region.

The CETS project [22] extended SoftBound [19] by adding

temporal pointer validation, thus ensuring complete memory

safety. CETS like SoftBound is also a compile time transfor-

mation. CETS uses a dictionary to keep track of the validity

of every object allocated by the program. If an object is

invalidated, its associated entry in the dictionary is updated

to reflect the change. On every pointer dereference, CETS

checks if the pointer is valid before allowing the access.

Code instrumented by CETS is also formally proven to ensure

temporal memory safety provided the code does not have any

spatial memory safety violations.

DANGNULL [23] prevents temporal memory safety vio-

lations, by setting all pointers to NULL when an object is

freed. DANGNULL requires static instrumentation done via

an LLVM IR pass. This instrumentation looks for pointer

assignments and inserts a trace function. Using this generated

trace the DANGNULL run-time library detects and converts all

dangling pointers to NULL. DangSan [24] and FreeSentry [25]

also invalidate the pointers pointing to an object when the

object is freed.

Undangle [26] is a tool that detects dangling pointers via

taint analysis of a binary. It does not require access to source

code, however if source code is available it can use it to

augment its analysis. Since, Undangle works on the execution

trace of a program, it does not impact the performance directly.

Undangle, is different in the sense that it focuses on early

detection of temporal memory safety violations, instead of

prevention at run-time.

The LangSec filters we use in our paper are different from

all these memory-safety techniques. We formalize the data

format and implement parsers for them. LangSec filters require

developers to formalize the input beforehand. This leads to

better software, by design.

B. Control Flow Integrity

Control Flow Integrity (CFI) techniques prevent exploits

from altering the control flow of the program. CFI techniques

deter exploits by detecting an anomalous program execution

path and halting the program when it occurs thereby mitigating

the exploit. They do so by validating the memory locations

holding the control flow information of the program. In

Armor Within, we make use of ELFbac to ensure control-flow

integrity.

Stack cookies [4], [27] prevent the corruption of the return

address by placing a random value among the contents of

the stack and verifying it’s integrity before using the return

address stored on the stack. This prevents buffer overflow

attacks where the stack is corrupted by writing beyond the

memory allocated for the a stack object. It is important to

note that an attacker can bypass the stack cookie protection if

they can directly overwrite the return address.

Abadi et al. [7] stipulated that if a program instruction

affects the control flow of the program, it should do so in

accordance to the “intended” program execution. The CFI

technique designed by Abadi et al. [7] inserted checks in

the program binary to ensure machine instructions transferring

control adhere to the extracted control flow graph (CFG) of the

program. A unique ID is assigned to each destination address

that any program instruction may transfer it’s control to. A

check is added in the program machine code to ensure when

an instruction transfers control, the destination has the correct

ID.

A major drawback of CFI is that instrumented and unin-

strumented software modules are not compatible with each

other. Furthermore, in the absence of a fine-grained CFG,

the CFI policy does not offer sufficient protections. Since

the control-flow policy cannot distinguish between targets

within an equivalence class, if a policy is coarse grained an

adversary may be able to “bend” the policy without being

detected [28]. In this paper, we used ELFbac and Clang’s

CFI implementations to ensure control-flow integrity. ELFbac

suffers from the drawback we mentioned above—it requires a

fine-grained policy.

VI. CONCLUSION

In this paper, we presented Armor Within, comprising two

techniques to inject LangSec parsers in binaries to protect the

binary against insecure libraries. In the first technique, we

rewrote the symbol table of a binary to force it to run through

the LangSec parser before the control flow enters the library.

In the second technique, we lifted binaries to LLVM IR and

injected the parsers in the IR. We also added the metadata

needed for the binaries to work with ELFbac. We demonstrated

the effectiveness of our techniques on two popular exploits on

libpng and libxml. We found that our tools were fast and

effective, and added minimal overhead to existing binaries.

We are aware that rewriting the Procedure Linkage Table

(PLT) of an ELF binary is an existing less invasive binary

rewriting approach. The PLT entry for the vulnerable function

of the module could be rewritten to jump to the code for

the LangSec filter. The code for the LangSec filter could be

added as an additional executable segment in the ELF binary.

However, we did not pursue this method as it can only insert

the LangSec filter to vulnerable functions which are part of a

dynamically linked library.

298

In future work, we are taking various new directions. We

are systematizing exploits and exploit mitigation techniques to

formalize which exploits can be mitigated with Armor Within.

Although we used Hammer [9] in this paper to build our

LangSec parsers, we can use other libraries. We are building a

formally verified parser-combinator toolkit to ensure that the

toolkit is bug-free.

VII. ACKNOWLEDGEMENTS

We thank the anonymous reviews for their comments and

suggestions which greatly improved the manuscript.

REFERENCES

[1] S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and A. Shubina,
“Exploit programming: From buffer overflows to ”weird machines” and
theory of computation,” USENIX; login, vol. 36, no. 6, 2011.

[2] MITRE, “CVE-2004-0597 : Multiple buffer overflows in libpng 1.2.5,”
Available from MITRE CVE-ID CVE-2004-0597, 2004.

[3] A. van de Ven and I. Molnar, “Exec shield,” 2004. [Online]. Available:
http://www.redhat.com/f/pdf/rhel/WHP0006USExecshield.pdf

[4] H. Etoh and K. Yoda, “Memory device, stack protection system,
computer system, compiler, stack protection method, storage medium
and program transmission apparatus,” Sep. 6 2005, uS Patent 6,941,473.

[5] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening
made easy.” in USENIX Security Symposium. San Francisco, CA:
USENIX, 2011, pp. 25–41.

[6] Microsoft, “/SAFESEH (Safe Exception Handlers),” 2003,
[Online; accessed 21-September-2019]. [Online]. Available:
http://msdn2.microsoft.com/en-us/library/9a89h429.aspx

[7] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity principles, implementations, and applications,” ACM
Transactions on Information Systems Security, vol. 13, no. 1, Nov.
2009. [Online]. Available: https://doi.org/10.1145/1609956.1609960

[8] PaX, “Address Space Layout Randomization,” 2001, [Online; accessed
21-September-2019]. [Online]. Available: http://pax.grsecurity.net/docs/
aslr.txt

[9] M. Patterson, “Parser combinators for binary formats, in C,”
2015, [Online; accessed 4-March-2020]. [Online]. Available: https:
//gitlab.special-circumstanc.es/hammer/hammer

[10] T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy,
T. Chajed, N. Kobeissi, and J. Protzenko, “Everparse: Verified
secure zero-copy parsers for authenticated message formats,”
in 28th USENIX Security Symposium (USENIX Security 19).
Santa Clara, CA: USENIX Association, Aug. 2019, pp.
1465–1482. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/delignat-lavaud

[11] G. Couprie, “Nom, a byte oriented, streaming, zero copy, parser combi-
nators library in rust,” in IEEE Security and Privacy Workshops. San
Jose, CA: IEEE, 2015, pp. 142–148.

[12] J. Bangert, S. Bratus, R. Shapiro, J. Reeves, S. W. Smith, A. Shubina,
M. Koo, and M. E. Locasto, “Sections are types, linking is policy: Using
the loader format for expressing programmer intent,” BlackHat USA,
2016.

[13] J. Bangert, S. Bratus, R. Shapiro, M. E. Locasto, J. Reeves, S. W. Smith,
and A. Shubina, “ELFbac: Using the Loader Format for Intent-Level
Semantics and Fine-Grained Protection,” Dartmouth College, Computer
Science, Hanover, NH, Tech. Rep. TR2013-727, May 2013. [Online].
Available: http://www.cs.dartmouth.edu/reports/TR2013-727.pdf

[14] P. Anantharaman, K. Palani, R. Brantley, G. Brown, S. Bratus, and S. W.
Smith, “Phasorsec: Protocol security filters for wide area measurement
systems,” in 2018 IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGrid-
Comm). Aalborg, Denmark: IEEE, Oct 2018, pp. 1–6.

[15] Trail of Bits, “mcsema,” https://github.com/trailofbits/mcsema, 2018.
[16] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in

Memory,” in IEEE Symposium on Security and Privacy. San Francisco,
CA: IEEE, May 2013, pp. 48–62.

[17] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen,
and M. Franz, “SoK: Sanitizing for Security,” in IEEE Symposium on
Security and Privacy (SP). San Francisco, CA: IEEE, May 2019, pp.
1275–1295.

[18] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of c.” in USENIX Annual Technical
Conference, General Track. Monterey, CA: USENIX, 2002, pp. 275–
288.

[19] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for c,” ACM
Sigplan Notices, vol. 44, no. 6, pp. 245–258, 2009.

[20] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI 07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 89100. [Online]. Available:
https://doi.org/10.1145/1250734.1250746

[21] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“Addresssanitizer: A fast address sanity checker,” in Presented as
part of the 2012 USENIX Annual Technical Conference (USENIX
ATC 12). Boston, MA: USENIX, 2012, pp. 309–318. [Online].
Available: https://www.usenix.org/conference/atc12/technical-sessions/
presentation/serebryany

[22] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Cets:
compiler enforced temporal safety for c,” ACM Sigplan Notices, vol. 45,
no. 8, pp. 31–40, 2010.

[23] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee,
“Preventing use-after-free with dangling pointers nullification,” in NDSS.
San Diego, CA: Internet Society, 2015.

[24] E. van der Kouwe, V. Nigade, and C. Giuffrida, “Dangsan: Scalable
use-after-free detection,” in Proceedings of the Twelfth European
Conference on Computer Systems, ser. EuroSys 17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 405419.
[Online]. Available: https://doi.org/10.1145/3064176.3064211

[25] Y. Younan, “Freesentry: protecting against use-after-free vulnerabilities
due to dangling pointers,” in NDSS. San Diego, CA: Internet Society,
2015.

[26] J. Caballero, G. Grieco, M. Marron, and A. Nappa, “Undangle: early
detection of dangling pointers in use-after-free and double-free vulner-
abilities,” in Proceedings of the International Symposium on Software
Testing and Analysis. Minneapolis, MN: ACM, 2012, pp. 133–143.

[27] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
the 7th Conference on USENIX Security Symposium - Volume 7, ser.
SSYM’98. Berkeley, CA, USA: USENIX Association, 1998, pp. 5–5.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1267549.1267554

[28] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R.
Gross, “Control-flow bending: On the effectiveness of control-
flow integrity,” in 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, Aug. 2015,
pp. 161–176. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/carlini

299

