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Abstract—From crying to babbling and then to speech, 

infants’ vocal tract goes through anatomic restructuring. In this 

paper, we propose a non-invasive fast method of using infant cry 

signals with convolutional neural network (CNN) based age 

classification to diagnose the abnormality of the vocal tract 

development as early as 4-month age. We study F0, F1, F2, and 

spectrograms and relate them to the postnatal development of 

infant vocalization. A novel CNN based age classification is 

performed with binary age pairs to discover the pattern and 

tendency of the vocal tract changes. The effectiveness of this 

approach is evaluated on Baby2020 with healthy infant cries and 

Baby Chillanto database with pathological infant cries. The 

results show that our approach yields 79.20% accuracy for 

healthy cries, 84.80% for asphyxiated cries, and 91.20% for deaf 

cries. Our method first reveals that infants’ vocal tract develops 

to a certain level at 4-month age and infants can start controlling 

the vocal folds to produce discontinuous cry sounds leading to 

babbling. Early diagnosis of growth abnormality of the vocal 

tract can help parents keep vigilant and adopt medical 

treatment or training therapy for their infants as early as 

possible.  

Keywords— infant vocal tract, infant cry, age classification, 

convolutional neural networks 

I. INTRODUCTION 

Novice parents are excited to hear their newborn’s first cry 
and care about their health the most. Infants express their 
needs, such as pain, discomfort, and hunger, etc., by crying. It 
is shown that the postnatal development of vocal tract is 
associated with cry signals [1]. Diseases can lead to vocal tract 
development retardation and some healthy infants may also 
suffer from vocal tract development delay. Many studies 
explore the anatomical and acoustic features of adult vocal 
tract, only a few for children, and even less studies are for 
infants. Medical methods such as computed tomography (CT) 
and magnetic resonance imaging (MRI) techniques discover 
anatomical vocal tract development. It is known that an 
infant’s vocal tract is not simply a miniature version of an 
adult’s vocal tract [1]. Previous research has shown that infant 
vocal tract increases more than twofold in length and its 
geometric proportions also change [2]. The shape of the infant 
vocal tract changes from infancy to adulthood. In the process 
of the vocal tract development, the bend in the oropharyngeal 
region gradually forms a right angle, both larynx and the 
posterior part of the tongue descend and the distance between 
the soft palate and epiglottis is enlarged. Fitch and Giedd study 
MRI images of subjects from 2 to 25 years old and point out 
the first phase larynx descend occurs early in life and the 
second large descend, which is restricted to males, occurs at 
puberty [3]. Researchers discovered that the acoustic features 
of infant vocalization reflect the changes in the vocal tract. 
Kent and Murray discovered the ranges of both F1 and F2 
frequencies increase as infant grow from 3-month to 6-month 
age [4]. Machine learning methods have been used in studying 

infant growth. Pruett et al. performed age classification on 6 
versus 12-month old infants by functional connectivity 
magnetic resonance imaging (fcMRI) data to study brain and 
behavioral development using support vector machine (SVM) 
[5].  

Speech emergence and development is presumed to be 
dependent, at least in part, on the physical changes that the 
vocal tract structures undergo during development [2]. Speech 
development starts as early as infant crying. Robb et al. 
confirmed the production of laryngeal constriction during 
infants’ 3-5 months supports the notion that infants start to test 
and practice their phonetic production skills in the first several 
months of life [6]. Guiding infants, especially infants with 
tardy vocal tract development, to practice certain sounds and 
syllables as early as possible promotes their speech 
development. Finding out whether infants’ vocal tract is 
developing normally as expected is vital for parents to take 
timely measures against the problems found. Compared to 
MRI with image processing, infant cry analysis and 
classification is non-invasive. The combination of signal 
processing and machine learning technologies on portable 
devices leads to simple and easy procedures, which can be 
performed without professionals.   

In this study, we analyze diverse cry signals from different 
monthly age of infants and extract typical features such as F0, 
F1, F2, and spectrograms to investigate the relationship 
between anatomic changes of vocal tract and the 
characteristics of cries. Through this study, we discover that 
4-month age is a key turning point of infant vocal tract growth. 
Moreover, we apply efficient neural networks to discover the 
pattern of the changes and diagnose the abnormality of the 
infant vocal tract by age classification. To our best knowledge, 
this is the first work of age classification via classifying infant 

cry signals. In this paper, our major contributions include:  

• We propose using the characteristics of infant cry 
signals to evaluate the development of vocal tract 
development. 

• Fundamental frequency (F0), formants (F1 and F2), 
and spectrograms of infant cries are investigated and 
related to the postnatal development of infant 
vocalization and we show that 4-month age is a key 
turning point of infant vocal tract development. 

• An efficient convolutional neural network (CNN) 
approach is applied to infant cry binary monthly age 
classification to discover the trend of infants’ vocal 
tract development and diagnose abnormal vocal tract 
development as early as 4-month-old.  

The remainder of the paper is organized as follows. In 
Section 2, acoustic features of infant cry signals are analyzed 
to confirm the relationship between infant cries and infant 



vocal tract development. Section 3 describes the CNN 
architecture used for age classification in this study. In Section 
4, experimental results of monthly age classification and 
diagnosis of the abnormality of vocal tract development are 
presented, and we conclude in Section 5. 

II. INFANT VOCAL TRACT ANALYSIS 

A. General Description of Infant Vocalizations 

The shape of the newborn’s vocal tract is more like a 
chimpanzee than a human adult [7]. The high position of the 
larynx and Hyoid bone causes the difficulty of controlling the 
tongue making infants unconducive to pronunciation. In the 
postnatal development phase, infants’ vocal tract restructures 
gradually and develops mature speech ability accordingly. 
From infancy to adulthood, the length of the vocal tract 
develops from about 8cm to 17cm. It is shown that the vocal 
tract is nonlinear gradual and the growth curve of it can be 
fitted with fourth degree polynomial model [1]. Figure 1 
shows the changes of the vocal tract from infants to adults. In 
the process of the vocal tract development, the bend in the 
oropharyngeal region gradually forms a right angle. Both 
infants’ larynx and the posterior part of the tongue descend 
and the distance between the soft palate and epiglottis is 
enlarged. Hence, the infant vocalization is without resonant 
effect and the vowels sound within cries is nasalized resulting 
in quite different distribution of F1 and F2.  

 Infants’ speech development starts from crying. Previous 
research shows that healthy infants cry for around 1.75 hours 
per day by the second week of life, reaches the peak of 2.75 
hours by 6 weeks, and decreases gradually to 0.75 hours by 12 
weeks [8]. Figure 2 presents a comparison of time and 
frequency domain between infant cry and adult speech. The 
areas included in the green rectangles are basic cries and the 
ones in the blue rectangles are cries ending with creaks. The 
spectrum of basic cries is with clear bars, which is similar to 
that of vowels (green rectangles) shown in the Figure 1b. The 
creak at the end of a cry is like choking or interruptions with 
no vibration of vocal cord. Comparing to infants’ cry signals, 
adults’ speech signals are more complex and richer with 
energy, intensity, and formants changes representing a variety 
of the expressions. Because of infants’ lack of full control of 
the vocal tract, they can only control the breath force from the 
lung to generate different types of cries for diverse purposes. 
The effect of movement of vocal cords is based on Bernoulli's 
effect [9]. Bernoulli effect determines the movement of the 
vocal cords to present such characteristics as the higher the 
flow rate, the lower the pressure.   The flow rate increases 
when air comes from the lungs and passes through the narrow 
glottis. According to the Bernoulli’s principle, the pressure at 
the vocal cords is reduced and the vocal cords are closed, and 
then the subsequent air opens the vocal cords again. 
Consequently, the sound is produced because the vocal cords 
keep moving up and down repeatedly. The harder the infant 
breathes, the faster the frequency of the opening and closing 
of the vocal cords and the greater the pitch and loudness of the 
sound. 

B. Analysis of Different Monthly Age Infant Cries 

A spectrogram is a visual representation of an audio 
signals showing the amplitude of a particular frequency at a 
particular time. The spectrograms shown in Figure 3 illustrate  

 

Fig. 1. comparison of vocal tract structure of newborn and adult. 

 

    
(a): Waveform and spectrogram of       (b): Waveform and spectrogram of     
                     an infant cry                                          an adult speech        

Fig. 2. Waveform and spectrogram of infant cry and an adult speech. 
 

the difference between a common 1-month cry and 4-month 
cry.  In the earliest three months, an infant cry is  characterized 
by its periodic nature, which alternates crying and 
inspirations. We can see that the clear harmonics are both in 
the lower frequency region below 3KHz, which covers more 
energy represented by lighter colors in the spectrograms. The 
harmonic structure becomes drastically weaker as the 
frequency increases for both spectrograms, but the 4-month 
spectrogram contains stronger energy in the low frequency 
than the 1-month spectrogram. Figure 3(b) illustrates a gap, 
around 0.85 second, which is the effect of glottis closure. 
When we listen to this audio signal, it contains an unclear 
“mama” sound. It means the 4-month age infant acquires the 
ability to close the glottis to form a certain level discontinuous 
vocalization during crying. It means the infant can generate 
discontinuous speech with different blocks in a whole 
articulation and is ready for the first word pronunciation.  

 The shape of vocal tract decides the resonant 
characteristics of its vocalizations. Infant cry signal is 
characterized by its high F0 within 250-700Hz compared to 
85Hz to 200Hz of adult. The first two formants (F1 and F2) 
determine the vowel sounds, relating to the length and place 
of narrowing of the vocal tract and the F0 is corresponding to 
the increases in the length and volume of a vocal cord [1]. F1 
corresponds to the vertical height (high or low) of the tongue, 
F2 relates to the horizontal position (forward and backward) 
of the tongue [1]. In Figure 4, we plot F0, F1, and F2 using 
Praat [10] tool for a typical male infant cry for hunger at 1-
month age and 4-month age. It is shown that the coefficients 
of F0 relating to vocal cord vary slightly between 1-month age 
and 4-month age baby. It indicates that the length and the 
volume of the vocal cord may not change much during the 
postnatal development of the first 3 months. On the other 
hand, values of F1 and F2 (F1=1921Hz vs 1470Hz, 
F2=4423Hz vs 2339 Hz) for 4-month vocalization increased 
significantly, which is in accordance with our previous 
analysis. Since F1 and F2 are strongly related to resonant 
cavity and the tongue, the increase of F1 and F2 indicates a 
great change of tongue location, oral, and nasal cavity 
extension for word pronunciation.  

  



              
(a): 1-month sleepy cry                      (b): 4-month sleepy cry with “mama”  

Fig. 3. Spectrograms of a 1-month sleepy cry and a 4-month sleepy cry. 

    
(a): 1-month infant hungry cry                 (b): 4-month infant hungry cry 

F0=442Hz, F1=1470Hz, F2=2339Hz   F0=457Hz, F1=1921Hz, F2=4423Hz          

Fig. 4. F0, F1, F2 comparisons of same infant at 1-month and 4-month. 

 

 

 

 

 

Fig. 5. F1 and F2 distribution from a certain infant of 0-month and 4-month. 
 

 To show the distribution of F1 and F2 along with the vocal 
tract development, we plot the scatter graphs for 0-month and 
4-month cry samples from the same boy infant in Figure 5. 
Each graph contains the same number of values extracted 
from 100 cry samples. The horizontal axis is the F1 value, and 
the vertical axis is the F2 value. Figure 5 indicates that with 
the development of vocal tract, the average values of F1 and 
F2 increase. For example, F1 over 800Hz and F2 over 2400Hz 
are covered by more samples from 4-month compared to those 
of 0-month. In addition, the distribution of samples from 4-
month is quite different with respect to 0- month samples. The 
standard deviation of F1 and F2 are increased with age. It 
indicates that with the improved ability of controlling the 
vocal tract, infants start to generate different formants changes 
representing different expressions at 4-month age, which is a 
turning point of the development of vocal tract. 

III. AGE CLASSIFICATION WITH CONVOLUTIONAL NEURAL 

NETWORKS 

 Convolutional neural network (CNN) is one of the deep 
learning models that is widely used in many research domains 
such as image classification, object detection, and signal 
processing, etc. Comparing to fully connected neural network, 
CNN is better at extracting the features from the images with 
less parameters to train, which leads to better performance and 
less training time. In the training phase, each labeled image 
passes through a certain number of convolutional layers with 
selected filters, selected pooling that reduces the 
dimensionality, fully connected layers, and at last a softmax 
activation function that is applied to the last dense layer to 
generate a probabilistic value between 0 and 1 for 
classification. While training, the filter weights get updated by 
backpropagation algorithm to ensure the result matches the 
label of the image. In the testing phase, testing images pass 
through the trained CNN model to get the classification labels. 

 

Fig. 6. CNN architecture of our approach for age classification.  

In recent years, CNN is used in infant cry reason 
classification and infant cry detection. The input images used 
include waveforms, spectrograms, and prosodic feature 
images. Research shows that the spectrograms perform the 
best on classifying the cry signals comparing to waveforms 
and prosodic line images [11]. In this study, we extract the 
spectrograms from the cry signals and feed them into the CNN 
model for age classification. The implementation of the CNN 
uses Keras framework with Tensorflow backend [12]. The 
architecture of our CNN model is illustrated in Figure 6. 
Spectrograms are fed into the CNN model, which contains 
three convolutional layers, maxpooling, and the network is 
flattened into a 256-neuron fully connected layer, and then the 
softmax is used in the last layer for classification. 

IV. EXPERIMENTAL SETUP AND RESULTS 

A. Dataset 

The dataset used in this study is a subset of the developing 
Baby2020 database. Baby2020 database samples are collected 
from over 100 babies from newborn to 9 months old via 
mobile devices placed right beside the infants in natural real-
world home or hospital environments. The length of each 
recording is less than 3 minutes. Cry samples are manually 
segmented with the length between 1 second to 7 seconds 
using the Transcriber tool [13]. Cry samples are labeled either 
by parents at home or by doctors and nurses in hospitals. Each 
recording is labeled by the monthly age of the infant, gender 
of the infant, and reason of the cry. The cry reason annotation 
is based on caregivers’ experiences and the real time situation 
when the cry occurs.  

In this study, we use cry samples from infants between 
newborn (0-month) to 6-month. There are 10500 samples in 
total, including 1500 samples from multiple infants and 
multiple types of the cries selected for each month. The types 
of the cry samples include hungry, sleepy, unhappy, wakeup, 
attention, uncomfortable, temper, and pain. The healthy cry 
testing set for the abnormal vocal tract development diagnosis 
experiment contains 220 samples for each month. The deaf 
and asphyxiated testing set is from the Baby Chillanto 
database [14], which contains the cries from babies ranging 
from newborn to 9-month of age and each sample is a one-
second long audio wav file. We use the 340 deaf cry samples 
and 879 asphyxiated cry samples as the abnormal cry samples 
for our experiments. We use Sound eXchange (Sox) software 
[15] to generate the spectrograms and images being fed into 
the CNN are resized into 64*64. 

B. Experimental setup and results 

A CNN binary classifier is used to discover the pattern 

of the changes of the vocal tract. There are three 

convolutional layers followed by three max-pooling layers in 

the model. 5*5 filter size, 2*2 pooling size and 2*2 stride are 

used. The first convolutional layer uses “same” padding, and 

 



the default “valid” padding is used in other two convolutional 

layers. The first and third convolutional layers use 20 filters, 

and the second convolutional layer uses 32 filters. After the 

third max-pooling, the network is flattened into a 256-neuron 

dense layer. The optimizer used is Adam, and the ReLu 

activation function is used in each convolution layer. In the 

dense layer, the softmax activation function is applied for 

final classification. 5-fold cross validation is performed on 

the identifying vocal tract development experiments as 

training and testing samples are from the same group of 

infants. The testing samples and training samples for 

diagnosing abnormal vocal tract are from different group of 

infants. All models are trained with 100 epochs and all testing 

accuracies are the average of 10 runs.  

 

1) Identify infant vocal tract development by binary age 

classification. In Section 2 we analyze that 4-month age is a 

vital turning point of vocal tract development. We perform 

binary age classification on infant cry signals to experiment 

this change. The labels of the samples are 0, 1, 2, 3, 4, 5 and 

6 representing the monthly age of the infants. We generate 

different binary pairs such as 01, 02, 03, 04, 05, 06, 12, 13, 

14, 15, 16, 23, 24, 25, and 26. For example, 01 means 

classifying 0-month samples from 1-month samples. Table I 

and Figure 7 give the classification results of all pairs. CNN 

achieves over 85% for all pairs indicating its strong ability to 

differentiate the monthly cries. As shown in Figure 7, when 

0-month, 1-month, and 2-month cries are compared to cries 

in other months, the accuracies consistently increase as 

infants grow. The turning points arrive at 4-month where the 

accuracies stop increasing or frustrates through 6-month. The 

classifiers cannot differentiate the cries of 5-month and 6-

month cries from 0-2-month cries better than the 4-month 

cries indicating the change of the infant vocal tract reaches a 

certain stable stage after the infants reach 4-month old. In 

another experiment, we separate the male cries and female 

cries into two datasets and perform the binary age 

classification separately, we discover that both datasets show 

the same trend as the combined dataset shows, which is the 

accuracies stops increasing when infants reach 4-month-old. 

But all classification accuracies of the male cries are lower 

than the ones for female cries. It may indicate that the vocal 

tract development of the male infants is slower than the 

female infants from newborn to 5 months.  

 

2) Abnormal vocal tract development diagnosis. We 

perform age classification to diagnose the abnormality of the 

infant vocal tract development. When an infant reaches 4-

month and his cry signals are classified as younger month 

cries, it indicates that his vocal tract development is in growth 

retardation or related diseases may be involved. We use the 

same CNN binary classification model described above. We 

consider month 0, 1, 2, 3 cries as one category and month 4 

as another category with 1500 samples in each category. 

Table II shows the accuracies of the abnormality diagnosis on 

healthy infants, asphyxiated infants, and deaf infants. For 

healthy infant cries, 79.20% testing samples can be classified 

correctly. Asphyxiated infant cries and deaf infant cries are  

both  abnormal  cries, especially the deaf infants. The result 

shows that 84.80% asphyxiated infant cries are classified as  

TABLE I.  MONTHLY BINARY AGE CLASSIFICATION ACCURACIES 

 0-month 1-month 2-month 

1-month 88.69% -- -- 

2-month 93.47% 88.16% -- 

3-month 95.91% 89.98% 85.16% 

4-month 96.27% 92.33% 90.14% 

5-month 96.07% 93.68% 90.01% 

6-month 95.70% 92.58% 90.22% 

 

 
Fig. 7. Line chart of monthly binary age classification. 

TABLE II.  ACCURACIES OF ABNORMAL VOCAL TRACT DEVELOPMENT 

DIAGNOSIS BY INFANT CRIES 

CNN Model Testing samples Accuracy 

4 month or younger Healthy cries (1100) 79.20% 

4 month or younger Asphyxiated cries (879) 84.80% 

4 month or younger Deaf infants’ cries (340) 91.21% 

 

cries younger than 4-month cries, and 91.20% of the deaf 

cries are diagnosed as cries younger than 4-month cries. The 

loss of hearing of deaf infants has great impact of the Monthly 

binary age classification accuracies development of vocal 

tract. It is essential to perform treatment as early as possible. 

Meanwhile, asphyxiated infants with the pathological effects 

show the delay of development of vocal tract. The 

experimental results of these two different types of abnormal 

pathological cries indicate that our proposed diagnosing 

classifier is effective.  

V. CONCLUSION AND FUTURE WORK 

 In this paper, we demonstrated that infant cry age 
classification  with CNN is an efficient non-invasive  method 
to diagnose the abnormality of the vocal tract development of 
early  age  infants.  The  analysis  of  acoustic  features   from 
different monthly age infants shows that 4-month age is a key 
turning point of infant vocal tract growth. We have shown that 
the length and volume of vocal cord may not change much 
during the postnatal development of the first 3 months. F1 and 
F2 increase significantly within the early 4 months indicating 
a great change of tongue location, oral, and nasal cavity 
extension for word pronunciation. We applied CNN to 
discover the pattern of the changes and diagnose the 
abnormality of the infant vocal tract by age classification. Our 
method achieved 79.20% accuracy for healthy infant cries on 
Baby2020 database, obtained 84.80% of asphyxiated cries, 
and 91.20% of the deaf cries for abnormal vocal tract 
development diagnosis on Baby Chillanto database. In the 
future, we will apply other machine learning methods, such as 
SVM and graph neural networks, to improve the age 

83.00

88.00

93.00

98.00

Monthly Binary Classification Accuracies

0-month 1-month 2-month



classification accuracy. We plan to expand the dataset to 
include older infant cries and young children’s early speech to 
study the vocal tract development in children’s first several 
years of growth. With large dataset and the combination of 
different audio features, we plan to apply rough set theory 
[16][17] into our audio classification for better performance in 
time and accuracy.  
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